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Abstract: Fuzzy systems of equations often appear while modeling physical systems with imprecisely 

defined parameters. Many mathematical methods are available to investigate them, but handling them 

is challenging due to the computational complexity and difficult implementation. As such, in this paper, 

the Inner-Outer Direct Search (IODS) optimization technique is extended in the fuzzy environment to 

solve a fuzzy system of nonlinear equations. The main purpose of the extension is to study the system 

variables in the presence of fuzzy information. To manage fuzziness, a fuzzy parametric form is 

employed in the uncertain system and controls the search process toward the optimal solution. The 

proposed approach of fuzzy IODS converts the fuzzy system of nonlinear equations to an 

unconstrained fuzzy optimization problem. Then, the unconstrained fuzzy optimization problem is 

studied through the IODS technique. To solve the unconstrained fuzzy optimization problem, the fuzzy 

objective function is minimized with the help of exploratory and pattern search approaches. These 

searches are performed with inner and outer computations. Then, the obtained united solution provides 

the desired solution which minimizes the objective function. From the same the uncertain system, 

variables are derived. To verify the solution and proposed algorithm, convergence analysis is performed. 

Three case studies are considered with only fuzzy and fully fuzzy systems, and various cases are 

discussed. A comparison with other methods is made to test the efficacy of the method. The proposed 

algorithm is coded with the help of MATLAB software, and the results are analyzed graphically. Finally, 

the simple procedure and computationally efficient approach may help to implement the same in many 

engineering and science problems that can be modeled into systems of equations. 
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1. Introduction 

Most science and engineering problems are governed by differential equations. Due to the 

complexity of the problems in real practice, often, numerical methods are adopted to study the field 

variables. Generally, the numerical methods convert the governing differential equations into algebraic 

equations. Systems of nonlinear equations are among the algebraic equations which commonly occur 

in mathematical models. Furthermore, the presence of uncertainty makes the system challenging to 

solve. As uncertainties play a vital role, it cannot be avoided, and the system needs to be investigated 

with uncertainty. As such, here we have considered fuzzy numbers as uncertainty. 

The concept of fuzzy set theory, fuzzy numbers and their computation through fuzzy arithmetic 

operations were initially introduced in Dubois and Prade [1], Nahmias [2] and Zadeh [3]. As nonlinear 

systems of equations are common in mathematical in many engineering and science problems, the 

uncertain analysis of the same is essential. The uncertainties that are caused due to experimental errors, 

lack of knowledge and partial information of system parameters are taken as fuzzy. Hence, incorporation 

of these uncertainties in a system of nonlinear equations produces a fuzzy system of nonlinear equations in 

Jafari and Yu [4]. In this regard, many researchers presented different approaches to solve fuzzy equations. 

A few of the relevant research works are discussed here. In [5,6], Buckley and Qu presented an analytical 

approach to solve fuzzy linear and quadratic equations. In Buckley and Qu [5], the authors discussed 

the necessary and sufficient condition for linear and quadratic equations to have a solution, when the 

parameter is either real and complex. Furthermore, Buckley and Qu [6] introduced a new solution 

based on unified extension. 

From analytical approaches, it is seen that when a fuzzy equation and/or fuzzy system of equations 

undergoes complicated boundary conditions and computational complexity, the numerical methods 

make it easier to handle. In this context, Abbasbandy and Asady [7], Abbasbandy and Ezzati [8] used 

Newton’s method to investigate fuzzy nonlinear equations. In [9], Shokri introduced an idea of 

midpoint in Newton’s method and then applied it to study the fuzzy nonlinear equation. Further, a 

fuzzy system of equations can be classified as only fuzzy and fully fuzzy system depending on the 

usage of fuzziness. In [10], Jafari et al. used an iterative approach to solve a fully fuzzy nonlinear 

system. In [11], Kajani et al. studied a dual fuzzy nonlinear system of equations, and an iterative 

algorithm was adapted to find the solution of the system.  

There are various types of fuzzy numbers that can be taken as uncertainty. One of the fuzzy 

numbers is the triangular fuzzy number (TFN), which is often used by researchers. We have also 

considered TFN for our present research work. Using TFN, Gani and Assarudeen [12] modeled a linear 

programming problem to deduce the fuzzy objective value as well as the fuzzy optimal solution. It is 

also noted that the linear programming problem is a special case of linear systems. Now, with the TFN 

environment, a general framework of a nonlinear system of equations can be developed. As such, here 

we have considered an 𝑛 × 𝑛  system of nonlinear equations with fuzzy environment for our 

investigation. In [13], Sherbrooke and Patrikalakis solved a nonlinear system of polynomial equations, 

and Garlof and Smit [14] obtained the solution of a polynomial equation, a recursive subdivision 

expressed on Bernstein’s basis. Yazdi et al. [15] modeled risk assessments of different industrial and 
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social systems with uncertainties. [16] provides many linguistic methods and case studies, 

demonstrating their applicability, which will enable readers to implement them in their own risk 

analysis process. 

The above literature review reveals that the system is more challenging to understand and solve 

using gradient based techniques. Therefore, direct search algorithms can be implemented for easy 

understanding and solving of the same. In light of this, optimization techniques based on direct search 

approach can be introduced to obtain the solution of fuzzy systems. One of the ideas to proceed with 

an optimization technique for solving a system of nonlinear equations is to transform the system into 

an unconstrained minimization problem, as in Deb [17] and Nayak [18]. Moreover, many researchers 

presented various optimization techniques for the same. Luo et al. [19] suggested a hybrid technique 

for solving a system of nonlinear equations that combines a chaotic optimization algorithm with the 

quasi-Newton method. The concept behind this approach is to look for an initial estimate that will 

reach the convergent areas of the quasi-Newton method. Besides this, the computation cost may rise 

owing to the quasi-Newton approach, demanding the development of a new methodology. Recently, 

Ansorena [20] considered an optimization problem regarding the work strategy at the gate of the Barcelona 

container port. Authors provided a technique for solving fully fuzzy linear programming (FFLP) problems 

using the ranking function. In Jafarian and Jafari [21], a basic stability technique is used to modify the 

two-step method (TSM). Bibi et al. in [22] devised an approach for solving convex quadratic 

programming problems with limited variables. In Nayak and Chakraverty [23], the researchers took a 

fuzzy system of linear equations and then gave a united solution using a limit approach of fuzzy 

arithmetic. As the fuzzy set is the union of intervals with various 𝛼-cuts, in [24], Nayak and Pooja gave 

an optimization technique to solve an interval nonlinear system with the bounded parameter. A 

stochastic process is another way to handle uncertainty. In this regard, Yazdi [25] considered a 

stochastic game theory approach to solving a system safety and reliability decision-making problems 

under uncertainty. Hence, many direct search techniques have been used to solve the nonlinear systems 

of equations that can be managed for fuzzy nonlinear systems of equations.  

In addition to the solution techniques, convergence analysis of the same is essential to study. The 

convergence analysis guarantees the occurrence of an optimal solution. In Hough et al. [26] and Lewi [27], 

authors provided a pattern search convergence for the mentioned optimization problem. The general 

theory of pattern search is extended to a local convergence of multidimensional search algorithms in 

Torczo [28]. In [29], Lewis and Torczon established global convergence of a pattern search technique. 

As such, we shall extend the Inner Outer Direct Search (IODS) method [24] in a fuzzy 

environment. The search processes are inspired by the Hooke Jeeves pattern search method in Kirgat 

and Surde [30]. The proposed fuzzy IODS algorithm is used to solve fuzzy nonlinear systems of 

equations for both only fuzzy and fully fuzzy cases. Fuzzy IODS transforms a fuzzy system of 

nonlinear equations into an unconstrained multivariable optimization problem. It breaks the problem 

into a two-step calculation, that is, inner computation and outer computations. The obtained solutions 

through these two steps are assembled, and using regularity principle the final solution is obtained. 

Further, we have established the local convergence behavior of the fuzzy IODS algorithm in the 

neighborhood of the local minimizer 𝑥∗. Using two example problems, the analytical, numerical and 

graphical convergences of the obtained solutions are depicted for validation of the proposed algorithm. 

Finally, the nature of the uncertain solutions is discussed in various cases. The potential real-world 

application of this algorithm is found in modeling risk assessment problems, control systems, structural 

engineering problems and fluid mechanics. 

This paper is structured in the following manner. Section 2 includes the preliminaries of fuzzy 

numbers and arithmetic operations using fuzzy numbers. Section 3 describes the classification of a 
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fuzzy nonlinear system of equations and its different cases. Section 4 presents the Inner-Outer Direct 

Search method in fuzzy environment and fuzzy IODS algorithm. In Section 5, we have analyzed the 

local convergence of the fuzzy IODS algorithm. Then, in Section 6, three example problems are 

demonstrated through the fuzzy IODS algorithm, and the solutions are reported. Through convergence 

analysis, it is observed that the proposed fuzzy IODS method converges and guarantees the solution.  

2. Preliminaries 

This section includes the fundamentals of fuzzy numbers and their arithmetic (Zimmermann [31]).  

A fuzzy number �̃� is a convex normalized piecewise continuous fuzzy set �̃� on the real line 𝑅 

with the membership function 

𝜇�̃�(𝑥): 𝑅 → [0,1], ∀𝑥 ∈ 𝑅.        (1) 

One of the fuzzy numbers, a triangular fuzzy number (TFN), is written as 

�̃� =  [𝑎1, 𝑎2, 𝑎3],         (2) 

where 𝑎1, 𝑎2 and 𝑎3 are the left, center and right values of the TFN �̃�, and 𝑎1 ≤ 𝑎2 ≤ 𝑎3. 

Two TFNs are said to be equal if the left endpoint, center and right endpoints for both the TFNs 

are the same, respectively.  

For example, if we take two TFNs, viz. �̃� = [𝑎1, 𝑎2, 𝑎3] and �̃� = [𝑏1, 𝑏2, 𝑏3], then they are said 

to be equal if 𝑎1 = 𝑏1, 𝑎 2 = 𝑏2, and 𝑎3 = 𝑏3. The width of the TFN �̃� is defined as 𝑤 =  𝑎3 –  𝑎1. 

To compute TFNs, one may use the traditional arithmetic in Nayak [32] operations given below. 

�̃� = [𝑎1, 𝑎2, 𝑎3] may be transformed into an interval by using 𝛼 − cut as follows: 

�̃� = [𝑎1, 𝑎2, 𝑎3] = [𝑎1 + (𝑎2 − 𝑎1)𝛼, 𝑎3 − (𝑎3 − 𝑎2)𝛼], where 𝛼 ∈ [0,1]. 

Suppose that �̃� = [𝐴(𝛼), 𝐴(𝛼)]  and �̃� = [𝐵(𝛼), 𝐵(𝛼)]  are two fuzzy numbers. Then, we have the 

following. 

Addition:  

�̃� + �̃� = [𝐴(𝛼) + 𝐵(𝛼), 𝐴(𝛼) + 𝐵(𝛼)]. 

Subtraction:  

�̃� − �̃� = [𝐴(𝛼) − 𝐵(𝛼), 𝐴(𝛼) − 𝐵(𝛼)]. 

Multiplication: 

�̃� × �̃� = [min {𝐴(𝛼) × 𝐵(𝛼), 𝐴(𝛼) × 𝐵(𝛼), 𝐴(𝛼) × 𝐵(𝛼), 𝐴(𝛼) × 𝐵(𝛼)}, max {𝐴(𝛼) ×

𝐵(𝛼), 𝐴(𝛼) × 𝐵(𝛼), 𝐴(𝛼) × 𝐵(𝛼), 𝐴(𝛼) × 𝐵(𝛼)}]. 

Division: 

�̃� ÷ �̃� = [min {𝐴(𝛼) ÷ 𝐵(𝛼), 𝐴(𝛼) ÷ 𝐵(𝛼), 𝐴(𝛼) ÷ 𝐵(𝛼), 𝐴(𝛼) ÷ 𝐵(𝛼)}, max {𝐴(𝛼) ÷

𝐵(𝛼), 𝐴(𝛼) ÷ 𝐵(𝛼), 𝐴(𝛼) ÷ 𝐵(𝛼), 𝐴(𝛼) ÷ 𝐵(𝛼)}]， 

where 𝐵(𝛼) ≠ 0 and 𝐵(𝛼) ≠ 0. 

A TFN is a union of intervals, that is, for each membership value 𝛼 ∈ [0, 1], one gets an interval, 

and the union of all these intervals gives the same TFN. Hence, we may conclude that during 
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computation, the operation takes place pointwise. Therefore, one needs to construct a function using 

the variable 𝛼 and then compute the TFNs (Chakraborty and Guh [33]). In the next section, we will 

study how to solve a fuzzy system of nonlinear equations using the mentioned arithmetic operations.  

3. Fuzzy system of nonlinear equations 

In the following, we may rewrite the definition of a TFN. 

A fuzzy number �̃� = [𝑥𝐿 , 𝑥𝑁 , 𝑥𝑅] is said to be a TFN if the membership values are defined as 

𝜇𝐴(𝑥) = {
fL, 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑁

fR, 𝑥𝑁 ≤ 𝑥 ≤ 𝑥𝑅

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,        (3) 

where fL  is the left monotonically non-decreasing function, and fR  is the right monotonically non-

increasing function. These functions can be represented as fL =
𝑥−𝑥𝐿

𝑥𝑁−𝑥𝐿
 and fR =

𝑥𝑅−𝑥

𝑥𝑅−𝑥𝑁
. 

For the computational utility, an arbitrary TFN �̃� = [𝑥𝐿 , 𝑥𝑁 , 𝑥𝑅]  can be transformed to a two-

variable form through the following steps. 

Step 1: TFN to interval form, 

Step 2: Interval to crisp form. 

Using 𝛼-cuts the TFN can be written as  

�̃� = [𝑥𝐿 , 𝑥𝑁 , 𝑥𝑅] ≈ [𝜉𝐿 , 𝜉𝑅],        (4) 

where 

𝜉𝐿 = 𝑥𝐿 + 𝛼(𝑥𝑁 − 𝑥𝐿) and 𝜉𝑅 = 𝑥𝑅 + 𝛼(𝑥𝑁 − 𝑥𝑅); 𝛼 ∈ [0, 1]. 

The crisp representation of TFN �̃� becomes 

𝜉𝐿 − 𝛽(𝜉𝐿 − 𝜉𝑅), 𝛽 ∈ [0,1].        (5) 

The above representation may be used in the following system of equations to study a fuzzy 

system of equations. 

Consider a system of equations in matrix form  

�̃��̃� = �̃�,          (6) 

where �̃� is a coefficient matrix, �̃� is the right-side vector, and �̃� is the unknown vector that needs to 

be quantified. The compact form of the same is defined as  

�̃� = [�̃�𝑖𝑗], 𝑖, 𝑗 = 1,2, … 𝑛, �̃� = [�̃�1, �̃�2, … , �̃�𝑛]𝑇, and �̃� = [�̃�1, �̃�2, … �̃�𝑛]𝑇.   (7) 

Here, the entries �̃�𝑖𝑗 and �̃�𝑗 are the TFNs. 

Consider a system of equations having 𝑛 variables, that is, 

�̃�𝑛×𝑛 �̃�𝑛×1 = �̃�𝑛×1,         (8) 

where  

�̃�𝑛×𝑛  = [

�̃�11 �̃�12 ⋯ �̃�1𝑛

�̃�21 �̃�22 ⋯ �̃�2𝑛

⋮ ⋮ ⋱ ⋮
�̃�𝑛1 �̃�𝑛2 ⋯ �̃�𝑛𝑛

], �̃�𝑛×𝑛 = [

�̃�1

�̃�2

⋮
�̃�𝑛

], and �̃�𝑛×𝑛 =

[
 
 
 
�̃�1

�̃�2

⋮
�̃�𝑛]

 
 
 

.    (9) 
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The expanded forms of TFNs �̃�𝑖𝑗 and �̃�𝑗 are 

�̃�𝑖𝑗 = [𝑎𝐿𝑖𝑗
, 𝑎𝑁𝑖𝑗

, 𝑎𝑅𝑖𝑗
] and �̃�𝑗 = [𝑏𝐿𝑗

, 𝑏𝑁𝑗
, 𝑏𝑅𝑗

]; 𝑖, 𝑗 = 1, 2,⋯ , 𝑛. 

Now, the fully fuzzy system of the equations can be defined as  

[
 
 
 
 
[�̃�𝐿11

, �̃�𝑁11
, �̃�𝑅11

] [�̃�𝐿12
, �̃�𝑁12

, �̃�𝑅12
] ⋯ [�̃�𝐿1𝑛

, �̃�𝑁1𝑛
, �̃�𝑅1𝑛

]

[�̃�𝐿21
, �̃�𝑁21

, �̃�𝑅21
] [�̃�𝐿22

, �̃�𝑁22
, �̃�𝑅22

] ⋯ [�̃�𝐿1𝑛
, �̃�𝑁1𝑛

, �̃�𝑅1𝑛
]

⋮ ⋮ ⋱ ⋮
[�̃�𝐿𝑛1

, �̃�𝑁𝑛1
, �̃�𝑅11

] [�̃�𝐿𝑛2
, �̃�𝑁𝑛2

, �̃�𝑅𝑛2
] ⋯ [�̃�𝐿𝑛𝑛

, �̃�𝑁𝑛𝑛
, �̃�𝑅𝑛𝑛

]]
 
 
 
 

[

�̃�1

�̃�2

⋮
�̃�𝑛

] =

[
 
 
 
 
[�̃�𝐿1

, �̃�𝑁1
, �̃�𝑅1

]

[�̃�𝐿2
, �̃�𝑁2

, �̃�𝑅2
]

⋮
[�̃�𝐿𝑛

, �̃�𝑁𝑛
, �̃�𝑅𝑛

]]
 
 
 
 

.  (10) 

Case 1. In Eq (10), the entries of the coefficient matrix are TFNs. The entry �̃�𝑖𝑗  is defined as 

[𝑎𝐿𝑖𝑗
, 𝑎𝑁𝑖𝑗

, 𝑎𝑅𝑖𝑗
], and the right-side vector is 𝑏𝑗 (crisp in nature). 

The matrix representation of the Case 1 type of fuzzy system of nonlinear equations may be 

[
 
 
 
 
[�̃�𝐿11

, �̃�𝑁11
, �̃�𝑅11

] [�̃�𝐿12
, �̃�𝑁12

, �̃�𝑅12
] ⋯ [�̃�𝐿1𝑛

, �̃�𝑁1𝑛
, �̃�𝑅1𝑛

]

[�̃�𝐿21
, �̃�𝑁21

, �̃�𝑅21
] [�̃�𝐿22

, �̃�𝑁22
, �̃�𝑅22

] ⋯ [�̃�𝐿1𝑛
, �̃�𝑁1𝑛

, �̃�𝑅1𝑛
]

⋮ ⋮ ⋱ ⋮
[�̃�𝐿𝑛1

, �̃�𝑁𝑛1
, �̃�𝑅11

] [�̃�𝐿𝑛2
, �̃�𝑁𝑛2

, �̃�𝑅𝑛2
] ⋯ [�̃�𝐿𝑛𝑛

, �̃�𝑁𝑛𝑛
, �̃�𝑅𝑛𝑛

]]
 
 
 
 

[

�̃�1

�̃�2

⋮
�̃�𝑛

] =

[
 
 
 
𝑏1

𝑏2

⋮
𝑏𝑛]

 
 
 

.    (11) 

Case 2. In Eq (10), the right-side vector is �̃�𝑗  TFNs. The right-side vector of �̃�𝑗  is defined as 

[𝑏𝐿𝑗
, 𝑏𝑁𝑗

, 𝑏𝑅𝑗
]. The coefficient of the left side �̃�𝑖𝑗 is crisp in nature. 

The matrix representation of the Case 2 type of fuzzy system of nonlinear equations may be  

[

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] [

�̃�1

�̃�2

⋮
�̃�𝑛

] =

[
 
 
 
 
[�̃�𝐿1

, �̃�𝑁1
, �̃�𝑅1

]

[�̃�𝐿2
, �̃�𝑁2

, �̃�𝑅2
]

⋮
[�̃�𝐿𝑛

, �̃�𝑁𝑛
, �̃�𝑅𝑛

]]
 
 
 
 

.      (12) 

Case 3. In Eq (10), the entries of the coefficient matrix and the right-side vector are TFNs.  

The matrix representation of the Case 3 type of fuzzy system of nonlinear equations may be 

[
 
 
 
 
[�̃�𝐿11

, �̃�𝑁11
, �̃�𝑅11

] [�̃�𝐿12
, �̃�𝑁12

, �̃�𝑅12
] ⋯ [�̃�𝐿1𝑛

, �̃�𝑁1𝑛
, �̃�𝑅1𝑛

]

[�̃�𝐿21
, �̃�𝑁21

, �̃�𝑅21
] [�̃�𝐿22

, �̃�𝑁22
, �̃�𝑅22

] ⋯ [�̃�𝐿1𝑛
, �̃�𝑁1𝑛

, �̃�𝑅1𝑛
]

⋮ ⋮ ⋱ ⋮
[�̃�𝐿𝑛1

, �̃�𝑁𝑛1
, �̃�𝑅11

] [�̃�𝐿𝑛2
, �̃�𝑁𝑛2

, �̃�𝑅𝑛2
] ⋯ [�̃�𝐿𝑛𝑛

, �̃�𝑁𝑛𝑛
, �̃�𝑅𝑛𝑛

]]
 
 
 
 

[

�̃�1

�̃�2

⋮
�̃�𝑛

] =

[
 
 
 
 
[�̃�𝐿1

, �̃�𝑁1
, �̃�𝑅1

]

[�̃�𝐿2
, �̃�𝑁2

, �̃�𝑅2
]

⋮
[�̃�𝐿𝑛

, �̃�𝑁𝑛
, �̃�𝑅𝑛

]]
 
 
 
 

.  (13) 

The above cases will be discussed and solved through example problems in the coming sections. 

The next section deals with the Inner Outer Direct Search (IODS) optimization technique and its 

extension in the fuzzy environment.  

4. Inner Outer Direct Search (IODS) optimization technique in fuzzy environment 

The basic idea of the IODS optimization technique is to convert the system of equations to an 

unconstrained optimization problem. Then, the same can be solved through a direct search method. In 

a fuzzy environment, the extensions are done with the involved fuzzy numbers. In addition to the 

system of nonlinear equations, here we are dealing with a fuzzy system of nonlinear equations. As a result, 

we get a fuzzy unconstrained optimization problem which needs to be investigated through the direct search 

approach. Moreover, we need to minimize the fuzzy unconstrained optimization problem. The search 

process in IODS algorithm executes in two steps, viz., exploratory search and pattern search. However, 

with the inclusion of epistemic uncertainties, inner and outer calculations need to be performed [24]. 
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For the sake of understanding, we have considered a system of two nonlinear equations, where 

the right-hand side values are TFN. 

ℱ𝑘(𝑥1, 𝑥2) = [𝑏𝐿𝑘
, 𝑏𝑁𝑘

, 𝑏𝑅𝑘
].        (14) 

Equation (14) can be transformed into the interval parametric form 

ℱ𝑘(𝑥1, 𝑥2) = [𝜉𝐿𝑘
, 𝜉𝑅𝑘

],        (15) 

where 𝜉𝐿𝑘
= 𝑏𝐿𝑘

+ 𝛼𝑘(𝑏𝑁𝑘
− 𝑏𝐿𝑘

) and 𝜉𝑅𝑘
= 𝑏𝑅𝑘

− 𝛼𝑘(𝑏𝑅𝑘
− 𝑏𝑁𝑘

). Here, 𝑘 = 1, 2, and 0 ≤ 𝛼𝑘 ≤ 1. 

In the above two nonlinear equations, the solution derives 𝑥1 and 𝑥2 in terms of 𝛼 and 𝛽. Then, 

the desired solution can be achieved by substituting the values of the parameters 𝛼  and 𝛽 . The 

maximum and minimum are taken as the upper and lower bounds of the solution. This method can be 

extended to more variables by taking an equal number of parameters as unknown variables. The search 

to get the minimum vector is controlled by seven different computations: (i) left outer computation, 

(ii) right outer computation, (iii) center outer computation, (iv) inner computation for 𝑎 = 0 and 𝛽 = 0, 

(v) inner computation for 𝑎 = 0  and 𝛽 = 1 , (vi) inner computation for 𝑎 = 1  and 𝛽 = 0  and (vii) 

inner computation for 𝑎 = 1  and 𝛽 = 1 . The procedure consists of two types of searches, viz., 

exploratory move and pattern search, inspired by the well-known Hooke-Jeeves pattern search 

optimization technique [17]. 

Using Eq (9), the left-hand side outer computation can be depicted through the following matrix:  

[

𝑎𝐿11
𝑎𝐿12

⋯ 𝑎𝐿1𝑛
𝑎𝐿21

𝑎𝐿22
⋯ 𝑎𝐿2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝐿𝑛1

𝑎𝐿𝑛2
⋯ 𝑎𝐿𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] =

[
 
 
 
𝑏𝐿1

𝑏𝐿2

⋮
𝑏𝐿𝑛]

 
 
 

.      (16) 

Using Eq (9), the right-hand side outer computation can be depicted through the following matrix:  

[

𝑎𝑅11
𝑎𝑅12

⋯ 𝑎𝑅1𝑛
𝑎𝑅21

𝑎𝑅22
⋯ 𝑎𝑅2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑅𝑛1

𝑎𝑅𝑛2
⋯ 𝑎𝑅𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] =

[
 
 
 
𝑏𝑅1

𝑏𝑅2

⋮
𝑏𝑅𝑛]

 
 
 

.      (17) 

Similarly, using the value of 𝛼 = 1 in Eq (9), the center outer computation can be shown in the 

following matrix:  

[

𝑎𝑁11
𝑎𝑁12

⋯ 𝑎𝑁1𝑛
𝑎𝑁21

𝑎𝑁22
⋯ 𝑎𝑁2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑁𝑛1

𝑎𝑁𝑛2
⋯ 𝑎𝑁𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] =

[
 
 
 
𝑏𝑁1

𝑏𝑁2

⋮
𝑏𝑁𝑛]

 
 
 

.      (18) 

The left outer, right outer, center outer and inner computation are performed through the Inner 

Outer Search algorithm given below. 
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4.1. Fuzzy IODS algorithm 

Step 1: Convert fuzzy system of nonlinear equations to fuzzy unconstrained 

multivariable optimization problem.  

Formulate inner and outer unconstrained multivariable optimization problem.  

Formulate center (𝛼-cut is unity) unconstrained multivariable optimization problem. 

Step 2: Introduce two parameters 𝛼, 𝛽 ∈ {0,1} and consider it with initial values. There 

will be four different unconstrained multivariable optimization problems. 

There will be a total of seven unconstrained multivariable optimization problems which 

need to be solved using the following steps.       

Step 3: Choose an initial point 𝑥(0), variable increments ∆𝑖, a step reduction factor 𝜆 > 1 

and a convergence parameter 𝜖. 

Using Steps 1 and 2, we get the objective function ℱ(𝑥), 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)𝑇. 

Step 4: Exploratory search  

Step 4.1: Calculate ℱ = ℱ(𝑥𝑖), ℱ
+ = ℱ(𝑥𝑖 + ∆𝑖), and ℱ− = ℱ(𝑥𝑖 − ∆𝑖). 

Step 4.2: Find ℱ𝑚𝑖𝑛 = min(ℱ, ℱ+, ℱ−) and set 𝑥𝑖 resembles to 𝐹𝑚𝑖𝑛. 

Step 4.3: Is 𝑖 = 𝑁 (Number of independent variables)? If no, set 𝑖 =  𝑖 + 1 and go to 

Step 4.1. 

Else, 𝑥 is the result and go to Step 4.4. 

Step 4.4: If 𝑥 ≠ 𝑥𝑐, 𝑥𝑐 is the current 𝑥 value, then success. Else, failure. 

Step 5: Pattern search  

Step 5.1: Choose a starting point 𝑥(0) , variable increment ∆𝑖 (𝑖 = 1,2,⋯ ,𝑁) , a step      

reduction factor 𝜆 > 1, and a termination parameter 휀.  

Set 𝑘 = 0. 

Step 5.2: Perform an exploratory move using 𝑥(𝑘) as the base point. Consider 𝑥 to be 

the result of the exploratory move. If the exploratory move is successful, set 𝑥(𝑘+1) = 𝑥 and 

proceed to Step 5.4. 

Else, go to Step 5.3. 

Step 5.3: Is ‖∆‖ < 𝜖 ? If yes, Terminate. 

Else, set ∆𝑖=
∆𝑖

𝜆
 for 𝑖 = 1,2,⋯ ,𝑁 and go to Step 5.2. 

Step 5.4: Set 𝑘 = 𝑘 + 1 and perform the pattern search. 

The new point becomes 

𝑥𝑝
(𝑘+1)

= 𝑥(𝑘) + (𝑥(𝑘) − 𝑥(𝑘−1)). 

Step 5.5: Perform another exploratory move with 𝑥𝑝
(𝑘+1)

 as the best point. Let the result 

be 𝑥𝑝
(𝑘+1)

. 

Step 5.6: Is ℱ(𝑥(𝑘+1)) < ℱ(𝑥(𝑘))?  

If yes, go to Step 5.4.  

Else go to Step 5.3. 

Step 6: Assemble all the solutions and sort it by using regularity principle. 

In this above algorithm, one needs to solve seven unconstrained optimization problems. Out of 

these, three are solved by outer computations, viz., left, center and right unconstrained optimization 

problems. The other four are investigated by inner computation when initial conditions are 

incorporated with the values 𝛼, 𝛽 = {0, 1}. The solution vector for the same is written as 𝛼, 𝛽𝑥𝑘
. Here, 
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𝑘 is the number of variables (𝑘 = 1, 2, 3, … , 𝑛).  

To understand the practical utility of the fuzzy IODS algorithm, we discuss its convergence 

analysis in the next section. 

5. Convergence analysis of fuzzy IODS method 

We have considered TFNs to analyze the convergence of the fuzzy IODS algorithm. 

Definition 5.1. For a fuzzy iterative method with TFN, the field variables converge if the obtained 

TFNs possess both center and width convergence.  

The center convergence occurs if the membership value of the TFN is unity, and the width 

convergence occurs when the membership value is zero. 

To analyze the convergence of the proposed algorithm, we need to discuss the convergence 

analysis of the IODS algorithm. Hence, using Definition 5.1, we present the center convergence and 

then width convergence.  

Theorem 1. [34] Let 𝑥 be a crisp vector, and ∇ℱ(𝑥) is Lipschitz continuous on an open neighborhood 

Ω of 𝐿(𝑥0) with Lipschitz constant Τ. Then, there exist 𝛿, τ > 0 such that the following holds.  

If 𝑥𝑘 gives an unsuccessful iteration and ∆𝑘< 𝛿, then  

‖𝛻ℱ(𝑥𝑘)‖ ≤ 𝜏∆𝑘.         (19) 

Hypothesis 1. Suppose 𝑃𝑘 represents an exploratory search, where the objective is to minimize. Then, 

it can be written as 𝑃𝑘 = [𝑐𝑘
1  … 𝑐𝑘

𝑝𝑘]. Here, 𝑃𝑘 is bounded in norm, that is, ∃ Τ > 0 such that ∀ ‖𝑐𝑘
𝑖 ‖ < Τ 

for 𝑖 = 1, 2,⋯ , 𝑝𝑘. Thus, ∃ 𝜏0 such that for any arbitrary step 𝑠𝑘 satisfies 

‖𝑠𝑘‖ ≤ 𝜏0∆𝑘,         (20) 

where 𝑠𝑘 = 𝑃𝑘∆𝑘. 

Hypothesis 2. It is ensured that ∃ 𝑁 such that ∆𝑘 is monotonically nonincreasing ∀ 𝑘 ≥ 𝑁. Further, it 

can be noted that we are not allowing increase in ∆𝑘 after some iteration 𝑁, that is, ∆𝑘 stays the same 

or decreases. 

Here, our main aim is to study the behavior of pattern search in the neighborhood of an isolated 

local minimizer, say 𝑥∗  [35]. Next, the same will be used for analyzing the behavior of ℱ  in the 

neighborhood of 𝑥∗. 

Hypothesis 3. It can be assumed that ℱ is twice continuously differentiable on an open ball 𝐵(𝑥∗, 휂) of 𝑥∗ 

with radius 휂, ∇ℱ(𝑥∗) = 0, and that the second-order sufficiency condition ∇2ℱ(𝑥∗) > 0 holds at 𝑥∗. 

As the objective is to minimize the objective function, we assume ∇2ℱ(𝑥) is positive definite 

∀𝑥 ∈ 𝐵(𝑥∗, 휂) . Let 𝜌𝑚𝑖𝑛  and 𝜌𝑚𝑎𝑥  be the lower and upper bounds of the open ball 𝐵(𝑥∗, 휂) , 

respectively, on the singular values of ∇2ℱ(𝑥∗) on 𝐵(𝑥∗, 휂).  
Theorem 2. Using the Hypotheses 1–3, we get ∃ 휂, 𝜏1 > 0, and the following holds. 

If there is an unsuccessful iteration at vector 𝑥𝑘, ∆𝑘< 휂, and ‖𝑥𝑘 − 𝑥∗‖ < 휂, then  

‖𝑥𝑘 − 𝑥∗‖ ≤ 𝜏1∆𝑘.        (21) 

Proof. Suppose ∇ℱ(𝑥)  is a continuous and differentiable function, and then using the mean value 

theorem [36], we may write 

∇2ℱ(휁) =
∇𝑓(𝑥𝑘)−∇𝑓(𝑥∗)

𝑥𝑘−𝑥∗
.        (22) 
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Equation (22) can be rewritten as  

∇ℱ(𝑥𝑘) − ∇ℱ(𝑥∗) = ∇2ℱ(휁)(𝑥𝑘 − 𝑥∗),      (23) 

for some 휁 that is a line segment placed between 𝑥𝑘 and 𝑥∗. 

Since ∇ℱ(𝑥∗) = 0 by Hypothesis 2, we get 

‖∇ℱ(𝑥𝑘)‖ = ‖∇2ℱ(휁)(𝑥𝑘 − 𝑥∗)‖ ≥ 𝜌𝑚𝑖𝑛‖𝑥𝑘 − 𝑥∗‖,     (24) 

where 𝜌𝑚𝑖𝑛 is the lower bound of the open ball 𝐵(𝑥∗, 휂). 

From Theorem 1 and ∆𝑘< 휂 < 𝛿, 

𝜌𝑚𝑖𝑛‖𝑥𝑘 − 𝑥∗‖ ≤ ‖∇ℱ(𝑥𝑘)‖ ≤ 𝜏∆𝑘,       (25) 

where 𝜏1 = 𝜏
𝜌𝑚𝑖𝑛⁄ . 

This proves that the set of iterations converges to 𝑥∗. 

Theorem 3. If 𝑥𝑘, 𝑦𝑘 ∈ 𝐵(𝑥∗, 휂)  and ℱ(𝑥𝑘) ≤ ℱ(𝑦𝑘) , then using the Lipchitz condition [37], it is 

observed that 

‖𝑥𝑘 − 𝑥∗‖ ≤ 𝜌‖𝑦𝑘 − 𝑥∗‖.         (26) 

Proof. Suppose, 𝑥𝑘, 𝑦𝑘 ∈ 𝐵(𝑥∗, 휂)  and ℱ(𝑥𝑘) ≤ ℱ(𝑦𝑘) . With Taylor’s theorem with ∇ℱ(𝑥∗) = 0 , it 

follows that  

ℱ(𝑥𝑘) =
1

2
(𝑥𝑘 − 𝑥∗)

𝑇∇2ℱ(휁)(𝑥𝑘 − 𝑥∗),      (27) 

ℱ(𝑦𝑘) =
1

2
(𝑦𝑘 − 𝑥∗)

𝑇∇2ℱ(𝜉)(𝑦𝑘 − 𝑥∗),      (28) 

where 휁 ∈ [𝑥∗, 𝑥𝑘] and 𝜉 ∈ [𝑥∗, 𝑦𝑘]. 

Using the given condition ℱ(𝑥𝑘) ≤ ℱ(𝑦𝑘) with Eqs (27) and (28), we can write  

0 ≤ ℱ(𝑦𝑘) − ℱ(𝑥𝑘) =
1

2
(𝑦𝑘 − 𝑥∗)

𝑇∇2ℱ(𝜉)(𝑦𝑘 − 𝑥∗) −
1

2
(𝑥𝑘 − 𝑥∗)

𝑇∇2ℱ(휁)(𝑥𝑘 − 𝑥∗). 

Therefore, 

0 ≤ 𝜌𝑚𝑎𝑥‖𝑦𝑘 − 𝑥∗‖
2 − 𝜌𝑚𝑖𝑛‖𝑥𝑘 − 𝑥∗‖

2. 

Theorem 4. There exist 𝛿 > 0, 𝜖 > 0 and 𝜏2 > 0 for which the following holds.  

For 𝑘 ≥ 𝑁, if 𝑥𝑘 is an iterate for which ∆𝑘< 𝛿 and ‖𝑥𝑘 − 𝑥∗‖ < 𝜖, then ∀ 𝑛 ≥ 𝑘, 

‖𝑥𝑛 − 𝑥∗‖ ≤ 휂.          (29) 

Proof. From the above theorem and hypothesis, there exists an 𝜖 > 0, and we take min{𝛿, 𝜏 , ∆𝑘} > 𝜖. 

We consider the proof by induction. Take 𝑥𝑘+1 = 𝑥𝑘 + (𝑥𝑘 − 𝑥𝑘−1). Then, it can be written as 𝑥𝑘+1 =
𝑥𝑘 + 𝑠𝑘. 

By Hypothesis 1, we have ‖𝑠𝑘‖ < 𝜏0∆𝑘, that is, 

‖𝑥𝑘+1 − 𝑥𝑘‖ = ‖𝑠𝑘‖ < 𝜏0∆𝑘.        (30) 

Applying the triangle inequality in Eq (30), it is observed that 

‖𝑥𝑘+1 − 𝑥∗‖ ≤ ‖𝑥𝑘+1 − 𝑥𝑘‖ + ‖𝑥𝑘 − 𝑥∗‖ < 𝜏0∆𝑘 + 𝜖 < 휂.    (31) 

From Theorem 3 and Eq (31), it is concluded that 𝑥𝑘+1 ∈ 𝐵(𝑥∗, 휂). As such, 
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‖𝑥𝑘+1 − 𝑥∗‖ ≤ ρ‖𝑥𝑘 − 𝑥∗‖ ≤ 𝜌𝜖 < 휂. 

Now, assume 𝑘 + 1 ≤ 𝑚, 

‖𝑥𝑚 − 𝑥∗‖ ≤ 휂.         (32) 

Then, 

‖𝑥𝑚+1 − 𝑥∗‖ ≤ ‖𝑥𝑚+1 − 𝑥𝑚‖ + ‖𝑥𝑚 − 𝑥∗‖.      (33) 

From Hypothesis 2, one can guarantee that ∆𝑚≤ ∆𝑘  for 𝑚 ≥ 𝑘 . Hence, by the algorithm and 

hypothesis, 

‖𝑥𝑚+1 − 𝑥𝑚‖ ≤ 𝜏0∆𝑚≤ 𝜏0∆𝑘. 

Using the induction hypothesis, 𝑥𝑚 ∈ 𝐵(𝑥∗, 휂). Since, ℱ(𝑥𝑚) ≤ ℱ(𝑥𝑘), we assume that ‖𝑥𝑘 − 𝑥∗‖ < 𝜖, 

and one can get  

‖𝑥𝑚 − 𝑥∗‖ ≤ ρ‖𝑥𝑘 − 𝑥∗‖ ≤ ρ𝜖. 

Thus, 

‖𝑥𝑚+1 − 𝑥∗‖ < 𝜏0∆𝑘 + 𝜌𝜖 < 휂. 

Now suppose that 𝑚 + 1 ≤ 𝑛, 

‖𝑥𝑛 − 𝑥∗‖ ≤ 휂.         (34) 

Then,  

‖𝑥𝑛+1 − 𝑥∗‖ ≤ ‖𝑥𝑛+1 − 𝑥𝑛‖ + ‖𝑥𝑛 − 𝑥∗‖.     (35) 

By Hypothesis 2, we guarantee that ∆𝑛≤ ∆𝑚≤ ∆𝑘  for 𝑛 ≥ 𝑚 ≥ 𝑘 . So, ‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ 𝜏0∆𝑛≤
𝜏0∆𝑚≤ 𝜏0∆𝑘. 

By the induction hypothesis, 𝑥𝑛 ∈ 𝐵(𝑥∗, 휂). Since ℱ(𝑥𝑛) ≤ ℱ(𝑥𝑚), we assume that ‖𝑥𝑘 − 𝑥∗‖ <
𝜖1 and ‖𝑥𝑚 − 𝑥∗‖ ≤ 𝜖2, and then we have  

‖𝑥𝑚 − 𝑥∗‖ ≤ ρ‖𝑥𝑘 − 𝑥∗‖ ≤ ρ𝜖1, 

‖𝑥𝑛 − 𝑥∗‖ ≤ ρ‖𝑥𝑚 − 𝑥∗‖ ≤ ρ𝜖2. 

Thus, 

‖𝑥𝑛+1 − 𝑥∗‖ ≤ ‖𝑥𝑛+1 − 𝑥𝑛‖ + ‖𝑥𝑛 − 𝑥∗‖, 

‖𝑥𝑛+1 − 𝑥∗‖ < 𝜏0∆𝑘 + 𝜌𝜖2 < 휂.       (36) 

Hypothesis 4. If the set 𝐿(𝑥0) is compact [38], then lim inf𝑘→∞ ∆𝑘= 0. 

Proof. Using the theorems [28,39] and mentioned Hypotheses 1–3, we obtain the above local 

convergence of pattern search. 

Theorem 5. Suppose that, given a pattern search algorithm satisfying the given hypothesis, there exists 

a limit point 𝑥∗ of the sequence of iterates produced by an algorithm that is a local minimizer. 

There exist 𝜏2 > 0 and 𝐾 such that for all 𝑘 ≥ 𝐾, 

‖𝑥𝑘 − 𝑥∗‖ ≤ 𝜏2∆𝑛(𝑘),        (37) 

where 𝑛(𝑘) is the final unsuccessful iterate. Therefore, we have lim
𝑘→∞

𝑥𝑘 = 𝑥∗. 
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Proof. By Hypothesis 2, consider the iteration after which we stop allowing ∆𝑘 to increase. Since 𝑥∗ is 

the limit point of {𝑥𝑘} and lim
𝑘→∞

𝑥𝑘 = 𝑥∗, there exists an iterate 𝑥𝑘+1, 𝑘 + 1 ≥ 𝑁, 

∆𝑘+1< min {휂, 𝛿}, 

‖𝑥𝑘+1 − 𝑥∗‖ < min {휂, 𝜖}, 

where 휂, 𝛿 and 𝜖 are introduced in the previous hypothesis and Theorems. We have  

‖𝑥𝑘 − 𝑥∗‖ ≤ 휂. 

By Theorem 4, we know, ∀ 𝑚 ≥ 𝑘 + 1, and using Theorem 2, we get  

‖𝑥𝑚 − 𝑥∗‖ ≤ 𝜏2∆𝑚. 

Similarly, from Theorem 4, we know that  

‖𝑥𝑛 − 𝑥∗‖ ≤ 휂, ∀𝑛 ≥ 𝑚 + 1. 

By Theorem 2, we have  

‖𝑥𝑛 − 𝑥∗‖ ≤ 𝜏2∆𝑛, 

for all unsuccessful iterates 𝑥𝑛 with 𝑛 ≥ 𝑚 + 1. 

We can proceed with the iteration value of 𝐾 being the subsequent iteration 𝑚 + 1 at which we 

have an unsuccessful iteration. For 𝑘 ≥ 𝐾 and Theorem 2, 

‖𝑥𝑘 − 𝑥∗‖ ≤ 𝑐4∆𝑘= 𝑐4∆𝑛(𝑘). 

Here, 𝑘 = 𝑛(𝑘).  

Simultaneously, iteration is successful for 𝑘 ≥ 𝐾, and we have ℱ(𝑥𝑘) < ℱ(𝑥𝑛(𝑘)). By Theorem 4,  

‖𝑥𝑘 − 𝑥∗‖ ≤ 𝜌‖𝑥𝑛(𝑘) − 𝑥∗‖ ≤ 𝜌𝑐4∆𝑛(𝑘).      (38) 

Hence, we conclude that by hypothesis ∆𝑘→ 0, and it shows that lim
𝑘→∞

𝑥𝑘 = 𝑥∗. 

This completes the convergence proofs of IODS algorithm when the membership value is one. In 

other words, the above theorems ensure the center convergence of fuzzy IODS algorithm for TFNs. 

The second part of the convergence of fuzzy IODS is the width convergence that is discussed in the 

following theorem. 

Theorem 6. Suppose {𝑥𝑛} and {𝑦𝑛} are two convergent sequences for left and right values of the TFN, 

respectively, such that lim
𝑛→∞

𝑥𝑛 → 𝑎 and lim
𝑛→∞

𝑦𝑛 → 𝑏. Suppose, 휂𝑛 and 𝜉 are the widths of the TFNs 

which are defined as 휂𝑛 = |𝑥𝑛 − 𝑦𝑛| and 𝜉 = |𝑎 − 𝑏|. Then, lim
𝑛→∞

휂𝑛 →𝜉. 

Proof. Given lim
𝑛→∞

𝑥𝑛 → 𝑎 and lim
𝑛→∞

𝑦𝑛 → 𝑏, 

let there exist 𝜖 > 0 and integers 𝑁1 and 𝑁2 such that  

𝑑(𝑥𝑛, 𝑎) <
𝜖

2
 for 𝑛1 > 𝑁1 and 𝑑(𝑦𝑛, 𝑏) <

𝜖

2
 for 𝑛2 > 𝑁2. 

Then, we need to prove that |𝑑(𝑥𝑛 − 𝑦𝑛, 𝑎 − 𝑏)| < 𝜖. 

Using the triangle inequality, 

𝑑(𝑥𝑛, 𝑦𝑛) ≤ 𝑑(𝑥𝑛, 𝑎) + 𝑑(𝑦𝑛, 𝑏) + 𝑑(𝑎, 𝑏).     (39) 
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Equation (39) gives 

𝑑(𝑥𝑛, 𝑦𝑛) − 𝑑(𝑎, 𝑏) ≤ 𝑑(𝑥𝑛, 𝑎) + 𝑑(𝑦𝑛, 𝑏) =
𝜖

2
+

𝜖

2
= 𝜖.     (40) 

Similarly, 

𝑑(𝑎, 𝑏) ≤ 𝑑(𝑥𝑛, 𝑎) + 𝑑(𝑦𝑛, 𝑏) + 𝑑(𝑥𝑛, 𝑦𝑛).     (41) 

Equation (41) can be represented as 

𝑑(𝑎, 𝑏) − 𝑑(𝑥𝑛, 𝑦𝑛) ≤ 𝑑(𝑥𝑛, 𝑎) + 𝑑(𝑦𝑛, 𝑏) =
𝜖

2
+

𝜖

2
= 𝜖.     (42) 

From Eqs (40) and (42) we get  

|𝑑(𝑥𝑛, 𝑦𝑛) − 𝑑(𝑎, 𝑏)| ≤ 𝑑(𝑥𝑛 − 𝑎) + 𝑑(𝑦𝑛 − 𝑏) < 𝜖 ∀𝑛 > max {𝑁1, 𝑁2}.  (43) 

This proves 

|𝑑(𝑥𝑛, 𝑦𝑛) − 𝑑(𝑎, 𝑏)| ≤ 𝜖.       (44) 

Scalability refers to the ability of an algorithm to handle a system of linear and/or nonlinear 

problem sizes while maintaining convergence rate and computational efficiency. As per the scalability, 

it is found that the performance of the algorithm gets affected by the size and nature of the system of 

equations in terms of time of the computations as well as the complexity.  

6. Fuzzy IODS approach to solve fuzzy system of nonlinear equations 

In this section, we have considered three example problems and investigated the same case-by-

case using the fuzzy IODS algorithm. 

Example 1. Take a fuzzy system of nonlinear equations 

�̃�11𝑥1
2 + �̃�12𝑥2 = �̃�1,           

�̃�21𝑥1 + �̃�22𝑥2
2 = �̃�2,         (45) 

where, �̃�11 = [0.4, 1, 1.4] , �̃�12 = [0.6 , 1 , 1.6] , �̃�21 = [0.7 , 1 , 1.5] , �̃�22 = [0.5 , 1 , 1.7] , 𝜒1 =
[2.5, 5.3, 7.5] and �̃�2 = [3.2, 6.7, 8.6]. Assume the initial approximation 𝑥(0) = (1,1)𝑇, step size ∆=
(0.5, 0.5)𝑇, and 𝜖 = 10−4. Here, the tolerance value is 𝜖. It is noted that the iterations are terminated 

if the step size become less than the tolerance value.  

The first step is to construct the outer system and then convert the Eq (45) into a fuzzy 

unconstrained minimization problem. The transformed fuzzy unconstrained minimization problem is 

formulated as  

ℱ(𝑥) = (�̃�11𝑥1
2 + �̃�12𝑥2 − �̃�1)

2 + (�̃�21𝑥1 + �̃�22𝑥2
2 − �̃�2)

2.     (46) 

Applying the IODS algorithm, the desired solution is obtained after 13 iterations using MATLAB [40]. 

The solution vectors after 13 iterations (�̃�1, �̃�2)
𝑇 are shown in Tables 1–6 and Figures 1–6, respectively. 

The width of the solution TFNs are computed with the help of outer solutions. The width of a TFN is 

defined as the interval length of the TFN at membership value zero. In the following, the solutions are 

presented case by case. Case 1 represents the fuzzy system of nonlinear equations where only 

coefficient matrix is fuzzy. Case 2 possesses only right-side vector fuzzy. In Case 3 both the coefficient 

matrix and right-side vector are fuzzy. The aim of discussing three cases is to get a complete idea of 

propagation of fuzzy uncertainties in only fuzzy and fully fuzzy systems of nonlinear equations. 
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Case 1. Here, the left-hand side is taken as fuzzy, that is, the coefficient matrix is considered as fuzzy. 

As such, the following coefficients are assumed for the investigation: �̃�11 = [0.4, 1, 1.4] , �̃�12 =
[0.6 , 1 , 1.6], �̃�21 = [0.7 , 1 , 1.5], �̃�22 = [0.5 , 1 , 1.7], �̃�1 = 5.3 and �̃�2 = 6.7. Applying the proposed 

fuzzy IODS algorithm, iteration-wise the inner and outer solutions are listed in Tables 1 and 2. In Table 1, 

the first component of the solution set �̃�1 is included. In Table 2, the second component of the solution 

set �̃�2  is depicted. There are four inner and three outer solutions. It is noticed that the algorithm 

converges with the given tolerance condition at 13 iterations. 

Table 1. Solution for component �̃�1 of Example 1. 

Iteration 𝒙𝟏
𝑳 𝒙𝟏

𝑪 𝒙𝟏
𝑹 𝟎, 𝟎𝒙𝟏

 𝟎, 𝟏𝒙𝟏
 𝟏, 𝟎𝒙𝟏

 𝟏, 𝟏𝒙𝟏
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 2.5 3 1.5 2 1.5 1.5 3 1.5 1.5 

3 1.5 1.75 3 1.75 1.75 1.75 1.5 3 1.5 1.5 

4 1.5 1.75 3 1.75 1.875 1.75 1.375 3 1.375 1.625 

5 1.4375 1.75 3 1.75 1.875 1.75 1.3125 3 1.3125 1.6875 

6 1.375 1.75 2.9688 1.7188 1.9062 1.75 1.3438 2.9688 1.3438 1.625 

7 1.375 1.75 2.9531 1.7188 1.8906 1.75 1.3281 2.9531 1.3281 1.625 

8 1.375 1.7578 2.9453 1.7344 1.8984 1.75 1.3281 2.9453 1.3281 1.6172 

9 1.3789 1.7539 2.9453 1.7305 1.8945 1.75 1.3281 2.9453 1.3281 1.6172 

10 1.377 1.7539 2.9453 1.7324 1.8945 1.75 1.3262 2.9453 1.3262 1.6191 

11 1.3779 1.7539 2.9463 1.7344 1.8945 1.75 1.3262 2.9463 1.3262 1.6201 

12 1.3774 1.7539 2.9463 1.7339 1.895 1.75 1.3257 2.9463 1.3257 1.6206 

13 1.3782 1.7537 2.9465 1.7339 1.8948 1.75 1.3259 2.9465 1.3259 1.6206 

End Point 1.3781 1.7539 2.9465 1.7338 1.8949 1.75 1.326 2.9465 1.326 1.6205 

Table 2. Solution for component �̃�2 of Example 1 

Iteration 𝒙𝟐
𝑳 𝒙𝟐

𝑪 𝒙𝟐
𝑹 𝟎, 𝟎𝒙𝟐

 𝟎, 𝟏𝒙𝟐
 𝟏, 𝟎𝒙𝟐

 𝟏, 𝟏𝒙𝟐
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 2 3 4 2 1.5 1.5 4 1.5 2.5 

3 1.5 2.25 3 4 2 2.25 1.5 4 1.5 2.5 

4 1.625 2.25 3 4 2 2.25 1.75 4 1.625 2.375 

5 1.625 2.25 3 4.0625 2 2.25 1.75 4.0625 1.625 2.4375 

6 1.6562 2.2188 3.0312 4.0625 2 2.2188 1.75 4.0625 1.6562 2.4063 

7 1.6562 2.2188 3.0469 4.0625 2 2.2188 1.75 4.0625 1.6562 2.4063 

8 1.6484 2.2188 3.0469 4.0547 2 2.2266 1.75 4.0547 1.6484 2.4063 

9 1.6523 2.2227 3.0469 4.0547 2 2.2266 1.75 4.0547 1.6523 2.4024 

10 1.6504 2.2246 3.0469 4.0527 2 2.2246 1.75 4.0527 1.6504 2.4023 

11 1.6514 2.2236 3.0459 4.0518 2 2.2246 1.75 4.0518 1.6514 2.4004 

12 1.6509 2.2241 3.0454 4.0518 2 2.2251 1.75 4.0518 1.6509 2.4009 

13 1.6509 2.2241 3.0454 4.052 2 2.2249 1.75 4.052 1.6509 2.4011 

End Point 1.6509 2.224 3.0454 4.052 2 2.2249 1.75 4.052 1.6509 2.4011 
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In Table 1, MIN is calculated as min{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}, and MAX is evaluated 

as max{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}. The width is defined as the difference between MAX and 

MIN, that is, MAX−MIN. 

In Table 2, MIN is calculated as min{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}, and MAX is evaluated 

as max{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}. From Tables 1 and 2, numerically it is observed that the 

center solution and the width of the solution TFNs converge at 13 iterations subject to the given 

tolerance value. The obtaned TFN solution vector components of Example 1, Case 1 are shown in 

Figure 1. Based on the width of the solution iteration wise the solution components are depicted in 

Figure 2. From Figure 2, graphically it is seen that at 13 iterations the width of solution TFNs converges 

subject to the tolerance value. 

 

Figure 1. TFN solution of �̃�1 and �̃�2 in Case 1 

of Example 1. 

 

Figure 2. Uncertain width of TFN solution 

components �̃�1 and �̃�2 in Case 1 of Example 1. 

Case 2. Here, the right-hand side is taken as fuzzy, that is, the right-side vector is considered as fuzzy. 

As such, the following vectors are assumed for the investigation: �̃�𝑖𝑗 = [𝑎𝐿𝑖𝑗
, 𝑎𝑁𝑖𝑗

, 𝑎𝑅𝑖𝑗
]  are crisp, 

(𝑖, 𝑗 = 1, 2) , �̃�1 = [2.5, 5.3, 7.5] , and �̃�2 = [3.2, 6.7, 8.6] . Applying the proposed fuzzy IODS 

algorithm, iteration-wise the inner and outer solutions are listed in Tables 3 and 4. In Table 3, the first 

component of the solution set �̃�1 is included. In Table 4, the second component of the solution set �̃�2 

is depicted. There are four inner and three outer solutions. It is noticed that the algorithm converges 

with the given tolerance condition at 13 iterations. 

In Table 3, MIN is calculated as min{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}, and MAX is evaluated 

as max{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}. The width is defined as the difference between MAX and 

MIN, that is, MAX−MIN.  

In Table 4, MIN is calculated as min{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}, and MAX is evaluated 

as max{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}. From Tables 3 and 4, numerically it is observed that the 

center solution and the width of the solution TFNs converge at 13 iterations subject to the given 

tolerance value. The obtaned TFN solution vector components of Example 1, Case 2 are shown in 

Figure 3. 

Based on the width of the solution iteration wise the solution components are depicted in Figure 4. 

From Figure 4, graphically it is seen that at 13 iterations the width of solution TFNs converges subject 

to the tolerance value. 
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Table 3. Solution for component �̃�1 of Example 1. 

Iteration 𝒙𝟏
𝑳 𝒙𝟏

𝑪 𝒙𝟏
𝑹 𝟎, 𝟎𝒙𝟏

 𝟎, 𝟏𝒙𝟏
 𝟏, 𝟎𝒙𝟏

 𝟏, 𝟏𝒙𝟏
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 2.5 2.5 1.5 0.5 1.5 2.5 2.5 0.5 2 

3 0.75 1.75 2.25 0.75 0.25 1.25 2.5 2.5 0.25 2.25 

4 0.875 1.75 2.25 0.875 0.75 1 2.5 2.5 0.75 1.75 

5 0.9375 1.75 2.25 0.9375 0.75 1 2.5 2.5 0.75 1.75 

6 1.0312 1.75 2.25 1.0312 0.75 1 2.5312 2.5312 0.75 1.7812 

7 1 1.75 2.2344 1 0.75 0.9844 2.5469 2.5469 0.75 1.7969 

8 1.0156 1.7578 2.2344 1.0156 0.7422 0.9844 2.5508 2.5508 0.7422 1.8086 

9 1.0078 1.7539 2.2305 1.0078 0.7422 0.9844 2.5508 2.5508 0.7422 1.8086 

10 1.0098 1.7539 2.2305 1.0098 0.7402 0.9922 2.5498 2.5498 0.7402 1.8096 

11 1.0098 1.7539 2.2305 1.0098 0.7412 0.9922 2.5498 2.5498 0.7412 1.8086 

12 1.0093 1.7539 2.231 1.0093 0.7407 0.9917 2.5498 2.5498 0.7407 1.8091 

13 1.01 1.7537 2.231 1.01 0.741 0.9924 2.5498 2.5498 0.741 1.8088 

End 

Point 

1.0099 1.7539 2.2307 1.0099 0.7408 0.9924 2.5498 2.5498 0.7408 1.809 

Table 4. Solution for component �̃�2 of Example 1. 

Iteration 𝒙𝟐
𝑳 𝒙𝟐

𝑪 𝒙𝟐
𝑹 𝟎, 𝟎𝒙𝟐

 𝟎, 𝟏𝒙𝟐
 𝟏, 𝟎𝒙𝟐

 𝟏, 𝟏𝒙𝟐
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1 2 2.5 1 0.5 1.5 2.5 2.5 0.5 2 

3 1 2.25 2.5 1.5 0.5 1.5 2.75 2.75 0.5 2.25 

4 1.5 2.25 2.5 1.5 0.375 1.625 2.75 2.75 0.375 2.375 

5 1.5 2.25 2.5 1.5 0.375 1.625 2.75 2.75 0.375 2.375 

6 1.5 2.2188 2.5312 1.4688 0.4062 1.625 2.75 2.75 0.4062 2.3438 

7 1.4688 2.2188 2.5156 1.4844 0.4062 1.5938 2.75 2.75 0.4062 2.3438 

8 1.4844 2.2188 2.5234 1.4766 0.3984 1.5938 2.75 2.75 0.3984 2.3516 

9 1.4766 2.2227 2.5234 1.4805 0.3984 1.5938 2.75 2.75 0.3984 2.3516 

10 1.4805 2.2246 2.5234 1.4805 0.3984 1.5879 2.75 2.75 0.3984 2.3516 

11 1.4805 2.2236 2.5234 1.4805 0.3994 1.5898 2.75 2.75 0.3994 2.3506 

12 1.4805 2.2241 2.5234 1.4805 0.3989 1.5898 2.75 2.75 0.3989 2.3511 

13 1.4805 2.2241 2.5237 1.48 0.3989 1.5894 2.75 2.75 0.3989 2.3511 

End 

Point 

1.48 2.224 2.5238 1.48 0.3989 1.5894 2.7501 2.7501 0.3989 2.3512 
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Figure 3. TFN solution of �̃�1 and �̃�2 in 

Case 2 of Example 1. 

 

Figure 4. Uncertain width of TFN solution 

components �̃�1 and �̃�2 in Case 2 of Example 1. 

Case 3. Here, both the left-hand and right-hand sides are taken as fuzzy, that is, the coefficient matrix 

and right-side vector are considered fuzzy. As such, the following coefficients matrix and right-side 

vector are assumed for the investigation: �̃�11 = [0.4, 1, 1.4], �̃�12 = [0.6 , 1 , 1.6], �̃�21 = [0.7 , 1 , 1.5], 
�̃�22 = [0.5 , 1 , 1.7], �̃�1 = [2.5, 5.3, 7.5] and �̃�2 = [3.2, 6.7, 8.6]. Applying the proposed fuzzy IODS 

algorithm, iteration wise the inner and outer solutions are listed in Tables 5 and 6. In Table 5, the first 

component of the solution set �̃�1 is included. In Table 6, the second component of the solution set �̃�2 

is depicted. There are four inner and three outer solutions. It is noticed that the algorithm converges 

with the given tolerance condition at 13 iterations. 

Table 5. Solution for component �̃�1 of Example 1. 

Iteration 𝒙𝟏
𝑳 𝒙𝟏

𝑪 𝒙𝟏
𝑹 𝟎, 𝟎𝒙𝟏

 𝟎, 𝟏𝒙𝟏
 𝟏, 𝟎𝒙𝟏

 𝟏, 𝟏𝒙𝟏
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 1.5 2.5 1.5 0.5 1.5 2.5 2.5 0.5 2 

3 1.75 1.75 1.75 2.5 0.5 1.25 1.75 2.5 0.5 2 

4 1.75 1.75 1.75 2.625 0.75 1.125 1.75 2.625 0.75 1.875 

5 1.75 1.8125 1.8125 2.625 0.8125 1 1.75 2.625 0.8125 1.8125 

6 1.75 1.7812 1.8438 2.6562 0.8125 1.0625 1.75 2.6562 0.8125 1.8437 

7 1.75 1.7969 1.8125 2.6719 0.7969 1.0625 1.75 2.6719 0.7969 1.875 

8 1.7578 1.7969 1.8125 2.5859 0.7969 1.0391 1.7578 2.5859 0.7969 1.789 

9 1.7539 1.793 1.8164 2.582 0.7969 1.0391 1.7539 2.582 0.7969 1.7851 

10 1.7539 1.7949 1.8164 2.582 0.7969 1.0391 1.7539 2.582 0.7969 1.7851 

11 1.7539 1.7959 1.8184 2.582 0.7959 1.0361 1.7539 2.582 0.7959 1.7861 

12 1.7539 1.7959 1.8184 2.5815 0.7959 1.0356 1.7539 2.5815 0.7959 1.7856 

13 1.7537 1.7966 1.8181 2.5815 0.7959 1.0359 1.7537 2.5815 0.7959 1.7856 

End 

Point 

1.7539 1.7965 1.818 2.5806 0.7957 1.0359 1.7539 2.5806 0.7957 1.7849 
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Table 6. Solution for component �̃�2 of Example 1. 

Iteration 𝒙𝟐
𝑳 𝒙𝟐

𝑪 𝒙𝟐
𝑹 𝟎, 𝟎𝒙𝟐

 𝟎, 𝟏𝒙𝟐
 𝟏, 𝟎𝒙𝟐

 𝟏, 𝟏𝒙𝟐
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 2 2 2 1.5 0.5 1.5 2 2 0.5 1.5 

3 2 2 2.25 0.75 0.25 1.5 2.25 2.25 0.25 2 

4 1.875 2 2.25 0.75 0.25 1.5 2.25 2.25 0.25 2 

5 1.875 1.9375 2.25 0.75 0.3125 1.5625 2.25 2.25 0.3125 1.9375 

6 1.875 1.9375 2.2188 0.7188 0.2812 1.5312 2.2188 2.2188 0.2812 1.9376 

7 1.8594 1.9688 2.2188 0.7031 0.2812 1.5312 2.2188 2.2188 0.2812 1.9376 

8 1.8672 1.9688 2.2188 0.8359 0.2812 1.5469 2.2188 2.2188 0.2812 1.9376 

9 1.8633 1.9648 2.2227 0.8438 0.2812 1.5469 2.2227 2.2227 0.2812 1.9415 

10 1.8652 1.9648 2.2246 0.8438 0.2812 1.5469 2.2246 2.2246 0.2812 1.9434 

11 1.8643 1.9629 2.2236 0.8438 0.2803 1.543 2.2236 2.2236 0.2803 1.9433 

12 1.8638 1.9634 2.2241 0.8442 0.2798 1.543 2.2241 2.2241 0.2798 1.9443 

13 1.8638 1.9634 2.2241 0.8442 0.2798 1.543 2.2241 2.2241 0.2798 1.9443 

End 

Point 

1.8638 1.9634 2.224 0.8455 0.2798 1.5427 2.224 2.224 0.2798 1.9442 

In Table 5, MIN is calculated as min{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}, and MAX is evaluated 

as max{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}. The width is defined as the difference between MAX and 

MIN, that is, MAX−MIN. 

In Table 4, MIN is calculated as min{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}, and MAX is evaluated 

as max{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}. From Tables 5 and 6, numerically it is observed that the 

center solution and the width of the solution TFNs converge at 13 iterations subject to the given 

tolerance value. The obtaned TFN solution vector components of Example 1, Case 3 are shown in 

Figure 5. 

Based on the width of the solution iteration-wise, the solution components are depicted in Figure 6. 

From Figure 6, graphically it is seen that at 13 iterations the width of solution TFNs converges subject 

to the tolerance value. 

 

Figure 5. TFN solution of �̃�1 and �̃�2 in Case 

3 of Example 1. 

 

Figure 6. Uncertain width-wise solution of �̃�1 

and �̃�2 in Case 3 of Example 1. 
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Example 2. Here, we have considered the following example to apply the fuzzy IODS algorithm. 

Consider a fuzzy system of nonlinear equations, 

�̃�11𝑥1
2 + �̃�12𝑥2

2 + �̃�13𝑥3 = �̃�1,          

�̃�21𝑥1
2 + �̃�22𝑥2 + �̃�23𝑥3

2 = �̃�2,         

�̃�31𝑥1 + �̃�32𝑥2
2 + �̃�33𝑥3

2 = �̃�3,        (47) 

where �̃�11 = [0.5, 1, 1.5 ], �̃�12 = [0.2, 1, 1.2] , �̃�13 = [0.3, 1, 1.3] , �̃�21 = [0.4, 1, 1.6] , �̃�22 =
[0.6, 1, 1.4] , �̃�23 = [0.7, 1, 1.7] , �̃�31 = [0.8, 1, 1.4] , �̃�32 = [0.7, 1,1.7] , �̃�33 = [0.5, 1, 1.8] , 𝜒1 =
[4, 7, 11] , �̃�2 = [6, 9, 14] and �̃�3 = [8, 12, 17].Assume the initial approximation 𝑥0 = (1,1,1)𝑇, step 

size ∆= (0.5,0.5, 0.5)𝑇, and 𝜖 = 10−4. Here, the tolerance value is 𝜖. It is noted that the iterations are 

terminated if the step size become less than the tolerance value.  

The first step is to construct the outer system and then convert the Eq (47) into a fuzzy 

unconstrained minimalization problem. The transformed fuzzy unconstrained minimization problem 

is formulated as 

ℱ(𝑥) = (�̃�11𝑥1
2 + �̃�12𝑥2

2 + �̃�13𝑥3 − �̃�1)
2 + (�̃�21𝑥1

2 + �̃�22𝑥2 + �̃�23𝑥3
2 − �̃�2)

2 + (�̃�31𝑥1 + �̃�32𝑥2
2 +

�̃�33𝑥3
2 − �̃�3)

2.                   (48) 

Applying the IODS algorithm, the desired solution is obtained after 13 iterations using 

MATLAB [40]. The solution vectors after 13 iterations (�̃�1, �̃�2, �̃�3)
𝑇 are shown in Tables 7–15 and 

Figures 7–12, respectively. The width of the solution TFNs is computed with the help of outer solutions. 

The width of a TFN is defined as the interval length of the TFN at membership value zero. In the 

following, the solutions are presented case by case. Case 1 represents the fuzzy system of nonlinear 

equations where only the coefficient matrix is fuzzy. Case 2 has only the right-side vector fuzzy. In 

Case 3 both the coefficient matrix and right-side vector are fuzzy. The aim of discussing three cases is to 

get a complete idea of propagation of fuzzy uncertainties in only fuzzy and fully fuzzy systems of nonlinear 

equations. 

Case 1. Here, the left-hand side is taken as fuzzy, that is, the coefficient matrix is considered as fuzzy. 

As such, the following coefficients are assumed for the investigation: �̃�11 = [0.5, 1, 1.5 ], �̃�12 =
[0.2, 1, 1.2] , �̃�13 = [0.3, 1, 1.3] , �̃�21 = [0.4, 1, 1.6] , �̃�22 = [0.6, 1, 1.4] , �̃�23 = [0.7, 1, 1.7] , �̃�31 =
[0.8, 1, 1.4] , �̃�32 = [0.7, 1,1.7] , �̃�33 = [0.5, 1, 1.8] , �̃�1 = 7 , �̃�2 = 9  and �̃�3 = 12 . Applying the 

proposed fuzzy IODS algorithm, iteration-wise the inner and outer solutions are listed in Tables 7–9. 

In Table 7, the first component of the solution set �̃�1 is included. In Table 8, the second component of 

the solution set �̃�2 is depicted. In Table 9, the third component of the solution set �̃�3 is represented. 

There are four inner and three outer solutions. It is noticed that the algorithm converges with the given 

tolerance condition at 13 iterations. 

In Table 7, MIN is calculated as min{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}, and MAX is evaluated 

as max{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}. Width is defined as the difference between MAX and 

MIN, that is, MAX−MIN. 

In Table 8, MIN is calculated as min{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}, and MAX is evaluated 

as max{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}. Width is defined as the difference between MAX and 

MIN, that is, MAX−MIN.  

In Table 9, MIN is calculated as min{𝑥3
𝐿 , 𝑥3

𝐶 , 𝑥3
𝑅 , 0,0𝑥3

, 0,1𝑥3
, 1,0𝑥3

, 1,1𝑥3
}, and MAX is evaluated 

as max{𝑥3
𝐿, 𝑥3

𝐶 , 𝑥3
𝑅 , 0,0𝑥3

, 0,1𝑥3
, 1,0𝑥3

, 1,1𝑥3
}. From Tables 7–9, numerically it is observed that the center 

solution and the width of the solution TFNs converge at 13 iterations subject to the given tolerance value. 
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The obtaned TFN solution vector components of Example 2, Case 1 are shown in Figure 7. 

Based on the width of the solution iteration-wise the solution components are depicted in Figure 8. 

From Figure 8, graphically it is seen that at 13 iterations the width of solution TFNs converges subject 

to the tolerance value. 

Table 7. Solution for component �̃�1 of Example 2. 

Iteration 𝒙𝟏
𝑳 𝒙𝟏

𝑪 𝒙𝟏
𝑹 𝟎, 𝟎𝒙𝟏

 𝟎, 𝟏𝒙𝟏
 𝟏, 𝟎𝒙𝟏

 𝟏, 𝟏𝒙𝟏
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 2.5 2.5 2.5 2 1.5 1.5 2.5 1.5 1 

3 0.25 1 2.75 1.75 1.5 1.25 1.25 2.75 0.25 2.5 

4 0.25 0.875 2.875 1.625 1.625 1.25 1.25 2.875 0.25 2.625 

5 0.25 0.875 2.875 1.5625 1.5625 1.1875 1.25 2.875 0.25 2.625 

6 0.2812 0.875 2.9375 1.5625 1.5625 1.1875 1.25 2.9375 0.2812 2.6563 

7 0.2656 0.8906 2.9375 1.5781 1.5781 1.1875 1.2344 2.9375 0.2656 2.6719 

8 0.2969 0.8438 2.9375 1.5703 1.5703 1.1875 1.2344 2.9375 0.2969 2.6406 

9 0.2969 0.8555 2.9375 1.5664 1.5703 1.1836 1.2344 2.9375 0.2969 2.6406 

10 0.3047 0.8594 2.9355 1.5703 1.5703 1.1914 1.2344 2.9355 0.3047 2.6308 

11 0.3057 0.8594 2.9326 1.5703 1.5713 1.1895 1.2354 2.9326 0.3057 2.6269 

12 0.3042 0.8564 2.9331 1.5698 1.5713 1.1899 1.2354 2.9331 0.3042 2.6289 

13 0.3042 0.8564 2.9333 1.5698 1.5713 1.1892 1.2354 2.9333 0.3042 2.6291 

End 

Point 

0.3032 0.8561 2.9333 1.5697 1.5712 1.1903 1.2352 2.9333 0.3032 2.6301 

Table 8. Solution for component �̃�2 of Example 2. 

Iteration 𝒙𝟐
𝑳 𝒙𝟐

𝑪 𝒙𝟐
𝑹 𝟎, 𝟎𝒙𝟐

 𝟎, 𝟏𝒙𝟐
 𝟏, 𝟎𝒙𝟐

 𝟏, 𝟏𝒙𝟐
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 1.5 2.5 2 2 1.5 1.5 2.5 1.5 1 

3 1.75 2 2.75 2.5 2.5 2.25 2 2.75 1.75 1 

4 1.75 2 3.125 2.5 2.5 2.25 2 3.125 1.75 1.375 

5 1.75 2.125 3.125 2.5625 2.5625 2.25 2 3.125 1.75 1.375 

6 1.75 2.125 3.1562 2.5312 2.5312 2.25 2 3.1562 1.75 1.4062 

7 1.75 2.1094 3.1719 2.5312 2.5312 2.25 2 3.1719 1.75 1.4219 

8 1.7266 2.1094 3.1719 2.5391 2.5391 2.25 1.9844 3.1719 1.7266 1.4453 

9 1.7305 2.1094 3.1719 2.5391 2.5352 2.25 1.9844 3.1719 1.7305 1.4414 

10 1.7285 2.1094 3.1738 2.5352 2.5352 2.2559 1.9844 3.1738 1.7285 1.4453 

11 1.7266 2.1094 3.1729 2.5352 2.5352 2.2588 1.9844 3.1729 1.7266 1.4463 

12 1.728 2.1104 3.1719 2.5356 2.5352 2.2588 1.9849 3.1719 1.728 1.4439 

13 1.7275 2.1104 3.1719 2.5359 2.5352 2.259 1.9851 3.1719 1.7275 1.4444 

End 

Point 

1.7278 2.1105 3.1719 2.5358 2.5355 2.2583 1.9852 3.1719 1.7278 1.4441 
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Table 9. Solution for component �̃�3 of Example 2. 

Iteration 𝒙𝟑
𝑳 𝒙𝟑

𝑪 𝒙𝟑
𝑹 𝟎, 𝟎𝒙𝟑

 𝟎, 𝟏𝒙𝟑
 𝟏, 𝟎𝒙𝟑

 𝟏, 𝟏𝒙𝟑
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 2 2.5 1.5 2 1.5 1.5 2.5 1.5 1 

3 1.75 2.75 2.75 2 2 2 1.5 2.75 1.5 1.25 

4 1.75 2.375 2.75 2 2 2 1.5 2.75 1.5 1.25 

5 1.75 2.375 2.625 2 2 2 1.5 2.625 1.5 1.125 

6 1.75 2.2812 2.6562 2 2 2.0625 1.5 2.6562 1.5 1.1562 

7 1.75 2.2812 2.6562 2 2 2.0625 1.5781 2.6562 1.5781 1.0781 

8 1.7891 2.2812 2.6484 2 2 2.0625 1.5859 2.6484 1.5859 1.0625 

9 1.7812 2.2812 2.6484 2 2 2.0625 1.5859 2.6484 1.5859 1.0625 

10 1.7812 2.2812 2.6465 2 2 2.0488 1.5859 2.6465 1.5859 1.0606 

11 1.7832 2.2842 2.6465 2 1.998 2.0469 1.5752 2.6465 1.5752 1.0713 

12 1.7832 2.2852 2.646 2 1.998 2.0469 1.5752 2.646 1.5752 1.0708 

13 1.7837 2.2852 2.646 2 1.998 2.0476 1.5752 2.646 1.5752 1.0708 

End Point 1.7837 2.285 2.6461 2.0001 1.998 2.0485 1.5756 2.6461 1.5756 1.0705 

 

Figure7. TFN solution of �̃�1, �̃�2 and �̃�3 in Case 

1 of Example 2. 

 

Figure 8. Uncertain width-wise solution of �̃�1, 

�̃�2 and �̃�3 in Case 1 of Example 2. 

Case 2. Here, the right-hand side is taken as fuzzy, that is, the right-side vector is considered as fuzzy. 

As such, the following vectors are assumed for the investigation: �̃�𝑖𝑗 = [𝑎𝐿𝑖𝑗
, 𝑎𝑁𝑖𝑗

, 𝑎𝑅𝑖𝑗
]  are 

crisp,(𝑖, 𝑗 = 1, 2, 3) , �̃�1 = [4, 7, 11] , 𝜒2 = [6, 9, 14]  and �̃�3 = [8, 12, 17] . Applying proposed fuzzy 

IODS algorithm, iteration-wise the inner and outer solutions are listed in Tables 10–12. In Table 10, 

the first component of the solution set �̃�1 is included. In Table 11, the second component of the solution 

set �̃�2 is depicted. In Table 12, the third component of the solution set �̃�3 is represented. There are four 

inner and three outer solutions. It is noticed that the algorithm converges with the given tolerance 

condition at 13 iterations. 

In Table 10, MIN is calculated as min{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
} , and MAX is 

evaluated as max{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}. The width is defined as the difference between 

MAX and MIN, that is, MAX−MIN. 

In Table 11, MIN is calculated as min{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
} , and MAX is 
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evaluated as max{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}. The width is defined as the difference between 

MAX and MIN, that is, MAX−MIN.  

Table 10. Solution for component �̃�1 of Example 2. 

Iteration 𝒙𝟏
𝑳 𝒙𝟏

𝑪 𝒙𝟏
𝑹 𝟎, 𝟎𝒙𝟏

 𝟎, 𝟏𝒙𝟏
 𝟏, 𝟎𝒙𝟏

 𝟏, 𝟏𝒙𝟏
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 2.5 2.5 1.5 2.5 1.5 1.5 2.5 1.5 1 

3 0 0.25 1.25 0.75 1.25 0 0.25 1.25 0 1.25 

4 0.125 0.25 1.375 0.5 0.75 0.375 0.5 1.375 0.125 1.25 

5 0.25 0.25 1.4375 0.375 0.8125 0.4375 0.5625 1.4375 0.25 1.1875 

6 0.2812 0.2812 1.4375 0.3125 0.8438 0.4375 0.5312 1.4375 0.2812 1.1563 

7 0.2656 0.3125 1.3594 0.3125 0.7656 0.4531 0.2031 1.3594 0.2031 1.1563 

8 0.2969 0.3047 1.3828 0.1016 0.7656 0.4453 0.2266 1.3828 0.1016 1.2812 

9 0.2969 0.3281 1.3867 0.1055 0.7656 0.4492 0.2305 1.3867 0.1055 1.2812 

10 0.3047 0.3223 1.3848 0.1035 0.7695 0.4492 0.4883 1.3848 0.1035 1.2813 

11 0.3057 0.3232 1.3848 0.1025 0.7793 0.4531 0.4854 1.3848 0.1025 1.2823 

12 0.3042 0.3223 1.3843 0.1064 0.7798 0.4531 0.4634 1.3843 0.1064 1.2779 

13 0.3042 0.3225 1.3843 0.1064 0.78 0.4529 0.4636 1.3843 0.1064 1.2779 

End Point 0.3032 0.3226 1.3846 0.1064 0.78 0.4526 0.4637 1.3846 0.1064 1.2782 

Table 11. Solution for component �̃�2 of Example 2. 

Iteration 𝒙𝟐
𝑳 𝒙𝟐

𝑪 𝒙𝟐
𝑹 𝟎, 𝟎𝒙𝟐

 𝟎, 𝟏𝒙𝟐
 𝟏, 𝟎𝒙𝟐

 𝟏, 𝟏𝒙𝟐
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 1.5 2.5 1.5 1.5 1.5 1.5 2.5 1.5 1 

3 1.5 2 2.25 2 2 1.5 1.25 2.25 1.25 1 

4 1.5 2 2.375 1.875 2.375 1.25 2.25 2.375 1.25 1.125 

5 1.4375 2.125 2.375 1.9375 2.4375 1.4375 2.25 2.4375 1.4375 1 

6 1.4375 2.125 2.4375 1.9375 2.4375 2.5 2.3125 2.5 1.4375 1.0625 

7 1.4531 2.1094 2.4531 1.9375 2.5156 2.4844 2.4062 2.5156 1.4531 1.0625 

8 1.4453 2.1094 2.4453 2.1406 2.5156 2.4766 2.3984 2.5156 1.4453 1.0703 

9 1.4492 2.1094 2.4453 2.1445 2.5156 2.4766 2.3945 2.5156 1.4492 1.0664 

10 1.4512 2.1094 2.4434 2.1406 2.5098 2.4766 2.4473 2.5098 1.4512 1.0586 

11 1.4512 2.1094 2.4453 2.1406 2.5068 2.4766 2.4502 2.5068 1.4512 1.0556 

12 1.4507 2.1104 2.4453 2.1396 2.5068 2.4766 2.457 2.5068 1.4507 1.0561 

13 1.4507 2.1104 2.4451 2.1396 2.5068 2.4768 2.457 2.5068 1.4507 1.0561 

End 

Point 

1.4507 2.1105 2.4449 2.1396 2.5068 2.4767 2.4572 2.5068 1.4507 1.0561 

In Table 12, MIN is calculated as min{𝑥3
𝐿 , 𝑥3

𝐶 , 𝑥3
𝑅 , 0,0𝑥3

, 0,1𝑥3
, 1,0𝑥3

, 1,1𝑥3
} , and MAX is 

evaluated as max{𝑥3
𝐿 , 𝑥3

𝐶 , 𝑥3
𝑅 , 0,0𝑥3

, 0,1𝑥3
, 1,0𝑥3

, 1,1𝑥3
}. From Tables 10–12, numerically it is observed 

that the center solution and the width of the solution TFNs converge at 13 iterations subject to the 

given tolerance value.  

The obtaned TFN solution vector components of Example 2, Case 2 are shown in Figure 9. 
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Based on the width of the solution iteration-wise, the solution components are depicted in Figure 10. 

From Figure 10, graphically it is seen that at 13 iterations the width of solution TFNs converges subject 

to the tolerance value. 

Table 12. Solution for component �̃�3 of Example 2. 

Iteration 𝒙𝟑
𝑳 𝒙𝟑

𝑪 𝒙𝟑
𝑹 𝟎, 𝟎𝒙𝟑

 𝟎, 𝟏𝒙𝟑
 𝟏, 𝟎𝒙𝟑

 𝟏, 𝟏𝒙𝟑
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 2 2.5 1.5 2 1.5 1.5 2.5 1.5 1 

3 2.25 2.75 3.25 2.25 3 2.25 2 3.25 2 1.25 

4 2.25 2.75 3.125 2.625 2.875 2.25 2.75 3.125 2.25 0.875 

5 2.25 2.625 3.125 2.5625 2.875 2.125 2.75 3.125 2.125 1 

6 2.25 2.6562 3.0938 2.5625 2.9062 3.0312 2.75 3.0938 2.25 0.8438 

7 2.2344 2.6562 3.1094 2.5625 2.9688 3.0469 2.8438 3.1094 2.2344 0.875 

8 2.2344 2.6484 3.1016 2.7578 2.9688 3.0469 2.8438 3.1016 2.2344 0.8672 

9 2.2266 2.6484 3.1055 2.7617 2.957 3.0469 2.8477 3.1055 2.2266 0.8789 

10 2.2266 2.6465 3.1055 2.7637 2.959 3.0469 2.8926 3.1055 2.2266 0.8789 

11 2.2266 2.6465 3.1045 2.7637 2.9551 3.0508 2.8906 3.1045 2.2266 0.8779 

12 2.2271 2.646 3.1045 2.7642 2.9551 3.0508 2.897 3.1045 2.2271 0.8774 

13 2.2271 2.646 3.1045 2.7642 2.9551 3.0505 2.897 3.1045 2.2271 0.8774 

End 

Point 

2.2272 2.6461 3.1045 2.7642 2.9551 3.0505 2.8969 3.1045 2.2272 0.8773 

 

Figure 9. TFN solution of �̃�1, �̃�2 and �̃�3 in 

Case 2 of Example 2. 

 

Figure 10. Uncertain width-wise solution of 

�̃�1, �̃�2 and �̃�3 Case 2 of Example 2. 

Case 3. Here, the both left-hand and right-hand sides are taken as fuzzy, that is, the coefficient matrix 

and right-side vector are considered as fuzzy. As such, the following coefficients matrix and right-side 

vector are assumed for the investigation: �̃�11 = [0.5, 1, 1.5 ], �̃�12 = [0.2, 1, 1.2] , �̃�13 = [0.3, 1, 1.3] , 
�̃�21 = [0.4, 1, 1.6] , �̃�22 = [0.6, 1, 1.4] , �̃�23 = [0.7, 1, 1.7] , �̃�31 = [0.8, 1, 1.4] , �̃�32 = [0.7, 1,1.7] , 
�̃�33 = [0.5, 1, 1.8] , 𝜒1 = [4, 7, 11]  , �̃�2 = [6, 9, 14]  and �̃�3 = [8, 12, 17] . Applying the proposed 

fuzzy IODS algorithm, iteration-wise, the inner and outer solutions are listed in Tables 13–15. In Table 13, 

the first component of the solution set �̃�1 is included. In Table 14, the second component of the solution 

set �̃�2 is depicted. In Table 15, the third component of the solution set �̃�3 is represented. There are four 



21352 
 

AIMS Mathematics  Volume 8, Issue 9, 21329–21358. 

inner and three outer solutions. It is noticed that the algorithm converges with the given tolerance 

condition at 13 iterations. 

In Table 13, MIN is calculated as min{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
} , and MAX is 

evaluated as max{𝑥1
𝐿 , 𝑥1

𝐶 , 𝑥1
𝑅 , 0,0𝑥1

, 0,1𝑥1
, 1,0𝑥1

, 1,1𝑥1
}. The width is defined as the difference between 

MAX and MIN, that is, MAX−MIN.  

Table 13. Solution for component �̃�1 of Example 2. 

Iteration 𝒙𝟏
𝑳 𝒙𝟏

𝑪 𝒙𝟏
𝑹 𝟎, 𝟎𝒙𝟏

 𝟎, 𝟏𝒙𝟏
 𝟏, 𝟎𝒙𝟏

 𝟏, 𝟏𝒙𝟏
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 2.5 2.5 2.5 1.5 3.5 1.5 2 3.5 1.5 2 

3 0.25 1.25 2 1.25 2.75 1.5 2 2.75 0.25 2.5 

4 0.25 1.5 2.125 1.125 2.375 1.5 2.125 2.375 0.25 2.125 

5 0.25 1.5 2.0625 1.125 2.3125 1.5 2.125 2.3125 0.25 2.0625 

6 0.2812 1.5 2.0625 1.1562 2.2812 1.5 2.0625 2.2812 0.2812 2 

7 0.2656 1.5 2.0625 1.1406 2.3281 1.5 2.0625 2.3281 0.2656 2.0625 

8 0.2969 1.5 2.0625 1.1406 2.3203 1.5078 2.0625 2.3203 0.2969 2.0234 

9 0.2969 1.5 2.0742 1.1406 2.3242 1.5078 2.0625 2.3242 0.2969 2.0273 

10 0.3047 1.5059 2.0723 1.1406 2.3242 1.5098 2.0625 2.3242 0.3047 2.0195 

11 0.3057 1.5039 2.0781 1.1416 2.3252 1.5078 2.0625 2.3252 0.3057 2.0195 

12 0.3042 1.5049 2.0781 1.1411 2.3237 1.5073 2.0625 2.3237 0.3042 2.0195 

13 0.3042 1.5049 2.0779 1.1411 2.324 1.5081 2.0625 2.324 0.3042 2.0198 

End 

Point 

0.3032 1.5045 2.0776 1.141 2.324 1.5071 2.0625 2.324 0.3032 2.0208 

Table 14. Solution for component �̃�2 of Example 2. 

Iteration 𝒙𝟐
𝑳 𝒙𝟐

𝑪 𝒙𝟐
𝑹 𝟎, 𝟎𝒙𝟐

 𝟎, 𝟏𝒙𝟐
 𝟏, 𝟎𝒙𝟐

 𝟏, 𝟏𝒙𝟐
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 1.5 2.5 1.5 2.5 1.5 1.5 2.5 1.5 1 

3 2 2 2.5 1.25 3.25 2 1.5 3.25 1.25 2 

4 2 2.125 2.5 1.375 3.25 1.625 1.125 3.25 1.125 2.125 

5 2 2.125 2.5 1.375 3.25 1.625 1.0625 3.25 1.0625 2.1875 

6 2 2.125 2.5 1.4062 3.2188 1.625 2.3438 3.2188 1.4062 1.8126 

7 2 2.1094 2.5 1.4219 3.2188 1.625 2.3438 3.2188 1.4219 1.7969 

8 2.0156 2.1094 2.4922 1.4141 3.2188 1.7344 2.3438 3.2188 1.4141 1.8047 

9 2.0156 2.1094 2.4883 1.4219 3.2188 1.7305 2.3438 3.2188 1.4219 1.7969 

10 2.0117 2.1094 2.4941 1.4219 3.2188 1.7363 2.3438 3.2188 1.4219 1.7969 

11 2.0137 2.1094 2.4932 1.4219 3.2188 1.7383 2.3516 3.2188 1.4219 1.7969 

12 2.0132 2.1104 2.4941 1.4248 3.2197 1.7427 2.3516 3.2197 1.4248 1.7949 

13 2.0132 2.1104 2.4941 1.4248 3.2195 1.7424 2.3516 3.2195 1.4248 1.7947 

End 

Point 

2.0129 2.1105 2.494 1.4249 3.2195 1.7455 2.3523 3.2195 1.4249 1.7946 

In Table 14, MIN is calculated as min{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
} , and MAX is 

evaluated as max{𝑥2
𝐿 , 𝑥2

𝐶 , 𝑥2
𝑅 , 0,0𝑥2

, 0,1𝑥2
, 1,0𝑥2

, 1,1𝑥2
}. The width is defined as the difference between 
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MAX and MIN, that is, MAX−MIN.  

In Table 15, MIN is calculated as min{𝑥3
𝐿 , 𝑥3

𝐶 , 𝑥3
𝑅 , 0,0𝑥3

, 0,1𝑥3
, 1,0𝑥3

, 1,1𝑥3
} , and MAX is 

evaluated as max{𝑥3
𝐿 , 𝑥3

𝐶 , 𝑥3
𝑅 , 0,0𝑥3

, 0,1𝑥3
, 1,0𝑥3

, 1,1𝑥3
}. From Tables 13–15, numerically it is observed 

that the center solution and the width of the solution TFNs converge at 13 iterations subject to the 

given tolerance value.  

The obtaned TFN solution vector components of Example 2, Case 3 are shown in Figure 11. 

Based on the width of the solution iteration-wise, the solution components are depicted in Figure 12. 

From Figure 12, graphically it is seen that at 13 iterations the width of solution TFNs converges subject 

to the tolerance value. 

Table 15. Solution for component �̃�3 of Example 2. 

Iteration 𝒙𝟑
𝑳 𝒙𝟑

𝑪 𝒙𝟑
𝑹 𝟎, 𝟎𝒙𝟑

 𝟎, 𝟏𝒙𝟑
 𝟏, 𝟎𝒙𝟑

 𝟏, 𝟏𝒙𝟑
 MAX MIN Width 

1 1 1 1 1 1 1 1 1 1 0 

2 1.5 2 2 1.5 1.5 1.5 1.5 2 1.5 0.5 

3 2 2.25 2.75 1 2 1.5 1.5 2.75 1 1.75 

4 2 2 2.75 1 2.125 1.5 0.375 2.75 0.375 2.375 

5 2 2.125 2.625 0.9375 2.1875 1.5 0.3125 2.625 0.3125 2.3125 

6 2 2.125 2.6562 0.9375 2.2188 1.5 0.8438 2.6562 0.8438 1.8124 

7 2 2.125 2.6562 0.9375 2.1875 1.5 0.8438 2.6562 0.8438 1.8124 

8 2 2.1094 2.6484 0.9375 2.1875 1.3984 0.8438 2.6484 0.8438 1.8046 

9 2 2.1094 2.6484 0.9336 2.1875 1.3984 0.8438 2.6484 0.8438 1.8046 

10 1.9941 2.1094 2.6465 0.9336 2.1855 1.3867 0.8438 2.6465 0.8438 1.8027 

11 1.9922 2.1084 2.6465 0.9336 2.1855 1.3877 0.8389 2.6465 0.8389 1.8076 

12 1.9917 2.1084 2.646 0.9316 2.1855 1.3828 0.8389 2.646 0.8389 1.8071 

13 1.9915 2.1086 2.646 0.9316 2.1858 1.3821 0.8389 2.646 0.8389 1.8071 

End 

Point 

1.9918 2.1089 2.6461 0.9316 2.1858 1.3771 0.8384 2.6461 0.8384 1.8077 

 

Figure 11. TFN solution of �̃�1, �̃�2 and �̃�3 in 

Case 3 of Example 2. 

 

Figure 12. Uncertain solution of �̃�1, �̃�2 and �̃�3 

Case 3 of Example 2. 
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Example 3. Take a fuzzy system of nonlinear equations  

�̃�11𝑥1
2 + �̃�12𝑥2 = 10.9 + 0.1𝛼, 11.1 − 0.1𝛼,       

�̃�21𝑥1 + �̃�22𝑥2
2 = 6.9 + 0.1𝛼, 7.1 − 0.1𝛼.      (49) 

Assume the initial approximation 𝑥(0) = (1,1)𝑇 , step size ∆= (0.5, 0.5)𝑇  and 𝜖 = 10−3.  Here, 

the tolerance value is 𝜖. It is noted that the iterations are terminated if the step size become less than 

the tolerance value. The first step is to construct the outer system and then convert the Eq (49) into a 

fuzzy unconstrained minimization problem. The transformed fuzzy unconstrained minimization 

problem is formulated as  

ℱ(𝑥) = (𝑥1
2 + 𝑥2 − [10.9 + 0.1𝛼, 11.1 − 0.1𝛼])2 + (𝑥1 + 𝑥2

2 − [6.9 + 0.1𝛼, 7.1 − 0.1𝛼])2. (50) 

Applying the IODS algorithm, the desired solution is obtained after 9 iterations using MATLAB [40]. 

The solution vector after 9 iterations (using tolerance value 𝜖 ) (�̃�1, �̃�2)
𝑇  with different 𝛼 -cuts are 

shown in Figures 13 and 14. The width of a TFN is defined as the interval length of the TFN at 

membership value zero. For the comparison of the present method and other existing methods, in Case 2, 

only the right-side vector is fuzzy. The aim of discussing Case 2 with other methods is to provide a 

better solution about suitability of different types of fuzzy inputs. 

Here, we have taken the right-side vector as fuzzy. By applying the current algorithm, the TFN 

solutions of �̃�1 = [2.9869, 3, 3.0136]  and �̃�2 = [1.9765, 2, 2.0214]  are graphically represented in 

Figures 13 and 14. Further, to the effectiveness of the proposed algorithm, the obtained TFN solutions 

are compared with the well-known Vertex Method, Krawczyk Method, Nayak and Chakraverty [41] 

and Nayak and Pooja [24], and the same is presented in Table 16. 

Table 16. Comparison of solutions of �̃�1 and �̃�2 of Example 3 with the existing method [24]. 

Solution Vertex Method Krawczyk method Nayak and 

Chakraverty 

[24] 

Nayak and 

Pooja [41] 

Fuzzy IODS 

𝒙𝟏 [2.9782,3.0217] [2.744592,3.255408] [2.9782, 3.0217] [2.9160, 3.0137] [2.9882, 3.01367] 

𝒙𝟐 [1.9693, 2.0302] [1.603804, 2.396196] [1.9693,2.0302] [1.8555,2.0215] [1.9765, 2.0214] 

 

Figure 13. TFN solution of �̃�1 for Example 3. 

 

Figure 14. TFN solution of �̃�2 for Example 3. 
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Finally, the fuzzy IODS algorithm stands out as an effective and useful method for solving a fuzzy 

system of nonlinear equations. Its computational capabilities make it an effective tool for dealing with 

real-world problems where uncertainty and ambiguity exist. 

Next, considering the width of the solutions with respect to the different combinations of input 

uncertainties, the sensitiveness of the systems can be analyzed. In this case, the input parameters which 

give high width solution are more sensitive, whereas the input parameters which give less width 

solution are less sensitive. 

7. Conclusions 

In this work, the IODS optimization approach was extended in fuzzy environment to solve the 

fuzzy system of nonlinear equations. As such, the fuzzy IODS optimization algorithm was developed. 

To study the efficacy of the algorithm, convergence analysis was performed. The developed algorithm 

was demonstrated with three example problems of system of nonlinear equations in fuzzy environment. 

The system of nonlinear equations was divided into three cases, viz., only fuzzy (only coefficient 

matrix is fuzzy and only right-side vector is fuzzy) and fully fuzzy system of nonlinear equations. Then, 

by using MATLAB code, the same was solved through the proposed algorithm, and the fuzzy solutions 

were reported. For each case, both numerical and graphical convergences were shown. Further, 

iteration-wise solutions were included. From the current work, the following observations are drawn. 

1) The proposed algorithm is easy to use, and only seven sub-problems are needed to investigate, 

irrespective of the size of the system. 

2) For a linear system of equations, the proposed method guarantees an optimal solution. 

3) Fuzzy IODS is a derivative free method which reduces the computational complexities and time cost. 

4) The fuzzy IODS as compared to many other methods has effectively handled an uncertain system, 

and it provides an efficient solution. 

5) Using the proposed fuzzy IODS method, we can solve both only and fully fuzzy systems of 

equations, which shall be beneficial to handle real-life engineering and science problems. 

There are some shortcomings of the present algorithm: As the number of variables and the 

complexity of the fuzzy system increase, it may be challenging to handle the algorithm in terms of 

extensible and computational efficiency. Furthermore, for highly nonlinear system, the present 

algorithm prematurely converges. 

An overall study of the proposed method suggests the fuzzy IODS algorithm may be extended to 

handle more complex uncertain systems, higher dimensional environment, eigenvalue problems, 

systems with constraints, etc. by updating the search approach. Finally, it can be applicable to quantify 

the uncertainties in many science and engineering problems, such as risk assessment problems, 

structural engineering problems, fluid mechanics, etc. 
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