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1. Introduction

During the long period of development and research on automated theorem provers, there have
already existed a great number of research and implementation on proofs focusing on a specific
mathematical subject, such as algebraic equations (for example, Wolfram Mathematica’s Find
Equation Proof function [1]) or geometrical theorems (for example, the Geometry Expert or GEX [2]
of Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences). Some relatively
new works in this aspect included Microsoft’s Lean prover [3] and the Z3 [4] algorithm.

However, if we investigate deeper into these algorithms, we will find the fact that all of these
provers stand on the basis of logic theories. Both completely automated theorem provers and semi-
automated computer auxiliary statement provers like Coq and Isabelle are designed to follow certain
logic rules and generate results as logic formulas. Nevertheless, although we have to admit that it is
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an effective method, this method also sets an insurmountable limit on the program that it can not think
comprehensively such as when solving an algebra problem in a geometrical way.

When we humans think of mathematical problems and perform proofs, we do not follow purely
logical methods, for example, by executing the Cooper’s algorithm. Instead, we attempt to seek
breakthrough points using our knowledge and diverse thought. Why can programs not do things like
that? Why can not they perform some sort of knowledge transfer? Interested in these questions, we
conducted research on this topic and have found a utility to perform the task: Category theory.

Mainly developed in the twentieth century by Mac Lane and Eilenberg with the purpose of
investigating algebraic topology, category theory has become a fast-evolving aspect of modern
mathematics. In just a few decades, category theory has become the standard and formal language of
homology algebra and algebraic geometry, and has contributed to many meaningful achievements, for
instance in the Yoneda’s Lemma and Braid groups, which serves as a neat explanation for the Yang-
Baxter Equation (YBE) [5]. Moreover, category theory’s main idea, which is to put mathematical
structures into categories, satisfies the worldview of the Bourbaki school[5].

In this paper we present a new approach to automated proving using knowledge of the category,
as well as its theoretical foundation, and present a new algorithm which can prove mathematical
statements comprehensively. Additionally, an executable program and its implementation process will
be described later.

Structure of the paper

The paper mainly consists of seven sections. The Introduction section discussed the background
of the research and fundamental concepts around it. The Preliminaries section, made up of two
subsections, presents the pre-knowledge required to understand the paper and the notations we use.
The third section defines a set of mathematical structures that will be used by the algorithm. The
fourth section explains the detailed workflow procedures of the algorithm. The next section presents
the conclusions of the research and future areas of improvement. Then, the algorithm is examined
using several experiments and benchmarks to test its performance.

2. Preliminaries

2.1. Notations and conventions

To begin with, we use C to demonstrate a category and F to present a functor. U represents the
Grothendieck universe selected and Fr stands for the forgetful functor. A map is denoted in one of the
two following forms:

f : A→ B

x 7→ y

where A and B are sets and x and y are elements in A and B.
Furthermore, we use s( f ) for the source object of morphism f and use t( f ) for the target object

of morphism f . The symbol Ob(C) stands for the object collection for the category C. We denote the
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morphism set for a category with Mor and denote the Hom–Set for a category C between elements a
and b with HomC(a, b).

Basic logical operators like ∀, ∃ and ¬ are used while basic set operators such as ∈, ⊂ and ∪ are
used too. In addition, we use notation |S | for the size for set S .

For each ordered pair t = (x, y), we use t` for x and tr for y.
To avoid misunderstandings, Zermelo-Fraenkel set theory (ZFC) is utilized for the set system, with

Grothendieck universe concepts added [5].
We use On as the ordinal class composed by ordinals [5] such as {∅} and infinite ordinal ω, which

is defined as the inductive set supported by the axiom of infinity in ZFC. Note that On is a proper class
instead of a set, otherwise it will lead to the Burali-Forti paradox.

Additionally, we use S p with S being a set and p being a statement about elements in S to represent
the subset {x ∈ S |p(x) ≡ T }. For example, notation Z>1 represents the set of integers greater than 1.
Moreover, we utilize On≥n to represent ordinals not smaller than n.

2.2. Pre-knowledge

The definitions and theories presented in this paper utilize the concepts of category theory [5],
ordinal theory [5] and axiomatic set theory [5]. Therefore, readers are recommended to review these
concepts before going over this paper.

Axiom 2.1. The selection axiom.
Let X be a set and each of X’s elements not empty, then there exists function g : X → ∪X making

∀x ∈ X, g(x) ∈ x, naming g(x) as the selection function.

The selection axiom is the ninth axiom in the Zermelo-Fraenkel set system and it is equivalent to
the theorem below.

Theorem 2.1. The Zermelo’s Well-Ordering Theorem [5].
Every set S can be well-ordering as long as it has a choice function.
The proof can be found in citation [5].

Some preliminary knowledge also includes the Ebbinghaus Forgetting Curve equation [6] used later
in this paper. This approximate function is defined below:

E(t) =
100k

(ln t)c + k
where B is percent of memorization, t is time, c = 1.25 and k = 1.84. This curve is used by the
algorithm for self-optimization purposes.

So as to avoid utilization of impure functions, a pseudo- random generator is used. We select the
linear congruential generators [7], whose recursive equation is

Xn+1 = ((aXn + c) mod M).

Following the ANSI C implementation, we determine the parameters used by the recursive equation
to be the following:

M = 232, a = 1103515245, c = 12345.
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In this paper, we use notation r to represent a new random number generated, which is in reality is
a pure function of the last random number, and the expression is simplified for conciseness.

3. The computerized representation of mathematical structures

Before more specific discussion, we select the Grothendieck universe U [5] to avoid set theory
paradoxes. Next, we define meta category C where all discussions take place. There are three kinds of
objects in C: symbols, notations and brackets. All symbols in C form sub-category Sym(C), called the
symbol subcategory. All notations in C form Not(C) and all brackets form Bra(C), called the notation
subcategory and the bracket subcategory, respectively. That is,

C = Sym(C) ∪ Not(C) ∪ Bra(C). (3.1)

The formula above specifies that the meta category C is the union set of the symbol subcategory, the
notation subcategory and the bracket subcategory. It should be noted that, though we will separately
manipulate on Sym(C), Not(C) and Bra(C) afterwards, the annotation C is still used to represent these
subcategories, serving as a common context.

Differing from other implementations and research, we describe every major mathematical structure
to be used in seeking a proof, from single symbols to contents of proof steps in a single data structure
called brackets.

Definition 3.1. A bracket β is defined as a set of ordered pairs in the form of below:

β:= {(i, x) |i ∈ On≥1 , x ∈ Sym(C) ∪ Not(C) ∪ Bra(C)} (3.2)

β is valid if and only if for every element of β, its left element is unique. Next, we define filtered subsets
of β. The Symbol Subset of βS:= {t ∈ β |tr ∈ Sym(C) }. Similarly, the Notation Subset βN and the Bracket
Subset βB are defined as well. There are two types of brackets: The first type is called a Symbol Holder
where β = {(i, A)}, i ∈ Z≥1, A ∈ Sym(C). The second type is called a Compositor where

β = {( j,N)} ∪ {(i, x)|i ∈ On≥1,

x ∈ Sym(C) ∪ Bra(C)},∀t ∈ β, j ∈ On[1,t`]}.
(3.3)

Next, we present an important definition about bracket isomorphism, which will be referred to in
the third section of this paper.

Definition 3.2. Two brackets α and β are thought to be isomorphic (noted as α ' β) if they satisfy the
following restrictions:

First, |α|= |β| indicating the two brackets have same cardinal numbers. Second, all right elements
sorted in the order defined by the sort of the left pair elements, correspondingly, are either same or
symbols with the same type. Otherwise, the two brackets are not isomorphic, noted as α 6' β.

Next, we define the mathematical representation for notations. A notation is either an operator (for
example, + and ·) or a data type (for example, number or function). Its precise definition is as follows.
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Definition 3.3. A notation N is defined as an object in Not(C) which is a sub-category of C. The
Ob(Not(C)) set can be mapped to On≥0 class, indicating the number of parameters that a notation
takes. In which,

p : Ob(Not(C))→ On≥0

N
p
7→n.

(3.4)

In that case that n = 0, we then say N is a type and if n > 0 then N is an operator. For instance,
obviously, p(+) = 2 and p(¬) = 1. A notationN is called finite if p(N) < ω, and otherwiseN can have
an infinite number of symbols as parameters, then the notation is said to be infinite.

After declaring what notations are, we then define symbols. Basically, a symbol is an instance of a
notation. As notations are like containers, as symbols are like the content in them. A precise definition
of a symbol is presented below.

Definition 3.4. A symbol S is defined as an object in Sym(C) which is a sub-category of C. There exists
a functor from Sym(C) to Not(C):

ν : Sym(C)→ Not(C)

S
v
7→ν(S)

(3.5)

where ν(S) is the corresponding notation of S and must satisfy ∀S ∈ Sym(C), p(ν(S)) = 0, indicating
all corresponding notations are types instead of operators. For convenience and precision, the text that
meaning creating a symbol S whose corresponding notation isNcan and should be written in the form
below.

S ∈ Ob(Sym(C)) ∧ v(S) == N . (3.6)

This should not be written using S = v−1(N) because, morphism v is not necessarily an injection so
the existence of its inverted morphism v−1 cannot be guaranteed.

Two brackets are thought to be equal when the sequences of tr, sorted via the ordering of t`, are
the same and this relationship constructs an equivalence morphism between the two in the Bra(C)
category, noted as below:

ε : α ≡ β. (3.7)

A bracket, for simplicity, can be put into a symbol. Therefore, with these three definitions, how do
we actually represent mathematical things? One example is how to utilize them to express one of the
most basic mathematical concepts, such as a single number 12. To complete this task, we may first
define a notation Number and define a symbol S1 whose corresponding notation is Number. Then,
how do we determine the number is 12 instead of other numbers like 15? This can be solved using the
ordinal theory we presented before in the Preliminary section.

To be more specific and accurate, in this system of mathematics, we first need to construct an
axiomatic set theory, for example, the Zermelo-Fraenkel set system or we will always encounter the
situations like in the example above. To do this, we first define a notation called an item (annotated
with I) which serves as the parent of all other notations. The parameter count of I is zero so that it is
a type.

AIMS Mathematics Volume 8, Issue 8, 18278–18294.



18283

Definition 3.5. A notation N is said to be inherited from notation M (or we say N is a kind of M)
when there exists a morphism between the two in Not(C):

h ∈ Mor(Not(C)) :M→ N . (3.8)

It is obviously without any ambiguity that ∀M,N ∈ Not(C), |HomC(M,N)| ∈ {0, 1}. Moreover, if
N is a kind ofM, then p(N) ≥ p(M). For simplicity, N is inherited fromM and can be annotated as
N / |M.

Note that a symbol can be elaborated with the help of a bracket. Let ∅ be a kind of I, representing
the empty set. Then we declare Set as an infinite notation and significantly has Set / |∅. Next, we
define symbol 0 from bracket {(i, ∅)} where i is an arbitrary positive integer. Following the methods
used to define ordinals, we define symbol 1 from bracket {(i,Set), ( j, ∅)} where i < j. Furthermore, 2
is defined via {{∅}, ∅} to be {(i,Set), ( j, 1), (k, ∅)} where i < j < k. So on and so forth, all ordinals can
be defined. Notation O (obviously a type) is used to declare an ordinal, which means next time if we
need to use an ordinal, it just takes to instance n ∈ Sym(C) ∧ v(n) == O.

Utilizing the structure expressed with brackets, notations and symbols, mathematical statements can
be accurately constructed. The example below serves as a instance for this process.

Using the structure provided by brackets, notations and symbols, we construct the example formula
below, with meta category C1.

∞∑
n=0

xn =
1

1 − x
, for|x|< 1.

First, we need to observe what notation is needed by the construction. Apparently, we need to at
least define these notations: inf, int, num,

∑
, =, ∧, /, −, abs, < and for, where abs stands for the

absolute value function. However, in this example, the concept of a function does not need to be
defined. Additionally, as the constructed things only needs to demonstrate the equation itself instead
of the principles behind the equality, there is no necessity for the definition of notation +. Note that
obviously int / |num. Table 1 demonstrates the number of parameters taken by the notations.

Table 1. The table for p(N).

N int num inf
∑

= / - abs < for

p 0 0 0 3 2 2 2 1 2 2

Significantly, there are three types and seven operators. In the expressions, symbols are displayed
in bold for recognition from ordinals, although this is not necessary. Bracket α is the result of
construction. Then, just like constructing a polish notation (or prefix notation, in which construction
order specifies the hierarchical relationships between the items), we construct:

111 ∈ Ob(Sym(C)) ∧ v(111) = number
∞∞∞ ∈ Ob(Sym(C)) ∧ v(∞∞∞) = infinity
xxx ∈ Ob(Sym(C)) ∧ v(xxx) = number
nnn ∈ Ob(Sym(C)) ∧ v(nnn) = integer / |number
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α = {(0, for), (1, β), (2, γ)}
β = {(0,=), (1, δ), (2, ε)}
γ = {(0, <), (1, ζ), (2,111)}

δ = {(0,
∑

), (1, η), (2,∞∞∞), (3, θ)}

ε = {(0, /), (1,111), (2, ι)}
ζ = {(0, abs), (1, xxx)}
η = {(0,=), (1,nnn), (2,111)}
θ = {(0, ∧), (1, xxx), (2,nnn)}
ι = {(0,−), (1,111), (2, xxx)}.

We can combine the simple brackets together and form larger brackets in the form shown below.
Declaration of the four symbols are omitted.

α = {(0, for), (1, β), (2, {(0, <), (1, {(0, abs),
(1, xxx)}), (2,111)})}

β = {(0,=), (1, δ), (2, {(0, /), (1,111), (2, {(0,−),
(1,111), (2, xxx)})})}

δ = {(0,
∑

), (1, {(0,=), (1,nnn), (2,111)}), (2,∞∞∞), (3,

{(0, ∧), (1, xxx), (2,nnn)})}.

(3.9)

It is still possible to combine these all into a large bracket definition for α, but in that way it may be
even harder for people to understand, although it makes no difference for algorithms and programs.

Another issue is in regard to the recognition between two types of brackets: The type of bracket that
purely serves as a brick for constructing mathematical expressions and the type of bracket that forms
the thing that former mathematics call statements (for instance, {(0,=), (1, x), (2, y)} or the expression
for the Pythagorean theorem). In this system of representation, the second sort of bracket is called a
micro-statement, whose precise definition is presented below.

Definition 3.6. A micro-statement is defined as an object in Bra(C) whose notation N has p(N) = 2
and can be evaluated into a Boolean.

It is essential to pay attention to the fact that a bracket with 2-parameter notation is not necessarily a
micro-statement. This conclusion can be illustrated via the example of the bracket {(0,+), (1, x), (2, y)},
whose notation takes two symbols as parameters but is not a micro-statement. The second restriction is
more important, which is that a micro-statement must have the capacity to be evaluated into a Boolean
value, that is, true or false. What is notable is that the evaluation process is not declared inside the
representation system, whose definition comes below. All micro-statement brackets form the micro-
statement sub-category of Bra(C) and is annotated as Mic(C).

Briefly, an evaluation can be understood by imagining a map which takes a micro-statement bracket
and sends a Boolean value as output. The precise definition is present below.

Definition 3.7. An evaluation is a morphism from Mic(C) to a Boolean algebra B with the form below.
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eva` : Ob(Mic(C))→ B

m
eva`
7→eva`(m).

(3.10)

The Boolean value eva`(m) ∈ {0, 1} is called the evaluation result of a micro-statement. If for
bracket m there exists a morphism to B that satisfies the definition of evaluation, then we say that m
is evaluatable. That is, if it satisfies the first restriction of being a micro-statement as well, it is a
micro-statement.

The concept of micro-statements are widely and crucially used in the fourth section of this paper in
the discussion on how to manipulate the data structures described in this section for derivation later.

4. The standardized principles for derivation of statements

From the discussion above in the second section, we know that a mathematical statement can be
broken into micro-statements, which are a special sort of brackets.

The discussion below calls the Mic(C) category the micro-statement pool, or pool for short.
The morphisms inside the micro-statements pool are declared for representation of implication
relationships. It is obvious and elementary that,

∀α, β ∈ Ob(Mic(C)),∀
∣∣∣HomMic(C)(α, β)

∣∣∣ = 1. (4.1)

Since for each micro-statement α and β, we only need one arrow for derivation α⇒ β.
The basic insight of the entire derivation process is defined below.

Definition 4.1. A derivation is a set of ordered pairs of ordinals and categories in the form below.

D:= {(i,Mi) |i ∈ On≥1} (4.2)

where Mi is a micro-statement pool and for each element in D its left pair element is a unique
ordinal. The D set is well-ordered following the sort of i. The content of the initial pool is set to the
condition, i.e., the micro-statements given by the problem. On the other hand, the conclusions of the
proof problem, to be proved via some steps form a set R (the requirement set), are to be inferred to
exist inside the micro-statement pool.

For simplicity of expression, we use notationMi to represent the right pair element inD whose left
companion is i.

The detailed explanation of the derivation, illustrating how the algorithm works from the ground up
is defined below.

Definition 4.2. A step of derivation is a map existing in the derivation set D, mapping from a pair to
another, whose ordinal increases by 1. This map is annotated using the script word step. The form is
shown below:

(i,Mi)
step
7→ (i + 1,Mi+1) . (4.3)

Inside the map, the left pair element is simply self-increased and the right pair element is processed
by a functor (since the item to process is a category) called the recurse functor noted as Fi. That is,
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Mi+1 = FiMi. (4.4)

The termination condition for the proof automation process is described below as an evaluatable
statement.

Definition 4.3. A derivation set is thought to be successful when the condition below is satisfied when
the condition below is true:

∃n ∈ [0, ω),R ⊆ Ob (Mn) . (4.5)

On the other hand, a derivation set is thought to be impossible when there does not exist such a
n ∈ [0, ω) that makes the requirement set a subset of the object set of the targeted micro-statement pool.

It should be noted that the impossibility detection of a derivation set, although is mathematically
well-defined, is not actually applicable to being implemented in the algorithm because a computing
algorithm’s calculation and derivation time is limited, and cannot be judged before execution. Next,
we investigate the execution of the recurse functor, which is the core part that performs the proving
process.

Another notable issue about the recurse functors is that, in order to reduce stubbornness, the functors
are impure is there if no global variable. To solve this problem, we utilize the r random number function
utility described in the Preliminary section.

Definition 4.4. A reflection functor K is defined as an functor object in a functor category Ref that
maps between two micro-statement pools. Because of Zermelo’s well-ordering theorem we mentioned
in the Preliminary section, Ob(Ref ) can be put into well-order, with ordinal i. All of the reflection
functors form a functor category Q, called the reflection knowledge base, or for short the knowledge
base. The detailed explanation and description, including the morphisms inside the knowledge base,
will be discussed later in this section of the paper. We annotate each of the functors positioned at
location i with Ki.

Each reflection functor corresponds to a template pair of micro-statements (σ, τ) which indicates
that the effect of the functor is to transform micro-statement σ into τ. The template pair of functor K
is annotated with T (K). That is,

σ = T (K)`
τ = T (K)r.

(4.6)

When reflection functorKi is applied to a poolMi, each of the micro-statements in the object set of
the pool is proceeded. If a micro-statement is suitable for the reflection, whose detailed explanation will
be discussed later, a new micro-statement will be created if there’s no duplication. Then, a morphism
will be built from the old micro-statement to the new item. The process of identifying whether a
micro-statement is capable is called an isomorphism inspection and is described as below.

Definition 4.5. The object that the isomorphism inspection process manipulates is a micro-statement
µ ∈ Mi, a special evaluatable sort of bracket. The definition of bracket being isomorphic can be
found in the second section. Explicitly, the inspection process is to construct a new set called the
transformation source, noted as Ts using the equation below.
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Ts:= {t ∈ Mi|t ' T (K)`} . (4.7)

What is done next is called a transformation. Foremost, a set of transformation rules are created
in order to establish bijections from the micro-statement, which is about to be manipulated, the left
of the template pair σ. Secondly, the reverse map is applied to the right of the template pair τ and
then the transformation process execution is done. Next, we delineate the definition of transformation
mapping.

Definition 4.6. A transformation map is a one-one map defined between the list of symbol and sub-
brackets of the two brackets α and β where,

T : αB ∪ αS → βB ∪ βS

S1
T
7→S2.

(4.8)

To begin with, the translation map between the two temporary sets, that is each of the elements of
transformation source and the left element of the template pair, are constructed forming an executable
rule that makes each non-notation right pair element x in µεMi, which is a micro-statement to discuss,
to have T (x) ∈ σB ∪ σS. After the construction, we execute a reverse transformation from τ to a new
micro-statement µ′ satisfying that

(µ′)B ∪ (µ′)S = T −1 (µB ∪ µS) . (4.9)

And then micro-statement µ′ is the freshly baked result of derivation. All of the micro-statements as
results of map T −1 forms new setM′. In the end we process the poolM with this union operation:

Mi+1 =Mi ∪M
′.

The process above explains how the reflection functor K evolvesMi intoMi+1. Nevertheless, the
derivation is to be done in practice using recursive functor Fi, which selectsK as the reflection functor
to utilize, following the specification we present below.

The recursive functor Fi decides the reflection functor to use based on these criteria: The random
seed denoted with r, the knowledge base that is the functor category that all reflection functors form, as
well as an integer j, indicating the last timeK j is executed. Notice that during each time of execution, r
is calculated by the random generator function and passed as a parameter implicitly, which guarantees
Fi’s being well-defined, meaning that the result of Fi is certain for each input. To begin with, we will
investigate the organization of objects in the knowledge base Q.

Definition 4.7. The initial map is the original state of the knowledge base Q when Q is created.
Initially, after the reflection functors are sorted, while discussions around this take place before, they
form a circular path with connections of morphisms. That is, for N = |Ob(Q)|,

Kn
kn
→ Kn+1, n ∈ Z[0,N−1]

KN
kN
→ K0.

(4.10)

Graphically, Figure 1 illustrates the initial map.

AIMS Mathematics Volume 8, Issue 8, 18278–18294.



18288

K0

K1

K2 K3

KN

k0

K1

k2

K3
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Figure 1. The initial map.

A morphism in this category means that if the reflection functor on its start is executed, then the target
functor will be executed next time. That is, to be more specific, if a functor in Q has no morphisms
targeting it, then it will be never executed unless it is configured as the beginning functor (location
0) manually. Moreover, if a functor has more than one morphisms starting from it, then we call this
functor extroverted. Otherwise, if a functor has more than one morphisms targeting it, it is introverted.
If one has only two morphisms connected, one in and one out, it is ordinary. The process of determining
the next functor of an extroverted functor is discussed below.

The definition below describes how the recursive functor uses the knowledge base and the further
evolution for the data structure of the knowledge base. It ought to be paid attention to that although in
the Introduction part we say this new method of implementing a prover makes the deduction algorithm
low-knowledge, it turns out to have an infrastructure called the knowledge base. This is not conflicting
since the knowledge we refer to in the Introduction section means the algorithm is automated, meaning
it does not require users to provide much input and it does not know exactly what is under manipulation.
On the other hand, however, the word knowledge here means the storage of reflections, which can be
rules, axioms, theorems, lemmas and even strategies.

Definition 4.8. A recursive functor Fi is a functor that applies to pool Mi and evolves it into Mi+1.
The process of determining which Kw is selected after former reflection functor K j generally works
on the knowledge base Q, right from starting the initial map. If this is the first time for the recursive
functor to execute, then K0 is selected. If Fi encounters an introverted or ordinary functor K j then
significantly,

w = k j

(
K j

)
. (4.11)

If Fi encounters an extroverted functor, then the random number r is utilized and w turns out to be
the following:

w = (r mod
N∑

u=0

)
∣∣∣∣HomQ

(
K j,Kq

)∣∣∣∣ . (4.12)

It is easy to understand that for each reflection functor Ka and Kb, the count of set HomQ (Ka,Kb)
indicates the weight of Kb to Ka, controlling the probability of Kb to be selected when the former
functor is Ka. The design of this process is inspired by the lottery scheduling algorithm discussed in
Andrew S. Tanenbaum’s Operating Systems: Design and Implementation [8].
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An issue that is worth attention is that of the random generator defined in the following recursion
formula: [7]

Xn+1 = ((1103515245Xn + 12345) mod 232).

Then each r must belong to region Z [0,232 ). That is, obviously, if the count of all morphisms is
more than 232, then some of the functors that never be referred to, although there do exist morphisms
targeting them. While, in this paper, the problem will not be solved and we assume that the number of
the morphisms added up is smaller than the boundary of 232, which equals to four gigabytes and will not
be exceeded in most engineering situations. Obviously when using the portable recursion equation, the
quality of the random numbers generated may be lower than some technical implementations, it can be
conveniently expressed in this paper. If the algorithm is implemented in the real-world, a randomness
collector, which generates random numbers from the real world, for example, the vibration of the
computer motherboard, will probably act as a better solution.

The more detailed explanation of the recursive functor can be found in the algorithm below
(Algorithm 1).

Algorithm 1 Pseudo code for recursive functor Ft

Require: PoolMt, Knowledge base Q, random r, Just used reflection functor index i
Ensure: Next poolMt+1

1: function Ft(Mt, Q, r, i) . This is the sub-process
2: K ← SelectReflectionFunctor(Q, r, i)
3: return KMt . Apply functor K to pool
4: end function
5: function SelectReflectionFunctor(Q, r, i) . Just used: Ki ∈ Ob(Q)
6: M ← Mor(Q)
7: for all m ∈ M do . Get morphisms starting at Ki

8: if s(m)! = Ki then
9: M ← M\{m}

10: end if
11: end for
12: if |M|== 1 then . The easiest condition
13: return t(m ∈ M)
14: else
15: n← r%|M|
16: return t(n)
17: end if
18: end function

Note that we use the statement KMt to represent applying functor K to category Mt and get the
result category. The detailed steps of the functor execution are defined previously.

It should be noted that if the initial map does not evolve, the proof efficiency will be primitive.
Hence, we define a supplementary process called knowledge reinforcement, with definition presented
below.

AIMS Mathematics Volume 8, Issue 8, 18278–18294.



18290

Definition 4.9. The process of knowledge reinforcement is performed after a finishing a proof. The
first step of this reinforcement is to add numbers of utilization of the corresponding morphism of copies
of morphisms into the knowledge base, increasing the weight of connections between the reflection
functors. The next time a proof is issued, the modified knowledge base is loaded into an instance and
acts as the modified initial situation.

The second step of this sort of reinforcement is called reduction, which is based on the Ebbinghaus’s
forgetful curve’s numerical fit function. The exact form of the function expression can be found in
the Preliminary section. Specifically, the number of morphisms is decreased following the forgetful
equation, changing into the nearest integer number. To be more explicit, the Ebbinghaus-reduced
decimal is stored separately from the knowledge base and the exact and accurate representation for
this is omitted in the paper.

A situation after some reinforcements may be the one demonstrated in Figure 2.

K0

K1

K2 K3

KN

k0

K1

k2

K3

kN

Figure 2. An example map after several reinforcements.

Readers may notify that thatK1 has a morphism targetingKN andKN also has a morphism targeting
K1. This consequence is normal and natural following the evolution. Another possible issue is that,
after some recursions, there may exist things whose weight is below the least acceptable numerical, that
is, they are completely forgotten. Well, in such a case, there will be absolutely no recursion involving
them. The only way to restore their activity is to reconfigure their parameter manually.

To summarize, we can illustrate the entire process of the workflow of the algorithm with the
following diagram on the next page (Figure 3).
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Start

Get task from user

Mt R

Ftr KBase Q

s = ∃n ∈ [0, ω),R ⊆ Ob (Mn)

s

ReinforcementGenerate stepsSteps

E(t)

End

No

YesYes

Figure 3. The flowchart of the entire algorithm.

Via the process we described in the fourth section and the data structures we presented in the third
section, a mathematical proof can be conducted over category theory’s accurate representation. Then,
a proof procedure is generated using the form of reflection history, that is, the historical list of the
reflection functors utilized by the proof.

5. Testing the algorithm’s performance through benchmarks

The discussion below is based on an implementation of the algorithm by us, called DefQed, and is
open-sourced on [9]. It will be further described in the sixth section. To illustrate the performance of
the brand-new algorithm, we construct a relatively simple exemplification. The source code describing
the demonstration can be found on the internet through [10]. The code for Wolfram Engine (or Wolfram
Mathematica) is also presented. The timing cost by the three provers are shown in Table 2.

Table 2. Timing (ms) of the three algorithms.

Round] DefQed Wolfram Engine

1 576 141
2 727 250
3 752 375
4 889 266

AIMS Mathematics Volume 8, Issue 8, 18278–18294.



18292

The data can be further illustrated in Figure 4. The blue line stands for the time (milliseconds) of
DefQed, while the orange line stands for the time (milliseconds) of Wolfram Engine.

1 2 3 4

200

400

600

800

Figure 4. The plots of the data measures.

From Figure 4 we can obviously tell the time cost of the reasoning increases by the round, as
more reflections are inserted into the database. It should be noted that, for time reasons, the reduction
algorithm is not implemented in this version of DefQed, and the coding quality can also be further
improved.

The experiment is done on a Hewlett-Packard ZBook mobile workstation 14u G5 [11]. During the
experiment, all the programs/applications not necessary are closed except for the terminal emulator
(ConEmu) and the program to benchmark. The operating system is Microsoft Windows 11 Pro for
Workstations Insider Preview (Build 25211). The processor is Intel Core i5 8250U and the memory
size is 8.0 GB. We used Wolfram Language version 12.0 and DefQed version 0.03. As DefQed utilizes
MySQL as its database, it is necessary to point out we are using MySQL version 8.0 (Community).
The DefQed source code is built with option ‘Release Mode’ for Microsoft Windows x64 processor
with NET 6.0 platform.

We also need to point out that, though in each round DefQed seems to be slower than others, it
does not mean that the algorithm has a worse efficiency and performance when comparing to others.
The performance difference between platform and programming language utilized by the two, NET
and mainly C contributes to the difference of the two applications, not mentioning that while Wolfram
Engine can only prove equations, DefQed is a generic approach. The quality of the optimization of the
codes are also not on be same basis.

6. Conclusions and future work

In the sections before we have presented an elegant data structure for representing mathematical
concepts and a neat process which utilizes category theory concepts and knowledge to conduct proofs,
which also have self-optimization features.

Currently, we have developed a computer program called DefQed that implements the algorithm
and it is open-sourced with BSD 3-Clause “New” or “Revised” License on GitHub. The source code
of the latest version can be accessed at [9]. It should be noted that the version is very early and some
aspects of the algorithm we presented in the paper are not implemented.
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Future works are the followings below:

• Continuing the implementation of the corresponding software. Currently, the software we
developed is still under early development and a great many of the aspects we presented in the
paper above, including the self-evolution logic, have not been constructed yet.
• Improving the algorithm. The algorithm we presented in the paper is not mature. For instance,

if the knowledge base has more than 232 morphisms, then some of the morphisms will never be
utilized.
• Optimizing the algorithm. Currently, though the design of the procedures increase generality

because of the low-knowledge feature, the performance of derivations may be lower than the
current algorithms, which focus on a certain subject inside mathematics.
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