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Abstract: Acute diarrhea caused by consuming unclean water or food is known as the epidemic
cholera. A model for the epidemic cholera is formulated by considering the instants at which a person
contracts the disease and the instant at which the individual exhibits symptoms after consuming the
poisoned food and water. Initially, the model is formulated from the deterministic point of view,
and then it is converted to a system of stochastic differential equations. In addition to the biological
interpretation of the stochastic model, we proved the existence of the possible equilibria of the
associated deterministic model, and accordingly, stability theorems are presented. It is demonstrated
that the proposed stochastic model has a unique global solution, and adequate criteria are constructed
by using the Lyapunov function theory, which guarantees that the system has persistence in the mean
whenever R0

s > 1. For the case of Rs < 1, we proved that the disease will tend to be eliminated from the
community. Some graphical solutions were produced in order to better validate the analytical results
that were acquired. This research can offer a solid theoretical foundation for comprehensive knowledge
of other chronic communicable diseases. Additionally, our approach seeks to offer a technique for
creating Lyapunov functions that may be utilized to investigate the stationary distributions of models
with non-linear stochastic perturbations.
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1. Introduction

Found in marine animals, the bacterium Vibrio cholerae infects the bowel, thus causing cholera.
This bacteria has about 200 serogroups, although only two of them (O139 and O1) causes cholera
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infection [1, 2]. They manage to get through and survive the stomach’s gastric acid barrier before
penetrating the mucous lining that covers the epithelial cells of the intestine [1, 3]. Once they have
colonized the intestine, they release enterotoxins which cause the small intestine’s endothelium cells
to secrete more electrolytes and water [1]. John Snow demonstrated in 1854 that cholera outbreaks
can be brought on by consuming infected water or food [4]. However, there are additional means
of dissemination as well; for example, contact with infectious people can potentially cause infection
in the vulnerable population. If these persons have a higher chance of contracting the disease, they
can spread it to household members who prepare meals or use water from containers, for example;
for details, [4]. A person may be infectious without or with symptoms, which may appear anywhere
between a few hours and five days after getting the infection. However, the symptoms of the infection
usually start within first 2–3 days [5]. The most common symptoms related to this disease are copious
leg cramps, and vomiting, watery diarrhea. It is very crucial that the infected people should receive
treatment as quickly as possible because if they are not treated, they can become dehydrated, develop
acidosis and experience circulatory collapse. In the worst cases, this disease has a 12 to 24 hour death
risk [4, 6]. According to some research and testing, a person who has recovered may be immune
to the sickness for three to ten years. However, new studies indicate that the immunity can be lost
after a few weeks or months [4, 7]. Due to the difficulty in getting sanitary facilities and clean water
in the underdeveloped and developing nations, diarrheal diseases are the leading cause of infant and
child deaths [8]. Furthermore, according to Sun et al. [9], this disease has created a serious hazard to
human society, causing a significant amount of mortality and morbidity, and it has a poor system of
surveillance. Therefore, it is crucial to examine the mathematical models describing the transmission
mechanism of cholera in order to understand how the disease spreads and how one can control its
spread.

Numerous mathematical models have been investigated to explain how cholera spreads,
including [1, 4, 6–9] and the references listed therein. An SIR (susceptible-infectious-recovered) type
of model was put forth in [7], and takes into account two classes of hyperinection and less-infectious
bacterial concentrations. Further, the infected class is subdivided into two compartments, namely,
asymptomatic and symptomatic groups. Using the techniques of sensitivity analysis, optimum control
theory and numerical simulations, the authors analyzed the cost-effectiveness of a variety of controlling
techniques for the two populations where the disease is assumed to be endemic. An SIR type model
with a class for the vibrio bacterial concentration in the environment was taken into consideration by
Wang and Modnak [10]. Three preventative interventions are included in the model: immunisation,
medical care, and water sanitation. The authors provided constant values to the control parameters and
the stability analysis of the equilibrium points was performed. On the basis of Pontryagin’s Maximum
Principle, they also analyzed a more comprehensive cholera model with time-dependent controls,
demonstrating the existence of a solution to the optimal control problem and obtaining the essential
optimality conditions. As control measures, the authors of [6] included a public health awareness
campaign, immunization, isolation and therapy. This work also considered the bacterial concentration
into the model as a separate compartment. To evaluate the potential community benefits of these
strategies, the basic reproduction number was compared with the education, vaccination, and treatment
induced threshold quantities and with the combined threshold parameter. The stability analysis of the
fixed points was examined by using the Lyapunov functional technique.

It is strongly advised to utilize the mathematical modeling methods in order to examine the
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ways in which an epidemic spreads and how to control it [11–15]. Due to their representation
of the natural history of the infection, such models can strike a compromise between, biological
scenario and the robustness of their data connections. A wide spectrum of cholera dynamics have
been highlighted by models that have been developed thus far. The majority of models are from
a deterministic point of view: however, the noises associated with the environment is always of
significant interest to epidemiologists while investigating the dynamics and control of the epidemic
cholera [16]. Interpersonal interactions or other aspects of the population are unpredictable, for
example, the epidemic onset and its propagation. As a result, the environment’s diversity and the
unpredictability of the nature will have a high impact on epidemic’s present and future status.

It is worthy to mention that the persistence and distribution of the bacteria are strongly related with
the corresponding change in the environment. The dynamics of an infection is inherently stochastic
both in terms of parameters and states, so epidemiology considers stochasticity to be a key element in
epidemic modeling. The disturbances being included in the model should be positively autocorrelated,
although these are naturally random. Additionally, from the associated problem, one can easily
analytically obtain these fluctuations by utilizing the probability density function [17–19]. Generally,
deterministic and stochastic modeling are the two main types of techniques for modeling epidemics.
When modeling biological systems, models consisting of stochastic differential equations (SDEs) are
given preference over deterministic models because they provide a higher level of reality [20–23].
To establish a distribution of expected outcomes, such as the number of infected people over time t,
we might employ SDEs. Additionally, when simulated numerous times, a stochastic model produces
different results that are more valuable than deterministic models. To characterize the dynamics of the
cholera infection, a number of deterministic models have been put forth, such as [24, 25].

In the present study, we developed a stochastic epidemic model to explain the dynamics of cholera
transmission, particularly its long-term behavior, in a situation of migrating populations where bacterial
contamination may occur. The entire population (of both humans and bacteria) is divided into six
groups in a disjoint manner. These compartments are S(t), I(t), Q(t), R(t), B1(t) and B2(t) respectively
standing for the human being susceptible, infected, quarantine and, recovered and concentration of
vibro-cholera in water and food. According to the features of the sickness and after taking into account
the environmental noises, these groups are related to one another through mathematical equations.
More specifically, we take into considerations the interval between the infection and the onset of
cholera symptoms in an individual.

The structure of the remaining manuscript is as follows. We suggest a model for governing the
dynamics of cholera in Section 2. Section 3 provides the equilibria of the model, and the threshold
parameter is calculated therein. In Section 4, we provided sufficient details showing the existence of
a unique positive global solution. The permanence and elimination of the infection are investigated
in Sections 5 and 6. In Section 7 numerical simulations find the probability density function for the
proposed model. In Section 8, theoretical findings are numerically tested and graphically displayed.
Section 9 of the study includes a summary as well as suggestions for future investigations.
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2. Models formulation

In this section, we will formulate a mathematical model for describing the dynamics of cholera
by including the instants at which a person contracts the disease and instant at which he/she
exhibits symptoms after consuming contaminated water or food. As a result, we will consider a
model describing the dynamics of cholera which incorporates the Susceptible-Infectious-Quarantined-
Recovered (SIQR) classes and also takes two additional classes of cholera bacterium densities. At any
time t ≥ 0, we have stratified the entire human population N(t) into four sub-groups: S(t), I(t), Q(t)
and recovered R(t) which respectively shows the sizes of the susceptible, infectious, quarantined and
recovered individuals. Similarly, the bacteria population is divided into two compartments: B1(t), and
B2(t), that respectively stand for the concentrations of cholera bacteria in water and food. To formulate
the model, we considered the constant inflow of individuals into the susceptible class at a rate Π. The
natural death rate is assumed to be µ > 0, and it is uniform for each compartment. The vulnerable
population can contract the cholera bacterium from both of the sources at rates β1B1(t) and β2B2(t),
respectively. Here, the constants β1 and β2 are positive, and physically these parameters show the
transmission rates of cholera bacteria via infected water and food. It is also taken into account that a
recovered person can lose the immunity and could gain susceptibility at a constant rate ω. A fraction of
the infected people will move to the quarantine class, and this movement is assumed constantly. They
are segregated and receiving appropriate medication at rate δ during this time. Due to treatment or self-
resistance to the disease, the quarantined people will recover with a rate ε. The individuals in infected
and quarantined compartments will experience disease-induced mortality which are respectively α1

and α2. Each infected person increases the concentration of cholera germs in the water and food at the
rates η1 and η2, respectively. Further, the biology of the problem suggests that both the concentrations
of the bacteria could decrease at a constant rate d and hence be included into the model. In addition,
we impose the following assumptions on the model:

A1 : All of the parameters µ,Λ, κ, β, η1, η2 and d are positive real numbers, and δ, ω, ε, α1, α2 are
nonnegative.

A2 : The mean contact in a unit time is constant, and it is denoted by c.

A3 : Every person/entity in the entire populations has an equal chance of moving into another class and
the same is the case for water and food cholera bacteria population classes B1 and B2. In other
words, the exponential distribution determines the probability distribution of movements among
the compartments, and the projected average time spent in a class can be calculated by taking into
account the inverse of that parameter in an exponential distribution.

A4 : It is assumed that the size and demographic structure of the population remains constant over time,
and there are no new individuals entering or leaving the population permanently. This means that
the spread of the disease is contained within the boundaries of the population, and there is no
external influence on the epidemic dynamics.

A5 : The recovered people require no treatment, and consequently, such people are immune to cholera.
We suppose that no recoverable persons died as a result of cholera. In this context, it is
reasonable to assume that both recovered and susceptible persons die at the natural mortality rate
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µ. This reflects that only untreated infectious individuals without symptoms or who are receiving
treatment can die from cholera.

The mathematical model that results from the above-mentioned suppositions is as follows:

dS
dt
= Π −

β1B1(t)S(t)
N(t)

−
β2B2(t)S(t)
N(t)

− µS(t) + ωR(t),

dI
dt
=
β1B1(t)S(t)
N(t)

+
β2B2(t)S(t)
N(t)

− (α1 + µ + δ)I(t),

dQ
dt
= δI(t) − (α2 + µ + ε)Q(t),

dR
dt
= εQ(t) − (ω + µ)R(t),

dB1

dt
= η1I(t) − dB1(t),

dB2

dt
= η2I(t) − dB2(t).

(2.1)
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Figure 1. A complete description of the flowcharts of cholera dynamics governed by
model (2.1).
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In order to consider the stochastic fluctuations in system (2.1), we will take into account the
functionsWi(t) for i = 1, · · · , 6 withWi(0) = 0 in the respective classes. Biological interpretations of
these functions are the inclusion of the fluctuations due to the environment and are called the Brownian
motions. The intensity associated with each noise is described by γi for i = 1, · · · , 6. By considering
these fluctuations, the proposed stochastic model becomes

dS =
[
Π −
β1B1(t)S(t)
N(t)

−
β2B2(t)S(t)
N(t)

− µS(t) + ωR(t)
]
dt + γ1S(t)dW1(t),

dI =
[
β1B1(t)S(t)
N(t)

+
β2B2(t)S(t)
N(t)

− (α1 + µ + δ)I(t)
]
dt + γ2I(t)dW2(t),

dQ =
[
δI(t) − (α2 + µ + ε)Q(t)

]
dt + γ3Q(t)dW3(t),

dR =
[
εQ(t) − (µ + ω)R(t)

]
dt + γ4R(t)dW4(t),

dB1 =

[
− dB1(t) + η1I(t)

]
dt + γ5B1(t)dW5(t),

dB2 =

[
η2I(t) − dB2(t)

]
dt + γ6B2(t)dW6(t).

(2.2)

In this work, we intend to use model (2.2) and find possible answers to the questions listed below:

Q1 : Is random noise affecting the dynamic behavior of the epidemic cholera?

Q2 : Does polluted water plays a significant role in the spread of the disease?

Q3 : Does food tainted with the Vibrio-cholerae effect the dynamics of the underlying disease?

Q4 : What standard is used to determine whether the model has undergone extinction?

Q5 : What standard is used to determine whether the infection is persistent?
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Figure 2. The detailed flowcharts of cholera disease transmission of system (2.2).

3. Deterministic model analysis

First, we show that the model (2.1) makes sense from a biological perspective since, under non-
negative initial conditions, the solutions of (2.1) are non-negative. Second, we provide the formulations
for the equilibrium points where disease is absent and where it is endemic, as well as the expression for
the threshold parameter. The model is then linearized, which enables us to derive several significant
findings that are required for the local study of the steady states. In the continuation, we will take into
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account the notations below:

a1 = δ + α1 + µ,

a2 = ε + α2 + µ,

a3 = ω + µ,

ρ1 = Πη1a2a3 + d(a1a2a3 − δε),
ρ2 = Πη2a2a3 + d(a1a2a3 − δε),
D̄ = a1a2a3µ + β(a1a2a3 − δεω),
A = a1a2a3,

Ã = a1a2a3 − δεω.

(3.1)

3.1. Equilibrium points and the basic reproduction number

A process described by a system of ordinary differential equation (ODEs) is said to be in the
equilibrium state if there is no change in the system with respect to the independent variable. Since, we
are dealing with a dynamical system in mathematical epidemiology, the solution of the model which
is time independent is said to be the equilibrium state of the system. Upon solving the above problem,
we will obtain the equilibria of the problem. Hence, by following the studies [11,22,26], a disease-free
equilibrium (DFE) for the proposed SIQRB Cholera model can be written in the form of

Π −
β1B1(t)S(t)
N(t)

−
β2B2(t)S(t)
N(t)

− µS(t) + ωR(t) = 0,

β1B1(t)S(t)
N(t)

+
β2B2(t)S(t)
N(t)

− (α1 + µ + δ)I(t) = 0,

δI(t) − (α2 + µ + ε)Q(t) = 0,
εQ(t) − (ω + µ)R(t) = 0,

η1I(t) − dB1(t) = 0,
η2I(t) − dB2(t) = 0.

(3.2)

After some basic mathematical calculation we can easily get the following DFE points for the
proposed (2.1). Hence, the equilibrium state of the proposed deterministic model is of the form

E0 =
(
S0, I0,Q0,R0,B0

1,B
0
2

)
=

(
Π

µ
, 0, 0, 0, 0, 0

)
. (3.3)

Now, consider that Fi(t) is the rate of appearance of new infections in the compartment associated with
index i,V+i (t) is the rate of transfer of individuals into the compartment associated with index i by all
other means, and V−i (t) is the rate of transfer of individuals out of the compartment associated with
index i. In this way, the matrices F(t),V+(t) and V−(t), associated with model (2.1), are given by

F(t) =



0
β1B1(t)S(t)
N(t) +

β2B2(t)S(t)
N(t)

0
0
0
0


, V+(t) =



Π + ωR(t)
0
δI(t)
εQ(t)
η1I(t)
η2I(t)


,
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and

V−(t) =



β1B1(t)S(t)
N(t) +

β2B2(t)S(t)
N(t) + µS(t)

a1I(t)
a2Q(t)
a3R(t)
dB1(t)
dB2(t)


.

Therefore, considering V(t) = V−(t)−V+(t), the Jacobian matrices of F(t) and of V(t) are, respectively,
and then put the disease-free equilibrium values of E0 in F(t) and of V(t), given by

FE0 ==



0 0 0 0 0 0
β1B1
N
+
β2B2
N

0 0 0 β1S
0

N

β2S
0

N

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

and

VE0 =



β1B1
N(t) +

β2B2
N(t) + µ 0 0 −ω β1S

0

N

β2S
0

N(t)
0 a1 0 0 0 0
0 −δ a2 0 0 0
0 0 −ε a3 0 0
0 −η1 0 0 d 0
0 −η2 0 0 0 d


.

The basic reproduction number of model (2.1) is then given by

R0 = ρ
(
FE0V−1

E0

)
.

The following expression defines the basic reproduction number for the proposed problem

R0 = R1 + R2, (3.4)

where

R1 =
β1Πη1

µd(δ + α1 + µ)
, R2 =

β2Πη2

µd(δ + α1 + µ)
. (3.5)

Moreover, when R0 > 1, then by the use of Eqs (3.1) and (3.4) we determine that there an endemic
equilibrium given by

E∗ =
(
S∗, I∗,Q∗,R∗,B∗1,B

∗
2
)
, (3.6)
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18260

where

S∗ =
a1ρ

η1η2D̄
,

I∗ =
(β1 + β2)Πa2a3 (R0 − 1)

R0D̄
,

Q∗ =
(β1 + β2)Πa3δ (R0 − 1)

R0D̄
,

R∗ =
(β1 + β2)Πδε (R0 − 1)

R0D̄
,

B∗1 =
(β1 + β2)Πη1a2a3 (R0 − 1)

R0D̄d
,

B∗2 =
(β1 + β2)Πη2a2a3 (R0 − 1)

R0D̄d
.

4. Stochastic model analysis

In this part of the study, the stochastic system is studied for extinction and ergodic stationary
distribution, and the existence and uniqueness of solution, are all investigated.

4.1. Positive global solution of the model

While studying the dynamic behaviors of a stochastic system, it is the first crucial issue is to check
the model for the existence of a global solution. Further, the nature of the long term behavior and
positivity of the solution are of major significance for a model that describes population dynamics.
This part of the work mainly deals with the existence of a unique non-negative global solution to the
stochastic model (2.2). It is necessary that the coefficients of the model’s equation must be locally
Lipschitz and must satisfy the condition of linear growth in order to prove that a stochastic model has
a unique global solution.

Theorem 1. A solution (S(t), I(t),Q(t),R(t),B1(t),B2(t)) of model (2.2) on t ≥ 0 for any initial value
(S(0), I(0),Q(0),R(0),B1(0),B2(0)) ∈ R6

+, and the solution will remain in R6
+ with probability one, i.e.,

for all t ≥ 0, namely, (S(t), I(t),Q(t),R(t),B1(t),B2(t)) ∈ R6
+.

Proof: For the non-negative initial values of the state variables, one can easily notice that the
coefficients of the model are locally Lipschitz. This assures that for any time t, the proposed problem
has a local unique solution in the interval [0, τe). The term τe stands for the explosion time, and for
more details, readers are suggested to visit [27,28]. It is sufficient to show that τe = ∞ for proving that
actually such solution is global. To prove this, let us consider a large enough positive real number k0

in such a way that each solution of the problem lies within the interval [ 1
k0
, k0]. Further, for k ≥ k0 let

τk = in f {t ∈ [0, τe) :
1
k
≥ min{S(t), I(t),Q(t),R(t),B1(t),B2(t)}, or

k ≤ max{S(t), I(t),Q(t),R(t),B(t),B1(t),B2(t)}.
(4.1)
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Throughout this paper, inf ϕ = ∞ whenever ϕ denotes an empty set. According to the definition, τk is
increasing as k → ∞. Thus, by assuming the limit of τk to be τ∞, τ∞ ≤ τe almost surely (a.s.). In other
word, we need to show that τ∞ = ∞ a.s. If this assertion is false, then there exists a pair of constants
T > 0 and ϵ ∈ (0, 1) such that

ϵ < P{τ∞ ≤ T }. (4.2)

Thus, for an integer k0 ≤ k1, we have

P{T ≥ τk} ≥ ϵ, ∀ k1 ≤ k.

Let’s define a Lyapunov function of the following form to move forward:

V = (S − c1 − c1log
S

c1
) + (I − log I − 1) + (Q − logQ − 1) + (R − logR − 1)

+ (B1 − logB1 − 1) + (B2 − logB2 − 1),
(4.3)

here the parameter c1 will be determined at later stages. Making use of Itoˆs formula, we obtain

dV(S, I,Q,R,B1, B2) = LV(S, I,Q,R,B1,B2)dt + γ1(S − c1)dW1(t) + γ2(I − 1)dW2(t)
+ γ3(Q − 1)dW3(t) + γ3(R − 1)dW4(t) + γ5(B1 − 1)dW5(t) + γ6(B2 − 1)dW6(t).

(4.4)

Here, the LV operator is from the space R6
+ to R+ and defined by

LV =
(
1 −

c1

S

)(
Π −
β1B1S

N
−
β2B2S

N
+ ωR − µS

)
+

c1

2
γ1

2

+

(
1 −

1
I

)(
β1B1S

N
+
β2B2S

N
− (α1 + µ + δ)I

)
+

1
2
γ2

2

+

(
1 −

1
Q

)(
δI − (α2 + µ + ε)Q

)
+

1
2
γ3

2 +

(
1 −

1
R

)(
εQ − (µ + ω)R

)
+

1
2
γ4

2

+

(
1 −

1
B1

)(
η1I − dB1

)
+

(
1 −

1
B2

)(
η2I − dB2

)
+

1
2
γ5

2 +
1
2
γ6

2

= Π −
β1B1S

N
−
β2B2S

N
+ ωR − µS −

c1Π

S
+

c1β1B1

N
+

c1β2B2

N
−

c1ωR

S
+ c1µ

+
β1B1S

N
+
β2B2S

N
− (α1 + µ + δ)I

−
β1B1S

NI
−
β2B2S

NI
+ (α1 + µ + δ) + δI − (α2 + µ + ε)Q −

δI

Q
+ (α2 + µ + ε)

+ εQ − (µ + ω)R −
εQ

R
+ (µ + ω) + η1I − dB1 −

η1I

B1
+ d + η2I − dB2 −

η2I

B2
+ d

+
c1γ1

2 + γ2
2 + γ3

2 + γ4
2 + γ5

2 + γ6
2

2
≤ Π + c1µ + c1β1B1 + c1β2B2 + (α1 + µ + δ) + (α2 + µ + ε) + (µ + ω) + η1I + η2I + 2d

− d(B1 + B2) +
c1γ1

2 + γ2
2 + γ3

2 + γ4
2 + γ5

2 + γ6
2

2
.

(4.5)
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Let β = Max{β1, β2}, and then choose c1 =
d
β
, such that c1β − d = 0. Furthermore S + I + Q + R ≤ 1,

and thus,

LV ≤ Π + c1µ + β + α1 + 3µ + δ + α2 + ε + ω + η1 + η2 + 2d

+
c1γ1

2 + γ2
2 + γ3

2 + γ4
2 + γ5

2 + γ6
2

2
= K.

(4.6)

The rest of the proof is much like the proof of Theorem 2.1 in [23]. Thus, by omitting the trivial steps,
the proof of the theorem is completed.

5. Extinction

It is crucial to consider the scenarios in which an infectious disease will become extinct or disappear
from the population while predicting its dynamics. In this part, we will demonstrate how the solution
of stochastic model (2.2) will approach zero with probability one if we change the values of the white
noises. Let

⟨X(t)⟩ =
1
t

∫ t

0
X(s)ds.

Lemma 1. (Strong Law) [29, 30] Let M = {M}0≤t be continuous and real valued along with local
martingale which vanishs as t → 0. Then,

lim
t→∞

〈
M,M

〉
t = ∞, ⇒ lim

t→∞

Mt〈
M,M

〉
t
= 0, a.s.

lim
t→∞

sup
〈
M,M

〉
t

t
< 0, ⇒ lim

t→∞

Mt

t
= 0, a.s.

(5.1)

Lemma 2. [23, 29] Let (S, I,Q,R,B1,B2) be the solution of system (2.2) with initial value
(S(0), I(0),Q(0),R(0),B1(0),B2(0)) ∈ R6

+. Then,

lim sup
t→∞

lnS(t)
t
= 0, lim sup

t→∞

ln I(t)
t
= 0, lim sup

t→∞

lnQ(t)
t
= 0,

lim sup
t→∞

lnR(t)
t
= 0, lim sup

t→∞

lnB1(t)
t

= 0, lim sup
t→∞

lnB2(t)
t

= 0, a.s. (5.2)

Furthermore, if µ > γ
2
1∨γ

2
2∨γ

2
3∨γ

2
4

2 , and d > γ
2
5∨γ

2
6

2 and then

lim
t→∞

∫ t

0
S(s)dW1(s)

t
= 0, lim

t→∞

∫ t

0
I(u)dW2(u)

t
= 0, lim

t→∞

∫ t

0
Q(u)dW3(u)

t
= 0,

lim
t→∞

∫ t

0
R(s)dW4(s)

t
= 0, lim

t→∞

∫ t

0
B1(s)dW5(s)

t
= 0, lim

t→∞

∫ t

0
B2(s)dW6(s)

t
= 0, a.s. (5.3)
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Then, the solution of system (2.2)

lim sup
t→∞

S(t) =
Π

µ
,

lim sup
t→∞

I(t) = 0,

lim sup
t→∞

Q(t) = 0,

lim sup
t→∞

R(t) = 0,

lim sup
t→∞

B1(t) = 0,

lim sup
t→∞

B2(t) = 0, a.s.

(5.4)

For proving Lemma 2, one can take into consideration the proof of lemma 2.1 and 2.2 in [29].
Consequently, the proof of the Lemma is straight forward and hence is omitted.

To discuss the extinction theory of system (2.2), let us define the threshold parameter

Rs =
β1η1 + β1η2

d
(
α1 + µ + δ +

γ2
2

2

) .
Theorem 2. Assume that (S(t), I(t),Q(t),R(t),B1(t),B2(t)) correspond to initial data

(S(0), I(0),Q(0),R(0),B1(0),B2(0)) ∈ R6
+ be a solution of model (2.2). Further, if Rs < 1, then such

solution of system (2.2) satisfies the following relations:

lim
t→∞

〈
S(t)

〉
=
Π

µ
, a.s.,

lim
t→∞

〈
I(t)

〉
= 0, a.s.,

lim
t→∞

〈
Q(t)

〉
= 0, a.s.,

lim
t→∞

〈
R(t)

〉
= 0, a.s.,

lim
t→∞

〈
B1(t)

〉
= 0, a.s.,

lim
t→∞

〈
B2(t)

〉
= 0, a.s..

(5.5)

This means that the infection from the community will be eradicated certainly in the long run.
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Proof: By integrating system (2.2), we obtained the following set of equations:

1
t
(S(t) − S(0)) = Π −

β1
〈
B1

〉〈
S
〉〈

N
〉 −

β2
〈
B2

〉〈
S
〉〈

N
〉 + ω

〈
R
〉
− µ

〈
S
〉
+
γ1

∫ t

0
S(r)dW1(r)

t
,

1
t
(I(t) − I(0)) =

β1
〈
B1

〉〈
S
〉〈

N
〉 +

β2
〈
B2

〉〈
S
〉〈

N
〉 − (α1 + µ + δ)

〈
I
〉
+
γ2

∫ t

0
I(r)W2(r)

t
,

1
t
(Q(t) − Q(0)) = δ

〈
I
〉
− (α2 + µ + ε)

〈
Q
〉
+
γ3

∫ t

0
Q(r)dW3(r)

t
,

1
t
(R(t) − R(0)) = ε

〈
Q
〉
− (µ + ω)

〈
R
〉
+
γ4

∫ t

0
R(r)dW4(r)

t
,

1
t
(B1(t) − B1(0)) = η1

〈
I
〉
− d

〈
B1

〉
+
γ5

∫ t

0
B1(r)dW5(r)

t
,

1
t
(B1(t) − B2(0)) = η2

〈
I
〉
− d

〈
B2

〉
+
γ6

∫ t

0
B2(r)dW6(r)

t
.

(5.6)

By taking into consideration the second last relation from the above system, we have

〈
B1

〉
=
η1

d
〈
I
〉
−

1
d

(
B1(t) − B1(0)

t

)
+
γ5

d

(∫ t

0
B1(r)dW5(r)

t

)
,

=
η1

d
〈
I
〉
+M1(t),

(5.7)

where

M1(t) = −
1
d

(
B1(t) − B1(0)

t

)
+
γ5

d

(∫ t

0
B1(r)dW5(r)

t

)
. (5.8)

In the same way, the last relation in Eq (5.6) yields

〈
B2

〉
=
η2

d
〈
I
〉
−

(
B2(t) − B2(0)

t

)1
d
+
γ6

d

(∫ t

0
B2(r)dW6(r)

t

)
,

=
η2

d
〈
I
〉
+M2(t),

(5.9)

where

M2(t) = −
1
d

(
B2(t) − B2(0)

t

)
+
γ6

d

(∫ t

0
B2(r)dW6(r)

t

)
. (5.10)

Directly applying the Itô formula to the second relation in system (2.2) gives us

d log I =
[
β1B1S

IN
+
β2B2S

IN
− (α1 + µ + δ) −

γ2
2

2

]
dt + γ2dW2(t),

≤

[
β1B1

I
+
β2B2

I
− (α1 + µ + δ +

γ2
2

2
)
]
dt + γ2dW2(t).

(5.11)

One can obtain the following relation very easily by integrating Eq (5.11) from 0 to t and then dividing
the same by t:

log I − logI(0)
t

≤

[β1
〈
B1

〉〈
I
〉 +

β1
〈
B2

〉〈
I
〉 − (α1 + µ + δ +

γ2
2

2
)
]
+
γ2dW2(t)

t
. (5.12)
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If we substitute relations (5.7) and (5.9) in Eq (5.12), we get the following:

logI(t)
t
≤

[β1( η1
d

〈
I
〉
+M1(t))〈
I
〉 +

β1( η2
d

〈
I
〉
+M2(t))〈
I
〉 − (α1 + µ + δ +

γ2
2

2
)
]
+

logI(0)
t
+
γ2dW2(t)

t

≤

[ β1η1
d

〈
I
〉〈

I
〉 +

β1η2
d

〈
I
〉〈

I
〉 − (α1 + µ + δ +

γ2
2

2
)
]
+
β1M1(t)〈
I
〉 +

β1M2(t)〈
I
〉 +

logI(0)
t
+
γ2dW2(t)

t

=

[
β1η1

d
+
β1η2

d
− (α1 + µ + δ +

γ2
2

2
)
]
+
β1M1(t)〈
I
〉 +

β1M2(t)〈
I
〉 +

logI(0)
t
+
γ2dW2(t)

t
.

(5.13)

Further, Mi(t) =
γi
t

∫ t

0
gidWi(t) for i = 1, 2, · · · 6. g1 = S, g2 = I, g3 = Q, g4 = R, g5 = B1, g6 = B2 are

the continuous local martingale functions and equals 0 at t = 0. If we let t → ∞ and use Lemma 2, we
get

lim
t→∞

sup
1
t
Mi(t) = 0. (5.14)

Utilizing a similar argument, we can derive very easily that limt→∞ supM1(t) = 0 and
limt→∞ supM2(t) = 0.
Under the assumption of Rs < 1, Eq (5.13) becomes

lim
t→∞

sup
logI(t)

t
≤

(
α1 + µ + δ +

γ2
2

2

)(
Rs − 1

)
< 0, a.s. (5.15)

As a consequence of relation (5.15), we have

lim
t→∞

〈
I
〉
= 0, a.s. (5.16)

Utilizing relation (5.16) in Eqs (5.7) and (5.9) as well as using the facts limt→∞ supM1(t) = 0 and
limt→∞ supM2(t) = 0, we get

lim
t→∞

〈
B1

〉
= 0, a.s, (5.17)

and
lim
t→∞

〈
B2

〉
= 0, a.s. (5.18)

Now for the 3rd equation of system (5.6), we have

〈
Q
〉
=

δ
〈
I
〉

(α2 + µ + ε)
−
Q(t) − Q(0))

t((α2 + µ + ε))
+

1
(α2 + µ + ε)

(γ3

∫ t

0
Q(r)dW3(r)

t

)
. (5.19)

Utilizing relation (5.16) in Eq (5.19) as well as using the facts limt→∞ supM3(t) = 0, we get

lim
t→∞

〈
Q
〉
= 0, a.s. (5.20)

In a similar way, we can get
lim
t→∞

〈
R(t)

〉
= 0, a.s. (5.21)
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Finally, we will take into account the first equation of system (5.6). By taking the integral from 0 to t,
dividing the result by t and using relations (5.17), (5.18) and (5.21), we obtain

S(t) − S(0)
t

= Π −
β1

〈
B1

〉〈
S
〉〈

N
〉 −

β2
〈
B2

〉〈
S
〉〈

N
〉 + ω

〈
R
〉
− µ

〈
S
〉
+
γ1

∫ t

0
S(r)dW1(r)

t
,

〈
S
〉
=
Π

d
−

1
d

[β1
〈
B1

〉〈
S
〉〈

N
〉 −

β2
〈
B2

〉〈
S
〉〈

N
〉 + ω

〈
R
〉
+
γ1

∫ t

0
S(r)dW1(r)

t

]
.

(5.22)

This gives us

lim
t→∞

〈
S
〉
=
Π

µ
a.s. (5.23)

This completes the proof.

6. Persistence of the proposed system (2.2)

Now, we have to provide a condition for the persistence of Eq (2.2).

Definition 1. [30] The considered system (2.2) is persistent, if

lim inf
t→∞

1
t

∫ t

0
(B1 + B2)(r)dr > 0 a.s. (6.1)

Theorem 3. If Rs
0 =

β1β2η1η2

(α1+µ+δ+
γ2

2

2 )(d+ γ5
2

2 )(d+ γ6
2

2 )
then at any condition of initial values

(S(0), I(0),Q(0),R(0),B1(0),B2(0)) ∈ R6
+, the disease B1(t) + B2(t) has the following:

lim inf
t→∞

〈
B1(t) + B2(t)

〉
≥

4(µ + γ1
2

2 )
[

4

√
( β1β2η1η2

(α1+µ+δ+
γ2

2

2 )(d+ γ5
2

2 )(d+ γ6
2

2 )
− 1

]
β

, a.s. (6.2)

Then we can say the disease will prevail if Rs
0 > 1.

Proof: Let define
H1 = −lnS − K1lnI − K2lnB1 − K3B2, (6.3)

where K1,K2, and K3 are constants and we will find later. Applying Itô formula, we have

dH1 = LH1dt − γ1dW1(t) − K1γ2dW2(t) − K2γ5dW5(t) − K3γ6dW6(t) (6.4)

LH1 = −
Π

S
+
β1B1

N
+
β2B2

N
−
ωR

S
+ µ +

γ1
2

2
−

K1β1B1S

NI
−

K1β2B2S

NI
+ K1(α1 + µ + δ)

+
K1γ2

2

2
−

K2η1I

B1
+ K2d −

K3η2I

B2
+ K3d +

K2γ5
2

2
+

K3γ6
2

2

≤ β1B1 + β2B2 + (µ +
γ1

2

2
) −

K1β1B1

I
−

K1β2B2

I
+ K1(α1 + µ + δ) +

K1γ2
2

2

−
K2η1I

B1
+ K2d −

K3η2I

B2
+ K3d +

K2γ5
2

2
+

K3γ6
2

2
.

(6.5)
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Let

K1(α1 + µ + δ +
γ2

2

2
) = (µ +

γ1
2

2
), K2(d +

γ5
2

2
) = (µ +

γ1
2

2
), K3(d +

γ6
2

2
) = (µ +

γ1
2

2
). (6.6)

LH1 ≤ −4 4

√
(
K1β1B1

I
)(

K1β2B2

I
)(

K2η1I

B1
)(

K3η2I

B2
) + 4(µ +

γ1
2

2
) + β1B1 + β2B2,

= −4 4

√√√
(µ + γ12

2 )4β1β2η1η2

(α1 + µ + δ +
γ22

2 )(d + γ52

2 )(d + γ62

2 )
+ 4(µ +

γ1
2

2
) + β1B1 + β2B2,

= −4(µ +
γ1

2

2
)
[

4

√
β1β2η1η2

(α1 + µ + δ +
γ22

2 )(d + γ52

2 )(d + γ62

2 )
− 1

]
+ β(B1 + B2).

(6.7)

β = Max{β1, β2}. Substituting Eq (6.7) into Eq (6.4), and then integrating both sides of Eq (6.4), we
have

H1(S(t), I(t),B1(t),B2(t)) − H1(S(0), I(0),B1(0),B2(0))
t

≤ −4(µ +
γ1

2

2
)
[

4

√
β1β2η1η2

(α1 + µ + δ +
γ22

2 )(d + γ52

2 )(d + γ62

2 )
− 1

]
+ β

〈
B1 + B2

〉
−
γ1dW1(t)

t
−

K1γ2dW2(t)
t

−
K2γ5dW5(t)

t
−

K3γ6dW6(t)
t

.

≤ −4(µ +
γ1

2

2
)
[

4

√
β1β2η1η2

(α1 + µ + δ +
γ22

2 )(d +
γ2

5
2 )(d + γ62

2 )
− 1

]
+ β

〈
B1 + B2

〉
+ Ψ(t),

(6.8)

where Ψ(t) = −γ1dW1(t)
t −

K1γ2dW2(t)
t −

K2γ5dW5(t)
t −

K3γ6dW6(t)
t . From the strong law as stated in Lemma 1,

we arrive at
lim
t→∞
Ψ(t) = 0. (6.9)

From Eq (6.8), we have

〈
B1 + B2

〉
≥

4(µ + γ1
2

2 )
[

4

√
β1β2η1η2

(α1+µ+δ+
γ2

2

2 )(d+ γ5
2

2 )(d+ γ6
2

2 )
− 1

]
β

−
1
β
Ψ(t)

+
1
β

(H1(S(t), I(t),B1(t),B2(t)) − H1(S(0), I(0),B1(0),B2(0))
t

)
.

(6.10)

According to Lemma 2 and Eq (6.9), the limit superior of Eq (6.10), we have

lim inf
t→∞

〈
B1 + B2

〉
≥

4(µ + γ1
2

2 )
[

4
√

Rs
0 − 1

]
β

, a.s. (6.11)

This finishes the proof of Theorem 3.
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7. Simulations of the probability density function of system (2.2)

A probability density function (PDF) is a mathematical function that describes the probability
distribution of a continuous random variable. It is a function that takes a real-valued number as input
and returns the likelihood of that number being observed as the output.
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Figure 3. Solution profiles for the various compartments of model (2.2) and associated ODEs
model.

Numerical investigation of the epidemiological impact of saturation effect on the various
components of the model is presented in Figure 3. For numerical simulation of the compartments
we chose the parameter and the initial value Π = 0.9, β1 = 0.007, β2 = 0.003, ω = 0.05, δ = 0.05, α1 =

0.01, µ = 0.003, α2 = 0.04, η1 = 0.01, η2 = 0.05, d = 0.03, and γ1 = 0.50, γ2 = 0.60, γ3 = 0.50, γ4 =
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0.35, γ5 = 0.41, γ6 = 0.55 and d = 0.05. and S(0) = 0.50, I(0) = 0.30,Q(0) = 0.90,R(0) =
0.10,B1(0) = 0.40,B2(0) = 0.40, and rest value we taken from Figure 5. It is observed that the
saturation effect greatly impacted the different compartments.

8. Numerical scheme and simulations

To quantitatively validate the theoretical conclusions associated with system (2.2), it is crucial to
estimate suitable values of the parameters. To do so, the beginning population sizes of both humans
and bacteria are assumed, and further, two sets of the values of the parameters are considered. The
desired time interval for both scenarios is [0, 300]. Exercising the higher-ordered Milstein method, we
have the following algorithm for obtaining numerical solution of the proposed stochastic model:

Si+1 = Si +

[
Π −
β1B1,iSi

Ni
−
β2B2,iSi

Ni
+ ωRi − µSi

]
△ t + γ1Si

√
△tς1,i +

γ2
1

2
Si(ς2

1,i − 1) △ t,

Ii+1 = Ii +
[β1B1,iSI

Ni
+
β2B2,iSi

Ni
− (α1 + µ + δ)Ii

]
△ t + γ2Ii

√
△tς2,i +

γ2
2

2
Ii(ς2

2,i − 1) △ t,

Qi+1 = Qi +

[
δIi − (α2 + µ + ε)Qi

]
△ t + γ3Qi

√
△tς3,i +

γ2
3

2
Qi(ς2

3,i − 1) △ t,

Ri+1 = Ri +

[
εQi − (µ + ω)Ri

]
△ t + γ4Ri

√
△tς4,i +

γ2
4

2
Ri(ς2

4,i − 1) △ t,

B1,i+1 = B1i +

[
η1Ii − dB1,i

]
△ t + γ5B1,i

√
△tς5,i +

γ2
5

2
B1,i(ς2

5,i − 1) △ t,

B2,i+1 = B2i +

[
η2Ii − dB2,i

]
△ t + γ6B2,i

√
△tς6,i +

γ2
6

2
B2,i(ς2

6,i − 1) △ t,

(8.1)

where ςi, j(i = 1, · · · , 6) denotes the standard Gaussian variables, having distribution N(0, 1), and ∆t is
the time-step. The intensities of the noises satisfy the condition γi > 0, (i = 1, · · · , 6).

The initial conditions used for the simulations were assumed as follows: S(0) = 80, I(0) =
50,Q(0) = 0,R(0) = 10,B1(0) = 10,B2(0) = 10. Unless, otherwise stated, the values of parameters
Π = 0.12, β1 = 0.002, β2 = 0.003, ω = 0.09, µ = 0.005, δ = 0.005, α1 = 0.2, α2 = 0.05, η1 =

0.004, η2 = 0.002 and d = 0.05. Noise intensities were assumed as γ1 = 0.55, γ2 = 0.20, γ3 =

0.25, γ4 = 0.13, γ5 = 0.15, γ6 = 0.10. In Figure 4, simulations of the deterministic system (2.1)
and perturbed system (2.2) are presented, when the associated stochastic reproduction numbers are
given by Rs < 1. These figures depict both concentrations of the Vibrio choleae approaching zero
like the trajectory of an exponential function with probability one, and this further shows the numerical
verification of Theorem 2. The figures further suggest that both the stochastic and deterministic systems
are in close agreement. Further, trajectories of both systems approach the DFE as time evolves.
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(b) Derminstaic System (2.1)

Figure 4. Simulations of the deterministic model (2.1) and stochastic model (2.2) models
when the associated stochastic reproduction numbers are less than one.

Biologically, Theorem 3 shows the persistence of the disease in view of system (2.2). To support the
conclusion of the theorem numerically, we assumed: Π = 0.12, β1 = 0.008, β2 = 0.007, ω = 0.07, δ =
0.05, α1 = 0.01, µ = 0.005, α2 = 0.05, η1 = 0.05, η2 = 0.04, d = 0.06, and γ1 = 0.60, γ2 = 0.65, γ3 =

0.50, γ4 = 0.35, γ5 = 0.41, γ6 = 0.55, and the initial conditions were the same as Figure 4, It has been
noted that the disease will continue to spread throughout the population for low white noise levels.
This result is further illustrated by Figure 5, wherein the trajectories of both the states B1 and B2 are
non-zero, i.e., there must be some concentration of the bacteria. Ultimately, it supports the statement
of Theorem 3. Further, it could be noticed from the behavior of the solution of the stochastic system
that the curves oscillates around the endemic fixed point of the associated deterministic model (2.1).
Under the condition of Rs

0 > 1, Figure 5 shows graphically the solution of both the systems. Here
again, the concentrations of the bacteria (i.e., B1 and B2) are non-zero for all times t. This validates
Theorem 3’s implications for the deterministic model (2.1). When the related reproduction number
for the stochastic system (2.2) is more than unity, the corresponding solution varies about the endemic
equilibrium. Thus, in such cases, sound policies must developed which provide strong preventative
measures against the various variants of the bacteria in order to control the spread of different strains
and their concentrations within the population.
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Figure 5. Solution profiles for the various compartments of the deterministic model (2.1)
and stochastic model (2.2).

8.1. The impact of white noise on I-class

The impact on the class I of the intensity of the white noises corresponding to system (2.2) is shown
in Figure 6. These figures suggest that increasing the values of γi for i = 1, · · · , 6 leads towards the
extinction of the disease. This means, the size of the infected class approaches zero as we increase
the values of the intensity of the noises. Further, this indicates that for small values of the intensities,
the infected compartment oscillates around the endemic steady state I⋆, which confirms the result of
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Theorem 3. Nonetheless, when the white noise terms are large enough, the corresponding solution
I, does not oscillate in the vicinity of the EE. This demonstrates that continuous efforts to increase
stochastic disruptions through mass recovery of susceptible individuals, as well as effective treatment
and care of the affected persons, could significantly lower the spread and circulation of the Cholera
virus in the population.
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Figure 6. Simulations of I(t) based on the stochastic and deterministic systems, showing
the effect of the intensities on the class I, when Π = 1.12, β1 = 0.008, β2 = 0.007, ω =
0.07, δ = 0.05, α1 = 0.01, µ = 0.005, α2 = 0.05, η1 = 0.05, η2 = 0.04, d = 0.06, and
γ1 = 0.50, γ2 = 0.66, γ3 = 0.75, γ4 = 0.35, γ5 = 0.45, γ6 = 0.50, such that, Rs

0 > 1.

8.2. The impact of β1 and β2 on B1(t) and B1(t)

Let us consider the values of the parameters as (β1, β2) = (0.08, 0.06) and initial
condition (B1(0),B2(0)) = (50, 40) with different stochastic noises (γ1, γ2, γ3, γ4, γ5, γ6) =

(0.45, 0.15, 0.68, 0.25, 0.65, 0.45). The remaining values of the parameter are the same as were taken
in the simulation of Figure 5. The concentrations of the Vibrio cholerae both in food and water, and
the mean infected relative cure of model (2.2) along with the curves (obtained from simulating the
deterministic model) are graphically depicted in Figure 7. By increasing the values of the transmission
coefficients, the corresponding concentrations of the bacteria increase, and vice verse. Consequently,
the size of the infected class increases and decreases. This suggests that by limiting the value of β1 and
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β2, we can control and prevent Cholera in the long run. The disease can be eradicated if the stochastic
disturbances are assumed to be sufficiently high and the contact terms are reduced.
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Figure 7. The plot shows the impact of β1 and β2 on the dynamics of B1(t) and B2(t) based
on stochastic system (2.2).

9. Concluding remarks and future directions

The present work was about an acute diarrhea that is caused by consuming unclean water or
food, and this infection is commonly known as cholera. Initially, the model for cholera infection is
formulated by including the instants at which a person contracts the disease and the instant at which
the individual exhibits the symptoms soon after consuming the polluted food and water. First of all,
we developed the model by using the deterministic approach, and then it was converted to a system of
stochastic differential equations. In addition to the biological interpretation of the stochastic model, we
proved the existence of the possible steady states of the associated deterministic model and accordingly,
the stability theorems are presented therein. It is shown that the proposed stochastic model has the
unique global solution, and adequate criteria are achieved by using the Lyapunov function theory which
guarantees that the model has an ergodic stationary distribution for R0

s > 1. If Rs < 1, we proved that
the disease will tend be eliminate from of the community. We provided some graphical solutions to
better validate the analytical results that were acquired. The result of this research can offer a solid
theoretical foundation for a comprehensive knowledge of other chronic communicable diseases like
Cholera. Moreover, our approach seeks to offer a technique for creating Lyapunov functions that may
be utilized in investigating the stationary distribution of the models having stochastic perturbations of
non-linear type.

The findings of this research further suggest that in contrast to the spreading of Cholera from human
to human, studying the transmission of the disease via water and food is much more beneficial, as it
decreases the chance of cross contamination. Nevertheless, researchers have noted that in order to
significantly reduce the risk, all three of these aspects must be addressed together. In future research,
the authors hope to incorporate other disease-related characteristics into the model, such as age and
spatial impacts. It is also intended to incorporate different response functions into the study in the near
future.
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