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rationality, efficiency and applicability of these operators.

Keywords: complex fuzzy credibility set; bipolar fuzzy set; bipolar complex fuzzy credibility sets;
aggregation operators
Mathematics Subject Classification: 03E72, 47S40

1. Introduction

In today’s culture, scientific and technological advances have resulted in scientific and technological
discoveries that have decreased the complications in our daily lives. Yet, despite scientific progress
that has made life easier, some concerns, such as decision making (DM), remain complicated. DM,
particularly multi-criteria group decision making (MCGDM), has been widely adopted in a variety of
sectors where traditional methods have failed in recent years. As in real life, information is usually
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uncertain, and as information becomes more complex, additional solutions are required. In 1965,
Zadeh [35] invented the concept of a fuzzy set (FS). Fuzzy set is a remarkable performance with
numerous uses. An FS is defined by its membership degree (MD) for any value between 0 and 1.
Atanassov expanded fuzzy set and defined intuitionistic fuzzy set (IFS) in [1]. An IFS is defined by
two functions and expressed as and for each element of fixed set on the closed-interval 0 to 1, as well
as their sum in the range. Xiao et al. [34] developed a q-rung orthopair fuzzy decision-making model
with new score function and best-worst method for manufacturer selection. Xiao et al. [33] suggested
an integrated risk assessment method using Z-fuzzy clouds and generalized TODIM.

In the complex fuzzy set (CFS), an upgraded variety of the classical fuzzy set can be utilized to
handle fuzziness information). A complex fuzzy value may deal with information in two ways, since
it has both a phase and an amplitude term. Ramot et al. [29] describe the basic operations for CFS.
Merigó et al. [23], for example, offer a complicated fuzzy generalized aggregate operator (AO) and
describe their applicability in DM. Hu et al. [14,15] shows that CFSs now has approximate paralleling
and orthogonality relations. Zhang et al. [37] present the concept of δ-equalities amongst CFSs. Dai
et al. [8,16], Alkouri and Salleh [3] provide CFS distance measurements have been defined. Bi et al. [7]
proposed new entropy measure classes in CFSs. Liu et al. [21] defined distance between CFSs, their
cross-entropy, and their application in DM are all measured. Dai [9] extended rotational in variance to
CF operations. Ma et al. [22] provide CFS was defined as a concept for handling problems with many
periodic factors. Several CFS applications have been investigated for various intellectuals, such as
neighborhood operators Mahmood [24]. Huang et al. [17] developed an assessment and prioritization
method of key engineering characteristics for complex products based on cloud rough numbers. Further
information on CFSs can be found in [4, 5, 31].

The CFSs may only define complex-valued grades for positive membership functions and cannot
express complex-valued grades for negative membership grades (NMG), as it is limited in their
application. Alkouri et al. [2] proposed the CIFSs structure, which includes mainly two complex
membership functions that express an element’s positive and NMD. Greenfield et al. [10] introduced
the definition of complex interval-valued fuzzy set (CIVFS), which clearly enhanced the paradigm
of interval-valued fuzzy sets and helped to conceptualize CFSs. Kumar and Bajaj defined complex
intuitionistic fuzzy soft sets with distance measurements and entropy in [20]. Garg and Rani [12]
presented some generalized CIF aggregation operations and their application to the MCDM process.
Garg and Rani created a strong correlation coefficient measure of CIFSs and its applications in
decision-making. Rani and Garg defined CIF power aggregation operators and their applications in
MCDM in [30]. Garg and Rani are the first to suggest a power aggregation operator and a ranking
method for CIFSs, as well as their use in decision making. Garg and Rani [11] proposed generalized
AOs for CIFS based on t-norm methods and discussed some of their DM applications. Huang et al. [18]
proposed a design alternative assessment and selection: a novel Z-cloud rough number-based BWM-
MABAC model.

We know that the CFS theory discussed just a supporting grade while leaving out the grade of
negative supporting grade, and as a result, various issues have emerged in many cases. For this,
Mahmood and Rehman [25] modified the theory of CFS and diagnosed the mathematical form of
bipolar CFS (BCFS) with a terminology represented by positive and negative supporting grades in the
shape of complex numbers, with real and imaginary parts belonging to the unit intervals [0,1] and [-
1,0]. Gao et al. [13] developed dual hesitant bipolar fuzzy Hamacher aggregation operators and their
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applications to MADM. Limited number of researchers produced numerous applications, such as the
Hamacher aggregation information examined by Mahmood et al. [26]. Also, Wei et al. [32] defined a
bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. Additionally,
Mahmood and Rehman [27] proposed the core theory of Dombi operators based on BCFS. Jana
et al. [19] proposed bipolar fuzzy Dombi prioritized aggregation operators in MADM.

The main motivation for this analysis is explained below:

(1) To define new operations for bipolar complex fuzzy credibility numbers (BCFCNs), and to
investigate properties these numbers. A BCFCN is superior that a bipolar complex fuzzy number
as it carries more comprehensive and reasonable information. Bipolar complex fuzzy credibility
numbers is the extension of bipolar complex fuzzy numbers to deal with two-sided contrasting
features, which can describe the information with a bipolar complex fuzzy number and an
credibility number simultaneously.

(2) A secondary objective of this paper is to introduce some fundamental operations on BCFCNs,
their key properties, and related significant results. Suggested operations are very helpful to
strengthen BCFCS theory.

(3) Since aggregation operators for bipolar complex fuzzy credibility numbers (BCFCNs) have not
been established so far, motivated by the above discussion, this paper presents novel averaging
and geometric aggregation operators under bipolar complex fuzzy credibility information are
proposed.

(4) An algorithm for new MCDM technique is developed based on proposed aggregation operators
using bipolar complex fuzzy credibility information. Proposed technique is also demonstrated by
a numerical illustration.

(5) To demonstrate the validity and capability of the proposed technique, conduct a comparative
examination of the developed operators with various current theories.

The framework of this study is as follows: Section 2 includes certain prevalent ideas such as
BCFCS, aggregation operator, and their operational laws. In Section 3, we employed the theory
of averaging/geometric aggregation operators to diagnose the well-known operators, such as bipolar
complex fuzzy credibility weighted average (BCFCWA), bipolar complex fuzzy credibility ordered
weighted average (BCFCOWA), bipolar complex fuzzy credibility hybrid average (BCFCHA), bipolar
complex fuzzy credibility weighted geometric (BCFCWG), bipolar complex fuzzy credibility ordered
weighted geometric (BCFCOWG), and bipolar complex fuzzy credibility hybrid geometric (BCFCHG)
operators, as well as analyses their strategic features and related outcomes. Section 4 proposes an
algorithm for multiple criteria group decision making utilizing stated operators. Then, a numerical
example of a case study of Hospital selection is discussed. In Section 5, we compared the described
operators to existing methodologies to demonstrate the validity and capabilities of the proposed
approach. Finally, write the study’s conclusion.

2. Preliminaries

The aim of this part is to present in a concise manner the preexisting basic definitions for CFS,
CIFS, BFC, BCFS and BCFCS.
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Definition 2.1. [28] A CFS C on Q (fixed set) is defined,

C = {〈ň, µC(ň)〉 |ň ∈ Q} , (2.1)

where µC : U → {z : z ∈ C, |z| ≤ 1} and µC(ň) = a + ib = χC(ň).e2πiΘC(ň). Here, χC(ň) =
√

a2 +K2 ∈ R
and χC(ň),ΘC(ň) ∈ [0, 1] , where i =

√
−1.

Definition 2.2. [2] A CIFS I on Q (fixed set) is define,

I = {〈ň, µI(ň), υI(ň)〉 |ň ∈ Q} , (2.2)

where µI : U → {z1 : z1 ∈ I, |z1| ≤ 1}, υI : U → {z2 : z2 ∈ I, |z2| ≤ 1}, such as µI(ň) = z1 = a1 + ib1

and υI(ň) = z2 = a2 + ib2, and 0 ≤ |z1| + |z2| ≤ 1 or µI(ň) = χI(ň).e2πiΘχI (ň) and υi(ň) = ξi(ň).e2πiΘξI (ň)

satisfy the conditions; 0 ≤ χI(ň) + ξI(ň) ≤ 1 and 0 ≤ ΘχI (ň) + ΘξI (ň) ≤ 1. The term HI(ň) = R.e2πiΘR , such
that R = 1 − (|z1| + |z2|) and ΘR(ň) = 1 −

(
ΘχI (ň) + ΘξI (ň)

)
be the hesitancy grade of Q. Furthermore,

I =
(
χ.e2πiΘχ , ξ.e2πiΘξ

)
indicate the complex intuitionistic fuzzy number (CIFN).

Definition 2.3. [36] A BFS K on Q (fixed set) is of the form,

K =
{〈

ň, µ+
K

(ň), µ−
K

(ň)
〉
|ň ∈ Q

}
, (2.3)

where, µ+
K

: Q→ [0, 1] and µ−
K

: Q→ [−1, 0].

Definition 2.4. [25] A BCFS K on Q (fixed set) is of the form,

K =
{〈

ň, µ+
K

(ň), µ−
K

(ň)
〉
|ň ∈ Q

}
, (2.4)

where, µ+
K

: Q→ [0, 1] + i[0, 1] and µ−
K

: Q→ [−1, 0] + i[−1, 0] is called membership degree. µ+
K

(ň) =

a+
K

(ň) + ib+
K

(ň) and µ−
K

(ň) = a−
K

(ň) + ib−
K

(ň) with a+
K

(ň), ib+
K

(ň) ∈ [0, 1] and a−
K

(ň), ib−
K

(ň) ∈ [−1, 0]. The
bipolar complex fuzzy number is represented by K =

(
a+
K

(ň) + ib+
K

(ň), a−
K

(ň) + ib−
K

(ň)
)
.

Definition 2.5. [6] A BCFCS K on Q (fixed set) is of the form,

K =
{〈

ň,
(
µ+
K

(ň), µ−
K

(ň)
)
,
(
υ+
K

(ň), υ−
K

(ň)
)〉
|ň ∈ Q

}
, (2.5)

where, µ+
K

: Q → [0, 1] + i[0, 1], υ+
K

: Q → [0, 1] + i[0, 1], µ−
K

: Q → [−1, 0] + i[−1, 0] and υ−
K

:
Q → [−1, 0] + i[−1, 0] as known as the MG and credibility degree. µ+

K
(ň) = a+

K
(ň) + ib+

K
(ň), υ+

K
(ň) =

c+
K

(ň) + id+
K

(ň), µ−
K

(ň) = a−
K

(ň) + ib−
K

(ň) and υ−
K

= c−
K

+ id−
K

with a+
K

(ň), ib+
K

(ň), c+
K

(ň), id+
K

(ň) ∈ [0, 1]
and a−

K
(ň), ib−

K
(ň), c−

K
(ň), id−

K
(ň) ∈ [−1, 0]. The bipolar complex fuzzy credibility number is represented

as, K =
(〈(

a+
K

+ ib+
K

)
,
(
a−
K

+ ib−
K

)〉
,
〈(

c+
K

+ id+
K

)
,
(
c−
K

+ id−
K

)〉)
.

Definition 2.6. For any two BCFCNs K1 =
(〈

a+
K1

+ ib+
K1
, a−
K1

+ ib−
K1

〉
,
〈
c+
K1

+ id+
K1
, c−
K1

+ id−
K1

〉)
and

K2 =
(〈

a+
K2

+ ib+
K2
, a−
K2

+ ib−
K2

〉
,
〈
c+
K2

+ id+
K2
, c−
K2

+ id−
K2

〉)
, and for any λ > 0. The following operation

are defined as

(1) K1 ⊕ K2 =


〈
a+
K1

+ a+
K2
− a+

K1
a+
K2

+ i
(
b+
K1

+ b+
K2
− b+

K1
b+
K2

)
,−

(
a−
K1

a−
K2

)
+ i

(
−

(
b−
K1

b−
K2

))〉
,〈

c+
K1

+ c+
K2
− c+

K1
c+
K2

+ i
(
c+
K1

+ c+
K2
− c+

K1
c+
K2

)
,−

(
c−
K1

c−
K2

)
+ i

(
−

(
d−
K1

d−
K2

))〉  ;
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(2) K1 ⊗ K2 =


〈(

a+
K1

a+
K2

)
+ i

(
b+
K1

b+
K2

)
, a−
K1

+ a−
K2
− a−

K1
a−
K2

+ i
(
b−
K1

+ b−
K2
− b−

K1
b−
K2

)〉〈(
c+
K1

c+
K2

)
+ i

(
d+
K1

d+
K2

)
, c−
K1

+ c−
K2
− c−

K1
c−
K2

+ i
(
c−
K1

+ c−
K2
− c−

K1
c−
K2

)〉  ;

(3) λK1 =


〈
1 −

(
1 − a+

K1

)λ
+ i

(
1 −

(
1 − b+

K1

)λ)
,−

(
a−
K1

)λ
+ i

(
−

(
b−
K1

)λ)〉〈
1 −

(
1 − c+

K1

)λ
+ i

(
1 −

(
1 − d+

K1

)λ)
,−

(
c−
K1

)λ
+ i

(
−

(
d−
K1

)λ)〉
 ;

(4) Kλ
1 =


〈(

a+
K1

)λ
+ i

(
b+
K1

)λ
,−1 +

(
1 + a+

K1

)λ
+ i

(
−1 +

(
1 + b+

K1

)λ)〉
,〈(

c+
K1

)λ
+ i

(
d+
K1

)λ
,−1 +

(
1 + c+

K1

)λ
+ i

(
−1 +

(
1 + d+

K1

)λ)〉
 .

Definition 2.7. Let K =
(〈

a+
K

+ ib+
K
, a−
K

+ ib−
K

〉
,
〈
c+
K

+ id+
K
, c−
K

+ id−
K

〉)
be the BCFCN. The score

function is defined as

S o(K) =
1
8

(
4 + a+

K
+ ib+

K
+ a−

K
+ ib−

K
+ c+

K
+ id+

K
+ c−

K
+ id−

K

)
. (2.6)

3. Bipolar complex fuzzy credibility average operator

Here, we are going to define some aggregation operators like, BCFCWA, BCFCOWA, and
BCFCHA operators.

3.1. Bipolar complex fuzzy credibility weighted average operator

Definition 3.1. Let Ki =
(〈

a+
Ki

+ ib+
Ki
, a−
Ki

+ ib−
Ki

〉
,
〈
c+
Ki

+ id+
Ki
, c−
Ki

+ id−
Ki

〉)
(i = 1, ..., n) be a set of

BCFCNs with the weights Φ = (Φ1, ...,Φn)T , such as
∑n

i=1 Φi = 1 and 0 ≤ Φi ≤ 1. Then, the BCFCWA
operator is obtain as

BCFCWA (K1, ...,Kn) =

n⊕
̂=1

Φ ̂K ̂, (3.1)

utilizing Definition 3.1, aggregated value for BCFCWA operator is shown in Theorem 3.2.

Theorem 3.2. Let K ̂ =
(
a+
K ̂

+ ib+
K ̂
, c+
K ̂

+ id+
K ̂
, a−
K ̂

+ ib−
K ̂
, c−
K ̂

+ id−
K ̂

)
( ̂ = 1, ..., n) be the set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then, BCFCWA
operator is obtained as

BCFCWA (K1, ...,Kn) =

n⊕
̂=1

Φ ̂K ̂

=


(
1 −

n∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c+

K ̂

)Φi
+ i

(
1 −

n∏̂
=1

(
1 − d+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
d−
K ̂

)Φ ̂

))
 . (3.2)

Proof. To prove this theorem, we used mathematical induction principle. As we know that

K1 ⊕ K2 =

n⊕
̂=2

Φ ̂K ̂
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and

Φ1K1 =


(
1 −

(
1 − a+

K1

)Φ1
+ i

(
1 −

(
1 − b+

K1

)Φ1
)
,−

(
a−
K1

)Φ1
+ i

(
−

(
b−
K1

)Φ1
))
,(

1 −
(
1 − c+

K1

)Φ1
+ i

(
1 −

(
1 − d+

K1

)Φ1
)
,−

(
c−
K1

)Φ1
+ i

(
−

(
d−
K1

)Φ1
))

 .
Let Eq (3.2) is true for n = 2. Then,

BCFCWA (K1,K2) =

2⊕
̂=1

Φ ̂K ̂

=


(
1 −

2∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

2∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

2∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−

2∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
2∏̂
=1

(
1 − c+

K ̂

)Φ ̂

+ i
(
1 −

2∏̂
=1

(
1 − d+

K ̂

)Φ ̂

)
,−

2∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−

2∏̂
=1

(
d−
K ̂

)Φ ̂

))
 .

The result hold for n = 2.
Now, let Eq (3.2) is true for n = τ. Then, we get

BCFCWA (K1, ...,Kn) =

n⊕
̂=1

Φ ̂K ̂

=


(
1 −

τ∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

τ∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

τ∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−

τ∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
τ∏̂
=1

(
1 − c+

K ̂

)Φ ̂

+ i
(
1 −

τ∏̂
=1

(
1 − d+

K ̂

)Φ ̂

)
,−

τ∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−

τ∏̂
=1

(
d−
K ̂

)Φ ̂

))
 .

Next, let Eq (3.2) is true for n = τ + 1,

BCFCWA (K1, ...,Kτ ⊕ Kτ+1) =

 τ⊕
̂=1

Φ ̂K ̂

 ⊕ (Φτ+1Kτ+1)

=


(
1 −

τ∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

τ∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

τ∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−

τ∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
τ∏̂
=1

(
1 − c+

K ̂

)Φ ̂

+ i
(
1 −

τ∏̂
=1

(
1 − d+

K ̂

)Φ ̂

)
,−

τ∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−

τ∏̂
=1

(
d−
K ̂

)Φ ̂

))


⊕


(
1 −

(
1 − a+

Kτ+1

)Φτ+1
+ i

(
1 −

(
1 − b+

Kτ+1

)Φτ+1
)
,−

(
a−
Kτ+1

)Φτ+1
+ i

(
−

(
b−
Kτ+1

)Φτ+1
))
,(

1 −
(
1 − c+

Kτ+1

)Φτ+1
+ i

(
1 −

(
1 − d+

Kτ+1

)Φτ+1
)
,−

(
c−
Ki

)Φτ+1
+ i

(
−

(
d−
Kτ+1

)Φτ+1
))



=


(
1 −

τ+1∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

τ+1∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

τ+1∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−
τ+1∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
τ+1∏̂
=1

(
1 − c+

K ̂

)Φ ̂

+ i
(
1 −

τ+1∏̂
=1

(
1 − d+

K ̂

)Φ ̂

)
,−

τ+1∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−
τ+1∏̂
=1

(
d−
K ̂

)Φ ̂

))
 ,

which show that Eq (3.2) true for n = τ + 1. Hence, the given result is hold for n ≥ 1.
The BCFCWA operator satisfied the following properties.
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Theorem 3.3 (Idempotency). Let K ̂ =
(
a+
K ̂

+ ib+
K ̂
, c+
K ̂

+ id+
K ̂
, a−
K ̂

+ ib−
K ̂
, c−
K ̂

+ id−
K ̂

)
( ̂ = 1, ..., n) be

the set of BCFCNs with weight vector Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then

BCFCWA(K1, ...,Kn) = K . (3.3)

Proof. As we know that;

BCFCWA (K1, ...,Kn) =

n⊕
̂=1

Φ ̂K ̂

=


(
1 −

n∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − d+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
d−
K ̂

)Φ ̂

))


(
1 −

(
1 − a+

K

)∑n
̂=1 Φ ̂

+ i
(
1 −

(
1 − b+

K

)∑n
̂=1 Φ ̂

)
,−

(
a−
K

)∑n
̂=1 Φ ̂

+ i
(
−

(
b−
K

)∑n
̂=1 Φ ̂

))
,(

1 −
(
1 − c+

K

)∑n
̂=1 Φ ̂

+ i
(
1 −

(
1 − d+

K

)∑n
̂=1 Φ ̂

)
,−

(
c−
K

)∑n
̂=1 Φ ̂

+ i
(
−

(
d−
K

)∑n
̂=1 Φ ̂

))


=
(〈

a+
K

+ ib+
K
, a−
K

+ ib−
K

〉
,
〈
c+
K

+ id+
K
, , c−
K

+ id−
K

〉)
= K .

Theorem 3.4 (Monotonicity). Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
and K /

i =(〈
a/+
K ̂

+ ib/+
K ̂
, a/−
K ̂

+ ib/−
K ̂

〉
,
〈
c/+
K ̂

+ id/+
K ̂
, c/−
K ̂

+ id/−
K ̂

〉)
( ̂ = 1, ..., n) be the set of BCFCNs with weight vector

Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, if a+
K ̂
≥ a/+

K ̂
, ib+
K ̂
≥ ib/+

K ̂
, ib−
K ̂
≤ ib/−

K ̂
, a−
K ̂
≤ a/−

K ̂
,

c+
K ̂
≥ c/+

K ̂
, id+
K ̂
≥ id/+

K ̂
, c−
K ̂
≤ c/−

K ̂
, and id−

K ̂
≤ id/−

K ̂
. Then,

BCFCWA(K1, ...,Kn) ≥ BCFCWA(K /
1 , ...,K

/
n). (3.4)

Proof. We know that a+
K ̂
≥ a/+

K ̂
, ib+
K ̂
≥ ib/+

K ̂
, ib−
K ̂
≤ ib/−

K ̂
, a−
K ̂
≤ a/−

K ̂
, c+
K ̂
≥ c/+

K ̂
, id+
K ̂
≥ id/+

K ̂
, c−
K ̂
≤ c/−

K ̂
,

and id−
K ̂
≤ id/−

K ̂
. Then,

1 − a+
K ̂

≤ 1 − a/+
K ̂

=⇒ 1 −
n∏
̂=1

(
1 − a+

K ̂

)Φ ̂

≥ 1 −
n∏
̂=1

(
1 − a/+

K ̂

)Φ ̂

.

And
n∏
̂=1

(
a−
K ̂

)Φ ̂

≤

n∏
̂=1

(
a−
K ̂

)Φ ̂

.

For imaginary part 1 − n∏
̂=1

(
1 − ib+

K ̂

)Φ ̂

 ≥
1 − n∏

̂=1

(
1 − ib+

K ̂

)Φ ̂

 .
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19247

And
n∏
̂=1

(
ib−
K ̂

)Φ ̂

≤

n∏
̂=1

(
ib−
K ̂

)Φ ̂

.

Similarly, we find for the credibility degree,

1 −
n∏
̂=1

(
1 − c+

K ̂

)Φ ̂

≥ 1 −
n∏
̂=1

(
1 − c/+

K ̂

)Φ ̂

and
n∏
̂=1

(
c−
K ̂

)Φ ̂

≤

n∏
̂=1

(
c−
K ̂

)Φ ̂

.

For imaginary part 1 − n∏
̂=1

(
1 − id+

K ̂

)Φ ̂

 ≥
1 − n∏

̂=1

(
1 − id+

K ̂

)Φ ̂

 .
And

n∏
̂=1

(
id−
K ̂

)Φ ̂

≤

n∏
̂=1

(
id−
K ̂

)Φ ̂

.

By the combination of real and imaginary parts, we get
(
1 −

n∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − d+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
d−
K ̂

)Φ ̂

))


≥


(
1 −

n∏̂
=1

(
1 − a/+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b/+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
a/−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
b/−
K ̂

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c/+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − d/+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
c/−
Ki

)Φ ̂

+ i
(
−

n∏̂
=1

(
d/−
K ̂

)Φ ̂

))
 .

We assume that, BCFCWA(K1, ...,Kn) = K1 and BCFCWA(K /
1 , ...,K

/
n) = K

/
1 . So, utilized Eq (2.6),

we get
S c(K1) ≥ S c(K /

1).

Then, we have two possibility,
1) When, S c(K1) ≥ S c(K /

1), we get

BCFCWA(K1, ...,Kn) ≥ BCFCRWA(K /
1 , ...,K

/
n).

2) When, S c(K1) = S c(K /
1), we get

(
1 −

n∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c+

K ̂

)Φ ̂

+ i
(
1 −

n∏
i=1

(
1 − d+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
d−
K ̂

)Φ ̂

))
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=


(
1 −

n∏̂
=1

(
1 − a/+

K ̂

)Φ ̂

+ i
(
1 −

n∏
i=1

(
1 − b/+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
a/−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
b/−
K ̂

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c/+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − d/+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
c/−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
d/−
K ̂

)Φ ̂

))
 .

We utilized the accuracy function because the score functions are equal.
(
1 −

n∏̂
=1

(
1 − a+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
a−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
b−
K ̂

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − d+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
c−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
d−
K ̂

)Φ ̂

))


≥


(
1 −

n∏
i=1

(
1 − a/+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b/+

K ̂

)Φ ̂

)
,−

n∏
i=1

(
a/−
K ̂

)Φ ̂

+ i
(
−

n∏̂
=1

(
b/−
K ̂

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c/+

K ̂

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − d/+

K ̂

)Φ ̂

)
,−

n∏̂
=1

(
c/−
K ̂

)Φi
+ i

(
−

n∏̂
=1

(
d/−
K ̂

)Φ ̂

))
 .

From cases (1) and (2), we have the required proof.

Theorem 3.5 (Boundedness). LetK ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n)

be a set of BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φi = 1 and 0 ≤ Φ ̂ ≤ 1, if K+
̂ ,K

−
̂

are the maximum and minimum BCFCNs. Then,

K+
̂ ≤ BCFCWA(K1, ...,Kn) ≤ K−̂ . (3.5)

Proof. We studied two cases (for real and imagined components) separately for MG and credibility
degree.

(1) For membership degree, we have1 − n∏
̂=1

(
1 − min

1≤ ̂≤n
a+
K ̂

)Φ ̂
 ≤

1 − n∏
̂=1

(
1 − a+

K ̂

)Φ ̂


≤

1 − n∏
̂=1

(
1 − max

1≤ ̂≤n
a+
K ̂

)Φ ̂


=⇒

1 − (
1 − min

1≤ ̂≤n
a+
K ̂

)∑n
̂=1 Φ ̂

 ≤
1 − n∏

̂=1

(
1 − a+

K ̂

)Φ ̂


≤

1 − (
1 − max

1≤ ̂≤n
a+
K ̂

)∑n
̂=1 Φ ̂

 .
As

∑n
̂=1 Φ ̂ = 1, so

=⇒ min
1≤ ̂≤n

a+
K ̂
≤

1 − n∏
̂=1

(
1 − a+

K ̂

)Φ ̂

 ≤ max
1≤ ̂≤n

a+
K ̂
.

Similarly, we can prove for ib+
K ̂

, and
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n∏
̂=1

min
1≤ ̂≤n

(
a−
K ̂

)Φ ̂

≤

n∏
i=1

(
a−
K ̂

)Φ ̂

≤

n∏
̂=1

max
1≤ ̂≤n

(
a−
K ̂

)Φ ̂

=⇒ min
1≤ ̂≤n

(
a−
K ̂

)∑n
̂=1 Φ ̂

≤

n∏
̂=1

(
a−
K ̂

)Φ ̂

≤ max
1≤ ̂≤n

(
a−
K ̂

)∑n
̂=1 Φ ̂

.

As
∑n

̂=1 Φ ̂ = 1. Then

min
1≤ ̂≤n

a−
K ̂
≤

n∏
̂=1

(
a−
K ̂

)Φ ̂

≤ max
1≤ ̂≤n

a−
K ̂
.

Similarly, we can prove for ib−
Ki

.
(2) For credibility degree, we have1 − n∏

̂=1

(
1 − min

1≤ ̂≤n
c+
K ̂

)Φ ̂
 ≤

1 − n∏
̂=1

(
1 − c+

K ̂

)Φ ̂


≤

1 − n∏
̂=1

(
1 − max

1≤ ̂≤n
c+
K ̂

)Φ ̂


=⇒

1 − (
1 − min

1≤ ̂≤n
c+
K ̂

)∑n
̂=1 Φ ̂

 ≤
1 − n∏

̂=1

(
1 − c+

K ̂

)Φ ̂


≤

1 − (
1 − max

1≤ ̂≤n
c+
K ̂

)∑n
̂=1 Φ ̂

 .
As

∑n
̂=1 Φ ̂ = 1, so

=⇒ min
1≤ ̂≤n

c+
K ̂
≤

1 − n∏
̂=1

(
1 − c+

K ̂

)Φ ̂

 ≤ max
1≤ ̂≤n

c+
K ̂
.

Similarly, we can prove for id+
K ̂

. Additionally,

n∏
̂=1

min
1≤ ̂≤n

(
c−
K ̂

)Φ ̂

≤

n∏
̂=1

(
c−
K ̂

)Φ ̂

≤

n∏
̂=1

max
1≤ ̂≤n

(
c−
K ̂

)Φ ̂

=⇒ min
1≤ ̂≤n

(
c−
K ̂

)∑n
̂=1 Φ ̂

≤

n∏
̂=1

(
c−
K ̂

)Φ ̂

≤ max
1≤ ̂≤n

(
c−
K ̂

)∑n
̂=1 Φ ̂

.

As
∑n

̂=1 Φ ̂ = 1. Then

min
1≤ ̂≤n

c−
K ̂
≤

n∏
̂=1

(
c−
K ̂

)Φ ̂

≤ max
1≤ ̂≤n

c−
K ̂
.

Similarly, we have for id−
K ̂

.
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Then, combined the above two cases, by the score function, we obtain

S c(K+
̂ ) ≤ S c(K ̂) ≤ S c(K−̂ ).

So, based on cases (1) and (2) and the definition of the score function, we get

K+ ≤ BCFCWA(K1, ...,Kn) ≤ K−.

3.2. Bipolar complex fuzzy credibility ordered weighted average operator

Definition 3.6. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then, the BCFCOWA
operator is determined as

BCFCOWA (K1, ...,Kn) =

n⊕
̂=1

Φ ̂Kσ( ̂), (3.6)

and for Kσ( ̂−1) ≥ Kσ( ̂) the permutation is σ(1), ..., σ(n) for all ̂ = 1, ..., n. Utilizing Definition 3.6,
aggregated value for BCFCOWA operator is shown in Theorem 3.7.

Theorem 3.7. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then, BCFCOWA
operator is obtained as

BCFCOWA (K1, ...,Kn) =

n⊕
̂=1

Φ ̂Kσ( ̂) (3.7)

=


(
1 −

n∏̂
=1

(
1 − a+

Kσ( ̂)

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b+

Kσ( ̂)

)Φ ̂

)
,−

n∏̂
=1

(
a−
Kσ( ̂)

)Φ ̂

+ i
(
−

n∏̂
=1

(
b−
Kσ( ̂)

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c+

Kσ( ̂)

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − d+

Kσ( ̂)

)Φ ̂

)
,−

n∏̂
=1

(
c−
Kσ( ̂)

)Φ ̂

+ i
(
−

n∏̂
=1

(
d−
Kσ( ̂)

)Φ ̂

))


whereσ(1), ..., σ(n) be the permutation of the ( ̂ = 1, ..., n), for eachKσ( ̂−1) ≥ Kσ( ̂) for all ( ̂ = 1, ..., n) .

Proof. Proof is follow from Theorem 3.2.
The BCFCOWA operator satisfied the following properties.

Theorem 3.8 (Idempotency). LetK ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n)

be the set of BCFCNs with the weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then

BCFCOWA(K1, ...,Kn) = K . (3.8)

Proof. Similar to Theorem 4.12.

Theorem 3.9 (Monotonicity). Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
and K /

̂ =(〈
a/+
K ̂

+ ib/+
K ̂
, a/−
K ̂

+ ib/−
K ̂

〉
,
〈
c/+
K ̂

+ id/+
K ̂
, c/−
K ̂

+ id/−
K ̂

〉)
( ̂ = 1, ..., n) be the set of BCFCNs with the weight

vector Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, if a+
K ̂
≥ a/+

K ̂
, ib+
K ̂
≥ ib/+

K ̂
, ib−
K ̂
≤

ib/−
K ̂
, a−
K ̂
≤ a/−

K ̂
, c+
K ̂
≥ c/+

K ̂
, id+
K ̂
≥ id/+

K ̂
, c−
K ̂
≤ c/−

K ̂
, and id−

K ̂
≤ id/−

K ̂
. Then

BCFCOWA(K1, ...,Kn) ≥ BCFCOWA(K /
1 , ...,K

/
n). (3.9)
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Proof. Similar to Theorem 3.4.

Theorem 3.10 (Boundedness). Let

K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of BCFCNs with the weight vector Φ = (Φ1, ...,Φn)T , such as

∑n
̂=1 Φ ̂ = 1 and

0 ≤ Φ ̂ ≤ 1, if K+
̂ ,K

−
̂ are the maximum and minimum BCFCNs. Then

K+
̂ ≤ BCFCOWA(K1, ...,Kn) ≤ K−̂ . (3.10)

Proof. Similar to Theorem 3.5.

3.3. Bipolar complex fuzzy credibility hybrid average operator

Definition 3.11. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of

BCFCN with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, and ϑ = (ϑ1, ..., ϑn)T ,

such that
∑n

̂=1 ϑ ̂ = 1 and 0 ≤ ϑ ̂ ≤ 1 be the associated weights of BCFCNs. Then, the BCFCHA
operator is obtained as

BCFCHA (K1, ...,Kn) =

n⊕
̂=1

Φ ̂K
∗
σ( ̂), (3.11)

and for Kσ( ̂−1) ≥ Kσ( ̂) the permutation is σ(1), ..., σ(n) for all ( ̂ = 1, ..., n) . Utilizing Definition 4.11,
aggregated value for BCFCHA operator is shown in Theorem 4.12.

Theorem 3.12. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, and ϑ = (ϑ1, ..., ϑn)T ,

such as
∑n

̂=1 ϑ ̂ = 1 and 0 ≤ ϑ ̂ ≤ 1 be the associated weight vector of the given set of BCFCNs. Then,
BCFCHA operator is obtained as

BCFCHA (K1, ...,Kn) =

n⊕
̂=1

Φ ̂K
∗
σ( ̂) (3.12)

=


(
1 −

n∏̂
=1

(
1 − a∗+

Kσ( ̂)

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − b∗+

Kσ( ̂)

)Φ ̂

)
,−

n∏̂
=1

(
a∗−
Kσ( ̂)

)Φ ̂

+ i
(
−

n∏̂
=1

(
b∗−
Kσ( ̂)

)Φ ̂

))
,(

1 −
n∏̂
=1

(
1 − c∗+

Kσ( ̂)

)Φ ̂

+ i
(
1 −

n∏̂
=1

(
1 − d∗+

Kσ( ̂)

)Φ ̂

)
,−

n∏̂
=1

(
c∗−
Kσ( ̂)

)Φ ̂

+ i
(
−

n∏̂
=1

(
d∗−
Kσ( ̂)

)Φ ̂

))


whereσ(1), ..., σ(n) be the permutation of the ( ̂ = 1, ..., n), for eachKσ( ̂−1) ≥ Kσ( ̂) for all ( ̂ = 1, ..., n) .
The largest permutation value from the family of BCFCNs is represented by K ∗σ( ̂) = nϑ ̂K ̂, and n
stands for the balancing coefficient.

Proof. Proof is follow from Theorem 3.2.

4. Bipolar complex fuzzy credibility geometric operator

Here, we are going to defined some aggregation operators like as, BCFCWG, BCFCOWG, and
BCFCHG operators.
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4.1. Bipolar complex credibility fuzzy weighted geometric operator

Definition 4.1. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K1

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be a set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then, the BCFCWG
operator is determined as

BCFCWG (K1, ...,Kn) =

n⊗
̂=1

(
K ̂

)Φ ̂

, (4.1)

utilizing Definition 4.1, aggregated value for BCFCWG operator is shown in Theorem refthE1.

Theorem 4.2. Let K ̂ =
(
a+
K ̂

+ ib+
K ̂
, c+
K ̂

+ id+
K ̂
, a−
K ̂

+ ib−
K ̂
, c−
K ̂

+ id−
K ̂

)
( ̂ = 1, ..., n) be the set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then, BCFCWG
operator is obtained as

BCFCWG (K1, ...,Kn) =

n⊗
̂=1

(
K ̂

)Φ ̂

(4.2)

=


(

n∏̂
=1

(
a+
K ̂

)Φ ̂

+ i
(

n∏̂
=1

(
b+
K ̂

)Φ ̂

)
,−1 +

n∏̂
=1

(
1 + a−

K ̂

)Φ ̂

+ i
(
−1 +

n∏̂
=1

(
1 + b−

K ̂

)Φ ̂

))
,(

n∏̂
=1

(
c+
K ̂

)Φ ̂

+ i
(

n∏̂
=1

(
d+
K ̂

)Φ ̂

)
,−1 +

n∏̂
=1

(
1 + c−

K ̂

)Φ ̂

+ i
(
−1 +

n∏̂
=1

(
1 + d−

K ̂

)Φ ̂

))
 .

Proof. Proof is same as Theorem 3.2.
The BCFCWG operator satisfied the following properties.

Theorem 4.3 (Idempotency). LetK ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n)

be the set of BCFCNs with the weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then,

BCFCWG(K1, ...,Kn) = K . (4.3)

Proof. Proof is same as Theorem 3.3.

Theorem 4.4 (Monotonicity). Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
and K /

̂ =(〈
a/+
K ̂

+ ib/+
K ̂
, a/−
K ̂

+ ib/−
K ̂

〉
,
〈
c/+
K ̂

+ id/+
K ̂
, c/−
K ̂

+ id/−
K ̂

〉)
( ̂ = 1, ..., n) be the set of BCFCNs with weight vector

Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, if a+
K ̂
≥ a/+

K ̂
, ib+
K ̂
≥ ib/+

K ̂
, ib−
K ̂
≤ ib/−

K ̂
, a−
K ̂
≤ a/−

K ̂
,

c+
K ̂
≥ c/+

K ̂
, id+
K ̂
≥ id/+

K ̂
, c−
K ̂
≤ c/−

K ̂
, and id−

K ̂
≤ id/−

K ̂
. Then,

BCFCWG(K1, ...,Kn) ≥ BCFCWG(K1, ...,Kn). (4.4)

Proof. Proof is same as (3.4).

Theorem 4.5 (Boundedness). LetK ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n)

be a set of BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, if K+
̂ ,K

−
̂

are the maximum and minimum BCFCNs. Then

K+
̂ ≤ BCFCWG(K1, ...,Kn) ≤ K−̂ . (4.5)

Proof. Proof is same as Theorem 3.5.
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4.2. Bipolar complex fuzzy credibility ordered weighted geometric operator

Definition 4.6. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of

BCFCNs with weight vector Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then, the
BCFCOWG operator is determined as

BCIFOWG (K1, ...,Kn) =

n⊗
̂=1

(
Kσ( ̂)

)Φ ̂

, (4.6)

and for Kσ( ̂−1) ≥ Kσ( ̂) the permutation is σ(1), ..., σ(n) for all ( ̂ = 1, ..., n) . Utilizing Definition 4.6,
aggregated value for BCFCOWG operator is shown in Theorem 4.7.

Theorem 4.7. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then, BCFCOWG
operator is obtained as

BCFCOWG (K1, ...,Kn) =

n⊗
̂=1

(
Kσ( ̂)

)Φ ̂

(4.7)

=


(

n∏̂
=1

(
a−
Kσ( ̂)

)Φ ̂

+ i
(

n∏̂
=1

(
b−
Kσ( ̂)

)Φ ̂

)
,−1 +

n∏̂
=1

(
1 + a+

Kσ( ̂)

)Φ ̂

+ i
(
−1 +

n∏̂
=1

(
1 + b+

Kσ( ̂)

)Φ ̂

))
,(

n∏̂
=1

(
c−
Kσ( ̂)

)Φ ̂

+ i
(

n∏̂
=1

(
d−
Kσ( ̂)

)Φ ̂

)
,−1 +

n∏̂
=1

(
1 + c+

Kσ( ̂)

)Φ ̂

+ i
(
−1 +

n∏̂
=1

(
1 + d+

Kσ( ̂)

)Φ ̂

))


whereσ(1), ..., σ(n) be the permutation of the ( ̂ = 1, ..., n), for eachKσ( ̂−1) ≥ Kσ( ̂) for all ( ̂ = 1, ..., n) .

Proof. Proof follows from Theorem 3.2.
The BCFCOWG operator satisfied the following properties.

Theorem 4.8 (Idempotency). LetK ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n)

be the set of BCFCNs with the weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1. Then

BCFCOWG(K1, ...,Kn) = K . (4.8)

Proof. Similar to Theorem 3.3.

Theorem 4.9 (Monotonicity). Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
and K /

̂ =(〈
a/+
K ̂

+ ib/+
K ̂
, a/−
K ̂

+ ib/−
K ̂

〉
,
〈
c/+
K ̂

+ id/+
K ̂
, c/−
K ̂

+ id/−
K ̂

〉)
( ̂ = 1, ..., n) be the set of BCFCNs with weights Φ =

(Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, if a+
K ̂
≥ a/+

K ̂
, ib+
K ̂
≥ ib/+

K ̂
, ib−
K ̂
≤ ib/−

K ̂
, a−
K ̂
≤ a/−

K ̂
,

c+
K ̂
≥ c/+

K ̂
, id+
K ̂
≥ id/+

K ̂
, c−
K ̂
≤ c/−

K ̂
, and ̂d−

K ̂
≤ ̂d/−

K ̂
. Then

BCFCOWG(K1, ...,Kn) ≥ BCFCOWG(K /
1 , ...,K

/
n). (4.9)

Proof. Similar to Theorem 3.4.
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Theorem 4.10 (Boundedness). Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of BCFCNs with weight are Φ = (Φ1, ...,Φn)T , such as

∑n
̂=1 Φ ̂ = 1 and

0 ≤ Φ ̂ ≤ 1, if K+
̂ ,K

−
̂ are the maximum and minimum BCFCNs. Then

K+
̂ ≤ BCFCOWG(K1, ...,Kn) ≤ K−̂ . (4.10)

Proof. Similar to Theorem 3.5.

4.3. Bipolar complex fuzzy credibility hybrid geometric operator

Definition 4.11. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, and ϑ = (ϑ1, ..., ϑn)T ,

such as
∑n

̂=1 ϑ ̂ = 1 and 0 ≤ ϑ ̂ ≤ 1 be the associated weights of BCFCNs. Then, the BCFCHG
operator is obtained as;

BCFCHG (K1, ...,Kn) =

n⊗
̂=1

(
K ∗σ( ̂)

)Φ ̂

, (4.11)

and Kσ( ̂−1) ≥ Kσ( ̂) the permutation is σ(1), ..., σ(n) for all ( ̂ = 1, ..., n) . Utilizing Definition 4.11,
aggregated value of BCFCHG operator is given in Theorem 4.12.

Theorem 4.12. Let K ̂ =
(〈

a+
K ̂

+ ib+
K ̂
, a−
K ̂

+ ib−
K ̂

〉
,
〈
c+
K ̂

+ id+
K ̂
, c−
K ̂

+ id−
K ̂

〉)
( ̂ = 1, ..., n) be the set of

BCFCNs with weights Φ = (Φ1, ...,Φn)T , such as
∑n

̂=1 Φ ̂ = 1 and 0 ≤ Φ ̂ ≤ 1, and ϑ = (ϑ1, ..., ϑn)T ,

such that
∑n

̂=1 ϑ ̂ = 1 and 0 ≤ ϑ ̂ ≤ 1 be the associated weights of BCFCNs. Then, BCFCHG operator
is obtained as

BCFCHG (K1, ...,Kn) =

n⊗
̂=1

(
K ∗σ( ̂)

)Φ ̂

(4.12)

=


(

n∏̂
=1

(
a∗−
Kσ( ̂)

)Φ ̂

+ i
(

n∏̂
=1

(
b∗−
Kσ( ̂)

)Φ ̂

)
,−1 +

n∏̂
=1

(
1 + a∗+

Kσ( ̂)

)Φ ̂

+ i
(
−1 +

n∏̂
=1

(
1 + b∗+

Kσ( ̂)

)Φ ̂

))
,(

n∏̂
=1

(
c∗−
Kσ( ̂)

)Φ ̂

+ i
(

n∏̂
=1

(
d∗−
Kσ( ̂)

)Φ ̂

)
,−1 +

n∏̂
=1

(
1 + c∗+

Kσ( ̂)

)Φ ̂

+ i
(
−1 +

n∏̂
=1

(
1 + d∗+

Kσ( ̂)

)Φ ̂

))


whereσ(1), ..., σ(n) be the permutation of the ( ̂ = 1, ..., n), for eachKσ( ̂−1) ≥ Kσ( ̂) for all ( ̂ = 1, ..., n) .

The largest permutation value from the set of BCFCNs is represented by K ∗σ( ̂) =
(
K ̂

)nϑ ̂
, and n stands

for the balancing coefficient.

Proof. Proof is follow from Theorem 3.2.

5. An approach for MCGDM based on bipolar complex fuzzy credibility information

In this section, we construct an approach to tackle the MCGDM problem using the proposed bipolar
complex intuitionistic fuzzy set. Assume that É =

{
É1, ..., Én

}
is the collection of n criteria and ℘ =

{℘1, ..., ℘m} is the set of m alternatives for a MCGDM problem. Let the weights for the criterion É ̂ as
Φ = (Φ1, ...,Φn)T , such as

∑n
̂=1 Φ ̂ and 0 ≤ Φ ̂. The following are the key steps:
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Step 1: Create a decision matrix using the assessment data collected in accordance with the criteria
É ̂ for qualified experts for each alternative ℘;

M =


=11 =12 . . =1n

=21 =22 . . =2n

=31 =32 . . =3n

. . . . .
=m1 =m2 . . =mn


.

Step 2: Evaluate the aggregate information given by experts with the help of BCFCWA operators.
Step 3: Evaluate the aggregate information using BCFCOWA operators.
Step 4: Evaluate the score value of the information obtained with the help of operators.
Step 5: Give alternatives a ranking based on the score value.

6. Example

As per predictions, chronic diseases (CDs) can cause one-third of all deaths in the world and are one
of the main causes of death and disability in the world. There are numerous diseases related with CDs,
like diabetes, hypertension heart disease and cardiovascular diseases (CVDs), some of them present
higher risks than others (in particular, CVD). It is one of the main causes of disability and presents
threats to population vitality. Because it causes diseases like hypertension, arrhythmia, stroke, and
heart attacks, as well as deaths, CVD is a global crisis. The diagnosis, monitoring, and treatment of
CVD are necessary since it is a life-threatening disease. However, there are also other problems that
can make diagnosis and treatment more difficult, like the lack of qualified cardiologists or patients who
live in remote areas far from hospitals. Modern technologies, such as the Internet of Things (IoT), are
utilized to monitor patients with CD in order to address these issues. IoT has set the stage for a variety
of uses, and it has played a remarkable role in telemedicine in the health care field and in managing
patients who are located elsewhere.

In this real life example we have to select the best hospital using our proposed work. There are four
alternatives (Hospitals) and six criteria with the weights are Φ = (0.20, 0.30, 0.15, 0.25, 0.10)T , which
is discussed as follows:

(1) Surgical Doctors (SD): In this type of criteria, we have discussed a special groups of doctors,
which have the ability to treat all the surgical patient.

(2) Surgical Team (ST): In this criteria, there are one head doctor and having surgical doctors to
handle the surgical problems.

(3) Surgical Room (SR): This criteria is about surgical room which is use for special purpose for any
surgical patient.

(4) Oxygen Supplier (OS): In this criteria the surgical team can provide oxygen to any surgical
patient.

(5) Send Ambulance (SA): This type of criteria is important to carry any surgical patient to the
surgical team.

AIMS Mathematics Volume 8, Issue 8, 19240–19263.
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(6) Prove Medications (PM): In this types of criteria the surgical team provide specific medicine to
any surgical patient.

Let, there are their experts with the weight vector κ = (0.3, 0.4, 0.3)T , provided their individual
assessment for each option and the corresponding assessments are presented in Tables 1–3.

Step 1: The total information given by experts for each alternative ℘i under the criteria É ̂ in
Tables 1–3.

Step 2: Using the BCFCWA operators and expert-provided data against their weights.

Table 1. BCF evaluation information given by expert one.

É1 É2

℘1

 〈0.3 + i0.4,−0.5 − i0.4〉 ,

〈0.7 + i0.5,−0.2 − i0.5〉


 〈0.1 + i0.8,−0.1 − i0.8〉 ,

〈0.8 + i0.1,−0.6 − i0.1〉


℘2

 〈0.2 + i0.3,−0.8 − i0.3〉 ,

〈0.8 + i0.6,−0.2 − i0.6〉


 〈0.3 + i0.4,−0.5 − i0.4〉 ,

〈0.7 + i0.5,−0.2 − i0.5〉


℘3

 〈0.5 + i0.7,−0.4 − i0.3〉 ,

〈0.3 + i0.3,−0.6 − i0.6〉


 〈0.6 + i0.7,−0.6 − i0.2〉 ,

〈0.4 + i0.2,−0.3 − i0.7〉


℘4

 〈0.6 + i0.5,−0.3 − i0.2〉 ,

〈0.4 + i0.3,−0.7 − i0.8〉


 〈0.2 + i0.5,−0.3 − i0.5〉 ,

〈0.5 + i0.4,−0.7 − i0.5〉


É3 É4

℘1

 〈0.3 + i0.3,−0.6 − i0.6〉 ,

〈0.5 + i0.7,−0.4 − i0.3〉


 〈0.2 + i0.4,−0.3 − i0.2〉 ,

〈0.7 + i0.4,−0.6 − i0.7〉


℘2

 〈0.4 + i0.2,−0.3 − i0.7〉 ,

〈0.6 + i0.7,−0.6 − i0.2〉


 〈0.5 + i0.4,−0.7 − i0.5〉 ,

〈0.2 + i0.5,−0.3 − i0.5〉


℘3

 〈0.3 + i0.4,−0.5 − i0.4〉 ,

〈0.7 + i0.5,−0.2 − i0.5〉


 〈0.4 + i0.2,−0.3 − i0.7〉 ,

〈0.6 + i0.7,−0.6 − i0.2〉


℘4

 〈0.8 + i0.6,−0.2 − i0.6〉 ,

〈0.2 + i0.3,−0.8 − i0.3〉


 〈0.7 + i0.4,−0.6 − i0.7〉 ,

〈0.2 + i0.4,−0.3 − i0.2〉


É5 É6

℘1

 〈0.4 + i0.3,−0.7 − i0.8〉 ,

〈0.6 + i0.5,−0.3 − i0.2〉


 〈0.8 + i0.1,−0.6 − i0.1〉 ,

〈0.1 + i0.8,−0.1 − i0.8〉


℘2

 〈0.3 + i0.3,−0.6 − i0.6〉 ,

〈0.5 + i0.7,−0.4 − i0.3〉


 〈0.2 + i0.4,−0.3 − i0.2〉 ,

〈0.7 + i0.4,−0.6 − i0.7〉


℘3

 〈0.8 + i0.1,−0.6 − i0.1〉 ,

〈0.1 + i0.8,−0.1 − i0.8〉


 〈0.2 + i0.3,−0.8 − i0.3〉 ,

〈0.8 + i0.6,−0.2 − i0.6〉


℘4

 〈0.5 + i0.4,−0.7 − i0.5〉 ,

〈0.2 + i0.5,−0.3 − i0.5〉


 〈0.6 + i0.5,−0.3 − i0.2〉 ,

〈0.4 + i0.3,−0.7 − i0.8〉
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Table 2. BCF evaluation information given by expert two.

É1 É2

℘1

 〈0.2 + i0.4,−0.3 − i0.2〉 ,

〈0.7 + i0.4,−0.6 − i0.7〉


 〈0.1 + i0.8,−0.1 − i0.8〉 ,

〈0.8 + i0.1,−0.6 − i0.1〉


℘2

 〈0.2 + i0.5,−0.3 − i0.5〉 ,

〈0.5 + i0.4,−0.7 − i0.5〉


 〈0.3 + i0.4,−0.5 − i0.4〉 ,

〈0.7 + i0.5,−0.2 − i0.5〉


℘3

 〈0.5 + i0.7,−0.4 − i0.3〉 ,

〈0.3 + i0.3,−0.6 − i0.6〉


 〈0.6 + i0.7,−0.6 − i0.2〉 ,

〈0.4 + i0.2,−0.3 − i0.7〉


℘4

 〈0.8 + i0.1,−0.6 − i0.1〉 ,

〈0.1 + i0.8,−0.1 − i0.8〉


 〈0.2 + i0.3,−0.8 − i0.3〉 ,

〈0.8 + i0.6,−0.2 − i0.6〉


É3 É4

℘1

 〈0.3 + i0.3,−0.6 − i0.6〉 ,

〈0.5 + i0.7,−0.4 − i0.3〉


 〈0.4 + i0.2,−0.3 − i0.7〉 ,

〈0.6 + i0.7,−0.6 − i0.2〉


℘2

 〈0.2 + i0.3,−0.8 − i0.3〉 ,

〈0.8 + i0.6,−0.2 − i0.6〉


 〈0.2 + i0.5,−0.3 − i0.5〉

〈0.5 + i0.4,−0.7 − i0.5〉 ,


℘3

 〈0.3 + i0.4,−0.5 − i0.4〉 ,

〈0.7 + i0.5,−0.2 − i0.5〉


 〈0.4 + i0.2,−0.3 − i0.7〉 ,

〈0.6 + i0.7,−0.6 − i0.2〉


℘4

 〈0.3 + i0.3,−0.6 − i0.6〉 ,

〈0.5 + i0.7,−0.4 − i0.3〉


 〈0.7 + i0.4,−0.6 − i0.7〉 ,

〈0.2 + i0.4,−0.3 − i0.2〉


É5 É6

℘1

 〈0.6 + i0.5,−0.3 − i0.2〉

〈0.4 + i0.3,−0.7 − i0.8〉 ,


 〈0.8 + i0.1,−0.6 − i0.1〉 ,

〈0.1 + i0.8,−0.1 − i0.8〉


℘2

 〈0.5 + i0.4,−0.7 − i0.5〉 ,

〈0.2 + i0.5,−0.3 − i0.5〉


 〈0.7 + i0.4,−0.6 − i0.7〉

〈0.2 + i0.4,−0.3 − i0.2〉 ,


℘3

 〈0.6 + i0.5,−0.3 − i0.2〉 ,

〈0.4 + i0.3,−0.7 − i0.8〉


 〈0.7 + i0.5,−0.2 − i0.5〉

〈0.3 + i0.4,−0.5 − i0.4〉 ,


℘4

 〈0.8 + i0.6,−0.2 − i0.6〉 ,

〈0.2 + i0.3,−0.8 − i0.3〉


 〈0.6 + i0.5,−0.3 − i0.2〉 ,

〈0.4 + i0.3,−0.7 − i0.8〉
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Table 3. BCF evaluation information given by expert three.

É1 É2

℘1

 〈0.7 + i0.4,−0.6 − i0.7〉

〈0.2 + i0.4,−0.3 − i0.2〉 ,


 〈0.8 + i0.1,−0.6 − i0.1〉

〈0.1 + i0.8,−0.1 − i0.8〉 ,


℘2

 〈0.2 + i0.3,−0.8 − i0.3〉 ,

〈0.8 + i0.6,−0.2 − i0.6〉


 〈0.7 + i0.5,−0.2 − i0.5〉

〈0.3 + i0.4,−0.5 − i0.4〉 ,


℘3

 〈0.4 + i0.2,−0.3 − i0.7〉 ,

〈0.6 + i0.7,−0.6 − i0.2〉


 〈0.8 + i0.1,−0.6 − i0.1〉 ,

〈0.1 + i0.8,−0.1 − i0.8〉


℘4

 〈0.6 + i0.7,−0.6 − i0.2〉

〈0.4 + i0.2,−0.3 − i0.7〉 ,


 〈0.2 + i0.2,−0.3 − i0.5〉 ,

〈0.5 + i0.4,−0.7 − i0.5〉


É3 É4

℘1

 〈0.5 + i0.7,−0.4 − i0.3〉

〈0.3 + i0.3,−0.6 − i0.6〉 ,


 〈0.5 + i0.7,−0.4 − i0.3〉 ,

〈0.3 + i0.3,−0.6 − i0.6〉


℘2

 〈0.6 + i0.7,−0.6 − i0.2〉 ,

〈0.4 + i0.2,−0.3 − i0.7〉


 〈0.2 + i0.5,−0.3 − i0.5〉

〈0.5 + i0.4,−0.7 − i0.5〉 ,


℘3

 〈0.3 + i0.4,−0.5 − i0.4〉 ,

〈0.7 + i0.5,−0.2 − i0.5〉


 〈0.8 + i0.6,−0.2 − i0.6〉

〈0.2 + i0.3,−0.8 − i0.3〉 ,


℘4

 〈0.7 + i0.4,−0.6 − i0.7〉

〈0.2 + i0.4,−0.3 − i0.2〉 ,


 〈0.2 + i0.4,−0.3 − i0.2〉

〈0.7 + i0.4,−0.6 − i0.7〉 ,


É5 É6

℘1

 〈0.6 + i0.5,−0.3 − i0.2〉 ,

〈0.4 + i0.3,−0.7 − i0.8〉


 〈0.1 + i0.8,−0.1 − i0.8〉

〈0.8 + i0.1,−0.6 − i0.1〉 ,


℘2

 〈0.5 + i0.4,−0.7 − i0.5〉 ,

〈0.2 + i0.5,−0.3 − i0.5〉


 〈0.4 + i0.3,−0.7 − i0.8〉 ,

〈0.6 + i0.5,−0.3 − i0.2〉


℘3

 〈0.6 + i0.5,−0.3 − i0.2〉 ,

〈0.4 + i0.3,−0.7 − i0.8〉


 〈0.7 + i0.5,−0.2 − i0.5〉

〈0.3 + i0.4,−0.5 − i0.4〉 ,


℘4

 〈0.5 + i0.7,−0.4 − i0.3〉

〈0.3 + i0.3,−0.6 − i0.6〉 ,


 〈0.2 + i0.3,−0.8 − i0.3〉

〈0.8 + i0.6,−0.2 − i0.6〉 ,


Step 3: Using the BCFCOWA operator and the aggregated value of Table 4, with the weight vector

Φ = (0.20, 0.30, 0.15, 0.25, 0.10)T . The total values of the alternatives ℘i(i = 1, ..., 4) as

R1 (〈0.432 + i0.405,−0.228 − i0.321〉 , 〈0.443 + i0.407,−0.327 − i0.332〉) .
R2 (〈0.377 + i0.185,−0.328 − i0.326〉 , 〈0.486 + i0.701,−0.325 − i0.341〉) .
R3 (〈0.571 + i0.342,−0.690 − i0.325〉 , 〈0.436 + i0.332,−0.170 − i0.438〉) .
R4 (〈0.589 + i0.327,−0.489 − i0.211〉 , 〈0.357 + i0.376,−0.329 − i0.462〉) .

Step 4: Analyze the score value of the data we collected using various operators.
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Table 4. Aggregated values using BCFCWA operator.

É1 É2

℘1

 〈0.361 + i0.491,−0.198 − i0.376〉 ,

〈0.475 + i0.403,−0.531 − i0.616〉


 〈0.498 + i0.379,−0.291 − i0.436〉 ,

〈0.316 + i0.372,−0.187 − i0.439〉


℘2

 〈0.338 + i0.364,−0.229 − i0.375〉 ,

〈0.218 + i0.287,−0.251 − i0.336〉


 〈0.382 + i0.385,−0.421 − i0.333〉 ,

〈0.498 + i0.405,−0.627 − i0.209〉


℘3

 〈0.223 + i0.590,−0.327 − i0.369〉 ,

〈0.319 + i0.497,−0.418 − i0.232〉


 〈0.625 + i0.221,−0.339 − i0.195〉 ,

〈0.252 + i0.590,−0.393 − i0.284〉


℘4

 〈0.377 + i0.471,−0.370 − i0.305〉 ,

〈0.516 + i0.264,−0.409 − i0.260〉


 〈0.442 + i0.408,−0.275 − i0.196〉 ,

〈0.610 + i0.384,−0.224 − i0.398〉


É3 É4

℘1

 〈0.443 + i0.357,−0.509 − i0.287〉 ,

〈0.369 + i0.361,−0.432 − i0.339〉


 〈0.542 + i0.215,−0.537 − i0.332〉 ,

〈0.437 + i0.118,−0.503 − i0.437〉


℘2

 〈0.400 + i0.325,−0.326 − i0.642〉 ,

〈0.455 + i0.452,−0.509 − i0.351〉


 〈0.542 + i0.225,−0.417 − i0.499〉 ,

〈0.378 + i0.245,−0.352 − i0.350〉


℘3

 〈0.542 + i0.590,−0.431 − i0.376〉 ,

〈0.423 + i0.480,−0.548 − i0.327〉


 〈0.246 + i0.324,−0.562 − i0.325〉 ,

〈0.411 + i0.325,−0.503 − i0.653〉


℘4

 〈0.480 + i0.531,−0.762 − i0.390〉 ,

〈0.437 + i0.531,−0.664 − i0.328〉


 〈0.434 + i0.476,−0.438 − i0.332〉 ,

〈0.368 + i0.432,−0.666 − i0.598〉


É5 É6

℘1

 〈0.243 + i0.437,−0.359 − i0.127〉 ,

〈0.392 + i0.315,−0.420 − i0.391〉


 〈0.244 + i0.346,−0.248 − i0.432〉 ,

〈0.382 + i0.142,−0.266 − i0.258〉


℘2

 〈0.452 + i0.205,−0.474 − i0.349〉 ,

〈0.383 + i0.125,−0.532 − i0.302〉


 〈0.240 + i0.351,−0.472 − i0.230〉 ,

〈0.147 + i0.501,−0.564 − i0.338〉


℘3

 〈0.252 + i0.325,−0.227 − i0.424〉 ,

〈0.419 + i0.189,−0.531 − i0.270〉


 〈0.252 + i0.250,−0.241 − i0.360〉 ,

〈0.343 + i0.418,−0.358 − i0.137〉


℘4

 〈0.261 + i0.234,−0.252 − i0.235〉 ,

〈0.418 + i0.135,−0.363 − i0.363〉


 〈0.404 + i0.495,−0.365 − i0.462〉 ,

〈0.450 + i0.262,−0.259 − i0.316〉



Table 5. Score values of the alternatives.

Operators S c
(
É1

)
S c

(
É2

)
S c

(
É3

)
S c

(
É4

)
BCFCWA 0.328 0.437 0.492 0.290

Step 5: Utilize the ranking values shown in Table 6 to determine which choice is the best.
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Table 6. Alternative ranking.

BCFCWA É3 > É2 > É1 > É4

Comparative study
The comparative study of determined techniques was discussed in this section, along with certain

common operators based on accepted concept like as, BCFSs.
For this, we choose a few famous theories that are, Mahmood et al. [25], BCFSs and their

applications in generalized similarity measures; Mahmood et al. [26], BCFS-based Hamacher
aggregation information; Mahmood et al. [27], Dombi AOs under bipolar complex fuzzy information.
Jana et al. [19], Bipolar fuzzy Dombi prioritized aggregation operators; Gao et al. [13], Dual hesitant
bipolar fuzzy Hamacher aggregation operators.

The method described in [13, 19, 25–27] contains bipolar fuzzy set details, but the given model
cannot be solved using this method. Reviewing Table 5 reveals that the methods now in use lack
basic information and are unable to solve or rank the case that has been provided. Compared to other
methods already in use, the strategy suggested in this study is more capable and dependable. The main
analysis of the identified and proposed hypotheses is presented in Table 7.

Table 7. Ranking of the existing methods.

Methods
Score value

Ranking
S c

(
É1

)
S c

(
É2

)
S c

(
É3

)
S c

(
É4

)
Mahmood et al. [25] 0.760 0.792 0.826 0.731 É3 > É2 > É1 > É4

Mahmood et al. [26] 0.529 0.553 0.587 0.502 É3 > É2 > É1 > É4

Mahmood et al. [27] 0.831 0.842 0.889 0.782 É3 > É1 > É4 > É2

Jana et al. [19] 0.453 0.441 0.488 0.427 É3 > É1 > É2 > É4

Gao et al. [13] 0.663 0.684 0.699 0.650 É3 > É2 > É1 > É4

7. Conclusions

We define a number of operations, the scoring function, and the accuracy function for BCFCS in
this paper. We also established several aggregation operators based on BCFC operational laws, such as
BCFCWA, BCFCOWA, BCFCHA, BCFCWG, BCFCOWG, and BCFCHG operators. We explored
the essential properties of the aforementioned operators’ specific situations, such as idempotency,
boundedness, and monotonous. Next, utilizing these operators, we solved the bipolar complex fuzzy
MCGDM problem. To validate the interpreted techniques, we provided a numerical example of
selecting fire extinguishers. Finally, we compared our findings to those of existing operators to
establish the usefulness and applicability of our method.

In the future, we will use our proposed operators in different domains, like as, complex Pythagorean
fuzzy set, complex picture fuzzy set, complex Spherical fuzzy set, and complex fractional orthotriple
fuzzy set.

AIMS Mathematics Volume 8, Issue 8, 19240–19263.



19261

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry
of Education in Saudi Arabia for funding this research work through the project number:
IFP22UQU4310396DSR080. This research was also supported by office of Research Management,
Universiti Malaysia Terengganu, Malaysia.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. K. T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Set Syst., 33 (1989), 37–45.
https://doi.org/10.1016/0165-0114(89)90215-7

2. A. M. D. J. S Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conference Proceedings,
1482 (2012), 464–470. https://doi.org/10.1063/1.4757515

3. A. U. M. Alkouri, A. R. Salleh, Linguistic variable, hedges and several distances on complex fuzzy
sets, J. Intell. Fuzzy Syst., 26 (2014), 2527–2535. https://doi.org/10.3233/IFS-130923

4. H. Alolaiyan, H. A. Alshehri, M. H. Mateen, D. Pamucar, M. Gulzar, A novel algebraic structure
of (a, b)-complex fuzzy subgroups, Entropy, 23 (2021), 992. https://doi.org/10.3390/e23080992

5. M. Ahsan, M. Saeed, A. Mehmood, M. H. Saeed, J. Asad, The study of HIV diagnosis using
complex fuzzy hypersoft mapping and proposing appropriate treatment, IEEE Access, 9 (2021),
104405–104417. https://doi.org/10.1109/ACCESS.2021.3099335

6. A. Al-Husban, Bipolar complex intuitionistic fuzzy sets, Earthline J. Math. Sci., 8 (2022), 273–
280. https://doi.org/10.34198/ejms.8222.273280

7. L. Bi, Z. Zeng, B. Hu, S. Dai, Two classes of entropy measures for complex fuzzy sets,
Mathematics, 7 (2019), 96. https://doi.org/10.3390/math7010096

8. S. Dai, L. Bi, B. Hu, Distance measures between the interval-valued complex fuzzy sets,
Mathematics, 7 (2019), 549. https://doi.org/10.3390/math7060549

9. S. Dai, A generalization of rotational invariance for complex fuzzy operations, IEEE Trans. Fuzzy
Syst., 29 (2020), 1152–1159. https://doi.org/10.1109/TFUZZ.2020.2969874

10. S. Greenfield, F. Chiclana, S. Dick, Interval-valued complex fuzzy logic, 2016 IEEE International
Conference on Fuzzy Systems, 2016. https://doi.org/10.1109/FUZZ-IEEE.2016.7737939

11. H. Garg, D. Rani, Generalized geometric aggregation operators based on t-norm operations for
complex intuitionistic fuzzy sets and their application to decision-making, Cogn. Comput., 12
(2020), 679–698. https://doi.org/10.1007/s12559-019-09678-4

AIMS Mathematics Volume 8, Issue 8, 19240–19263.

http://dx.doi.org/https://doi.org/10.1016/0165-0114(89)90215-7
http://dx.doi.org/https://doi.org/10.1063/1.4757515
http://dx.doi.org/https://doi.org/10.3233/IFS-130923
http://dx.doi.org/https://doi.org/10.3390/e23080992
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3099335
http://dx.doi.org/https://doi.org/10.34198/ejms.8222.273280
http://dx.doi.org/https://doi.org/10.3390/math7010096
http://dx.doi.org/https://doi.org/10.3390/math7060549
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2020.2969874
http://dx.doi.org/https://doi.org/10.1109/FUZZ-IEEE.2016.7737939
http://dx.doi.org/https://doi.org/10.1007/s12559-019-09678-4


19262

12. H. Garg, D. Rani, Some generalized complex intuitionistic fuzzy aggregation operators and their
application to multicriteria decision-making process, Arab. J. Sci. Eng., 44 (2019), 2679–2698.
https://doi.org/10.1007/s13369-018-3413-x

13. H. Gao, M. Lu, Y. Wei, Dual hesitant bipolar fuzzy hamacher aggregation operators and their
applications to multiple attribute decision making, J. Intell. Fuzzy Syst., 37 (2019), 5755–5766.
https://doi.org/10.3233/JIFS-18266

14. B. Hu, L. Bi, S. Dai, The orthogonality between complex fuzzy sets and its application to signal
detection, Symmetry, 9 (2017), 175. https://doi.org/10.3390/sym9090175

15. B. Hu, L. Bi, S. Dai, S. Li, The approximate parallelity of complex fuzzy sets, J. Intell. Fuzzy Syst.,
35 (2018), 6343–6351. https://doi.org/10.3233/JIFS-181131

16. B. Hu, L. Bi, S. Dai, S. Li, Distances of complex fuzzy sets and continuity of complex fuzzy
operations, J. Intell. Fuzzy Syst., 35 (2018), 2247–2255. https://doi.org/10.3233/JIFS-172264

17. G. Huang, L. Xiao, G. Zhang, Assessment and prioritization method of key engineering
characteristics for complex products based on cloud rough numbers, Adv. Eng. Inf., 49 (2021),
101309. https://doi.org/10.1016/j.aei.2021.101309

18. G. Huang, L. Xiao, W. Pedrycz, D. Pamucar, G. Zhang, L. Martı́nez, Design alternative assessment
and selection: a novel Z-cloud rough number-based BWM-MABAC model, Inf. Sci., 603 (2022),
149–189. https://doi.org/10.1016/j.ins.2022.04.040

19. C. Jana, M. Pal, J. Q. Wang, Bipolar fuzzy Dombi prioritized aggregation operators in multiple
attribute decision making, Soft Comput., 24 (2020), 3631–3646. https://doi.org/10.1007/s00500-
019-04130-z

20. T. Kumar, R. K. Bajaj, On complex intuitionistic fuzzy soft sets with distance measures and
entropies, J. Math., 2014 (2014), 972198. https://doi.org/10.1155/2014/972198

21. P. Liu, Z. Ali, T. Mahmood, The distance measures and cross-entropy based on complex fuzzy
sets and their application in decision making, J. Intell. Fuzzy Syst., 39 (2020), 3351–3374.
http://dx.doi.org/10.3233/JIFS-191718

22. J. Ma, G. Zhang, J. Lu, A method for multiple periodic factor prediction
problems using complex fuzzy sets, IEEE Trans. Fuzzy Syst., 20 (2011), 32–45.
http://dx.doi.org/10.1109/TFUZZ.2011.2164084
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