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Abstract: In this paper, we consider the multiplicity of solutions for the following three-point
boundary value problem of second-order p-Laplacian differential equations with instantaneous and
non-instantaneous impulses:

−(ρ(t)Φp(u′(t)))′ + g(t)Φp(u(t)) = λ f j(t, u(t)), t ∈ (s j, t j+1], j = 0, 1, ...,m,
∆(ρ(t j)Φp(u′(t j))) = µI j(u(t j)), j = 1, 2, ...,m,
ρ(t)Φp(u′(t)) = ρ(t+

j )Φp(u′(t+
j )), t ∈ (t j, s j], j = 1, 2, ...,m,

ρ(s+
j )Φp(u′(s+

j )) = ρ(s−j )Φp(u′(s−j )), j = 1, 2, ...,m,
u(0) = 0, u(1) = ζu(η),

where Φp(u) := |u|p−2u, p > 1, 0 = s0 < t1 < s1 < t2 < ... < sm1 < tm1+1 = η < ... < sm < tm+1 = 1, ζ >
0, 0 < η < 1, ∆(ρ(t j)Φp(u′(t j))) = ρ(t+

j )Φp(u′(t+
j ))−ρ(t−j )Φp(u′(t−j )) for u′(t±j ) = lim

t→t±j
u′(t), j = 1, 2, ...,m,

and f j ∈ C((s j, t j+1]×R,R), I j ∈ C(R,R). λ ∈ (0,+∞), µ ∈ R are two parameters. ρ(t) ≥ 1, 1 ≤ g(t) ≤ c
for t ∈ (s j, t j+1], ρ(t), g(t) ∈ Lp[0, 1], and c is a positive constant. By using variational methods and
the critical points theorems of Bonanno-Marano and Ricceri, the existence of at least three classical
solutions is obtained. In addition, several examples are presented to illustrate our main results.
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1. Introduction

In this paper, we consider the following problem:

−(ρ(t)Φp(u′(t)))′ + g(t)Φp(u(t)) = λ f j(t, u(t)), t ∈ (s j, t j+1], j = 0, 1, ...,m,
∆(ρ(t j)Φp(u′(t j))) = µI j(u(t j)), j = 1, 2, ...,m,
ρ(t)Φp(u′(t)) = ρ(t+

j )Φp(u′(t+
j )), t ∈ (t j, s j], j = 1, 2, ...,m,

ρ(s+
j )Φp(u′(s+

j )) = ρ(s−j )Φp(u′(s−j )), j = 1, 2, ...,m,
u(0) = 0, u(1) = ζu(η),

(1.1)

where Φp(u) := |u|p−2u, p > 1, 0 = s0 < t1 < s1 < t2 < ... < sm1 < tm1+1 = η < ... < sm < tm+1 = 1, ζ >
0, 0 < η < 1, ∆(ρ(t j)Φp(u′(t j))) = ρ(t+

j )Φp(u′(t+
j ))−ρ(t−j )Φp(u′(t−j )) for u′(t±j ) = lim

t→t±j
u′(t), j = 1, 2, ...,m,

and f j ∈ C((s j, t j+1]×R,R), I j ∈ C(R,R). λ ∈ (0,+∞), µ ∈ R are two parameters. ρ(t) ≥ 1, 1 ≤ g(t) ≤ c
for t ∈ (s j, t j+1], ρ(t), g(t) ∈ Lp[0, 1], and c is a positive constant. The instantaneous impulses occur at
the points t j and the non-instantaneous impulses continue on the intervals (t j, s j].

In recent years, the study of the differential equations has received extensive attention owing to their
wide applications in many different areas of science and technology [1–4], especially the differential
equations with impulses. It is worth noting that there are two popular types of impulses in the
literature, that is, instantaneous impulses and non-instantaneous impulses. As far as we know, the
instantaneous impulse was first presented by Milman-Myshkis [5] and the non-instantaneous impulse
was first introduced by Hernández-O’Regan [6]. More details of these two types are given in [7]. Up
to now, there are many methods that has been applied to study the differential equations with impulsive
effects, such as fixed point theorem, topological degree theory, upper and lower solutions method, and
theory of analytic semigroup, see for instance [6, 8–12].

Since the pioneering works of Tian-Ge [13] and Nieto-O’Regan [14], variational approach has
become one of the important methods in the study of impulsive differential equations [15–19].
Recently, the study of existence and multiplicity of solutions for the differential equations with both
instantaneous and non-instantaneous impulses by using variational methods and critical point theory
has gained much attention. In [20], Tian-Zhang first considered the following second-order differential
equations with instantaneous and non-instantaneous impulses:

−u′′(t) = f j(t, u(t)), t ∈ (s j, t j+1], j = 0, 1, 2, ...,m,
∆u′(t j) = I j(u(t j)), j = 1, 2, ...,m,
u′(t) = u′(t+

j ), t ∈ (t j, s j], j = 1, 2, ...,m,
u′(s+

j ) = u′(s−j ), j = 1, 2, ...,m,
u(0) = u(T ) = 0,

(1.2)

where 0 = s0 < t1 < s1 < t2 < s2 < ... < sm < tm+1 = T , f j ∈ C((s j, t j+1] × R,R), I j ∈ C(R,R), ∆u′(t j) =

u′(t+
j ) − u′(t−j ), the instantaneous impulses occur at the points t j and the non-instantaneous impulses

continue on the intervals (t j, s j]. The authors obtained the problem (1.2) has at least one classical
solution by applying Ekeland’s variational principle. From then on, the different types of the differential
equations with instantaneous and non-instantaneous impulses were investigated by means of variational
methods and some excellent and interesting results were obtained, see for instance [21–25].

On the other hand, there has been increasing interest in studying three-point boundary value
problems of differential equations due to their extensive applications in physics and engineering in
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recent years. The existence results for three-point boundary value problems have been studied by many
different methods [26–30], such as fixed-point theory, upper and lower solutions method and variational
approach. Especially, in [30], Lian-Bai-Du used variational method to consider the following three-
point boundary value problem:{

(P(t)u′(t))′ + f (t, u(t)) = 0, a.e. 0 < t < 1,
u(0) = 0, u(1) = ζu(η),

(1.3)

where P : [0, 1] → Rn×n is a continuously symmetric matrix. f : [0, 1] × Rn → Rn is a C1

function and locally Lipschitz continuous. The interesting point of the paper is the boundary value
conditions are imposed on an appropriate space rather than the functionals. Thus, the authors proposed
a different idea to deal with the non-local boundary value problem (1.3) and gave the variational
structure. Finally, they proved that the problem (1.3) possess a nontrivial solution, a positive and a
negative solution by using mountain pass lemma. Inspired by the study of [30], Wei-Shang-Bai [31]
first considered the following second-order p-Laplacian differential equations involving instantaneous
and non-instantaneous impulses with three-point boundary conditions:

−(ρ(t)Φp(u′(t)))′ + g(t)Φp(u(t)) = f j(t, u(t)), t ∈ (s j, t j+1], j = 0, 1, ...,m,
∆(ρ(t j)Φp(u′(t j))) = I j(u(t j)), j = 1, 2, ...,m,
ρ(t)Φp(u′(t)) = ρ(t+

j )Φp(u′(t+
j )), t ∈ (t j, s j], j = 1, 2, ...,m,

ρ(s+
j )Φp(u′(s+

j )) = ρ(s−j )Φp(u′(s−j )), j = 1, 2, ...,m,
u(0) = 0, u(1) = ζu(η),

(1.4)

where Φp(u) := |u|p−2u, p > 1, ρ(t), g(t) ∈ Lp[0, 1], 0 = s0 < t1 < s1 < ... < sm1 = η < tm1+1 <

... < sm < tm+1 = 1, ζ > 0, 0 < η < 1, and ∆(ρ(t j)Φp(u′(t j))) = ρ(t+
j )Φp(u′(t+

j )) − ρ(t−j )Φp(u′(t−j )) for
u′(t±j ) = limt→t±j u′(t), j = 1, 2, ...,m, and f j ∈ C((s j, t j+1] × R,R), I j ∈ C(R,R). The authors obtained
that the problem (1.4) has at least two classical solutions and infinitely many classical solutions by
the virtue of variational methods and critical point theory. On the basis of [31], Yao [32] revisited the
problem (1.4) and obtained the existence of at least one classical solution and infinitely many classical
solutions by applying the minimization methods, mountain pass theorem and symmetric mountain pass
theorem.

To the best of our knowledge, the study of solutions for a three-point boundary value problem with
instantaneous and non-instantaneous impulses using variational methods has received considerably
less attention. Motivated by the above mentioned works, in this paper, our aim is to study the existence
of at least three classical solutions of the problem (1.1) via three critical points theorems obtained by
Bonanno-Marano [33] and Ricceri [34]. Our main results are obtained depending on two parameters µ
and λ. In addition, the problem (1.1) is reduced to the problem (1.4) when µ = λ = 1. Consequently,
our work will generalize the existing results in [31, 32].

The rest of this paper is arranged as follows. In Section 2, we give some preliminary results. In
Section 3, we will present and prove our main results. Finally, in Section 4, two examples are given to
verify our results.

2. Preliminaries

In this section, we first introduce some necessary definitions, lemmas and theorems.

AIMS Mathematics Volume 8, Issue 9, 21312–21328.



21315

Theorem 2.1. [33, 35] Let X be a reflexive real Banach space, ϕ : X → R be a sequentially
weakly lower semi-continuous, coercive and continuously Gâteaux differentiable functional whose
Gâteaux derivative admits a continuous inverse on X∗, and let ψ : X → R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact, such that

inf
x∈X

ϕ(x) = ϕ(0) = ψ(0) = 0.

Assume that there exist r > 0 and x̃ ∈ X, with r < ϕ(x̃) such that

(i) sup{ψ(x) : ϕ(x) ≤ r} < rψ(x̃)
ϕ(x̃) ,

(ii) for each λ ∈ Λr =
(
ϕ(x̃)
ψ(x̃) ,

r
sup{ψ(x):ϕ(x)≤r}

)
, the functional ϕ − λψ is coercive.

Then, for each λ ∈ Λr, the functional ϕ − λψ has at least three distinct critical points in X.

Remark 2.1. [24, 35] In Theorem 2.1, if sup{ψ(x) : ϕ(x) ≤ r} = 0, then it is possible to consider the
interval of parameters

(
ϕ(x̃)
ψ(x̃) ,+∞

)
.

Definition 2.1. [34] If X is a real Banach space, we denote by ΓX the class of all functionals ϕ :
X → R possessing the following property: if {xn} is a sequence in X converging weakly to x ∈ X and
lim infn→∞ ϕ(xn) ≤ ϕ(x), then {xn} has a subsequence converging strongly to x.

Theorem 2.2. [34] Let X be a separable and reflexive real Banach space; let ϕ : X → R be a
coercive, sequentially weakly lower semi-continuous C1 functional, bounded on each bounded subset
of X, appertaining to ΓX and whose derivative has a continuous inverse on X∗; w : X → R is a C1

functional with compact derivative. Suppose that there exists a strict local minimum x0 of ϕ such that
ϕ(x0) = w(x0) = 0. Finally, setting

ρ1 = max
{

0, lim sup
‖x‖→+∞

w(x)
ϕ(x)

, lim sup
‖x‖→x0

w(x)
ϕ(x)

}
, ρ2 = sup

x∈ϕ−1(0,+∞)

w(x)
ϕ(x)

,

assume that ρ1 < ρ2. Then, for each compact interval [θ1, θ2] ⊂
(

1
ρ2
, 1
ρ1

)
(with the conventions 1

0 = +∞,
1

+∞
= 0), there exists R > 0 satisfying the property: for each λ ∈ [θ1, θ2] and any C1 functional

φ : X → R with compact derivative, there exists ξ > 0 such that, for each µ ∈ [0, ξ], the equation
ϕ′(x) − µφ′(x) − λw′(x) = 0 has at least three solutions in X whose norms are less than R.

Let X = {u ∈ W1,p([0, 1],R) : u(0) = 0, u(1) = ζu(η)} with the norm

‖u‖X =

(∫ 1

0
(ρ(t)|u′(t)|p + g(t)|u(t)|p)dt

) 1
p

.

As shown in [36], X is a separable and reflexive real Banach space. According to [31], we can obtain
that

‖u‖ =

(∫ 1

0
ρ(t)|u′(t)|pdt

) 1
p

, ∀u ∈ X

is equivalent to the norm ‖u‖X, i.e., there exist c0 ≥
(

c
ρ(t) + 1

) 1
p , such that

‖u‖ ≤ ‖u‖X ≤ c0‖u‖.
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The functionals ϕ : X → R and ψ : X → R are defined as follows:

ϕ(u) =
1
p
‖u‖p +

m∑
j=0

∫ t j+1

s j

g(t)|u(t)|pdt, (2.1)

ψ(u) =

m∑
j=0

∫ t j+1

s j

F j(t, u(t))dt −
µ

λ

m∑
j=1

J j(u(t j)), (2.2)

where F j(t, u) =
∫ u

0
f j(t, s)ds and J j(u) =

∫ u

0
I j(s)ds. It is clear that inf

u∈X
ϕ(u) = ϕ(0) = 0 and ψ(0) =∑m

j=0

∫ t j+1

s j
F j(t, 0)dt−µ

λ

∑m
j=1 J j(0) = 0. By using the continuity of f j, j = 0, 1, ...,m and I j, j = 1, 2, ...,m,

we can obtain ϕ and ψ are continuous Gâteaux differentiable. For any v ∈ X, we have

〈ϕ′(u), v〉 =

∫ 1

0
ρ(t)|u′(t)|p−2u′(t)v′(t)dt +

m∑
j=0

∫ t j+1

s j

g(t)|u(t)|p−2u(t)v(t)dt, (2.3)

〈ψ′(u), v〉 =

m∑
j=0

∫ t j+1

s j

f j(t, u(t))v(t)dt −
µ

λ

m∑
j=1

I j(u(t j))v(t j). (2.4)

Lemma 2.1. [30, Lemma 2.5] and [31, Lemma 1] The space X is compactly embedded in C([0, 1],R).

Lemma 2.2. [31, Lemma 2] For each u ∈ X, there is ‖u‖∞ ≤ ‖u‖.

Lemma 2.3. A function u ∈ X is a weak solution of the problem (1.1), then the following identity∫ 1

0
ρ(t)|u′(t)|p−2u′(t)v′(t)dt +

m∑
j=0

∫ t j+1

s j

g(t)|u(t)|p−2u(t)v(t)dt + µ

m∑
j=1

I j(u(t j))v(t j)

= λ

m∑
j=0

∫ t j+1

s j

f j(t, u(t))v(t)dt

holds for any v ∈ X.

Lemma 2.4. If u ∈ X is a weak solution of the problem (1.1), then u is a classical solution of the
problem (1.1).

Remark 2.2. The proofs of Lemmas 2.3 and 2.4 are similar to that of Lemma 6 in [31], so we omit
them. In addition, from Lemma 2.3, the critical points of ϕ−λψ are weak solutions of the problem (1.1).
According to Lemma 2.4, the weak solution of the problem (1.1) is also a classical one.

3. Main results

In this section, our main results are proved by using two kinds of three critical points theorems.

Theorem 3.1. Assume that the following conditions hold:

(H1) There exist positive constants K0, K1, ...,Km, L1, L2, ..., Lm, k, l1, l2, ..., lm with k < p and l j < p,
j = 1, 2, ...,m such that for all t ∈ [0, 1], u ∈ R,

F j(t, u) ≤ K j

(
1 + |u|k

)
, −J j(u) ≤ L j

(
1 + |u|l j

)
.
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(H2) There exist r > 0 and ũ ∈ X such that ‖ũ‖p + p
∑m

j=0

∫ t j+1

s j
g(t)|ũ(t)|pdt > pr,

m∑
j=0

∫ t j+1

s j

F j(t, ũ(t))dt > 0,
m∑

j=1

J j(ũ(t j)) > 0

and the following inequality holds:

Al :=
1
p‖ũ‖

p +
∑m

j=0

∫ t j+1

s j
g(t)|ũ(t)|pdt∑m

j=0

∫ t j+1

s j
F j(t, ũ(t))dt

< Ar :=
r∑m

j=0

∫ t j+1

s j
max
|u|≤(pr)

1
p

F j(t, u(t))dt
. (3.1)

Then, for every λ ∈ Λr = (Al, Ar), there exists

γ := min


r − λ

∑m
j=0

∫ t j+1

s j
max
|u|≤(pr)

1
p

F j(t, u(t))dt

max
|u|≤(pr)

1
p

∑m
j=1(−J j(u))

,

λ
∑m

j=0

∫ t j+1

s j
F j(t, ũ(t))dt − 1

p‖ũ‖
p −

∑m
j=0

∫ t j+1

s j
g(t)|ũ(t)|pdt∑m

j=1 J j(ũ(t j))


such that, for each µ ∈ [0, γ), the problem (1.1) has at least three classical solutions.

Proof. we need three steps to complete the proof.
Step 1. The functional ϕ is sequentially weakly lower semi-continuous, coercive and its derivative

admits a continuous inverse on X∗.
Suppose that {un} ∈ X, un ⇀ u as n → ∞. The continuity and convexity of ‖u‖p imply ‖u‖p is

sequentially weakly lower semi-continuous. Moreover, by Lemma 2.1, {un} is convergent uniformly to
u in C([0, 1]). So

lim inf
n→∞

ϕ(un) =
1
p
‖un‖

p +

m∑
j=0

∫ t j+1

s j

g(t)|un(t)|pdt ≥
1
p
‖u‖p +

m∑
j=0

∫ t j+1

s j

g(t)|u(t)|pdt = ϕ(u).

Thus, ϕ is a sequentially weakly lower semi-continuous functional. From (2.1), we have ϕ(u) ≥ 1
p‖u‖

p,
which shows that ϕ(u)→ +∞ as ‖u‖ → +∞. Thus, ϕ is coercive.

Next, we prove that ϕ′ admits a continuous inverse on X∗. In fact, for any u ∈ X\{0}, by (2.3), we
have

lim
‖u‖→+∞

〈ϕ′(u), u〉
‖u‖

= lim
‖u‖→+∞

‖u‖p +
∑m

j=0

∫ t j+1

s j
g(t)|u(t)|pdt

‖u‖

= lim
‖u‖→+∞

‖u‖p−1 +

∑m
j=0

∫ t j+1

s j
g(t)|u(t)|pdt

‖u‖
= +∞,
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which implies that ϕ′ is coercive. For any u, v ∈ X,

〈ϕ′(u) − ϕ′(v), u − v〉 =

∫ 1

0
ρ(t)(|u′(t)|p−2u′(t) − |v′(t)|p−2v′(t))(u′(t) − v′(t))dt

+

m∑
j=0

∫ t j+1

s j

g(t)(|u(t)|p−2u(t) − |v(t)|p−2v(t))(u(t) − v(t))dt.

By [37, Eq (2.2)], there exist constants cp, dp > 0, such that

〈ϕ′(u) − ϕ′(v), u − v〉 ≥


cp

(∫ 1

0
ρ(t)|u′(t) − v′(t)|pdt +

∑m
j=0

∫ t j+1

s j
g(t)|u(t) − v(t)|pdt

)
, p ≥ 2,

dp

(∫ 1

0
ρ(t)|u′(t)−v′(t)|2

(|u′(t)|+|v′(t)|)2−p dt +
∑m

j=0

∫ t j+1

s j

g(t)|u(t)−v(t)|2

(|u(t)|+|v(t)|)2−p dt
)
, 1 < p < 2.

≥

cp

∫ 1

0
ρ(t)|u′(t) − v′(t)|pdt, p ≥ 2,

dp

∫ 1

0
ρ(t)|u′(t)−v′(t)|2

(|u′(t)|+|v′(t)|)2−p dt, 1 < p < 2.

If p ≥ 2, we have
〈ϕ′(u) − ϕ′(v), u − v〉 ≥ cp‖u − v‖p. (3.2)

If 1 < p < 2, by the Hölder’s inequality, we find that∫ 1

0
ρ(t)|u′(t) − v′(t)|pdt ≤

(∫ 1

0

ρ(t)|u′(t) − v′(t)|2

(|u′(t)| + |v′(t)|)2−p dt
) p

2
(∫ 1

0
ρ(t)(|u′(t)| + |v′(t)|)pdt

) 2−p
2

≤2
(p−1)(2−p)

2

(∫ 1

0

ρ(t)|u′(t) − v′(t)|2

(|u′(t)| + |v′(t)|)2−p dt
) p

2

(‖u‖ + ‖v‖)
(2−p)p

2 .

(3.3)

It follows from 1 < p < 2 and (3.3) that

〈ϕ′(u) − ϕ′(v), u − v〉 ≥
2

(p−1)(p−2)
p dp

(‖u‖ + ‖v‖)2−p

(∫ 1

0
ρ(t)|u′(t) − v′(t)|pdt

) 2
p

=
2

(p−1)(p−2)
p dp‖u − v‖2

(‖u‖ + ‖v‖)2−p . (3.4)

In view of (3.2) and (3.4), we know ϕ′ is uniformly monotone. By [38, Theorem 26.A(d)], we see
that (ϕ′)−1 exists and is continuous on X∗.

Step 2. ψ′ : X → X∗ is a continuous and compact functional.
Obviously, ψ′ is continuous. Next, we mainly prove that ψ′ : X → X∗ is a compact functional.

Assume that un ⇀ u in X as n → ∞, then {un} ⊂ X converges uniformly to u in C[0, 1]. Owing to the
functions f j ∈ C((s j, t j+1] × R,R) and I j ∈ (R,R), we have f j(t, un) → f (t, u) and I j(un(t j)) → I j(u(t j))
as n → ∞. Therefrom, we obtain ψ′(un) → ψ′(u) as n → ∞. Thus, ψ′ is strongly continuous on X.
Furthermore, by [38, Proposition 26.2], we can conclude that ψ′ is a compact operator.

Step 3. The conditions (i) and (ii) of Theorem 2.1 are satisfied.
Let u ∈ X with ϕ(u) ≤ r, then by (2.1) and Lemma 2.2, we have ϕ(u) ≥ 1

p‖u‖
p > 1

p‖u‖
p
∞. It follows

that

{u ∈ X : ϕ(u) ≤ r} ⊆
{

u :
1
p
‖u‖p

∞ ≤ r
}

=
{
u : ‖u‖∞ ≤ (pr)

1
p
}
.
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In view of λ > 0, µ ≥ 0, we have

sup{ψ(u) : ϕ(u) ≤ r} = sup

 m∑
j=0

∫ t j+1

s j

F j(t, u(t))dt −
µ

λ

m∑
j=1

J j(u(t j)) : ϕ(u) ≤ r


≤

m∑
j=0

∫ t j+1

s j

max
|u|≤(pr)

1
p

F j(t, u(t))dt +
µ

λ
max
|u|≤(pr)

1
p

m∑
j=1

(−J j(u)).

If max
|u|≤(pr)

1
p

∑m
j=1(−J j(u)) = 0, then using λ < Ar, one has

sup{ψ(u) : ϕ(u) ≤ r} <
r
λ
. (3.5)

If max
|u|≤(pr)

1
p

∑m
j=1(−J j(u)) > 0, then from µ ∈ [0, γ), the inequality (3.5) also holds.

On the other hand, by µ < γ, we have

ψ(ũ) =

m∑
j=0

∫ t j+1

s j

F j(t, ũ(t))dt −
µ

λ

m∑
j=1

J j(ũ(t j)) >
ϕ(ũ)
λ
. (3.6)

By combining (3.5) and (3.6), we get

ψ(ũ)
ϕ(ũ)

>
1
λ
>

sup{ψ(u) : ϕ(u) ≤ r}
r

.

Hence, the condition (i) in Theorem 2.1 holds. Finally, we will show that, for each λ ∈ Λr = (Al, Ar),
the functional ϕ − λψ is coercive. For any u ∈ X, by (H1), we obtain

m∑
j=0

∫ t j+1

s j

F j(t, u(t))dt ≤
m∑

j=0

∫ t j+1

s j

K j

(
1 + |u(t)|k

)
dt

≤
(
1 + ‖u‖k∞

) m∑
j=0

K j(t j+1 − s j) ≤
(
1 + ‖u‖k

) m∑
j=0

K j(t j+1 − s j)

(3.7)

and
m∑

j=1

(−J j(u(t j))) ≤
m∑

j=1

L j

(
1 + |u(t j)|l j

)
≤

m∑
j=1

L j

(
1 + ‖u‖l j

∞

)
≤

m∑
j=1

L j

(
1 + ‖u‖l j

)
. (3.8)

It follows from (3.7) and (3.8) that

ψ(u) ≤
(
1 + ‖u‖k

) m∑
j=0

K j(t j+1 − s j) +
µ

λ

m∑
j=1

L j

(
1 + ‖u‖l j

)
=

m∑
j=0

K j(t j+1 − s j) +
µ

λ

m∑
j=1

L j + ‖u‖k
m∑

j=0

K j(t j+1 − s j) +
µ

λ

m∑
j=1

L j‖u‖l j .
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Hence,

ϕ(u) − λψ(u) ≥
1
p
‖u‖p +

m∑
j=0

∫ t j+1

s j

g(t)|u(t)|pdt −

λ m∑
j=0

K j(t j+1 − s j) + µ

m∑
j=1

L j

+λ‖u‖k
m∑

j=0

K j(t j+1 − s j) + µ

m∑
j=1

L j‖u‖l j


≥

1
p
‖u‖p − λ

m∑
j=0

K j(t j+1 − s j) − µ
m∑

j=1

L j − λ‖u‖k
m∑

j=0

K j(t j+1 − s j) − µ
m∑

j=1

L j‖u‖l j .

Notice that k < p and l j < p, j = 1, 2, ...,m, we get ϕ − λψ is coercive on X. Therefore, applying
Theorem 2.1, we obtain that the functional ϕ − λψ has at least three different critical points, i.e., the
problem (1.1) has at least three distinct classical solutions. �

We note that the parameter µ is positive values in Theorem 3.1. In fact, we can consider negative
values for the parameter µ and have the following result.

Theorem 3.2. Assume that the following conditions hold:

(H1∗) There exist positive constants K0, K1, ...,Km, L1, L2, ..., Lm, k, l1, l2, ..., lm with k < p and l j < p,
j = 1, 2, ...,m, such that for all t ∈ [0, 1], u ∈ R,

F j(t, u) ≤ K j

(
1 + |u|k

)
, J j(u) ≤ L j

(
1 + |u|l j

)
.

(H2∗) There exist r > 0 and ũ ∈ X such that ‖ũ‖p + p
∑m

j=0

∫ t j+1

s j
g(t)|ũ(t)|pdt > pr,

m∑
j=0

∫ t j+1

s j

F j(t, ũ(t))dt > 0,
m∑

j=1

J j(ũ(t j)) < 0

and (3.1) holds.
Then, for every λ ∈ Λr = (Al, Ar), there exists

γ∗ := min


λ
∑m

j=0

∫ t j+1

s j
max
|u|≤(pr)

1
p

F j(t, u(t))dt − r

max
|u|≤(pr)

1
p

∑m
j=1 J j(u)

,

λ
∑m

j=0

∫ t j+1

s j
F j(t, ũ(t))dt − 1

p‖ũ‖
p −

∑m
j=0

∫ t j+1

s j
g(t)|ũ(t)|pdt∑m

j=1 J j(ũ(t j))


such that, for each µ ∈ (γ∗, 0], the problem (1.1) has at least three classical solutions.

Proof. Similarly to the proof of Theorem 3.1, we can prove that Theorem 3.2 holds. Next, we mainly
demonstrate that the conditions (i) and (ii) of Theorem 2.1 are fulfilled. Since λ > 0 and µ ∈ (γ∗, 0],
we have

sup{ψ(u) : ϕ(u) ≤ r} = sup

 m∑
j=0

∫ t j+1

s j

F j(t, u(t))dt −
µ

λ

m∑
j=1

J j(u(t j)) : ϕ(u) ≤ r
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≤

m∑
j=0

∫ t j+1

s j

max
|u|≤(pr)

1
p

F j(t, u(t))dt −
µ

λ
max
|u|≤(pr)

1
p

m∑
j=1

J j(u) <
r
λ
,

whichholds if max
|u|≤(pr)

1
p

∑m
j=1 J j(u) = 0sinceλ < Ar and it is also true forµ ∈ (γ∗, 0] if max

|u|≤(pr)
1
p

∑m
j=1 J j(u) > 0.

On the other hand, for µ ∈ (γ∗, 0], we can obtain

ψ(ũ) =

m∑
j=0

∫ t j+1

s j

F j(t, ũ(t))dt −
µ

λ

m∑
j=1

J j(ũ(t j)) >
ϕ(ũ)
λ
.

A simple computation yields

ψ(ũ)
ϕ(ũ)

>
1
λ
>

sup{ψ(u) : ϕ(u) ≤ r}
r

.

Now, we show that the functional ϕ − λψ is coercive for each λ ∈ Λr = (Al, Ar). By (H1∗), we can
obtain

m∑
j=1

J j(u(t j)) ≤
m∑

j=1

L j

(
1 + ‖u‖l j

)
. (3.9)

For all u ∈ X, combining with (3.7) and (3.9), we have

ϕ(u) − λψ(u) ≥
1
p
‖u‖p +

m∑
j=0

∫ t j+1

s j

g(t)|u(t)|pdt − λ
m∑

j=0

K j(t j+1 − s j) + µ

m∑
j=1

L j

− λ‖u‖k
m∑

j=0

K j(t j+1 − s j) + µ

m∑
j=1

L j‖u‖l j

≥
1
p
‖u‖p − λ

m∑
j=0

K j(t j+1 − s j) + µ

m∑
j=1

L j − λ‖u‖k
m∑

j=0

K j(t j+1 − s j) + µ

m∑
j=1

L j‖u‖l j .

�

Since k < p and l j < p, j = 1, 2, ...,m, the coercivity of the functional ϕ − λψ is obtained.

Theorem 3.3. Suppose that there exist non-negative constants k j, j = 0, 1, ...,m, and a function ϑ(t) ∈
X\{0}, such that

(H3) max
{

lim sup
|u|→0

F j(t,u)
|u|p , lim sup

|u|→∞

F j(t,u)
|u|p

}
≤ k j, j = 0, 1, ...,m.

(H4) pcp
0 max

0≤ j≤m
{k j} <

∑m
j=0

∫ t j+1
s j

F j(t,ϑ(t))dt

‖ϑ‖p
.

Then, for each compact interval [θ1, θ2] ⊂
(

1
ρ2
, 1
ρ1

)
(ρ1 and ρ2 are as defined in Theorem 2.2), there exists

R > 0 satisfying the property: for every λ ∈ [θ1, θ2], there exists ξ > 0 such that, for each µ ∈ [0, ξ], the
problem (1.1) has at least three classical solutions ui in X with ‖ui‖ <R, i = 1, 2, 3.

AIMS Mathematics Volume 8, Issue 9, 21312–21328.



21322

Proof. Define the functionals φ,w : X → R as follows:

φ(u) = −

m∑
j=1

∫ u(t j)

0
I j(s)ds, w(u) =

m∑
j=0

∫ t j+1

s j

F j(t, u(t))dt. (3.10)

Clearly, φ and w are continuous Gâteaux differentiable and their Gâteaux derivatives are

〈φ′(u), v〉 = −

m∑
j=1

I j(u(t j))v(t j), 〈w′(u), v〉 =

m∑
j=0

∫ t j+1

s j

f j(t, u(t))v(t)dt,

respectively, for any v ∈ X. Obviously, the weak solutions to the problem (1.1) are the corresponding
critical points of functional ϕ − µφ − λw.

From the proof of Theorem 3.1, ϕ is a coercive, sequentially weakly lower semi-continuous C1

functional whose Gâteaux derivative admits a continuous inverse on X∗. Analogous to [39], we can
obtain ϕ belongs to ΓX. Additionally, we can get that ϕ is bounded on each bounded subset of X.
Assume that M is the bound of a subset of X, i.e, ‖u‖ ≤ M. Then, by (2.1), we have

ϕ(u) =
1
p
‖u‖p +

m∑
j=0

∫ t j+1

s j

g(t)|u(t)|pdt ≤
(

1
p

+ c
)
‖u‖p ≤

(
1
p

+ c
)

Mp.

Similarly to the proof of Theorem 3.1, we can obtain the derivatives of φ and w are compact.
Moreover, ϕ has a strict local minimum 0 with ϕ(0) = w(0) = 0.

On the other hand, according to (H3), there exist ε1, ε2 > 0, such that

F j(t, u(t)) ≤ k j|u(t)|p, t ∈ [0, 1], |u| ∈ (0, ε1) ∪ (ε2,+∞). (3.11)

By the continuity of F j, j = 0, 1, ...,m, we know that F j(t, u(t)) is bounded for any |u| ∈ [ε1, ε2].
Thus, we can choose r > 0 and σ > p, such that

F j(t, u(t)) ≤ k j|u(t)|p + r|u(t)|σ, for t ∈ [0, 1], u ∈ R. (3.12)

Denote k∗ = max
0≤ j≤m

{k j}, by (3.12) and Lemma 2.2, we have

w(u) =

m∑
j=0

∫ t j+1

s j

F j(t, u(t))dt ≤ k∗‖u‖p + r‖u‖σ.

Hence,

lim sup
u→0

w(u)
ϕ(u)

≤ lim sup
u→0

k∗‖u‖p + r‖u‖σ

1
p‖u‖

p +
∑m

j=0

∫ t j+1

s j
g(t)|u(t)|pdt

≤ lim sup
u→0

k∗‖u‖p + r‖u‖σ
1
p‖u‖

p
= pk∗. (3.13)

In addition, if |u| ≤ ε2, then
∫ t j+1

s j
F j(t, u(t))dt ≤ h j, where j = 0, 1, ...,m. Then it follows from (3.11)

that
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lim sup
u→∞

w(u)
ϕ(u)

≤ lim sup
u→∞

∑m
j=0

∫ t j+1

s j
F j(t, u(t))dt

1
p‖u‖

p

= lim sup
u→∞

∑m
j=0

∫
|u|≤ε2

F j(t, u(t))dt
1
p‖u‖

p
+ lim sup

u→∞

∑m
j=0

∫
|u|>ε2

F j(t, u(t))dt
1
p‖u‖

p

≤ lim sup
u→∞

∑m
j=0 h j

1
p‖u‖

p
+ lim sup

u→∞

k∗‖u‖p

1
p‖u‖

p
≤ pk∗.

(3.14)

Combining (3.13) with (3.14), one has

ρ1 = max
{

0, lim sup
‖u‖→+∞

w(u)
ϕ(u)

, lim sup
‖u‖→0

w(u)
ϕ(u)

}
≤ pk∗.

Furthermore, from (H4), we can obtain

ρ2 = sup
u∈ϕ−1(0,+∞)

w(u)
ϕ(u)

= sup
u∈X\{0}

w(u)
ϕ(u)

≥

∑m
j=0

∫ t j+1

s j
F j(t, ϑ(t))dt

1
p‖ϑ(t)‖p +

∑m
j=0

∫ t j+1

s j
g(t)|ϑ(t)|pdt

≥

∑m
j=0

∫ t j+1

s j
F j(t, ϑ(t))dt

‖ϑ(t)‖p
X

≥

∑m
j=0

∫ t j+1

s j
F j(t, ϑ(t))dt

cp
0‖ϑ(t)‖p

> pk∗ ≥ ρ1.

Therefore, by Theorem 2.2 and Lemma 2.4, for each compact interval [θ1, θ2] ⊂ ( 1
ρ2
, 1
ρ1

), there exists
R > 0 satisfying the property: for every λ ∈ [θ1, θ2], there exists ξ > 0 such that, for each µ ∈ [0, ξ], the
problem (1.1) has at least three classical solutions ui in X with ‖ui‖ <R, i = 1, 2, 3. �

4. Examples

In this section, we illustrate the applications of our main results with two examples.

Example 4.1. Letρ(t) = g(t) = 1, m = p = ζ = 2, η = 1
3 , s0 = 0, t1 = 1

3 , s1 = 1
2 , t2 = 7

12 , s2 = 2
3 , t3 = 1.

Let us choose the functions

F j(u) =


0, u < 0,
κ(u), 0 ≤ u ≤ `,

15
(
1 + u

3
2

)
, ` < u,

where κ(u) is a function which is differentiable and increasing on [0, `] and satisfies κ(0) = 0, κ′(0) =

0, κ(1) = 1, κ(`) = 15
(
1 + `

3
2

)
, and κ′(`) = 45

2

√
`, ` =

√
10

143/18 ≈ 1.1219.
Let us take the function ũ(t) as

ũ(t) =


3`t, t ∈ [0, 1

3 ),
`, t ∈ [ 1

3 ,
2
3 ],

(3t − 1)`, t ∈ ( 2
3 , 1].
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Through direct calculation, we know that ũ ∈ X and ϕ(ũ) = 143
36 `

2. Let r = 1
2 . The inequality (3.1)

of (H2) takes the form

15
2

F j(1) =
15
2

max
|u|≤1

F j(u(t)) <
2∑

j=0

∫ t j+1

s j

F j(ũ(t))dt.

Obviously, we have
2∑

j=0

∫ t j+1

s j

F j(ũ(t))dt ≥
∫ 2

3

1
3

F j(ũ(t))dt =
1
3

F j(`).

Note that,
45
2

=
45
2

F j(1) < F j(`) = 15
(
1 + `

2
3
)
≈ 32.8247,

which implies that the inequality (3.1) is satisfied. In addition, we can take I j(s) = 1
71 s

1
71 , then J j(u) =∫ u

0
I j(s)ds = 1

72u
72
71 and

∑2
j=1 J j(ũ(t j)) = 1

36`
72
71 > 0, j = 1, 2. Hence, for every

λ ∈

 143`2

36
∑2

j=0

∫ t j+1

s j
F j(ũ(t))dt

,
2

3F j(1)

 ,
there exists

γ = min

18 − 27λF j(1)

max
|u|≤1

(−u
72
71 )

,
36λ

∑m
j=0

∫ t j+1

s j
F j(t, ũ(t))dt − 143`2

`
72
71

 ,
such that, for each µ ∈ [0, γ), the problem (1.1) has at least three classical solutions by Theorem 3.1.

Example 4.2. Consider the following problem:

−(|u′(t)|u′(t))′ + |u(t)|u(t) = λ f j(t, u(t)), t ∈ (s j, t j+1], j = 0, 1,
∆(|u′(t1)|u′(t1)) = µI1(u(t1)),
|u′(t)|u′(t) = |u′(t+

1 )|u′(t+
1 ), t ∈ (t1, s1],

|u′(s+
1 )|u′(s+

1 ) = |u′(s−1 )|u′(s−1 ),
u(0) = 0, u(1) = 2u( 1

3 ),

(4.1)

where p = 3, m = 1, η = 1
3 , 0 = s0 < t1 = η = 1

3 < s1 =
1+η

2 = 2
3 < t2 = 1, ζ = 2, ρ(t) = 1, g(t) = 1.

Choose functions F j(t, u) = e−|u|u4 and

ϑ(t) =


3t, t ∈ [0, 1

3 ),
1, t ∈ [1

3 ,
2
3 ],

3t − 1, t ∈ (2
3 , 1].

Obviously, F j(t, 0) = 0 and F j(t, u) are all C1 functionals in u. By direct calculation, we obtain
that lim sup

|u|→∞

F(t,u)
|u|3 = lim sup

|u|→0

F(t,u)
|u|3 = 0 and ‖ϑ‖ ≈ 2.6207. Let k∗ = 0.003 and c0 = 2

1
3 ≈ 1.2599. We

can verify that
∫ 1

3
0 F j(t,ϑ)dt+

∫ 1
2
3

F j(t,ϑ)dt

c3
0‖ϑ‖

3 ≈ 0.0117 > 3k∗ = 0.009. Therefore, all conditions in Theorem 3.3
are satisfied. Applying Theorem 3.3, for each compact interval [θ1, θ2] ⊂ (85.4652, 111.1111), there
exists R > 0 with the following property: for every λ ∈ [θ1, θ2], there exists ξ > 0 such that, for each
µ ∈ [0, ξ], the problem (4.1) has at least three classical solutions whose norms are less than R.
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5. Conclusions

In this paper, we investigate a class of three-point boundary value problem of second-order
p-Laplacian differential equations with instantaneous and non-instantaneous impulses. By using
variational methods and two kinds of three critical points theorems, we obtain the non-local boundary
value problem (1.1) has at least three classical solutions. Furthermore, we provide two examples to
illustrate the main results. On the other hand, the study of fractional differential equations has attracted
much attention recently. So, we will study a class of fractional differential equations with three-point
boundary conditions and instantaneous and non-instantaneous impulses in the follow-up work.
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