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1. Introduction

It is generally known that the fractional-order derivative generalizes the integer-order derivative,
which attracts extensive attention for its tremendous application potentials in the domains of
earthquake dynamics, electrical circuits, fluid dynamics, control theory and so forth. Compared
with classical integer-order derivatives, its fractional-order counterpart can better simulate natural
physical phenomena and dynamical system processes. In 2014, Khalil et al. [1] proposed a novel
definition of the fractional-order derivative named conformable fractional-order derivative. It shares
some advantages that neither the Caputo derivative or Riemann-Liouville derivative have. For instance,
conformable fractional-order derivatives satisfy the chain rule Tα(ξ ◦ η)(s) = Tαξ(η(s))Tαη(s) and the
Leibniz rule Tα (ξ(s)η(s)) = ξ(s)Tαη(s)+ η(s)Tαξ(s), but both the Caputo derivative and the Riemann-
Liouville derivative fail to provide such admirable properties.

In the view of control, stability of fractional-order differential systems is currently a hot topic. Up
to now, various meaningful and brilliant results related to stability or boundedness of fractional-order
differential systems have been derived by Riemann-Liouville derivative or Caputo derivative [2–7].
Recently, Shahri et al. [8] proposed the Lyapunov method for the stability of uncertain fractional-order

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231076


21124

systems under input saturation. Advanced and interesting as their result is, the addressed systems fail
to take delay effects into account. However, it is worth noting that time delays are also ubiquitous
phenomenon due to some factors like limitation of transmission speed. It is reported that time delays
cannot be ignored readily because the existence of delay could severely exert undesired influence
on systems, which inevitably leads to instability, unboundedness, divergence, chaos, oscillation,
divergence or other performance deterioration of systems [9]. On the other hand, in most practical
systems, there exist many unavoidable constraints, one of which is input saturation. As a matter of
fact, input saturation effects commonly exist owing to physical limitations like finite actuation power of
systems. Hence, it is imperative to introduce both input saturation and delay effects into the dynamical
behaviors of fractional-order differential systems. In the past decades, many differential systems with
input saturation, delay effects or both have been widely investigated, and various intriguing results
have been obtained [10–16], all of which limit the scope of the stability problem of fractional-order
differential systems. However, stability may not be achieved sometimes because of some inevitable
factors like external perturbations, which motivates us to further study the bounds of systems and
try to confine it within a small range to realize boundedness of systems. So far, the problem with
respect to the boundedness for integer-order systems has been studied widely [17–19]. Recently, many
scholars have tried to study the boundedness of fractional-order systems, and some meaningful results
have been reported [20–23]. However, most of these boundedness results are limited to the Caputo
fractional-order systems. Therefore, it is necessary and meaningful to further study the boundedness
problem of conformable fractional-order delay differential systems under input saturation.

In the existing works, two techniques are widely utilized for the investigation of asymptotic behavior
of fractional-order differential systems, one of which is to establish fractional-order differential
inequalities. Though estimating the solution of the fractional-order differential inequalities is an
effective technique to investigate the stability of fractional-order differential systems, such methods
share some limitations. The other technique to study the stability of fractional-order differential
systems is Lyapunov’s first method and Lyapunov’s second method. As we all know, Lyapunov’s first
method is a powerful tool for studying the asymptotic behavior of fractional-order differential systems.
Lyapunov’s second method is sometimes challenging to apply to a fractional-order differential system
since it is by no means an easy task to compute or estimate the fractional-order derivative of the
Lyapunov function in the sense of the Riemann-Liouville derivative or Caputo derivative. However,
conformable fractional-order derivative enjoys some well-behaved properties, which is analogous
to integer-order derivatives such that Lyapunov’s second method can be applied to fractional-order
differential systems more easily. Various excellent results concerning the theory and application of
the fractional-order Lyapunov function are proposed in [24–28]. Despite this progress, boundedness
analysis of conformable fractional-order delay systems under input saturation based on the Lyapunov
method is still in infancy, and limited research is available on the boundedness problem of conformable
fractional-order delay systems under input saturation.

Originating from the above-mentioned discussions, this article mainly focuses on a class of
uncertain conformable fractional-order delay systems under input saturation. By building the
Lyapunov boundedness theorem for conformable fractional-order delayed systems, some sufficient
conditions for robust stability and boundedness of the systems are obtained. Finally, numerical
examples are presented to illustrate the feasibility of obtained theory. The main contributions of this
article are listed as follows:
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(i) Concerned with the problem of robust stability and boundedness of conformable fractional
systems and take fully into account the effects of time delays and input saturation.

(ii) Lyapunov boundedness theorem for conformable fractional-order delay systems is proposed.
(iii) Based on the Lyapunov boundedness theorem for conformable fractional-order delay systems,

some sufficient conditions for robust stability and boundedness of the systems are obtained.
The remainder of this article is organized as follows. In Section 2, some preliminaries are

introduced. By establishing the Lyapunov boundedness theorem for conformable fractional-order
delay systems, some sufficient conditions for robust stability and boundedness of the systems are
proposed in Section 3. In Section 4, two examples are provided to illustrate the effectiveness of the
main results. Finally, the conclusion is stated in Section 5.

2. Preliminaries and problem formulation

2.1. Preliminaries

Let ∥x∥ =
√

xT x denote the Euclidean norm of a vector x, ∥U∥ =
√

eigmax(UT U) denote the trace
norm of a matrix U and λmax(·)(λmin(·)) be the maximal(minimum) eigenvalue of a real symmetric
square matrix.
Definition 2.1. [1, 26] For h : [s0,∞) → R, the conformable fractional derivative starting from s0 of
order α ∈ (0, 1] for h is defined by

T αs0
h(s) = lim

κ→0

h
(
s + κ(s − s0)1−α

)
− h(s)

κ
, s > s0. (2.1)

The conformable fractional derivative at s0 is defined as T αs0
h(s0) = lims→s+0

T αs0
h(s).

Lemma 2.2. [26] Let h : [t0,∞) → R be a continuous function such that T αt0 h(t) exists on (t0,∞), if
T αt0 ≥ 0, for all t ∈ (t0,∞), then h is an increasing function.
Lemma 2.3. [26] Let x : [t0,∞) → Rn such that T αt0 exists on (t0,∞) and Q is a symmetric positive
definite matrix. Then T αt0 (xT Qx) exists on (t0,∞) and the following relation is satisfied:

T αt0 (xT Qx) = 2xT QT αt0 x, t > t0. (2.2)

Definition 2.4. [26] The conformable fractional exponential function is defined for every a ≥ 0 by

Eα(b, a) = eb aα
α ,

where α ∈ (0, 1] and b ∈ R.
Lemma 2.5. [29] For any given matrices U and V with appropriate dimensions, there exists a positive
scalar ϵ such that the following relationship holds:

UT V ≤ ϵ−1UT V + ϵVT V. (2.3)

2.2. Problem formulation

In this article, we will study the following uncertain fractional-order delay system:

T αt0 x(t) = (U + ∆U(t))x(t) + (V + ∆V(t))x(t − ς) + (C + ∆C(t))sat(u(t)) + d(x, x(t − ς)), (2.4)
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where x ∈ Rn denotes the state vector, U, V ∈ Rn×n and C ∈ Rn×m represent constant system matrices
corresponding to the linear part of the system dynamics and input vector, respectively, u(t) ∈ Rm is
the control input, sat(·) : Rm → Rm is the saturation function (its definition will be given later), and
d(x, x(t − ς)) ∈ Rn is the disturbance signal satisfying the following assumption.

Assumption 2.6. There are three positive constants l1, l2 and l3 such that

∥d(x(t), x(t − ς))∥2 ≤ l1∥x∥2 + l2∥x(t − ς)∥2ς + l3. (2.5)

Moreover, ∆U(t) ∈ Rn and ∆V(t) ∈ Rn stand for time-varying uncertain terms regarding to the
mismatch model of the linear term, and ∆C(t) ∈ Rn×m is the input matrix uncertainty satisfying the
following assumption.

Assumption 2.7. There are three positive constants α, β and γ such that

∥∆U∥ ≤ α, ∥∆V∥ ≤ β, ∥∆C∥ ≤ γ. (2.6)

Remark 2.8. [30] A nonlinear function h(·) meets the Lipchitz condition if and only if

∥h(y1) − h(y2)∥ ≤ Lh∥y1 − y2∥, (2.7)

where Lh > 0 is the Lipschitz constant and y1, y2 ∈ R
n.

Remark 2.9. [31] The saturation function denoted by sat(·) : Rm → Rm, sat(u) =

(sat(u1), sat(u2), · · · , sat(um))T , sat(ui) = min(∥ui∥, 1)sign(ui) satisfies the Lipschitz condition.

Remark 2.10. [32] Let K ∈ Rm×n be a constant matrix, φ(x) = sat(Kx) −Kx, then there is a constant
lφ ≥ 0 such that

∥φ(x1) − φ(x2)∥ ≤ lφ∥x1 − x2∥. (2.8)

3. Main results

In this section, we will study the robust stability and boundedness of the system (2.4) via
Lyapunov methods. To begin with, let us introduce the following Lyapunov boundedness theorem
for conformable fractional-order delay systems.

Theorem 3.1. Suppose that x is a solution of the conformable fractional-order delay system T αt0 x = f (t, x, x(t − ς)),

x(t0 + ν) = φ(ν), ν ∈ [−ς, 0], φ ∈ C[[−ς, 0],Rn].
(3.1)

If there exist a Lyapunov function G(t, x(t)) and positive numbers ϱi (i = 1, 2, ..., 5) with ϱ1ϱ3 > ϱ2ϱ4

such that

ϱ1∥x∥2 ≤ G(t, x) ≤ ϱ2∥x∥2, (t, x) ∈ [t0 − ς,∞) × Rn, (3.2)

T αt0 G(t, x) ≤ −ϱ3∥x∥2 + ϱ4∥x(t)∥2ς + ϱ5, (t, x) ∈ [t0,∞) × Rn, (3.3)
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where [G(t, x(t))]ς = sup−ς≤ν≤0 G(t+ ν, x(t+ ν)). Then, system (3.1) is exponentially ultimately bounded
and the solution of system (3.1) obeys

∥x∥ ≤
√
ρ2

ϱ1
∥ϕ∥Eα(−

ϑ

2
, t − t0)) +

√
ϱ2ϱ5

ϱ1ϱ3 − ϱ2ϱ4
, t ≥ t0, (3.4)

where ϑ > 0 is a solution of the following inequality:

ϱ4

ϱ1
Eα(ϑ, ς) −

ϱ3

ϱ2
+ ϑ < 0. (3.5)

Proof. Using (3.2) and (3.3), we have

T αt0 G(t, x) ≤ −
ϱ3

ϱ2
G(t, x) +

ϱ4

ϱ1
[G(t, x(t))]ς + ϱ5, (t, x) ∈ [t0,∞) × Rn. (3.6)

Next, we claim that

G(t, x) ≤ [G(t0, x(t0))]ςEα(−ϑ, (t − t0) ∨ 0) +
ϱ1ϱ2ϱ5

ϱ1ϱ3 − ϱ2ϱ4
, t ∈ [t0 − ς,∞). (3.7)

Let

ζ(t) = [G(t0, x(t0))]ςEα(−ϑ, (t − t0) ∨ 0) +
ϱ1ϱ2ϱ5

ϱ1ϱ3 − ϱ2ϱ4
, t ∈ [t0 − ς,∞). (3.8)

If (3.7) is false, then, by Lemma 2.2, there is a t⋆ > t0 such that

G(t⋆, x) = ζ(t⋆), (3.9)
T αt0 G(t⋆, x) ≥ T αt0 ζ(t

⋆), (3.10)
G(t, x) ≤ ζ(t), t ∈ [t0, t⋆). (3.11)

According to Definition 2.1, we have

T αt0 ζ(t) = lim
η→0
{
1
η
· [[G(t0, x(t0))]ςe−ϑ

(t+η(t−t0)1−α−t0)α

α − [G(t0, x(t0))]ςe−ϑ
(t−t0)α

α ]}

= lim
η→0

[−
ϑ

α
[G(t0, x(t0))]ςe−ϑ

(t+η(t−t0)1−α−t0)α

α α(t + η(t − t0)1−α − t0)α−1(t − t0)1−α]

= − ϑ[G(t0, x(t0))]ςe−ϑ
(t−t0)α

α (t − t0)α−1(t − t0)1−α

= − ϑ[G(t0, x(t0))]ςe−ϑ
(t−t0)α

α , t ≥ t0. (3.12)

Therefore, by (3.12) one has

T αt0 ζ(t
⋆) = −ϑ[G(t0, x(t0))]ςe−ϑ

(t⋆−t0)α

α . (3.13)

It follows from (3.6), (3.8), (3.9) and (3.13) that
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T αt0 G(t⋆, x) ≤ −
ϱ3

ϱ2
G(t⋆, x) +

ϱ4

ϱ1
[G(t⋆, x(t))]ς + ϱ5

≤[G(t0, x(t0))]ς[−
ϱ3

ϱ2
Eα(−ϑ, t⋆ − t0) +

ϱ4

ϱ1
Eα(−ϑ, (t⋆ − ς − t0) ∨ 0]

−
ϱ3

ϱ2
·
ϱ1ϱ2ϱ5

ϱ1ϱ3 − ϱ2ϱ4
+
ϱ4

ϱ1
·
ϱ1ϱ2ϱ5

ϱ1ϱ3 − ϱ2ϱ4
+ ϱ5

≤[G(t0, x(t0))]ς[−
ϱ3

ϱ2
Eα(−ϑ, t⋆ − t0) +

ϱ4

ϱ1
Eα(−ϑ, t⋆ − t0)Eα(ϑ, ς)]

≤[G(t0, x(t0))]ς[−
ϱ3

ϱ2
+
ϱ4

ϱ1
Eα(ϑ, ς)]Eα(−ϑ, t⋆ − t0)

< − ϑ[G(t0, x(t0))]ςEα(−ϑ, t⋆ − t0) ≤ T αt0 ζ(t
⋆). (3.14)

This contradicts (3.10). Thus, one has

G(t, x) ≤ [G(t0, x(t0))]ςEα(−ϑ, t − t0) +
ϱ1ϱ2ϱ5

ϱ1ϱ3 − ϱ2ϱ4
, t ∈ [t0,+∞). (3.15)

From this together with the condition (3.2), we know that (3.4) holds. The proof is completed.
Corollary 3.2. Under the assumptions of Theorem 3.1, if ϱ5 = 0, then system (3.1) is exponentially
stable and the solution of system (3.1) obeys

∥x∥ ≤
√
ρ2

ϱ1
∥ϕ∥Eα(−

ϑ

2
, t − t0)), t ≥ t0, (3.16)

where ϑ > 0 is a solution of the inequality
ϱ4

ϱ1
Eα(ϑ, ς) −

ϱ3

ϱ2
+ ϑ < 0. (3.17)

Proof. By Theorem 3.1, the corollary follows.
Remark 3.3. Theorem 1 in [26] is a special case of our Corollary 3.2.

If we consider a state feedback u = Kx, K ∈ Rm×n, satisfying −u0 ≤ u ≤ u0, then the closed-loop
system can be written as

T αt x = (Ucl + ∆U)x + (V + ∆V)x(t − ς) + Cφ(x, t) + ∆Csat(Kx) + d(x, x(t − ς)), (3.18)

where Ucl = U + CK and φ(x, t) = sat(Kx) −Kx.
Remark 3.4. If 0 < ui ≤ 1, then the saturation function works in linear domain, sat(u) = u and the
entire closed-loop system is

T αt x = (U + ∆U)x + (V + ∆V)x(t − ς) + (C + ∆C)Kx + d(x, x(t − ς)),
T αt x = (Ucl + ∆U + ∆CK)x + (V + ∆V)x(t − ς) + d(x, x(t − ς)). (3.19)

Theorem 3.5. Consider the closed-loop system (3.19) with d(x, x(t − ς)) = 0 under the Assumption 2.7.
If there exist positive constants ϵ1, ϵ2, ϱ̂3 with ϱ̂3 > ϵ1 + ϵ2 and the controller matrix K such that the
following relationship is satisfied:

Ucl + αI + γ∥K∥I + ϵ−1
2 β

2I + ϵ−1
1 VVT + ϱ̂3I ≤ 0. (3.20)
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Then, the closed-loop system (3.19) is robustly exponentially stable and the solution obeys

∥x∥ ≤ ∥ϕ∥Eα(−
ϑ

2
, t − t0)), t ≥ t0, (3.21)

where ϑ > 0 is a solution of the following inequality:

2(ϵ1 + ϵ2)Eα(ϑ, ς) − 2ϱ̂3 + ϑ < 0. (3.22)

Proof. Let us choose the following Lyapunov function:

G =
1
2

xT x. (3.23)

Using Lemmas 2.3 and 2.5, we can derive that

T αt G =xT (Ucl + ∆U + ∆CK)x + xT (V + ∆V)x(t − ς)
≤xT (Ucl + ∥∆U∥ + ∥∆CK∥)x + xT Vx(t − ς) + xT∆Vx(t − ς)
≤xT (Ucl + ∥∆U∥ + ∥∆CK∥)x + ϵ−1

1 xT VVT x + ϵ−1
2 xT∆V∆VT x

+ ϵ1x(t − ς)T x(t − ς) + ϵ2x(t − ς)T x(t − ς). (3.24)

From Assumption 2.7 and (3.24), we have

T αt G ≤xT (Ucl + αI + γ∥K∥I + ϵ−1
2 β

2I)x + ϵ−1
1 xT VVT x + (ϵ1 + ϵ2)x(t − ς)T x(t − ς)

≤ − ϱ̂3∥x∥2 + (ϵ1 + ϵ2)∥x(t)∥2ς. (3.25)

Based on Corollary 3.2, the closed-loop system (3.19) with d(x, x(t − ς)) = 0 is robustly exponentially
stable and the solution obeys (3.21). The proof is completed.
Theorem 3.6. Consider the closed-loop system (3.19) under Assumptions 2.6 and 2.7. If there exist
a positive symmetric definite matrix Q, the controller matrix K and positive scalars ϱ̂3, ϱ̂4 and ϵi,
i = 1, 2, ...5, such that the following relationships hold:

Q(Ucl + αI + γ∥K∥I) + (ϵ−1
3 + ϵ

−1
4 + ϵ

−1
5 )QQT + ϵ5l1I + ϱ̂3I ≤ 0, (3.26)

(ϵ3VT V + ϵ4β2I) + ϵ5l2I − ϱ̂4I ≤ 0, (3.27)
λmin(Q)ϱ̂3 − λmax(Q)ϱ̂4 > 0. (3.28)

Then, the closed-loop system (3.19) is robustly exponentially ultimately bounded and and the solution
obeys

∥x∥ ≤

√
λmax(Q)
λmin(Q)

∥ϕ∥Eα(−
ϑ

2
, t − t0)) +

√
λmax(Q)ϵ5l3

λmin(Q)ϱ̂3 − λmax(Q)ϱ̂4
, t ≥ t0, (3.29)

where ϑ > 0 is determined by the following inequality:

2ϱ̂4

λmin(Q)
Eα(ϑ, ς) −

2ϱ̂3

λmax(Q)
+ ϑ < 0. (3.30)
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Proof. Let us choose the following Lyapunov function:

G =
1
2

xT Qx. (3.31)

Clearly,

1
2
λmin(Q)∥x∥2 ≤ G(t, x(t)) ≤

1
2
λmax(Q)∥x∥2. (3.32)

Using Lemmas 2.3 and 2.5, we can derive that

T αt G =xT Q((Ucl + ∆U + ∆CK)x + (V + ∆V)x(t − ς) + d(x, x(t − ς)))
=xT Q((Ucl + ∆U + ∆CK)x + (V + ∆V)x(t − ς)) + xT Qd(x, x(t − ς))
≤xT Q(Ucl + ∥∆U∥ + ∥∆CK∥)x + xT QVx(t − ς) + xT Q∆Vx(t − ς) + xT Qd(x, x(t − ς))
≤xT Q(Ucl + ∥∆U∥ + ∥∆CK∥)x + ϵ−1

3 xT QQT x + ϵ−1
4 xT QQT x + ϵ−1

5 xT QQT x
+ ϵ3x(t − ς)T VT Vx(t − ς) + ϵ4x(t − ς)T∆VT∆Vx(t − ς) + ϵ5d(x, x(t − ς))T d(x, x(t − ς)).

(3.33)

Then, using Assumptions 2.6 and 2.7, we have

T αt G ≤xT Q(Ucl + αI + γ∥K∥I)x + (ϵ−1
3 + ϵ

−1
4 + ϵ

−1
5 )xT QQT x

+ ϵ3x(t − ς)T VT Vx(t − ς) + ϵ4x(t − ς)T∆VT∆Vx(t − ς)
+ ϵ5[l1∥x∥ + l2∥x(t − ς)∥ς + l3]
≤xT Q(Ucl + αI + γ∥K∥I)x + (ϵ−1

3 + ϵ
−1
4 + ϵ

−1
5 )xT QQT x

+ x(t − ς)T (ϵ3VT V + ϵ4β2I)x(t − ς) + ϵ5(l1∥x∥2 + l2∥x(t − ς)∥2ς + l3).

This together with (3.26) and (3.27), we have

T αt G ≤ − ϱ̂3∥x∥2 + ϱ̂4∥x(t − ς)∥2ς + ϵ5l3. (3.34)

Then, with the help of (3.28), (3.32) and (3.34), one can apply Theorem 3.1 to conclude that the
closed-loop system (3.19) is robustly exponentially ultimately bounded and the solution obeys (3.29).
The proof is completed.
Theorem 3.7. Consider the closed-loop system (3.18) with d(x, x(t − ς)) = 0. Suppose that
Assumption 2.7 holds. If there exist a positive symmetric definite matrix Q, the controller matrix K
and positive scalars ϱ̂3, ϱ̂4 and ϵi, i = 1, 2, ...5, such that the following relationships hold:

QUcl + (ϵ−1
1 + ϵ

−1
2 + ϵ

−1
3 + ϵ

−1
5 γ

2)QQT + ϵ−1
4 QCCT QT

+ (ϵ1α2 + ϵ4l2
φ + ϵ5(lφ + ∥K∥)2)I + ϱ̂3I ≤ 0, (3.35)

ϵ2VT V + ϵ3β2I − ϱ̂4I ≤ 0, (3.36)
λmin(Q)ϱ̂3 − λmax(Q)ϱ̂4 > 0. (3.37)

Then, the closed-loop system (3.18) with d(x, x(t − ς)) = 0 is robustly exponentially stable and the
solution obeys

∥x∥ ≤ ∥ϕ∥Eα(−
ϑ

2
, t − t0)), t ≥ t0, (3.38)
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where ϑ > 0 is a solution of the inequality

2ϱ̂4

λmin(Q)
Eα(ϑ, ς) −

2ϱ̂3

λmax(Q)
+ ϑ < 0. (3.39)

Proof. Let us choose the following Lyapunov function:

G(t, x(t)) =
1
2

xT Qx. (3.40)

Using Lemmas 2.3 and 2.5, we can derive that

T αt G =xT Q((Ucl + ∆U)x + (V + ∆V)x(t − ς) + Cφ(x, t) + ∆Csat(Kx))
=xT QUclx + xT Q∆Ux + xT QVx(t − ς) + xT Q∆Vx(t − ς) + xT QCφ(x, t) + xT Q∆Csat(Kx))
≤xT QUclx + ϵ−1

1 xT QQT x + ϵ1xT∆UT∆Ux + ϵ−1
2 xT QQT x + ϵ2x(t − ς)T VT Vx(t − ς)

+ ϵ−1
3 xT QQT x + ϵ3x(t − ς)T∆VT∆Vx(t − ς) + ϵ−1

4 xT QCCT QT x + ϵ4φ(x, t)Tφ(x, t)
+ ϵ−1

5 xT Q∆C∆CT QT x + ϵ5sat(Kx)T sat(Kx). (3.41)

Then, using Assumption 2.7 and Remark 2.10, we have

T αt G ≤xT QUclx + ϵ−1
1 xT QQT x + ϵ1xTα2x + ϵ−1

2 xT QQT x + ϵ2x(t − ς)T VT Vx(t − ς)
+ ϵ−1

3 xT QQT x + ϵ3x(t − ς)Tβ2x(t − ς) + ϵ−1
4 xT QCCT QT x + ϵ4xT l2

φx
+ ϵ−1

5 xT Qγ2QT x + ϵ5xT (lφ + ∥K∥)2x
=xT (QUcl + (ϵ−1

1 + ϵ
−1
2 + ϵ

−1
3 + ϵ

−1
5 γ

2)QQT + ϵ−1
4 QCCT QT

+ (ϵ1α2 + ϵ4l2
φ + ϵ5(lφ + ∥K∥)2)I)x + x(t − ς)T (ϵ2VT V + ϵ3β2I)x(t − ς). (3.42)

This together with (3.35) and (3.36), we have

T αt G ≤ − ϱ̂3∥x∥2 + ϱ̂4∥x(t − ς)∥2ς. (3.43)

Based on the Corollary 3.2, the closed-loop system (3.18) with d(x, x(t − ς)) = 0 is robustly
exponentially stable and the solution obeys (3.38). The proof is completed.
Theorem 3.8. Consider the closed-loop system (3.18) under Assumptions 2.6 and 2.7. If there exist
a positive symmetric definite matrix Q, the controller matrix K and positive scalars ϱ̂3, ϱ̂4 and ϵi,
i = 1, 2, ...6, such that the following relationships hold:

QUcl + (ϵ−1
1 + ϵ

−1
2 + ϵ

−1
3 + ϵ

−1
6 + ϵ

−1
5 γ

2)QQT + ϵ−1
4 QCCT QT

+ (ϵ1α2 + ϵ4l2
φ + ϵ6l1 + ϵ5(lφ + ∥K∥)2)I + ϱ̂3I ≤ 0, (3.44)

ϵ2VT V + ϵ3β2I + ϵ6l2I − ϱ̂4I ≤ 0, (3.45)
λmin(Q)ϱ̂3 − λmax(Q)ϱ̂4 > 0. (3.46)

Then, the closed-loop system (3.18) is robustly exponentially ultimately bounded and the solution obeys

∥x∥ ≤

√
λmax(Q)
λmin(Q)

∥ϕ∥Eα(−
ϑ

2
, t − t0)) +

√
λmax(Q)ϵ6l3

λmin(Q)ϱ̂3 − λmax(Q)ϱ̂4
, t ≥ t0, (3.47)
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where ϑ > 0 is a solution of the following inequality:

2ϱ̂4

λmin(Q)
Eα(ϑ, ς) −

2ϱ̂3

λmax(Q)
+ ϑ < 0. (3.48)

Proof. Let us choose the following Lyapunov function:

G =
1
2

xT Qx. (3.49)

Using Lemmas 2.3 and 2.5, we can derive that

T αt G =xT Q((Ucl + ∆U)x + (V + ∆V)x(t − ς) + Cφ(x, t) + ∆Csat(Kx) + d(x, x(t − ς)))
=xT QUclx + xT Q∆Ux + xT QVx(t − ς) + xT Q∆Vx(t − ς) + xT QCφ(x, t)
+ xT Q∆Csat(Kx) + xT Qd(x, x(t − ς))
≤xT QUclx + ϵ−1

1 xT QQT x + ϵ1xT∆UT∆Ux + ϵ−1
2 xT QQT x + ϵ2x(t − ς)T VT Vx(t − ς)

+ ϵ−1
3 xT QQT x + ϵ3x(t − ς)T∆VT∆Vx(t − ς) + ϵ−1

4 xT QCCT QT x + ϵ4φ(x, t)Tφ(x, t)
+ ϵ−1

5 xT Q∆C∆CT QT x + ϵ5sat(Kx)T sat(Kx) + ϵ−1
6 xT QQT x

+ ϵ6d(x, x(t − ς))T d(x, x(t − ς)). (3.50)

Then, using Assumptions 2.6 and 2.7, we have

T αt G ≤xT QUclx + ϵ−1
1 xT QQT x + ϵ1xTα2x + ϵ−1

2 xT QQT x + ϵ2x(t − ς)T VT Vx(t − ς)
+ ϵ−1

3 xT QQT x + ϵ3x(t − ς)Tβ2x(t − ς) + ϵ−1
4 xT QCCT QT x + ϵ4xT l2

φx
+ ϵ−1

5 xT Qγ2QT x + ϵ5xT (lφ + ∥K∥)2x + ϵ−1
6 xT QQT x + ϵ6(l1∥x∥2 + l2∥x(t − ς)∥2ς + l3)

=xT (QUcl + (ϵ−1
1 + ϵ

−1
2 + ϵ

−1
3 + ϵ

−1
6 + ϵ

−1
5 γ

2)QQT + ϵ−1
4 QCCT QT

+ (ϵ1α2 + ϵ4l2
φ + ϵ6l1 + ϵ5(lφ + ∥K∥)2)I)x

+ x(t − ς)T (ϵ2VT V + ϵ3β2I + ϵ6l2I)x(t − ς) + ϵ6l3. (3.51)

This together with (3.44) and (3.45), we have

T αt G ≤ − ϱ̂3∥x∥2 + ϱ̂4∥x(t − ς)∥2ς + ϵ6l3. (3.52)

Then, with the help of (3.32), (3.46) and (3.52), one can apply Theorem 3.1 to conclude that the
closed-loop system (3.18) is robustly exponentially ultimately bounded and the solution obeys (3.47).
The proof is completed.
Remark 3.9. Taking W = Q−1 in Theorem 3.8, the boundedness condition becomes

UclW + (ϵ−1
1 + ϵ

−1
2 + ϵ

−1
3 + ϵ

−1
6 + ϵ

−1
5 γ

2)I + ϵ−1
4 CCT

+ (ϵ1α2 + ϵ4l2
φ + ϵ6l1 + ϵ5(lφ + ∥K∥)2 + ϱ̂3)WIW−1 ≤ 0,

ϵ2VT V + ϵ3β2I + ϵ6l2I + ϱ̂4I ≤ 0,
λmin(W)ϱ̂3 − λmax(W)ϱ̂4 > 0.

Remark 3.10. Take Theorem 3.8 for example, the design procedure of the controller is as follows:
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(1) Calculate li, i = 1, 2, 3 from Assumption 2.6, and calculate α, β and γ from Assumption 2.7.
(2) Choose constants ϵi > 0, i = 1, ..., 6 from Lemma 2.5.
(3) Compute QUcl, QQT QCCT QT , VT V, λmin(Q) and λmax(Q).
(4) Choose ϱ̂4 > 0 which satisfies (3.45).
(5) Choose ϱ̂4 > 0 which satisfies (3.46).
(6) Select suitable controller matrix K such that (3.45) holds.

Remark 3.11. Based on the Lyapunov method, some sufficient conditions of the stability for a class of
fractional-order systems under input saturation has been derived in [8]. Obviously, their conditions
cannot be used to verify the stability and boundedness of the system (2.4). In fact, the conditions in [8]
are limited to stability and are not valid for boundedness. On the other hand, the conditions in [8]
are limited to Caputo fractional-order systems and are not suitable for conformable fractional-order
systems.

Remark 3.12. Although some effective methods for studying stability and boundedness have been
proposed for conformable fractional-order systems [26, 27], these results are ineffective to investigate
the stability and boundedness of (2.4) since time delays and input saturation were ignored in [26, 27].

4. Examples

In the current section, two examples are provided to illustrate the effectiveness of the main results.

Example 4.1. Consider the following fractional-order delay systems:[
T 0.9

t0 x1

T 0.9
t0 x2

]
=

{[
−12.5 0

0 −13.5

]
+ ∆U

} [
x1

x2

]
+

{[
1.5 0.5
−0.7 1.3

]
+ ∆V

} [
x1(t − 2)
x2(t − 2)

]
+

{[
1
1

]
+ ∆C

}
sat(u) + d(x, x(t − ς)), (4.1)

where

∆U = 0.5
[

1 0
0 1

]
sin(t), ∆V = 0.2

[
1 0
0 1

]
cos(t), ∆C = 0.3

[
1
1

]
cos(t),

d(x, x(t − ς)) = 0.5x + 0.5x(t − 2) + 2.

Let Q = I2. Based on Remark 3.10, one can check that all the conditions of Theorem 3.8 are satisfied by
taking ϵ1 = ϵ4 = ϵ6 = 1, ϵ2 = 0.5, ϵ3 = 10, ϵ5 = 0.1, ϱ3 = 3.55, ϑ = 0.05, ϱ4 = 2.85 and K = [−1,−1].
According to Theorem 3.8, the robust exponential boundedness of closed-loop system (4.1) is reached.
The time response of the closed-loop system (4.1) with initial conditions is shown in Figure 1.

Example 4.2. Consider the following fractional-order delay systems:[
T 0.95

t0 x1

T 0.95
t0 x2

]
=

{[
−1.5 −1
−1 −1.5

]
+ ∆U

} [
x1

x2

]
+

{[
0.05 0

0 0.04

]
+ ∆V

} [
x1(t − 2)
x2(t − 2)

]
+

{[
1
1

]
+ ∆C

}
sat(u), (4.2)
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where

∆U = 0.05
[

1 0
0 1

]
sin(t), ∆V = 0.04

[
1 0
0 1

]
cos(t), ∆C = 0.03

[
1
1

]
cos(t).

One can check that all the conditions of Theorem 3.7 are satisfied by taking Q = I2, ϵ1 = ϵ2 = ϵ3 = 10,
ϵ4 = 0.5, ϵ5 = 0.1, ϱ3 = 0.35, ϑ = 0.05, ϱ4 = 0.05 and K = [−1,−1]. According to Theorem 3.7,
the robust exponential stability of the closed-loop system (4.2) is reached. The time response of the
closed-loop system (4.2) with initial conditions is shown in Figure 2.
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t

-3
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0

1

2
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x

x
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2

Figure 1. The trajectories of x1 and x2 of system (4.1).
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Figure 2. The trajectories of x1 and x2 of system (4.2).

5. Conclusions

In this article, we considered uncertain conformable fractional-order delay systems under input
saturation. The Lyapunov boundedness theorem for conformable fractional-order delay systems was
proposed by the the fractional comparison principle. Using the Lyapunov boundedness theorem, some
sufficient conditions for robust stability and boundedness of the systems were presented. Two examples
were given to show the validity of the obtained results. Considering that time delays sometimes appear
in the derivative of the state, we will extend the results of this article to the neutral case in future work.
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