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Abstract: Topology is branch of modern mathematics that plays an important role in applications
of biology. The aim of this paper is to study DNA sequence mutations using multisets, relations,
metric functions, topology and association indices. Moreover, we use association indices to study the
similarity between DNA sequences. These different ways of identifying a mutation help biologists to
make a decision. A decision of mutation that depends on metrics between two sequences of genes and
the topological structure produced by their relationship is presented.

Keywords: multiset; topology; mutation; similarity; metric space
Mathematics Subject Classification: 54A05, 54C10, 54D10

1. Introduction

The strings of DNA sequences are shaped from nucleotides which are bonded together. DNA has
four nucleotides called guanine G, cytosine C, adenine A and thymine T (or uracil U). G (resp. A) is
paired with C (resp. T or U). The interaction between them is folding. The chain of nucleotides may
be folding and bonding, but these interactions only occur under specific energy conditions. Here, we
utilize nucleotide chains in conformity with the topological model; see [1, 10]. A change or
metamorphosis is called a mutation. Chromosome and gene alterations, known as mutations in
biology, frequently manifest physically. The consequences of a mutation depend on the region where
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the genetic material’s sequence has changed. On the other hand, insertion or deletion mutations might
result in the production of gene products that are not functional. Large-scale mutations can also occur,
resulting in the inversion, insertion, duplication, deletion, transposition, or translocation of lengthy
strands of DNA. A mutation’s outcome could be negative, positive, neutral, or even barely noticeable.
A mutation may result in the removal or addition of a particular function, altered levels of expression,
or even mortality in the developing embryo. A lot of scientists have worked hard to find and fix gene
mutations. They have employed a few techniques for investigation, including single-stranded DNA
oligonucleotide analysis, single-strand conformation polymorphism analysis, two-dimensional gene
scanning, protein truncation testing, and denaturing high performance liquid chromatography [5, 35].
The use of computer technology for the management of biological data is known as bioinformatics.
To collect, store, analyze, and combine biological and family data for use in the discovery and
development of gene-based drugs, information processing systems are utilized. The increase of
publicly accessible genetic data as a result of the Human Genome Project has sparked the need for
bioinformatics capabilities. A virus may cause mutations or the host may edit them, and sequencing
mistakes can further complicate matters.

Multiset theory was introduced by Gostelow [23]. The concept of a multiset (or bag) is the
generalization of a set. A member of a multiset has more than one membership (see [7, 8, 29, 36, 37]);
the use of multisets in mathematics predates the name multiset by nearly 90 years.

Topology is a branch of geometry with the name of rubber sheet geometry. It has many real-life
applications and solves some problems that are directly or indirectly related to continuity. Its study
does not depend on the dimension, i.e., increasing or decreasing can occur without cutting [26,31,38].
Using the neighborhood system, graphs have been represented topologically, as in [14, 32], and some
topologies have been represented by neighborhoods and graphs, as in [28]. Recently, both graphs
and rough sets have been used to represent structures such as self-similar fractals [11, 15], the human
heart [12, 13, 33] and DNA [17–19], making them useful in physics, medicine and biology [2–4],
respectively.

Graph theory is a mathematical tool to solve some real-life problems. Graphs can be used to model
many types of relations and processes in physical, biological [30], social and information systems.
Many practical problems can be represented by graphs. Many previous studies have investigated the
similarity of genetic sequences [20, 21, 27, 34].

Our aim with this paper is to examine the existence of gene mutations based on relations, and
through the use of metric space, topological structures and graph-based models. We generate a code
that depends on the multiset, the relation and the metric space between the sequences of genes (DNA
sequences) to determine the presence of the mutation, its locations, if any, and the amino acids. Graph
theory is used to determine mutations of genes, and the similarity between DNA sequences will be
studied. Finally, we combine the concept of a multiset and association indices to study the similarity
between mutations for genes.

2. Preliminaries

In what follows, a short survey of multisets and the corresponding theories will be given based
on the work of Yager in [39]. Also, we introduce a short survey on genetic mutations, as described
in [5, 37], and some methods for mutation analysis and mutation detection are mentioned.
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Definition 2.1. [9, 24, 39] A multiset M assigned from a nonempty set X and presented by a function
CM(x) : X → N, where N denotes the natural numbers. CM(x) represents the number of element x
which occurs in M. In other words, M from X = {x1, x2, · · · , xn} to N is written as M = {m1

x1
, m2

x2
, · · · ,

mn
xn
}, where mi is the number of xi, for i = 1, 2, · · · , n that can occur in M.

Proposition 2.2. Let M and N be two multisets assigned on X. Then, the following holds
(i) M = N if CM(x) = CN(x) ∀ x ∈ X.
(ii) M ⊆ N if CM(x) ≤ CN(x) ∀ x ∈ X.
(iii) W = M ∪ N if CW(x) = Max{CM(x),CN(x)} ∀ x ∈ X.
(v) W = M ⊖ N if CW(x) = Max{CM(x) −CN(x), 0} ∀ x ∈ X.
(vi) W = M ⊕ N if CW(x) = CM(x) +CN(x) ∀ x ∈ X.
(vii) W = M ∩ N if CW(x) = Min{CM(x),CN(x)} ∀ x ∈ X.
Here, ⊖ and ⊕ denote a multiset subtraction and a multiset addition, respectively. It is noted that

any set is a special case of multiset.

Definition 2.3. [22] Let K1 and K2 be two multisets assigned on X, and have CK1 and CK2 , respectively.
The Cartesian product of K1 and K2 is defined by K1 × K2 = {

( m
x ,

n
y )

mn : x ∈m K1, y ∈
n

K2}.

Definition 2.4. [22] A submultiset R of M×M is said to be a multiset relation on M, if for each (m
x ,

n
y )

of R, there is a product of C1(x, y) and C2(x, y) which can be counted. The relationship between m
x and

n
y can be formulated as m

xR
n
y .

In graph theory [10], the set of vertices will be denoted by V of a finite set. The set of edges have
the form E(V) = {{u, v} s. t. u, v ∈ V u , v}. In other words, u, v are called adjacent vertices. In this
paper, the graph will be denoted by G = (V, E), VG is the vertex of G and EG is the set of edges. The
graph G = (VG, EG) is a directed graph if each edge has a direction. The Łkaszyk-Karmowski distance
function [43] is a function defining a distance between two random variables or two random vectors.
The axioms of this function are as follows:

• d(x, y) > 0,
• d(x, y) = d(y, x),
• d(x, z) ≤ d(x, y) + d(y, z).

3. Mutations from the viewpoint of multisets, relations and metric spaces

In this section, the concepts of multisets, metric spaces and multiset relations are applied in MSC
code building. The MSC code determines the existence of a mutation locations and number of
mutations; it also identifies amino acids. The MSC code specifies the number of (A, T, G, C)
elements, the relation between them, the places of their difference their numbers, and the different
amino acids. Also, the code can be used to study the similarity between the DNA sequences (numbers
of elements, matches and mismatches).

Definition 3.1. Let M3
′

5′
be a sense strand of DNA and M5

′

3′
be an antisense strand of DNA. Define a

multiset of DNA sequence as M = {mi
x : x ∈ {A,T,G,C}, where mi is the time of occurring for x }

Remark 3.2. In Definition 3.1, there are two DNA multisets M1 and M2 for M3
′

5′
and M5

′

3′
, respectively.
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Definition 3.3. Let M1 and M2 be DNA multisets. Define the DNA Cartesian product of M1 and M2

by M1 × M2 = {
( m

x ,
n
y )

mn : x ∈m M1, y ∈
n

M2}.

Definition 3.4. Let M1 and M2 be DNA multisets. Define multibinary relation R ⊆ M1×M2 = {(m
x ,

n
y ) :

x ∈m M1, y ∈
n

M2}.

Definition 3.5. Let M1 and M2 be DNA multisets. Define the correlation coefficient between M1 and
M2 as CM1,M2 =

1
|M1 ||M2 |

∑
xi∈M1,yi∈M2

C(xi)C(yi), where C(xi) and C(yi) are time of occurring for xi and yi in

M1 and M2, respectively.

Corollary 3.6. CM1,M1 =
1
|M1 |

2

∑
xi∈M1

(C(xi))2.

Corollary 3.7. 0 < CM1,M2 ≤ 1.

Proof. Since M1 , ϕ → |M1| , 0 , M2 , ϕ → |M2| , 0 and |M1| ≥ CM1(xi),|M2| ≥ CM1(yi), then
|M1||M2| ≥

∑
CM1(xi)CM2(yi). Therefore, 0 < CM1,M2 ≤ 1. □

Remark 3.8. n(M1) is the number of elements existing in DNA multiset M1, and n(M1) = 4 at most.

Definition 3.9. Let M1 and M2 be DNA multisets, n(M1) = n(M1). Define the distance function
between M1 and M2 as dDNA(M1,M2) = CM1 ,M2√

CM1 ,M1×CM2 ,M2

.

Remark 3.10. From Definition 3.9, dDNA(M1,M2) =

∑
xi ,yi

C(xi)C(yi)

√∑
xi (CM1 (xi))2×

∑
xi (CM2 (yi))2

.

Theorem 3.11. dDNA(M1,M2) is associated with the following axioms:

(i) dDNA > 0,

(ii) dDNA(M1,M1) = 1,

(ii1) dDNA(M1,M2) = dDNA(M2,M1),

(iv) dDNA(M1,M3) + dDNA(M3,M2) ≥ dDNA(M1,M2).

Proof. (i) By Corollaries 3.6 and 3.7, 0 < CM1,M2 ≤ 1, CM1,M1 > 0 and CM2,M2 > 0. Then, dDNA > 0.

(ii) By Corollary 3.6, dDNA(M1,M1) = 1.

(iii) By Definition 3.5, dDNA(M1,M2) = CM1 ,M2√
CM1 ,M1×CM2 ,M2

=
CM2 ,M1√

CM2 ,M2×CM1 ,M1

= dDNA(M2,M1).

(iv) Since |M1| ≥ CM1(xi), |M2| ≥ CM2(yi) and |M3| ≥ CM3(zi), then, by Definition 3.5, CM1,M2 =
1

|M1 ||M2 |∑
xi∈M1,yi∈M2

C(xi)C(yi), CM2,M3 =
1

|M2 ||M3 |

∑
zi∈M3,yi∈M2

C(zi)C(yi) and CM1,M3 =
1

|M1 ||M3 |

∑
xi∈M1,zi∈M3

C(xi)C(zi). To

prove that dDNA(M1,M3) + dDNA(M3,M2) ≥ dDNA(M1,M2), it is sufficient to prove that CM1 ,M2√
CM1 ,M1×CM2 ,M2

≤
CM1 ,M3√

CM1 ,M1×CM3 ,M3

+
CM3 ,M2√

CM3 ,M3×CM2 ,M2

. Since CM1,M3+ CM3,M2 =
1

|M1 ||M3 |

∑
xi∈M1,zi∈M3

C(xi)C(zi)+ 1
|M3 ||M2 |∑

zi∈M3,yi∈M2

C(zi)C(yi) = 1
|M2 ||M1 ||M3 |

|M2|
∑

xi∈M1,zi∈M3

C(xi)C(zi)+ 1
|M1 ||M3 ||M2 |

|M1|
∑

zi∈M3,yi∈M2

C(zi)C(yi) ≥

1
|M2 ||M1 ||M3 |

|M2|
∑

xi∈M1,zi∈M3

C(xi)C(zi) ≥ 1
|M2 ||M1 ||M3 |

∑
yi∈M2

C(yi)
∑

xi∈M1,zi∈M3

C(xi)C(zi) ≥ 1
|M1 ||M2 |∑

xi∈M1,yi∈M2

C(xi)C(yi) = CM1,M2 , where |M2||M1| ≤
∑

(C(xi))2 ×
∑

(C(yi))2, |M2||M3| ≤
∑

(C(yi))2 ×
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∑
(C(zi))2, |M3||M1| ≤

∑
(C(zi))2 ×

∑
(C(xi))2,|M2||M1| ≥

√∑
(C(xi))2 ×

∑
(C(yi))2, |M2||M3| ≥√∑

(C(yi))2 ×
∑

(C(zi))2 and |M3||M1| ≥
√∑

(C(zi))2 ×
∑

(C(xi))2. Therefore, |M2||M1| ≥
√
|M2||M1|

≥
√

CM1,M1 ×CM2,M2 . □

Remark 3.12. We can call the function dDNA a DNA metric space.

Remark 3.13. Theorem 3.11 satisfies the condition of Łkaszyk-Karmowski distance.

Proposition 3.14. The distance function 1 − dDNA is a metric space.

Proof. Refer to Theorem 3.11. □

Theorem 3.15. If dDNA(M1,M2) =1, then there is no mutation.

Proof. Let M1 = {n1/G, n2/A, n3/T, n4/C}, M2 = {m1/C,m2/T,m3/A,m4/G} and dDNA(M1,M2) =1.
Then, by Theorem 3.11, we get that dDNA(M1,M2) = 1 = CM1 ,M2√

CM1 ,M1×CM2 ,M2

. Then, CM1,M2 =
√

CM1,M1

implies that C2
M1,M2

= CM1,M1 × CM2,M2 . Using Definition 3.5, (n1m1 + n2m2 + n3m3 + n4m4)2= (n2
1 + n2

2 +

n2
3 + n2

4) · (m2
1 + m2

2 + m2
3 + m2

4). Then, n1 = λm1, n2 = λm2, n3 = λm3 and n4 = λm4. So, if λ = 1, then
n1 = m1, n2 = m2, n3 = m3 and n4 = m4. This means that there is no mutation. □

Corollary 3.16. From Theorem 3.15, we have that dDNA(M1,M2) , 1; then, there is a mutation.

We present the MSC code in the Appendix as an algorithm which is used to generate multisets,
relations and a metric space between M1 and M2. Some examples are given to illustrate the proposed
results and MSC code algorithm.

Example 3.17. Arabidopsis thaliana gamma-glutamylcysteine synthetase gene (abbr. CAD2) [44]
Tair Accession: 1005028114.
GenBank Accession: AF068299.
Sequence Length 5277.

5
′

ATCGAT ATGT AACACAAT · · · TGT ATGTTTTT 3
′

;
3
′

T AGCT AT ACATTGTGTT A · · · ACAT ACAAAAA 5
′

. Using the MSC code algorithm, we have
M1 = {

1019
G ,

1543
A ,

1859
T ,

856
C }, |M1| = 5277;

M2 = {
1019

C ,
1543

T ,
1859

A ,
856
G }, |M2| = 5277.

The distance between M1 and M2 equals 1 (no mutation). The relation between M1 and M2

according to their MSC code, is described in Table 1. The relation between M1 and M2 is
R = {(1859

T ,
1859

A ), ( 1543
A ,

1543
T ), ( 1019

G ,
1019

C ), ( 856
C ,

856
G )}. This relation indicates no mutation.

Table 1. Bonding between nucleotides.

A T C G

A 0 1859 0 0
T 1543 0 0 0
C 0 0 0 1019
G 0 0 856 0

Example 3.18. If we do a mutation in CAD2 [44] in Example 3.1. Using the MSC code algorithm, we
have M1 = {

1014
G ,

1539
A ,

1859
T ,

860
C }, |M1| = 5272; M2 = {

1014
C ,

1543
T ,

1859
A ,

856
G }, |M2| = 5272.

AIMS Mathematics Volume 8, Issue 8, 19275–19296.
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The distance between M1 and M2 equals 0.9999979580282978 according to the MSC code; the
result was a mutation and this corresponds to data reported by the National Center for Biotechnology
Information (NCBI) [44]. The position of the mutation is

[2568, 2578, 2595, 2609, 2639, 5076];

[C, T, , C, C, , G, C];

[T, T, C, T, A, T ].
The amino acid resulting from the mutation is presented in Table 2. The relation between M1 and M2 is
outlined in Table 2. The relation between M1 and M2 is R = {( 1

G ,
1
A ), ( 1

T ,
1
T ), ( 3

C ,
3
T ), ( 1

C ,
1
C ), (1539

A ,
1539

T ),
( 1858

T ,
1858

A ), ( 1013
G ,

1013
C ), ( 856

C ,
856
G )} according to their MSC code as described in Table 3. This relation

indicates a mutation.

Table 2. The amino acid formula.

5
′

· · · 3
′

= M1 3
′

· · · 5
′

= M2 Amino acid 5
′

· · · 3
′

= M1 Amino acid 3
′

· · · 5
′

= M2 Position

0 T C ATT TAC 2568
1 T T TTA TAT 2578
2 C C TGC ACC 2595
3 T C TTT ACA 2609
4 A G AAA TGT 2639
5 T C ATT TAC 5076

Table 3. Bonding between nucleotides.

A T C G

A 0 1858 0 1
T 1539 1 3 0
C 0 0 1 1013
G 0 0 856 0

Corollary 3.19. From Theorem 3.15, the relation will be R = {(n1/G, n1/C)/n1n1, (n2/A, n2/T )/n2n2,

(n3/T, n3/A)/n3n3, (n4/C, n4/G)/n4n4}.

Proposition 3.20. Let R be a relation between DNA multisets M1 and M2. Then, if R is either reflexive
or transitive, then there is a mutation.

Proof. Suppose that M1 = {
n1
x : x ∈ {A,T,G,C}, where n1 is the number occurrences of {x} =

{n1/G, n2/A, n3/T, n4/C}, M2 =
m1
y : y ∈ {A,T,G,C}, where m1 is the number occurrences of

{y} = {m1/C,m2/T,m3/A,m4/G} and R = {(m
x ,

n
y )} : x ∈m M1, y ∈n M2}. Then, every C is linked with G.

On the other side, A is linked with T ≡ U. Otherwise, a mutation will be occurred. □

4. Topological structures of DNA mutations

In the study of the congruence and determination of the presence of mutations between DNA
sequences, we have four bases {A,T,G,C}; thus, we have the 12 mutation rates A → C, A → G, · · · ,

AIMS Mathematics Volume 8, Issue 8, 19275–19296.
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T → G at a particular site. In the study of the similarity between the DNA sequences, we have 12
difference rates A → T , A → G, · · · , T → A at a particular site. We can use these rates to study
SARS-CoV-2 through the mutation of its genes. So, our study can yield a model of the pattern of
mutations in SARS-CoV-2 and the alternative model for the mutations that occur in SARS- CoV-2
can be developed. If the length ni, j > 0, then we suggest S i = {A,T,C,G}, which has more than an
average likelihood of linking to S j. For each i = 1, · · · , 4, define Ri = S i ∪ S j, ni, j > 0. The collection
R0 = {Ri}

4
i is not itself a topology, but we extend it to one, defining 0 to be a minimal topological

structure on genotypes containing R0. The topological space τ0 will be generated by a basis induced
by a finite intersection of the sets in R0. The topological structure is referred as a mutation space and
is called a mutation topological structure.

In this section, we use the proposed MSC code algorithm, the following definition is given.

Definition 4.1. Let X be the set of nucleotides of a DNA sequence such that X = {A,T,G,C}, and let
there exist a bonding between xi,MS Cy j in X, referred to as n(xi, y j) , 0. Otherwise, n(xi, y j) = 0.

Definition 4.2. Let X be the set of nucleotides of a DNA sequence. Define a relation R∗ = {(x, y) :
n(x, y) , 0, x, y ∈ X}.

We state some properties for the cases of mutations and no mutation.
(i) If there is no mutations, then

• R∗ is not reflexive,
• R∗ is symmetric,
• R∗ is transitive.

(ii) If there is a mutation, then R∗ may be reflexive, symmetric and transitive.

Example 4.3. NM 000518.4 Homo sapiens hemoglobin subunit beta (abbr. HBB), mRNA [44]
sequence: HBB gene range: 1 to 626;
5
′

ACATTTGCTT · · ·CATTGC 3
′

;
3
′

TGT AAACGAA · · ·GT AACG 5
′

;
M1 = {

157
G ,

167
A ,

137
T ,

165
C }, |M1| = 626;

M2 = {
157
C ,

167
T ,

137
A ,

165
G }, |M2| = 626.

The relation between M1 and M2 according to the MSC code is described in Tables 4 and 5. R∗ =
{(T, A), (A,T ), (G,C), (C,G)}. This relation indicates no mutation and is consistent with the report by
the NCBI [44].

Table 4. Bonding between nucleotides.

A T C G

A 0 137 0 0
T 167 0 0 0
C 0 0 0 157
G 0 0 165 0

AIMS Mathematics Volume 8, Issue 8, 19275–19296.
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Table 5. Relation between nucleotides for ni, j , 0.

A T C G

A -
√

- -
T

√
- - -

C - - -
√

G - -
√

-

Example 4.4. If we do a mutation in CAD2, then M1 = {
1012

G ,
1541

A ,
1856

T ,
856
C }, |M1| = 5265, and M2 =

{ 1012
C ,

1540
T ,

1858
A ,

855
G }, |M2| = 5265. The position of the mutation [17, 686, 5073] is [G, C, A] and

[A, A, C]. The amino acid which results from the mutation is presented in Table 6. The distance
between M1 and M2 equals 0.999999362175112, according to the MSC code. The relation between
M1 and M2 according to the MSC code, is described in Tables 7 and 8. R∗ = {(T, A), (C, A), (G, A),
(A,T ), (A,C), (G,C), (C,G)}. So, there is a mutation.

Table 6. The amino acid formula.

5
′

· · · 3
′

3
′

· · · 5
′

Amino acid 5
′

· · · 3
′

Amino acid 3
′

· · · 5
′

Position

0 G A AGA TAT 17
1 C A TCT AAA 686
2 A C ACA TGC 5073

Table 7. Relation between nucleotides.

A T C G

A 0 1856 1 1
T 1540 0 0 0
C 1 0 0 1011
G 0 0 855 0

Table 8. Relation between nucleotides for ni, j , 0.

A T C G

A -
√ √ √

T
√

- - -
C

√
- -

√

G - -
√

-

Next, a topological structure will be defined in terms of R∗.

Definition 4.5. Let R∗ be a relation on X. Define a subbase S = {xR∗ : x ∈ X} for some topology τDNA

on X.

AIMS Mathematics Volume 8, Issue 8, 19275–19296.
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Example 4.6. (continued from Example 4.3) S = {AR∗, TR∗, CR∗, GR∗} = S = {{A}, {T }, {C}, {G}}.
Then, the base β will be {X, {A}, {T }, {C}, {G}} and τDNA = {X, ϕ, {A}, {T }, {C}, {G}, {A,T }, {T,C}, {C,G},
{G, A}, {A,C}, {T,G}, {A,T,C}, {A,T,G}, {T,C,G}, {A,G,C}}. Therefore, this space is discrete. This
means that, if every subset of X = {A,T,C,G} is open and closed, then there is no mutation.

Example 4.7. (continued from Example 4.4) S = {{T,C}, {A}, {A,G}, {A,C}}. Therefore, a base β = {X,
{T,C}, {A}, {A,G}, {A,C}, {C}} and τDNA = {X, ϕ, {T,C}, {A}, {A,G}, {A,C}, {C}, {A,T,C}, {A,C,G}} ≡
general topology.

Now, the existence of a mutation will be determined based on the type of topological structure.

Proposition 4.8. If the DNA sequence has a mutation, then the generated topology is a general
topological structure.

Proof. Let τDNA be a class of sets on X generated by the mutation of DNA sequences. Consider that
τDNA = {G : G =

⋃
i(
⋂n

j Ai j), Ai j ∈ S } is a class of sets of X. Now, it is sufficient to prove that τDNA is a
topological structure.

(i) ∩n
j∈ϕAi j = X ∈ τDNA and

⋃
i∈ϕ(
⋂n

j Ai j) = ϕ ∈ τDNA.

(ii) G1,G2, · · ·Gn ∈ τDNA; then, G1 =
⋃

i1(
⋂n

j1 Ai1 j1
), G2 =

⋃
i2(
⋂n

j2 Ai2 j2
), · · · ,Gn =

⋃
in(
⋂n

jn Ain jn
).

G1 ∩G2 ∩ · · · ∩Gn =
⋃

i1,i2···in(
n⋂
j1

Ai1 j1
) ∩

n⋂
j2

Ai2 j2
∩ · · · ∩

⋃
in
⋂n

jn Ain jn
) =
⋃

i1,i2,·,in(
n⋂
k1

Bk1 jk), where Bk jk =

Ai1 j1∩Ai2 j2∩· · ·∩Ain jn . Since each Ai1 j1 , Ai2 j2 · · · Ain jn ∈ S , Bk jk ∈ β; therefore, G1∩G2∩· · ·∩Gn ∈ τDNA.

(ii) G1,G2, · · ·Gn · · · ∈ τDNA; then, G1∪G2∪· · ·∪Gn∪· · · =
⋃

i1,i2···in
(

n⋂
j1

Ai1 j1 ∪
n⋂
j2

Ai2 j2 ∪ · · · ∪
⋃

in

n⋂
jn

Ain jn
∪

· · · ). Hence, G1 ∪G2 ∪ · · · ∪Gn ∪ · · · ∈ τDNA. □

Proposition 4.9. If there is no mutation in DNA, then τDNA is a discrete topology.

Proof. Suppose that the DNA sequence has no mutation. Then, n(x, x) = 0 and n(x, y) , 0 ∀ x, y ∈ X.
Hence, xR∗ = {{y} : ∀ y ∈ X}. This means that A → T , C → G, T → A, G → C. So, S = {{y} : y ∈ X}.
Therefore, τDNA is discrete. □

The converse of Proposition 4.9 may not be true, in general.

Example 4.10. S = {{T }, {A}, {C,G}, {C}} is a subbase for a discrete topological structure. But, there
is a mutation because G is bonded with C.

Example 4.11. Let a DNA sequence be 5
′

ACGT 3
′

and 3
′

GATC 5
′

. Then, S = {{G}, {A}, {T }, {C}}
and τDNA is a discrete topology. But, there is a mutation, as no gene consists of only four nucleotides
(length 4 only or a little more); the length of a gene is measured in kilobytes.

Corollary 4.12. If the topological structure generated from the DNA sequences has
(1)- a general topological structure, then there is a mutation;
(2)- a discrete topology, then there may or may not be a mutation. We use Theorem 3.15,

Corollary 3.16 and Proposition 3.20 to figure out if there is a mutation.
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5. Mutations by similarity of genes based on the association indices and multisets

Bass et al. [6] provided an overview of commonly used association indices, including the Jaccard
index and the Pearson correlation coefficient, and compared their performance on different types of
analysis for a biological network. An association index is a measure that quantifies interaction profile
similarity. They discussed the differences and similarities between association indices. There exist
many association indices:
(i) The Jaccard index: JAB =

|NA∩NB|

|NA∪NB|
;

(ii) The Simpson index: S AB =
|NA∩NB|

Min{|NA |,|NB|}
;

(iii) The geometric index: GAB =
|NA∩NB|

2

|NA |.|NB|
;

(iv) The cosine index: CAB =
|NA∩NB|√
|NA·NB|

.
We apply association indices to determine whether there is a mutation by calculating the association
indices for each pair of nucleotides {A,T,G,C} of the gene. If the associations are zero, there is no
mutation; otherwise, there is a mutation.

Example 5.1. (continued from Example 4.3)
e1 = 167 = e5, e2 = 157 = e7, e3 = 165 = e6, e4 = 137 = e8.

Let X-type = {A}, Y-type = {T }.
Then, we have the following:

Jaccard= 0
2 = 0, Simpson =0

1 = 0, Geometric =0
1 = 0, Cosine =0

1 = 0. Then, Jaccard= Simpson=
Geometric= Cosine= 0. This is for all nucleotides {A,T,G,C}. Hence, there is no mutation. This is
shown in Figures 1–3.

A G C T

A G C T

A G C T

e1

e2

e3

e4

e5

e6

e7

e8

Figure 1. Relations between the nucleotides of HBB gene.
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A G C T

. . . .

A G C T

Figure 2. The graph depicts the associations within a nucleotide of the HBB gene.

A

. . . .

T

Figure 3. Relation between nucleotides of X-type and Y-type of HBB gene.

Example 5.2. (continued from Example 4.4)
Let X-type = {A},Y-type= {G}.

Since e1 = 1540 = e5, e2 = 1011 = e7, e3 = 855 = e6 and e4 = 1856 = e8, e9 = 1 = e12, e10 = 1 = e13

and e11 = 1 = e14, we have the following:
Jaccard= 1

2 ,
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Simpson= 1
1 ,

Geometric= 1
2 ,

Cosine= 1
√

2
.

Then, Jaccard, Simpson, Geometric and Cosine , 0. This is for all nucleotides A,T,G,C. Hence, there
is a mutation. This is shown in Figures 4–7.

A G C T

A G C T

A G C T

e1

e2

e3e4

e5

e6

e7

e8

e9

e10
e11

e12

e13
e14

Figure 4. Relations between the nucleotides of a CAD2 gene.

A G C T

. . . .

A G C T

Figure 5. The associations within a nucleotide of a CAD2 gene.
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A

C T

G

e1

e6

e9

Figure 6. Relations between the nucleotides A,G in a CAD2 gene.

A

. . . .

G

Figure 7. Relation between the nucleotides of X-type and Y-type in CAD2 gene.

Note that the degree of a node A, say, |NA|, is defined as the number of nodes with which it interacts
and |NA∩NB| is the shared partners. Biological processes are implemented through complex interaction
networks. Metrics known as association indices can be used to quantify the similarity between genes
through the use of a multiset. So, |NA| is the cardinality of a multiset M. Then, the similarity association
indices become

MJAB =
|NA∩NB|

|NA∪NB|
, MS AB =

|NA∩NB|

Min{|NA |,|NB|}
, MGAB =

|NA∩NB|
2

|NA |·|NB
and MCAB =

|NA∩NB|√
|NA |·|NB|

.
The dissimilarity association indices are as follows
M ∗ JAB = 1− |NA∩NB|

|NA∪NB|
, M ∗ S AB = 1− |NA∩NB|

Min{|NA |,|NB|}
, M ∗GAB = 1− |NA∩NB|

2

|NA |·|NB
and M ∗GAB = 1− |NA∩NB|√

|NA |·|NB|
.

Remark 5.3. (i) MAB ≥ MAB.
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(ii) If |NA| = |NB|, then MAB = MAB.

Theorem 5.4. The similarity association indices are DNA metric spaces.

Theorem 5.5. The dissimilarity association indices are metric spaces.

Example 5.6. (continued from Example 5.1)
Let X-type = {A}, Y-type = {T }; also, e1, e8 and e8 = 137.

NA = {
e1
T , }, NB = {

e8
A }.

Jaccard= 0
304 = 0,

Simpson = 0
137 = 0,

Geometric = 0
22879 = 0,

Cosine = 0
151.26 = 0,

Then, Jaccard= Simpson= Geometric= Cosine= 0. This is for all nucleotides {A,T,G,C} since e1 =

1540 = e5, e2 = 1011 = e7, e3 = 855 = e6 and e4 = 1856 = e8, e9 = 1 = e12, e10 = 1 = e13;
e11 = 1 = e14. Hence, there is no mutation. This is shown in Figure 8.

A

A G C T

T

e1

e8

Figure 8. Relation between the nucleotides A,T in a CAD2 gene.

Example 5.7. (continued from Example 5.2)
Let X-type= {A}, Y-type= {G}, e1 = 1540, e6 = 855 and e9= 1. NA = {

e1
T ,

e9
C }, NB = {

e6
C }.

MJAB =
|NA∩NB|

|NA∪NB|
=
|{

e1
T ,

e9
C }∩{

e6
C }|

|NA∪NB|
=

|min{e9,e6}|

|max{{e6,e9},e1}
=
|{e9}|

|{e6,e1}
= 1

2395 , 0,
MS AB =

|NA∩NB|

Min{|NA |,|NB|}
, 0,

MGAB =
|NA∩NB|

2

|NA |·|NB
, 0,

MCAB =
|NA∩NB|√
|NA |·|NB|

, 0. Additionally, e1 = 1540 = e5, e2 = 1011 = e7, e3 = 855 = e6; e4 = 1856 = e8,
e9 = 1 = e12, e10 = 1 = e13 and e11 = 1 = e14.
Then, Jaccard= Simpson= Geometric= Cosine , 0. This is for all nucleotides {A,T,G,C}. Hence,
there is a mutation. This is shown in Figure 9.
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A

C T

G

e1

e6

e9

Figure 9. Relation between the nucleotides of X-type = A, Y-type = G in a CAD2 gene.

Example 5.8. (A similarity and dissimilarity between the sequences of DNA)
Let GAT ACCCCCCGG, GAT ACGACCCGG, GAT ACGCCCCGG, CAT ACGACTCGG and
GAT AGACTCGG be five sequences for DNA. Then, A = { 3

G ,
2
A ,

1
T ,

6
C }, |A| = 12, B = { 4

C ,
1
T ,

3
A ,

4
G },

|B| = 12, C = { 5
C ,

1
T ,

2
A ,

4
G }, |C| = 12, D = { 4

C ,
2
T ,

3
A ,

3
G }, |D| = 12 and E = { 3

C ,
2
T ,

3
A ,

4
G }, |E| = 12. Hence,

M∗J(AB) = 0.286, M∗G(AB) = 0.306, M∗C(AB) = 0.17, M∗S (AB) = 0.17, M∗J(AC) = 0.154,
M∗G(AC) = 0.16, M∗C(AC) = 0.084, M∗S (AC) = 0.084, M∗J(AD) = 0.286, M∗G(AD) = 0.306,
M∗C(AD) = 0.167, M∗S (AD) = 0.17, M∗J(AE) = 0.4, M∗G(AE) = 0.438, M∗C(AE) = 0.25 and
M∗S (AE) = 0.25. But, the balance of dissimilarity is (A, A) = 0, (A, B) = 0.17 ,(A,C) = 0.08,
(A,D) = 0.33 and (A, E) = 0.25, according to the NCBI [44]. By matching the results of the
association indices with the reports from the NCBI, it was found that the association indices M∗C and
M∗S are the best.

6. Conclusions and discussion

The complicated DNA research has become easier by using topology. Recently, many topologists
found new methods to examine the mutations of DNA by using a combination of multiset topology and
graph theory. Moreover, our presented results for repairing compatibility between the mathematical
methods and biological solutions. In addition, we give a decision of mutation that is dependent on
the metrics between two sequences of a gene and the topological structure derived from the relations.
In the future, we can benefit from mutations by applying them end epidemics and in the fields of
industry and agriculture. We have studied and identified mutations and showed how to make new
ones, including how to fix mutations and apply Mathematica to construct models. Consequently, they
are very significant in decision-making [25, 40–42]. The introduced techniques are very useful in
application because they pave the way for more topological applications for real-life problems. We also
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have an interesting application of our approaches to DNA sequences. The study of similarity between
DNA sequences will be used to solve problems related to diseases and viruses, such as COVID-19 [16],
which is an important example of mutations nowadays.
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Appendix: MSC code

[caption=Read the data from files and print the length of each DNA sequence,

label ={Read}, language=python]

import pandas as pd

m1 = pd.read_csv(’M1.txt’, header = None)

M2 = pd.read_csv(’M2.txt’, header = None)
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print (len(M1.values[0][0]))

print (len(M2.values[0][0]))

output

[caption=Mh_dna is a function to count A,T,G,C and distance function

to calculate distance, label ={Mh_dna} , language=python] import

math def Mh_dna(x):

count_a=0

count_t=0

count_g=0

count_c=0

for i in x:

if i ==’A’:

count_a=count_a+1

if i ==’T’:

count_t=count_t+1

if i ==’G’:

count_g=count_g+1

if i ==’C’:

count_c=count_c+1

return count_a,count_t,count_g,count_c

def distance(M1,M2):

#n2=no(A), n3=no(T),n1=no(G),n4=no(C)

#m3=no(A), m2=no(T),m4=no(G),m1=no(C)

n2,n3,n1,n4= Mh_dna(M1)

m3,m2,m4,m1= Mh_dna(M2)

C_aa=n2**2+n3**2+n1**2+n4**2

C_bb=m2**2+m3**2+m1**2+m4**2

C_ab=n1*m1+n2*m2+n3*m3+n4*m4

dist= C_ab/math.sqrt(C_aa* C_bb)

return dist

def sequence_IDENTICAL(seq_a, seq_b):

len1 = len(seq_a)

len2 = len(seq_b)

mismatches = []

for pos in range (0, min(len1, len2)) :

if seq_a[pos] != seq_b[pos]:

mismatches.append(’|’)

else:

mismatches.append(’ ’)
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print (seq_a)

print ("".join(mismatches))

print (seq_b)

def seq_count_pair(seq_a, seq_b):

len1 = len(seq_a)

len2 = len(seq_b)

columns=[’A’,’T’,’C’,’G’]

index =[’A’,’T’,’C’,’G’]

df = pd.DataFrame(0,columns=columns,index=index)

for pos in range (0, min(len1, len2)):

for i,j in enumerate(columns):

if (seq_a[pos] == columns[i] and seq_b[pos] == columns[0]):

k=columns[0]

df[j][k]=df[j][k]+1

elif(seq_a[pos] == columns[i] and seq_b[pos] == columns[1]):

k=columns[1]

df[j][k]=df[j][k]+1

elif(seq_a[pos] == columns[i] and seq_b[pos] == columns[2]):

k=columns[2]

df[j][k]=df[j][k]+1

elif(seq_a[pos] == columns[i] and seq_b[pos] == columns[3]):

k=columns[3]

df[j][k]=df[j][k]+1

return df

def sequence_complement(seq_a, seq_b):

len1 = len(seq_a)

len2 = len(seq_b)

i=[]

mismatches = []

for pos in range (0, min(len1, len2)) :

if ((seq_a[pos] == ’A’ and seq_b[pos] == ’T’)

or(seq_a[pos] == ’T’ and seq_b[pos] == ’A’)

or(seq_a[pos] == ’G’ and seq_b[pos] == ’C’)

or(seq_a[pos] == ’C’ and seq_b[pos] == ’G’)):

mismatches.append(’’)

else:

i.append(pos)

if(len(i)>0):

x=[seq_a[j] for j in i]

y=[seq_b[j] for j in i]
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print(i)

print (x)

print (y)

kg=[]

kg2=[]

for k1 in i:

if k1%3==0:

k2=str(seq_a[k1-2]+seq_a[k1-1]+seq_a[k1])

k3=str(seq_b[k1-2]+seq_b[k1-1]+seq_b[k1])

kg.append(k2)

kg2.append(k3)

elif k1%3==1:

k2=str(seq_a[k1]+seq_a[k1+1]+seq_a[k1+2])

k3=str(seq_b[k1]+seq_b[k1+1]+seq_b[k1+2])

kg.append(k2)

kg2.append(k3)

elif k1%3==2:

k2=str(seq_a[k1-1]+seq_a[k1]+seq_a[k1+1])

k3=str(seq_b[k1-1]+seq_b[k1]+seq_b[k1+1])

kg.append(k2)

kg2.append(k3)

return i,x,y,kg,kg2

import pandas as pd

M1 = pd.read_csv(’M1.txt’, header = None)

M2 = pd.read_csv(’M2.txt’, header = None)

print (len(M1.values[0][0]))

print (len(M2.values[0][0]))

M11=M1.values[0][0] n2,n3,n1,n4= Mh_dna(M11)

print("M1: count A=",n2,"count T=",n3,"count G=",n1,"count C=",n4)

M22=M2.values[0][0] m3,m2,m4,m1= Mh_dna(M22)

print("M2: count A=",m3,"count T=",m2,"count

G=",m4,"count C=",m1)

t=distance(M11,M22) print(’distance= ’,t)
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df_p=seq_count_pair(M11,M22)

i,x,y,kg,kg2=sequence_complement(M11,M22)

df2 = pd.DataFrame({’Position’:i,’M1’:x,’M2’:y,

’Amino acid M1’:kg,’Amino acid M2’:kg2})

columns=[’A’,’T’,’C’,’G’]

index =[’A’,’T’,’C’,’G’]

df = pd.DataFrame(0,columns=columns,index=index)
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