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Abstract: Give us a linked graph, G = (V, E). A vertex w ∈ V distinguishes between two components
(vertices and edges) x, y ∈ E ∪ V if dG(w, x) , dG(w, y). Let W1 and W2 be two resolving sets and
W1 , W2. Then, we can say that the graph G has double resolving set. A nanotube derived from
an quadrilateral-octagonal grid belongs to essential and extensively studied compounds in materials
science. Nano-structures are very important due to their thickness. In this article, we have discussed the
metric dimension of the graphs of nanotubes derived from the quadrilateral-octagonal grid. We proved
that the generalized nanotube derived from quadrilateral-octagonal grid have three metric dimension.
We also check that the exchange property is also held for this structure.
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1. Introduction

Chemical graph theory allows for the discussion of chemical structures and mathematical molecular
representations. The structural characteristics of crystals, processes, clusters, molecules, polymers
and other materials are described using chemical graph theory. Recent advances and discoveries of
mathematical models of chemical circumstance and the application of mathematical techniques and
concepts to chemistry have led to the development of mathematical chemistry with a wide range of
perspectives to deal with chemical structures that support existing chemical concepts [1]. Very large
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and complex chemical structures in their original form are not easy for understanding, and chemical
graph theory is used to make them simple and understandable.

A nanotube derived from an quadrilateral-octagonal grid belongs to essential and extensively
studied compounds in materials science [2–4]. Nanostructures have many applications due to their
thickness, such as those used in the medical field and nanotechnology. We resolve these structures and
find mixed metric dimensions [5]. For further discussion of mathematical chemistry related to graph
theory, see [6, 7].

Let the distance be denoted by ξ and a vertex k is resolved to a pair of p, q vertices if the distances
from k to p and q satisfy ξ(k, p) , ξ(k, q). Let W1 and W2 be two resolving sets and W1 , W2. Then,
we can say that the graph G has double resolving set. The resolving or locating set recognizes a
unique representation of the chemical structures [8]. The smallest cardinality of the resolving set is
called the metric dimension [9–11]. The notion of the locating set of a graph was introduced by [12]
in 1975. The same notion was introduced by [13] in 1976, which they called the metric dimension
of a graph. The concept of the revolving set and the metric dimension Blumenthal had long ago
been described in his monograph theory in the general context of metric space and the applications of
distance geometry [14, 15].

When W1 and W2 are any two minimal resolving sets for G and each vertex u in W1 has a vertex
v ∈ W2, then \{u})∪v is also a minimal resolving set. Resolving sets are afterward said to possess
the exchange property in the graph (for details see [16]. In this study, only finite, simple, and linked
graphs are taken into consideration. Additionally, every group that is taken into consideration is finite.
A graph’s exchange property also refers to its set resolution property.

In daily life, metric dimension has many applications that inspire researchers and has been studied
widely. Be determining similar patterns of a variety of many medicines, the metric dimension
is used [17]. Some various other uses of metric dimensions are combinatorial optimization [18],
robot navigation [19], Pharmaceutical chemistry [20], computer networks [21], canonically labeling
graphs [22], location problems, sonar and coast guard Loran [12], image processing facility, weighing
problems [23], mastermind game’s coding and decoding discussed in [24]. For further detail of
physical and chemical properties of metric dimension see [25–34].

In chemistry, the double-resolving set has several applications, and the double-resolving set of
different chemical structures was studied in various articles. Double resolving set of Jellyfish Graph
and Cocktail Party Graph are studied in [35], Computing minimal doubly resolving sets of graphs are
discussed in [36], Minimal doubly resolving sets of prism graphs are studied in [37]. The mixed
metric dimension and a resolving set of silicate stars discussed in [38], metric dimension’s upper
bonds of cellulose networks determined in [39], metric dimension of crystal cubic carbon structure
determined in [40], discussion about Convex polytopes graph was given in [41], edge metric dimension
of Cayley graphs barycentric subdivision was done in [42], due to its variety, many difficult problems
are solved by applying the concept of metric dimension. For resolvability parameters of various
chemical structures, we refer to [43–45].

For more physical and chemical properties of the quadrilateral-octagonal grids, we refer to see [46–
48]. Some basic mathematical definitions of distance, resolving set and metric dimension are given
below that are used in this article.

Definition 1.1. Let G be the simple, undirected graph in which set of vertices are represented by V(G)
and set of edges denoted by E(G), the distance which is also known as geodesics between β1, β2 ∈ V(G)
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two vertices is the length of the smallest path between β1 − β2 in G . It is denoted by ξ (β1, β2).

Definition 1.2. Consider V(G) is the order set of vertices labeled as L = {β1, β2, β3, . . . , βh} and
β ∈ V(G). The representation r(β|L)of β-vertex concerning order subset L is the h-tuple distances
(ξ((β, β1), (β, β2), (β, β3), (β, β4), . . . , (β, βh). If the representation shown by each vertex of G is unique
according to L, then L is known as the resolving set of G, the smallest cardinality of L is the metric
dimension, and it is denoted by dim(G).

Definition 1.3. Let Let Rm = {v1, v2} be a mixed metric resolving set then r(v | Rm) and r(e | Rm) should
be unique and it is denoted by dimm(G).

Some basic theorems are used in this article. In [49] the author prove that dim(G) = 1 if and only if
G = Pn, and in [13] it is proved that dim(Cn) = 2, for n ≥ 3 where the Cn is a cycle graph. The mixed
metric dimension one is also for the path graph.

Theorem 1.1. Let NTh,v be a nanotube with h, v ≥ 1. Then double resolving sets of cardinality 3 exist.

Proof. To prove this claim we have to show that the nanotube has two resolving sets of cardinality 3.
Let W1 and W2 be two resolving sets of nanotube such that R1 , R2. �

2. Construction of nanotube NTh,v for resolving set W1
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Figure 1. Generalize nanotube derived from quadrilateral-octagonal grid.

In Figure 1, red is used for those edges that have endpoints of degree 2 and 3. The blue color is
used for those edges that have endpoints of degree 2 and the black color is used for all edges that have
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endpoints of degree 3. The green color is used for 2-degree vertex and the black color vertex has a
degree 3. The double color is used for that vertex which makes a revolving set. a1,1 is black and red
due to the degree of 3 and the point of resolving set. Vertices a1,3 ,bv,2 are green and red due to degree 2
and point of resolving set. Suppose h and v denote the horizontal and vertical number of C8. The 2
degree vertices are 2h, and vertices of degree 3 are 8hv − 2h. The order of NTh,vis |O(NTh,v)| = 8hv
and the size of NS h,v is |E(NTh,v)| = 12hv + 2v.

Two parameters h, v and tow index m, nare used in labelling. m vary two times with v and n
change 4 time with h. The vertex and edge sets of the nanotube are resp.

V(NT ) ={am,n, bm,n; 1 ≤ m ≤ v, 1 ≤ n ≤ 4h}

E(NT ) ={am,nam, j+1, bm,nbm j+1; 1 ≤ m ≤ v, 1 ≤ n ≤ 4h}

∪ {am,nbm,n; 1 ≤ m ≤ v, n = 0, 1(mod 4)}
∪ {am,nbm,n; 1 ≤ m ≤ v, n = 2, 3(mod 4)}
∪ {am,1am,4hbm,1bm,4h; 1 ≤ m ≤ v, h ≥ 1}.

Carbon nanotube production exceeded several thousand tons per year, used for applications in
automotive parts, molecular electronics, catalyst supports, energy storage, boat hulls, device modeling,
biomedical, air and water filtration, sporting goods, thin-film electronics, water filters, actuators,
coatings and electromagnetic shields. Over three decades, carbon nanotubes have been used in
important applications, such as microelectronic circuitry and microscopy, as well as devices designed
to model biological systems and probe quantum mechanics. The two types of carbon nanotubes
are single-wall carbon nanotubes and multi-wall carbon nanotubes. Carbon nanotube has multiple
properties like strength and elasticity, electrical conductivity, electron emission, aspect ratio, thermal
conductivity and expansion. Some researchers find the topological indices of this nanotube and many
other people work on nanotubes in fluid flow but in the research area of graph theory. Our aim in this
section is to determine the metric dimension of this nanotube. However, first we will construct the
nanotube derived from an quadrilateral-octagonal grid and we will denote it by NTh,v.

Theorem 2.1. Let NTh,v be a nanotube with h, v ≥ 1. Then W1 is minimal resolving set of cardinality 3.

Proof. Let W1 = {a1,1, a1,3, bv,3}, be a subset of the vertices of NTh,v. To prove that W1 is a minimal
resolving set of cardinality 3 we follow the definition of resolving set. Given below are the unique
representation of all vertices of NTh,v for h, v ≥ 1 (See Figure 2).

a1,1

a1,2 a1,3

a1,4

b1,1 b1,4

b1,3b1,2

a1,1

b1,1

Figure 2. Otagone for nanotube.
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The representation of W1 = {a1,1, a1,3, b1,3} for h = 1 = v show in Table 1.

Table 1. Representation of vertices of Figure 2.

vertex a1,1 a1,2 a1,3 a1,4 b1,1 b1,2 b1,3 b1,4 a1,1

r(. | R) (0,2,3) (1,1,4) (2,0,3) (1,1,2) (1,3,2) (2,4,1) (3,3,0) (2,2,1)

This is a unique representation of vertices of nanotube for h=1=v.

2.1. Generalized results

The generalized formulas of distances of all vertices of the quadrilateral-octagonal nanosheet show
that the minimal resolving set has cardinality 2 because all distances are different. Let the distance
is represented by ξ. Given below are the generalized formulas of distances. Now representation of
W1 = {a1,1, a1,3, bv,2}. for h, v > 1. Let ξ(am,n, a1,1) = α1, ξ(am,n, a1,3) = α2, ξ(am,n, bv,2) = α3 and
r(am,n | W1) = (α1, α2, α3).

α1 =



4(m − 1) − n + 1 for m ≥ 1, n = 1,
2m + n − 3 for m = 1, 2 and 2 ≤ n ≤ 2h + 1,
4(m − 2) + n + 1 for m = 3 and 2 ≤ n ≤ 5, h ≥ 2,
4(m − 2) + n − 1 for m = 3 and 5 ≤ n ≤ 2h + 1, h ≥ 2,
2(m + 5) − n + 13 for m = 1, 2 and 2 ≤ n ≤ 2h + 1,
4(m + 2) − n + 13 for m = 1, 2, 3, 4 . . . v, n = 4h,
4(m − 2) + n + 1 − z1 for m ≥ 4, 1 ≤ n ≤ 2h + 1, h ≥ 3,
4m − n + 3v − 2 + z2 for m ≥ 4, 2h + 2 ≤ n ≤ 4h, h ≥ 3(odd),
4m − n + 3h − 1 + z3 for m ≥ 4 and 2h + 4 ≤ n ≤ 4h, h ≥ 2(even),
4m − n + 4h − 9 for m = 4, 5, . . . , v, 2h + 2 ≤ n ≤ 4h + 3, h ≥ 2(even),
4m − n + 4h − 1 for m = 4, 5, . . . , v, 2h + 2 ≤ n ≤ 2h + 3, h = 2, 4,
4m − n + 4h − 7 for m = 3 and 4h − 4 ≤ n ≤ 4h − 5, h ≥ 4,
4m − n + 4h − 5 for m = 3, and 4h − 4 ≤ n <≤ 4h − 1,

where z1 = 2
⌊

n−2
4

⌋
, z2 = 2

⌊
n−2h+2

4

⌋
, z3 = 2

⌊
n−2h+2

4

⌋
.

α2 =



4m − n − 1 for m = 1, 2, . . . , v, n = 1, 2, 3,
4m + n − 7 for m = 1, 2, . . . , v, n = 4, 5,
2m + n − 5 for m = 1, 2 and 6 ≤ n ≤ 2h + 3,
2m − n + 4h + 1 for m = 1, 2 and 2h + 4 ≤ n ≤ 4h − 1, h ≥ 3,
4m − n + 4h − 5 for m = 1, 2, . . . , v, n = 4h, h ≥ 2,
4m + n − 9 − z1 for m ≥ 4 and 6 ≤ n ≤ 2h + 3, h ≥ 2,
4m − n + 4h − 3 − z2 for m ≥ 3, 2h + 4 ≤ n ≤ 4h − 1, h ≥ 2,
m + n for m = 3 and 6 ≤ n ≤ 9, h ≥ 3,
m + n − 2 for m = 3 and 10 ≤ n ≤ 4h + 3, h ≥ 4,
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where z1 = 2
⌊

n−6
4

⌋
, z2 = 2

⌊
4h−n−1

4

⌋
.

α3 =


4h − 4m + n + 2 − 2z for 1 ≤ m ≤ v and n = 1, 2, 3,
4h − 4m + n − 2 − 2z1 − 2z2 for 1 ≤ m ≤ v, 4 ≤ n ≤ 2h + 3,
7h − 4m − n + 6 + z3 + z4 for 1 ≤ m ≤ v − 2 and 2h + 4 ≤ n ≤ 4h,
6h − 2m − n + 4 + z5 for v − 1 ≤ m ≤ v, 2h + 4 ≤ n ≤ 4h,

where

z =


⌊

j−1
2

⌋
for 1 ≤ n ≤ 3,

0 otherwise,
z1 =


⌊

j−4
4

⌋
for 4 ≤ n ≤ 2h + 3,

0 otherwise,

z2 =


1 for n ≥ 8, m = v − 1,

0 otherwise,
z3 =


1 for h = 2E + 1,

0 otherwise,

z4 =


⌊

j−2h−2
4

⌋
for n ≥ 2h + 4,

0 otherwise,
z5 =


⌊

j−2h−2
4

⌋
for m = v − 1,

0 otherwise,

Let ξ(bm,n, a1,1) = α′1, ξ(bm,n, a1,3) = α′2, ξ(bm,n, bv,2) = α′3 and r(bm,n | W
)
1 = (α′1, α

′
2, α

′
3)

α′1 =



2m + n − 2 for m = 1, 2 and 4 ≤ n ≤ 2h + 1,
2m − n + 4h for m = 1, 2 and 2h + 2 ≤ n ≤ 4h − 3,
4m + n − 4 for m ≥ 1, n = 1, 2, . . . 4h,
4m − n + 4h − 2 for m ≥ 1, 4h − 3 ≤ n ≤ 4h,
m + n + 3 for m = 3 and 4 ≤ n ≤ 7,
m + n + 1 for m = 3 and 8 ≤ n ≤ 2h + 1, h ≥ 4,
4m + n − 6 − z1 for m ≥ 4 and 4 ≤ n ≤ 2h + 1, h ≥ 2,
4m − n + 3h + z2 for m ≥ 3, 2h + 1 ≤ n ≤ 4h − 3h ≥ 2(even),
4m − n + 3h + 1 + z3 for m ≥ 3, 2h + 4 ≤ n ≤ 4h − 3, h ≥ 5(odd),
4m − n + 3h − 1 for m = 4, 5, . . . , h, 2h + 1 ≤ n ≤ 4h + 3, h ≥ 6(even),

where z1 = 2
⌊

n−4
4

⌋
, z2 = 2

⌊
n−2h+2

4

⌋
, z3 = 2

⌊
n−2h+2

4

⌋
.

α′2 =



4m − n for m = 1, 2, . . . , h, n = 1,
4m − n + 2 for m = 1, 2, . . . , h, n = 2, 3 and
4m + n − 6 − z1 for m ≥ 3, 4 ≤ n ≤ 2h,
4m + n − 6 for m = 1, 2 and 4 ≤ n ≤ 7,
2m + n − 4 for m = 1, 2 and 8 ≤ n ≤ 2h + 3, h ≥ 3,
2m + n − 4 for m = 1, 2. and n = 8 i f h = 2,
2m − n + 4h for m = 1, 2 and 2h + 3 < n ≤, h ≥ 3,
4m − n + 4h for m = 1, 2. and 4h − 2 ≤ n ≤ 4h, h ≥ 3,
4m − n + 4h − 2 − z2 for m ≥ 3, 2h + 4 ≤ n ≤ 4h − 3, h ≥ 4,
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where z1 = 2
⌊

n−4
4

⌋
, z2 = 2

⌊
4h−n−3

4

⌋
.

α′3 =



4h − 4m − n + 3 for 1 ≤ m ≤ v, n = 1, 2,
4h − 4m + n − 3 − 2z for 1 ≤ m ≤

⌈
v
2

⌉
and 3 ≤ n ≤ 2h + 3,

4h − 4m + n − 3 − 2Z1 − z2 for
⌈

v
2

⌉
≤ m ≤ v, 3 ≤ n ≤ 2h + 3,

7h − 4m − n + 5 + z3 − +z4 for 1 ≤ m ≤ v − 2, 2h + 4 ≤ n ≤ 4h,
6h − 2m − n + 3 for v − 1 ≤ m ≤ v, and 2h + 4 ≤ n ≤ 4h − 1,
8h − 4m − n + 3 for v − 1 ≤ m ≤= v, and n = 4h,

where

z =


⌊

j−2
4

⌋
for n ≥ 3,

0 otherwise,
z1 =


⌊

j−2
4

⌋
for

⌈
v
2 + 1

⌉
≤ m ≤ v − 1,

0 otherwise,

z2 =


2(v − m) for n ≥ 3h − 4m + 9,

0 otherwise,
z3 =


⌊

n−3h+2
4

⌋
f or n ≥ 2h + 4,

0 otherwise,

z4 =


1 for h = 2E + 1,

0 otherwise.

Let p and q be two any arbitrary vertices on nanotube NTh,v. Let W1 = {a1,1, a1,3, bv,3}.
Case I: When p = am,n and q = am′ ,n′ then further three Subcases arise.
Subcase 1: if m = m

′

, n , n
′

then w. l. o. g. say n < n
′

this would implies that ξ(p, a1,1) , ξ(q, a1,1),
because ξ(p, a1,1) = ξ(q, a1,1) + t where t = n

′

− n so r(p | W1) , r(q | W1).
Subcase 2: if m , m

′

, n = n
′

then w. l. o. g. say m < m
′

this would implies that ξ(p, a1,3) , ξ(q, a1,3),
because ξ(p, a1,3) = ξ(q, a1,3) + s where s = 2(m

′

− m) so r(p | W1) , r(q | W1).
Subcase 3: if m , m

′

, n , n
′

then w. l. o. g. say n < n
′

, m < m
′

this would implies that
ξ(p, a1,1) , ξ(q, a1,1), because ξ(p, a1,1) = ξ(q, a1,1) + (s + t) so r(p | W1) , r(q | W1).
Case II: When p = bm,n and q = bm′ ,n′ .
Subcase 1: if m = m

′

, n , n
′

then w. l. o. g. say n < n
′

this would implies that ξ(p, a1,1) , ξ(q, a1,1),
because ξ(p, a1,1) = ξ(q, a1,1) + t where t = n

′

− n is so r(p | W1) , r(q | W1).
Subcase 2: if m , m

′

, n = n
′

then w. l. o. g. say m < m
′

this would implies that ξ(p, a1,3) , ξ(q, a1,3),
because ξ(p, a1,3) = ξ(q, a1,3) + s where s = 2(m

′

− m) so r(p | W1) , r(q | W1).
Subcase 3: if m , m

′

, n , n
′

then w. l. o. g. say n < n
′

, m < m
′

this would implies that
ξ(p, bv,3) , ξ(q, bv,3), because ξ(p, bv,3) = ξ(q, bv,3) + (s + t) so r(p | W1) , r(q | W1).
Case III: When p = am,n and q = bm′ ,n′ then further four Subcases arise.
Subcase 1: if m = m

′

, n = n
′

this would implies that ξ(p, a1,1) , ξ(q, a1,1), because ξ(p, a1,1) at least is
equal to ξ(q, a1,1) + 1 so r(p | W1) , r(q | W1).
Subcase 2: if m = m

′

, n , n
′

then w. l. o. g. say n < n
′

this would implies that ξ(p, a1,1) , ξ(q, a1,1),
because ξ(p, a1,1) at least is equal to ξ(q, a1,1) + 2 so r(p | W1) , r(q | W1).
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Subcase 3: if m , m
′

, n = n
′

then w. l. o. g. say m < m
′

this would implies that ξ(p, a1,3) , ξ(q, a1,3),
because ξ(p, a1,3) at least is equal to ξ(q, a1,3) + 3 so r(p | W1) , r(q | W1).
Subcase 4: if m , m

′

, n , n
′

then w. l. o. g. say n < n
′

, m < m
′

this would implies that
ξ(p, a1,1) , ξ(q, a1,1), because ξ(p, a1,1) al least is equal to ξ(q, a1,1) + 2 so r(p | W1) , r(q | W1).

When m , m
′

, n , n
′

the positions of p and q where ξ(p, a1,1) = ξ(q, a1,1), then ξ(p, a1,3) , ξ(q, a1,3)
if at these positions ξ(p, a1,3) = ξ(q, a1,3) then it is clearly ξ(p, bv,3) , ξ(q, bv,3).

We discuss all cases in which ξ(p, a1,1) , ξ(q, a1,1) whatever ξ(p, a1,3) = ξ(q, a1,3), ξ(p, bv,3) =

ξ(q, bv,3) if ξ(p, a1,1) = ξ(q, a1,1) then one of these is different ξ(p, a1,3) , ξ(q, a1,3), ξ(p, a1,1) = ξ(q, a1,1)
or ξ(p, a1,1) , ξ(q, a1,1), ξ(p, a1,3) , ξ(q, a1,3), ξ(p, bv,3) , ξ(q, bv,3) or ξ(p, a1,1) , ξ(q, a1,1), ξ(p, a1,3) =

ξ(q, a1,3), ξ(p, bv,3) , ξ(q, bv,3) or ξ(p, a1,1) , ξ(q, a1,1), ξ(p, a1,3) , ξ(q, a1,3), ξ(p, bv,3) = ξ(q, bv,3) or
ξ(p, a1,1) = ξ(q, a1,1), ξ(p, a1,3) , ξ(q, a1,3), ξ(p, bv,3) , ξ(q, bv,3) or ξ(p, a1,1) = ξ(q, a1,1), ξ(p, a1,3 =

ξ(q, a1,3), ξ(p, bv,3) , ξ(q, bv,3).
From the above discussion in the form of representation, we note that unique representation is given

by all the vertex and satisfies the resolution set condition, which shows that |R| = 3.
Conversely, for dim(NTh,v) ≥ 3 ∼ dim(NTh,v) < 3 ⇒ dim(NTh,v) = 1 or 2. Dimension 1 is not

possible because that is only for the path graph. Now for the dimension is not 2 we discuss some cases.
Case 1: Suppose W ′

1 ⊆ {am,n, am,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am,4n+1|W ′

1) = r(bm,4n|W ′
1).

Case 2: Suppose W ′
1 ⊆ {am,n, bm,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar

representations are given by; r(am+1,4n+1|W ′
1) = r(bm+1,4n|W ′

1).
Case 3: Suppose W ′

1 ⊆ {bm,n, bm,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am+1,4n−1|W ′

1) = r(bm,4n|W ′
1).

Case 4: suppose W ′
1 ⊆ {am,n, am+1,n : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar

representations are given by; r(am+2,4n−2|W ′
1) = r(bm+1,4n−1|W ′

1).
Case 5: suppose W ′

1 ⊆ {bm,n, bm+1,n : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am+2,4n−2|W ′

1) = r(bm+1,4n−1|W ′
1).

Case 6: suppose W ′
1 ⊆ {am,n, am+1,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar

representations are given by; r(am+1,4n+1|W ′
1) = r(bm+1,4n|W ′

1).
Case 7: suppose W ′

1 ⊆ {bm,n, bm+1,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am+2,4n+1|W ′

1) = r(bm+1,4n|R′).
Consonantly, there is no possibility of the above collection which are |v |G2 = |v|!

2!(|v|−2)! =
8(hv)!

2!(8(hv)−2)! of
vertex set of NTh,v. This shows that locating or resolving a set of 2-cardinality does not have a unique
representation, so a minimal resolving set of 2 cardinalities is impossible. Hence the minimal resolving
set has cardinality of 3. �

3. Construction of nanotube NTh,v for resolving set W2

In Figure 3, red is used for those edges that have endpoints of degree 2 and 3. The blue color is used
for those edges with endpoints of degree 2 and the black color is used for all edges that have endpoints
of degree 3. The green color is used for 2-degree vertex and the black color vertex has a degree 3. The
double color is used for those vertexes which make a resolving set. b1,1 is black and red color due to
the degree 3 and the point of resolving set. a1,3 ,bV,3 are green and red due to degree 2 and point of
resolving set. suppose h and v denotes the horizontal and vertical number of C8. The 2 degree vertices
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are 2h, and the number of vertices of degree 3 are 8hv− 2h. The order of NTh,vis |O(NTh,v)| = 8hv and
the size of NTh,v is |E(NTh,v)| = 12hv + 2h.

a1,1

a1,2 a1,6 a1,7

a1,8
a1,4h

a1,4h-1

b1,1
b1,2

b1,8

b1,4h
b1,4h-1

b2,4h
b2,4h-1

b2,1

b2,2
b2,3

a2,1

a2,2 a2,3

a2,4h

a2,4h-1

av,4h

av,4h-1

av,1
av,2

av,3

bv,1

bv,2

bv,4 bv,4h

bv,4h-1

av,4

a1,1

a2,1

av,1

bv,1

b2,1

b1,1

bv,3

Figure 3. Generalize nanotube derived by quadrilateral-Octagonal grid.

Two parameters h,v and tow index m, nare used in labeling. m carry along two time with v and n
change 4 time with h. The vertex and edge sets of the nanotube are

V(NT ) ={am,n, bm,n; 1 ≤ m ≤ v, 1 ≤ n ≤ 4h}

E(NT ) ={am,nam, j+1, bm,nbm j+1; 1 ≤ m ≤ v, 1 ≤ n ≤ 4h}

∪ {am,nbm,n; 1 ≤ m ≤ v, n = 0, 1(mod 4)}
∪ {am,nbm,n; 1 ≤ m ≤ v, n = 2, 3(mod 4)}
∪ {am,1am,4hbm,1bm,4h; 1 ≤ m ≤ v, h ≥ 1}.

Theorem 3.1. Let NTh,v be a nanotube with h, v ≥ 1. Then W2 is also an other resolving set of
cardinality 3.

Proof. Let W2 = {b1,1, a1,3, bv,3}, be a subset of the vertices of NTh,v. To prove that W2 is a minimal
resolving set of cardinality 3 we follow the definition of resolving set. Given below are the unique
representation of all vertices of NTh,v for h, v ≥ 1 (See Figure 4).
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a1,1

a1,2
a1,3

a1,4

b1,1

b1,4

b1,3b1,2

a1,1

b1,1

Figure 4. Otagone-quadrilateral for nanotune.

The representation of W2 = {a1,1, a1,3, b1,3} for h = 1 = v show in Table 2.

Table 2. Representation of vertices of Figure 4.

vertex a1,1 a1,2 a1,3 a1,4 b1,1 b1,2 b1,3 b1,4 a1,1

r(. | R) (1,2,3) (2,1,4) (3,0,3) (2,1,2) (0,3,2) (1,4,1) (2,3,0) (1,2,1)

This is a unique representation of vertices of nanotube for h=1=v.

3.1. Generalized results

The generalized formulas of distances of all vertices of the quadrilateral-octagonal nanosheet show
that the minimal resolving set has cardinality 2 because all distances are different. Given below are
the generalized formulas of distances. Let ξ(am,n, b1,1) = α1, ξ(am,n, a1,3) = α2, ξ(am,n, bv,3) = α3 and
r(em,n | R) = (α1, α2, α3).

α1 =



m + n − 1 for m = 1, 1 ≤ n ≤ 2h + 1,
4h + m − n + 1 for m = 1, 2h + 2 ≤ n ≤ 4h,
4m + n − 4 for 2 ≤ m ≤ v and n = 1,
2m − n − 4 for 2 ≤ m ≤

⌊
v
2

⌋
, 4m − 6 ≤ n ≤ 2h + 1,

4m + n − 6 − 2z for 3 ≤ m ≤ v, 2 ≤ n ≤ 4m − 7 ≤ 2h + 2,
4h + 2m jn − 2 + 2z1 for 2 ≤ m ≤ v, 2h + 2 ≤ n ≤ 4h,

where

z =


⌊

n−2
4

⌋
for n ≤ 4m − 7,

0 otherwise,
z1 =


⌊

4m+n−4h−4
4

⌋
for Z+

0 otherwise,
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α2 =



4m − n − 1 for m = 1, 2, . . . , v, n = 1, 2, 3,
4m + n − 7 for m = 1, 2, . . . , v, n = 4, 5,
2m + n − 5 for m = 1, 2 and 6 ≤ n ≤ 2h + 3,
2m − n + 4h + 1 for m = 1, 2 and 2h + 4 ≤ n ≤ 4h − 1, h ≥ 3,
4m − n + 4h − 5 for m = 1, 2, . . . , v, n = 4h, h ≥ 2,
4m + n − 9 − z1 for m ≥ 4 and 6 ≤ n ≤ 2h + 3, h ≥ 2,
4m − n + 4h − 3 − z2 for m ≥ 3, 2h + 4 ≤ n ≤ 4h − 1, h ≥ 2,
m + n for m = 3 and 6 ≤ n ≤ 9, h ≥ 3,
m + n − 2 for m = 3 and 10 ≤ n ≤ 4h + 3, h ≥ 4,

where z1 = 2
⌊

n−6
4

⌋
, z2 = 2

⌊
4h−n−1

4

⌋
.

α3 =


4h − 4m + n + 2 − 2z for 1 ≤ m ≤ v and n = 1, 2, 3,
4h − 4m + n − 2 − 2z1 − 2z2 for 1 ≤ m ≤ v, 4 ≤ n ≤ 2h + 3,
7h − 4m − n + 6 + z3 + z4 for 1 ≤ m ≤ v − 2 and 2h + 4 ≤ n ≤ 4h,
6h − 2m − n + 4 + z5 for v − 1 ≤ m ≤ v, 2h + 4 ≤ n ≤ 4h,

where

z =


⌊

j−1
2

⌋
for 1 ≤ n ≤ 3,

0 otherwise,
z1 =


⌊

j−4
4

⌋
for 4 ≤ n ≤ 2h + 3,

0 otherwise,

z2 =


1 for n ≥ 8, m = v − 1,

0 otherwise,
z3 =


1 for h = 2E + 1,

0 otherwise,

z4 =


⌊

j−2h−2
4

⌋
for n ≥ 2h + 4,

0 otherwise,
z5 =


⌊

j−2h−2
4

⌋
for m = v − 1,

0 otherwise,

Let ξ(am,n, b1,1) = α′1, ξ(am,n, a1,3) = α′2, ξ(am,n, bv,3) = α′3 and r(am,n | R) = (α′1, α
′
2, α

′
3).

α′1 =



2m + n − 3 for 1 ≤ m ≤ v, 4m − 4 ≤ n ≤ 2h + 1,
4m + n − 5 − 2z for 1 ≤ m ≤ v, 1 ≤ n ≤ 2h + 1,
5h + 2m − n − 7 for 1 ≤ m ≤ 2 and 2h + 2 ≤ n ≤ 4h − 3,
4h + 4m − n − 3 for 1 ≤ m ≤ 2, 4h − 3 ≤ n ≤ 4h,
4h + 4m − n + 2z1 for 3 ≤ m ≤ v, 2h + 2 ≤ n ≤ 4h,

where

z =


⌊

n
4

⌋
for 1 ≤ n ≤ 4m − 2,

0 otherwise,
z1 =


⌊

n−2h−2
4

⌋
for n ≤ 2h,

0 otherwise,
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α′2 =



4m − n for m = 1, 2, . . . , h, n = 1,
4m − n + 2 for m = 1, 2, . . . , h, n = 2, 3 and
4m + n − 6 − z1 for m ≥ 3, 4 ≤ n ≤ 2h,
4m + n − 6 for m = 1, 2 and 4 ≤ n ≤ 7,
2m + n − 4 for m = 1, 2 and 8 ≤ n ≤ 2h + 3, h ≥ 3,
2m + n − 4 for m = 1, 2. and n = 8 i f h = 2,
2m − n + 4h for m = 1, 2 and 2h + 3 < n ≤, h ≥ 3,
4m − n + 4h for m = 1, 2. and 4h − 2 ≤ n ≤ 4h, h ≥ 3,
4m − n + 4h − 2 − z2 for m ≥ 3, 2h + 4 ≤ n ≤ 4h − 3, h ≥ 4,

where z1 = 2
⌊

n−4
4

⌋
, z2 = 2

⌊
4h−n−3

4

⌋
.

α′3 =



4h − 4m − n + 3 for 1 ≤ m ≤ v, n = 1, 2,
4h − 4m + n − 3 − 2z for 1 ≤ m ≤

⌈
v
2

⌉
and 3 ≤ n ≤ 2h + 3,

4h − 4m + n − 3 − 2Z1 − z2 for
⌈

v
2

⌉
≤ m ≤ v, 3 ≤ n ≤ 2h + 3,

7h − 4m − n + 5 + z3 − +z4 for 1 ≤ m ≤ v − 2, 2h + 4 ≤ n ≤ 4h,
6h − 2m − n + 3 for v − 1 ≤ m ≤ v, and 2h + 4 ≤ n ≤ 4h − 1,
8h − 4m − n + 3 for v − 1 ≤ m ≤= v, and n = 4h,

where

z =


⌊

j−2
4

⌋
for n ≥ 3,

0 otherwise,
z1 =


⌊

j−2
4

⌋
for

⌈
v
2 + 1

⌉
≤ m ≤ v − 1,

0 otherwise,

z2 =


2(v − m) for n ≥ 3h − 4m + 9,

0 otherwise,
z3 =


⌊

n−3h+2
4

⌋
f or n ≥ 2h + 4,

0 otherwise,

z4 =


1 for h = 2E + 1,

0 otherwise.

Let p and q be two any arbitrary vertices on nanotube NTh,v. Let W2 = {b1,1, a1,3, bv,2}.
Case I: When p = bm,n and q = bm′ ,n′ then further three Subcases arise.
Subcase 1: if m = m

′

, n , n
′

and without loss of generality we can say that n < n
′

then ξ(p, b1,1) ,
ξ(q, b1,1) Because ξ(p, b1,1) = ξ(q, b1,1) + t where t = n

′

− n so r(p | W2) , r(q | W2).
Subcase 2: if m , m

′

, n = n
′

and without loss of generality we can say that m < m
′

then ξ(p, a1,3) ,
ξ(q, a1,3) Because ξ(p, a1,3) = ξ(q, a1,3) + s where s = 2(m

′

− m) so r(p | W2) , r(q | W2).
Subcase 3: if m , m

′

, n , n
′

and without loss of generality we can say that n < n
′

, m < m
′

then
ξ(p, b1,1) , ξ(q, b1,1) Because ξ(p, b1,1) = ξ(q, b1,1) + (s + t) so r(p | W2) , r(q | W2).
Case II: When p = am,n and q = am′ ,n′ .
Subcase 1: if m = m

′

, n , n
′

and without loss of generality we can say that n < n
′

then ξ(p, b1,1) ,
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ξ(q, b1,1) Because ξ(p, b1,1) = ξ(q, b1,1) + t where t = n
′

− n is so r(p | W2) , r(q | W2).
Subcase 2: if m , m

′

, n = n
′

and without loss of generality we can say that m < m
′

then ξ(p, a1,3) ,
ξ(q, a1,3) Because ξ(p, a1,3) = ξ(q, a1,3) + s where s = 2(m

′

− m) so r(p | W2) , r(q | W2).
Subcase 3: if m , m

′

, n , n
′

and without loss of generality we can say that n < n
′

, m < m
′

then
ξ(p, bv,3) , ξ(q, bv,3) Because ξ(p, bv,3) = ξ(q, bv,3) + (s + t) so r(p | W2) , r(q | W2).
Case III: When p = bm,n and q = bm′ ,n′ then further four Subcases arise.
Subcase 1: if m = m

′

, n = n
′

then ξ(p, b1,1) , ξ(q, b1,1) Because ξ(p, b1,1) at least is equal to ξ(q, b1,1)+1
so r(p | W2) , r(q | W2).
Subcase 2: if m = m

′

, n , n
′

and without loss of generality we can say that n < n
′

then ξ(p, b1,1) ,
ξ(q, b1,1) Because ξ(p, b1,1) at least is equal to ξ(q, ab,1) + 2 so r(p | W2) , r(q | W2).
Subcase 3: if m , m

′

, n = n
′

and without loss of generality we can say that m < m
′

then ξ(p, a1,3) ,
ξ(q, a1,3) Because ξ(p, a1,3) at least is equal to ξ(q, a1,3) + 3 so r(p | W2) , r(q | W2).
Subcase 4: if m , m

′

, n , n
′

and without loss of generality we can say that n < n
′

, m < m
′

then
ξ(p, b1,1) , ξ(q, b1,1) Because ξ(p, b1,1) al least is equal to ξ(q, b1,1) + 2 so r(p | W2) , r(q | W2).

When m , m
′

, n , n
′

the positions of p and q where ξ(p, b1,1) = ξ(q, b1,1) then ξ(p, a1,3) , ξ(q, a1,3)
if at these positions ξ(p, a1,3) = ξ(q, a1,3) then it is clearly ξ(p, bv,3) , ξ(q, bv,3).

We discuss all cases in which ξ(p, b1,1) , ξ(q, b1,1) whatever ξ(p, a1,3) = ξ(q, a1,3), ξ(p, bv,3) =

ξ(q, bv,3) if ξ(p, b1,1) = ξ(q, b1,1) then one of these is different ξ(p, a1,3) , ξ(q, a1,3), ξ(p, b1,1) = ξ(q, b1,1)
or ξ(p, b1,1) , ξ(q, b1,1), ξ(p, a1,3) , ξ(q, a1,3), ξ(p, bv,3) , ξ(q, bv,3) or ξ(p, b1,1) , ξ(q, b1,1), ξ(p, a1,3) =

ξ(q, a1,3), ξ(p, bv,3) , ξ(q, bv,3) or ξ(p, b1,1) , ξ(q, b1,1), ξ(p, a1,3) , ξ(q, a1,3), ξ(p, bv,3) = ξ(q, bv,3) or
ξ(p, b1,1) = ξ(q, b1,1), ξ(p, a1,3) , ξ(q, a1,3), ξ(p, bv,3) , ξ(q, bv,3) or ξ(p, b1,1) = ξ(q, b1,1), ξ(p, a1,3 =

ξ(q, a1,3), ξ(p, bv,3) , ξ(q, bv,3) No possibility shows two representations are equal. From the above
discussion in the form of representation, we note that unique representation is given by all the vertex
and satisfies the condition of resolving set which shows that |W2| = 3.

Conversely, for dime(NTh,v) ≥ 3 ∼ dime(NTh,v) < 3 ⇒ dime(NTh,v) = 1 or 2. Dimension 1 is not
possible because that is only for the path graph. Now for the dimension is not 2 we discuss some cases.
Case 1: Suppose W ′

2 ⊆ {am,n, am,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am,4n+1|W ′

2) = r(bm,4n|W ′
2).

Case 2: Suppose W ′
2 ⊆ {am,n, bm,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar

representations are given by; r(am+1,4n+1|W ′
2) = r(bm+1,4n|W ′

2).
Case 3: Suppose W′ ⊆ {bm,n, bm,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am+1,4n−1|W ′

2) = r(bm,4n|W ′
2).

Case 4: suppose W′ ⊆ {am,n, am+1,n : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am+2,4n−2|W ′

2) = r(bm+1,4n−1|W ′
2).

Case 5: suppose W′ ⊆ {bm,n, bm+1,n : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am+2,4n−2|W ′

2) = r(bm+1,4n−1|W ′
2).

Case 6: suppose W ′ ⊆ {am,n, am+1,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am+1,4n+1|W ′

2) = r(bm+1,4n|W ′
2).

Case 7: suppose W ′ ⊆ {bm,n, bm+1,n+1 : 1 ≤ m ≤ v, 1 ≤ n ≤ 4h} having 2-cardinality, then similar
representations are given by; r(am+2,4n+1|W ′

2) = r(bm+1,4n|R′).
Consonantly, there is no possibility of the above collection which are |v |G2 = |v|!

2!(|v|−2)! =
8(hv)!

2!(8(hv)−2)! of
vertex set of NTh,v. This shows that locating or resolving a set of 2-cardinality does not have a unique
representation, so a minimal resolving set of 2 cardinality is impossible. so the minimal resolving set
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has cardinality of 3. Hence prove that W2 ia an other resolving set of nanotube has cardinality 3. �

4. Exchange property

In graph theory, a resolving set of a graph is a subset of vertices that uniquely identifies every vertex
in the graph. More formally, a resolving set S of a graph G is a subset of vertices such that for every
pair of distinct vertices u and v, there exists a vertex w in S such that the distance from u to w is
different from the distance from v to w.

The exchange property of a resolving set refers to a property that allows one to exchange vertices
between resolving sets in a graph without losing the resolving property. Specifically, if S and T are
two resolving sets of a graph G, and there exists a vertex v in S \ T (S minus T) such that (Tv) ∪ u is
also a resolving set for every vertex u in S \ T, then we say that the resolving sets S and T have the
exchange property.

In other words, the exchange property means that if there is a vertex in one resolving set that is not
in the other resolving set, but by removing it from the first and adding a vertex from the second, we
still obtain a resolving set. This property allows us to manipulate and transform resolving sets while
maintaining their essential property of uniquely identifying every vertex in the graph.

The exchange property is useful in various applications of resolving sets, such as graph
reconstruction, fault diagnosis and network localization. It allows for the efficient construction and
modification of resolving sets, enabling better analysis and understanding of graph structures.

Note that not all resolving sets have the exchange property. The exchange property is a desirable
characteristic but is not a necessary condition for a set to be a resolving set. There may be resolving
sets that do not satisfy the exchange property.

The components of a vector space’s basis determine each vector in a finite-dimensional space in a
unique way (expressed as a linear combination). The exchange property applies to a vector space’s
basis. The vertices of a minimal resolving set can also be used to uniquely identify each vertex of a
finite graph. As a result, resolving sets of a finite graph behave like bases in a vector space with finite
dimensions. The exchange property is not always present in the minimal resolving sets, unlike a linear
basis of a vector space. The literature contains findings regarding the exchange property for various
graphs. For instance, the exchange property is true for resolving sets in trees, but it is false for n ≥8 in
wheels graph Wn.

Theorem 4.1. Let NTh,v be an quadrilateral-octagonal Nanotube with h, v ≥ 1 then exchange property
hold for this structure.

Now to prove this claim we follow the definition of the exchange property. Let u = a1,1 and u∈ W1,
v = b1,1 and v ∈W2 then (W1\{u})∪v is also a minimal resolving set. Suppose (W1\{u})∪v = K Now we
have to prove that K is also a minimal resolving set for NTh,v. We know that W1 = {a1,1, a1,3, bv,3} and
W2 = {b1,1, a1,3, bv,3} so (W1\{u})= {a1,3, bv,3}∪v = {b1,1, a1,3, bv,3} = W2 and in theorem 4.1 we prove
that W2 is a minimal resolving set of cardinality 3. Hence prove that the exchange property hold in
NTh,v. a1,3andbv,3 are common point in W1 and W2. So W1, W2 exchange u and v point with each other.
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5. Conclusions

This article discusses two structures of nanotubes derived from the quadrilateral-octagonal grid. We
have found the resolving sets of the nanotubes based on the distance of the graph. The Resolving sets
of nanotubes are cardinality 3. Moreover, we found that when a nanosheet folds and makes a nanotube,
the 2D structure converts into 3D. Due to this phenomenon, the cardinality of resolving sets increases
one. We ensure that the exchange property is also held for this structure.

5.1. Implications, limitations

The metric dimension in graph theory refers to the minimum number of vertices required to uniquely
identify every vertex in a graph. While it is a well-studied concept with various applications, there are
certain limitations and potential future directions to consider.

Computational Complexity: Computing the exact metric dimension of a graph is known to be NP-
hard, which means that there is no known efficient algorithm to solve it in general. The problem
becomes even more challenging for larger graphs, limiting its applicability in practical scenarios. Thus,
developing approximation algorithms or finding efficient algorithms for special graph classes are areas
of interest.

Lack of Structural Understanding: The metric dimension does not always provide insight into the
structural properties of a graph. Even graphs with the same metric dimension can exhibit different
structural characteristics. Understanding the relationship between the metric dimension and other
graph parameters, such as connectivity, diameter or degree distribution, is an avenue for further
research.

Dynamic Graphs: Most studies on metric dimension assume static graphs, where the underlying
structure does not change. However, in real-world scenarios, graphs often evolve dynamically.
Exploring the metric dimension in dynamic graphs, where edges and vertices are added or removed
over time, is an important direction for future research.

Robustness and Fault-Tolerance: Analyzing the resilience of metric dimension under vertex or edge
failures is another interesting aspect. Investigating how the metric dimension changes in the presence
of faults or attacks can provide insights into the fault-tolerance and robustness of networks.

Application-Specific Metrics: Different applications may require tailored metrics for vertex
identification. Developing and studying alternative measures that capture specific characteristics of
graphs in different contexts can be valuable. For instance, considering weighted or probabilistic graphs,
where vertices have different importance or uncertainties, can lead to novel perspectives on metric
dimension.

Beyond Traditional Graphs: Exploring the metric dimension in non-traditional graph structures,
such as hypergraphs, temporal networks, or spatial networks, can provide new insights and challenges.
These extended graph models require rethinking the notion of distance and vertex identification,
pushing the boundaries of metric dimension research.

Overall, the limitations in the metric dimension topic present opportunities for further investigation
and the development of new methodologies, algorithms and applications. By addressing these
limitations, we can deepen our understanding of graph structures and expand the utility of metric
dimension in diverse fields. For more work on the metric dimension, we refer to see [50–52].
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5.2. Future study

In this draft, we did the computation of only resolving set and its exchange property. One can also
consider to discuss the other variants of resolving set, like fault-tolerant resolving set [53–55], partition
resolvability of these chemical compounds [56, 57] and other similar theoretical parameters as well.
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45. A. Ahmad, M. Bača, S. Sultan, Computing the metric dimension of kayak paddle
graph and cycles with chord, Proyecciones (Antofagasta, On line), 39 (2020), 287–300.
https://doi.org/10.22199/issn.0717-6279-2020-02-0018

AIMS Mathematics Volume 8, Issue 9, 20305–20323.

http://dx.doi.org/https://doi.org/10.3390/math10142445
http://dx.doi.org/https://doi.org/10.1515/math-2016-0055
http://dx.doi.org/https://doi.org/10.1515/math-2016-0055
http://dx.doi.org/https://doi.org/10.3390/math11040844
http://dx.doi.org/https://doi.org/10.1155/2022/8238651
http://dx.doi.org/https://doi.org/10.1016/j.jksus.2021.101779
http://dx.doi.org/https://doi.org/10.1155/2020/9407456
http://dx.doi.org/https://doi.org/10.1016/j.cor.2008.08.002
http://dx.doi.org/https://doi.org/10.1080/02331934.2013.772999
http://dx.doi.org/https://doi.org/10.1155/2021/3438611
http://dx.doi.org/http://doi.org/10.22436/jmcs.022.02.08
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.2990109
http://dx.doi.org/https://doi.org/10.3390/sym10080300
http://dx.doi.org/https://doi.org/10.4236/am.2016.77055
http://dx.doi.org/https://doi.org/10.22199/issn.0717-6279-2020-02-0018


20323

46. M. K. Siddiqui, M. Naeem, N. A. Rahman, M. Imran, Computing topological indices of certain
networks, J. Optoelectron. Adv. Mater., 18 (2016), 884–892.

47. A. R. Ashrafi, T. Doslic, M. Saheli, The eccentric connectivity index of TUC4C8 nanotubes,
MATCH Commun. Math. Comput. Chem., 65 (2011), 221–230.

48. H. M. A. Siddiqui, M. A. Arshad, M. F. Nadeem, M. Azeem, A. Haider, M. A. Malik, Topological
properties of a supramolecular chain of different complexes of N-salicylidene-L-Valine, Polycycl.
Aromat. Comp., 42 (2022), 6185–6198. https://doi.org/10.1080/10406638.2021.1980060

49. M. M. Acholi, O. A. AbuGhneim, H. Al-Ezeh, Metric dimension of some path related graphs,
Global Journal of Pure and Applied Mathematics, 13 (2017), 149–157.

50. M. F. Nadeem, M. Azeem, The fault-tolerant beacon set of hexagonal Möbius ladder network,
Math. Method. Appl. Sci., 46 (2023), 9887–9901. https://doi.org/10.1002/mma.9091

51. X. Zhang, M. T. A. Kanwal, M. Azeem, M. K. Jamil, M. Mukhtar, Finite vertex-based
resolvability of supramolecular chain in dialkyltin, Main Group Met. Chem., 45 (2022), 255–264.
https://doi.org/10.1515/mgmc-2022-0027

52. H. Raza, S. K. Sharma, M. Azeem, On domatic number of some rotationally-symmetric graphs, J.
Math., 2023 (2023), 3816772. https://doi.org/10.1155/2023/3816772

53. H. Raza, S. Hayat, X.-F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl.
Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010

54. H. Raza, S. Hayat, M. Imran, X.-F. Pan, Fault-tolerant resolvability and extremal structures of
graphs, Mathematics, 7 (2019), 78. https://doi.org/10.3390/math7010078

55. H. Raza, S. Hayat, X.-F. Pan, On the fault-tolerant metric dimension of certain interconnection
networks, J. Appl. Math. Comput., 60 (2019), 517–535. https://doi.org/10.1007/s12190-018-
01225-y

56. H. M. A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, J.-B. Liu, Resolvability and fault-
tolerant resolvability structures of convex polytopes, Theor. Comput. Sci., 796 (2019), 114–128.
https://doi.org/10.1016/j.tcs.2019.08.032

57. S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, M. K. Siddiqui, Fault-tolerant
metric dimension of interconnection networks, IEEE Access, 8 (2020), 145435–145445.
https://doi.org/10.1109/ACCESS.2020.3014883

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 9, 20305–20323.

http://dx.doi.org/https://doi.org/10.1080/10406638.2021.1980060
http://dx.doi.org/https://doi.org/10.1002/mma.9091
http://dx.doi.org/https://doi.org/10.1515/mgmc-2022-0027
http://dx.doi.org/https://doi.org/10.1155/2023/3816772
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.07.010
http://dx.doi.org/https://doi.org/10.3390/math7010078
http://dx.doi.org/https://doi.org/10.1007/s12190-018-01225-y
http://dx.doi.org/https://doi.org/10.1007/s12190-018-01225-y
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2019.08.032
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.3014883
http://creativecommons.org/licenses/by/4.0

	Introduction
	Construction of nanotube  N Th,v  for resolving set W1
	Generalized results

	Construction of nanotube  N Th,v  for resolving set W2
	Generalized results

	Exchange property
	Conclusions
	Implications, limitations
	Future study


