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Abstract: Let T (X) be the full transformation semigroup on a nonempty set X. For an equivalence
relation E on X and a nonempty subset Y of X, let

S E(X,Y) = {α ∈ T (X) : ∀x, y ∈ Y, (x, y) ∈ E ⇒ (xα, yα) ∈ E, xα, yα ∈ Y}.

Then S E(X,Y) is a subsemigroup of T (X) consisting of all full transformations that leave Y and the
equivalence relation E on Y invariant. In this paper, we show that S E(X,Y) is not regular in general
and determine all its regular elements. Then we characterize relations L, L∗, R and R∗ on S E(X,Y)
and apply these characterizations to obtain the abundance on such semigroup.
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1. Introduction

Let X be an arbitrary nonempty set. The full transformation semigroup on X, denoted by T (X), is
the semigroup consisting of all mappings from X to X under the operation of composition of functions.
It is well-known that T (X) is a regular semigroup (see [3], for details). Moreover, every semigroup can
be embedded in T (X) for some appropriate set X.

For a fixed nonempty subset Y of X, let

S (X,Y) = {α ∈ T (X) : Yα ⊆ Y}.
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Then S (X,Y) is a semigroup of total transformations of X which leave a subset Y of X invariant.
In 1975, Symons [17] described the automorphism group of this semigroup. In 2005, Nenthein,
Youngkhong and Kemprasit [7] showed that the semigroup S (X,Y) is regular if and only if X = Y
or Y contains exactly one element, and R = {α ∈ S (X,Y) : Xα ∩ Y = Yα} is the set of all regular
elements of S (X,Y). In addition, they determined the number of regular elements in S (X,Y) when X
is a finite set. In 2011, Honyam and Sanwong [4] characterized when S (X,Y) is isomorphic to T (Z)
for some set Z and proved that every semigroup A can be embedded in S (A1, A). They also described
Green’s relations of the semigroup S (X,Y), its group H-classes, and its ideals. In 2013, Choomanee,
Honyam and Sanwong [2] described left regular, right regular and intra-regular elements of S (X,Y)
and considered the relationships between these elements. Furthermore, they found the number of left
regular elements of S (X,Y) when X is a finite set. In [14], Sun and Wang studied the natural partial
order in S (X,Y). They determined when two elements of S (X,Y) are related, found the elements which
are compatible and described the maximal elements, the minimal elements and the greatest lower bound
of two elements. Also, they showed that the semigroup S (X,Y) is abundant. In [13], Sun L. and Sun
J. investigated all the elements in the semigroup S (X,Y) which are left compatible with respect to the
natural partial order. In [1], Chinram and Baupradist characterized left magnifying elements and right
magnifying elements of semigroups of transformations with invariant set.

Let E be an equivalence relation on a set X. Consider the following subset of T (X):

TE(X) = {α ∈ T (X) : ∀x, y ∈ X, (x, y) ∈ E implies (xα, yα) ∈ E}.

It is obvious that if E is a non-trivial equivalence relation, then TE(X) is a proper subsemigroup of T (X)
and if E is the identity or universal relation, then TE(X) and T (X) are identical. In 1994 and 1996, Pei
discussed α-congruences and some regular subsemigroup inducing a certain lattice on TE(X) [9, 10].
In 2005, Pei [8] investigated regularity of elements and Green’s relations on the semigroup TE(X).
In [11], Pei determined the rank of the homeomorphism group and considered the rank of TE(X) when
X is a finite set and each class of the equivalence E has the same cardinality. Furthermore, he also
studied the rank of Γ(X), the semigroup of all closed function α on a topological space X for which E
classes form a basis. In 2008, Sun, Pei and Cheng [15] characterized the natural partial order on the
semigroup TE(X). The compatibility of multiplication and all compatible elements were investigated.
Moreover, they found maximal, minimal and covering elements with respect to the order. In 2011, Pei
and Zhou [12] considered the relationsL∗ andR∗ on the semigroup TE(X) and the equivalence relations
E under which TE(X) becomes abundant. In 2019, Sun [16] investigated the left and right compatibility
with respect to the natural partial order on TE(X). Kaewnoi, Petapirak and Chinram studied left and
right magnifying elements of the semigroup TE(X) in [5].

In our work, we introduce a new transformation subsemigroup of T (X) by letting Y be a fixed
nonempty subset of X and define

S E(X,Y) = {α ∈ T (X) : ∀x, y ∈ Y, (x, y) ∈ E ⇒ (xα, yα) ∈ E, xα, yα ∈ Y}.

Then S E(X,Y) is a generalization of all aforementioned semigroups. In Section 3, we describe all
regular elements on S E(X,Y) and give necessary and sufficient conditions for S E(X,Y) to be regular.
In Section 4, we characterize relations L, L∗, R and R∗ on S E(X,Y). Consequently we prove that
S E(X,Y) is always left abundant but not right abundant, in general. Also, we determine the conditions
for S E(X,Y) to be abundant.
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2. Preliminary and notation

This section provides some basic properties of S E(X,Y) and notation which will be used throughout
the paper. In addition, [3] is suggested for more basic concepts in semigroup theory.

Let X be a nonempty set and E an equivalence relation on X. Hereafter, we denote by X/E the
quotient set of X by E, i.e., the set of all E-classes. By A ∈ X/E, we mean that A is an equivalence
class of E that can be viewed both as an element of X/E and as a subset of X. Let A and B be two
collections of nonempty subsets of X. ThenA is said to refine B, if for each A ∈ A, there exists B ∈ B
such that A ⊆ B. For α, β ∈ T (X), the composition of α and β, denoted by αβ, is a mapping obtained
by performing first α and then β. The notation xα means the image of x under α and Xα = {xα : x ∈ X}
is the range of α. Moreover, π(α) is a partition of X induced by α, i.e.,

π(α) = {xα−1 : x ∈ Xα},

where xα−1 is the inverse image of x under α. Note that by a slight abuse of notation, we write Pα = x,
where P = xα−1 ∈ π(α). Particularly,

ε(α) = {Aα−1 : A ∈ X/E and A ∩ Xα , ∅},

where Aα−1 =
⋃
{xα−1 : x ∈ A ∩ Xα}. Obviously, π(α) refines ε(α). For a nonempty subset Y of X, we

define restrictions to Y of π(α) and ε(α) by

πY(α) = {P ∈ π(α) : P ∩ Y , ∅}

and
εY(α) = {(A ∩ Y)α−1 : A ∈ X/E and A ∩ Xα ∩ Y , ∅}.

Let Y be a nonempty subset of a set X. Consider

S E(X,Y) = {α ∈ T (X) : ∀x, y ∈ Y, (x, y) ∈ E ⇒ (xα, yα) ∈ E, xα, yα ∈ Y}.

We can see that S E(X,Y) is a subsemigroup of T (X) and S (X,Y) and idX, the identity map on X,
belongs to S E(X,Y). We first present relationships between S E(X,Y) and some famous transformation
semigroups as follows:

Proposition 2.1. S E(X,Y) ⊆ TE(X) if and only if either one of the following hold:

(1) E = X × X;

(2) for each z ∈ X \ Y, a ∈ X, (z, a) ∈ E implies z = a.

Consequently, S E(X,Y) = TE(X) if and only if Y = X.

Proof. Assume that E , X × X and there exists (z, a) ∈ E, such that z ∈ X \ Y , a ∈ X in which z , a.
Since E , X × X, |X/E| ≥ 2, and so there exists A ∈ X/E such that z < A.
Case 1. A ∩ Y , ∅. Let b ∈ A ∩ Y and α : X → X be defined by

xα =

z, if x = z,

b, otherwise.
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Let x, y ∈ Y and (x, y) ∈ E. Then (xα, yα) = (b, b) ∈ E, which implies α ∈ S E(X,Y). However,
α < TE(X) since (zα, aα) = (z, b) < E.
Case 2. A ∩ Y = ∅. Choose b ∈ A and c ∈ Y . Define α : X → X by

xα =

b, if x = z,

c, otherwise.

Let x, y ∈ Y and (x, y) ∈ E. Then (xα, yα) = (c, c) ∈ E, which implies α ∈ S E(X,Y). However,
α < TE(X) since (zα, aα) = (b, c) < E.

The converse is obvious in the case of E = X×X. Assume E , X×X and (2) holds. Let α ∈ S E(X,Y)
and let x, y ∈ X be such that (x, y) ∈ E. If x ∈ Y , then y ∈ Y . Thus (xα, yα) ∈ E. If x < Y , then x = y
by (2) and so (xα, yα) ∈ E. Hence α ∈ TE(X).

Consequently, if Y ( X, there exists z ∈ X \ Y and Xz ∈ TE(X), where Xz is a constant map on X
with Xα = {z}. Clearly, α < S E(X,Y) and so TE(X) , S E(X,Y). �

Proposition 2.2. S E(X,Y) = S (X,Y) if and only if Y × Y ⊆ E or (Y × Y) ∩ E = idY , where idY is the
identity relation on Y.

Proof. Assume that Y × Y * E and (Y × Y) ∩ E , idY . Then there exist distinct a, b ∈ Y such that
(a, b) < E and there exist distinct c, d ∈ Y such that (c, d) ∈ E. Define α : X → X by

xα =


a, if x = c,

b, if x = d,

x, otherwise.

Then α ∈ S (X,Y), but α < S E(X,Y) since (cα, dα) = (a, b) < E.
Assume that Y × Y ⊆ E or (Y × Y) ∩ E = idY . Clearly, S E(X,Y) ⊆ S (X,Y). Let α ∈ S (X,Y) and

x, y ∈ Y be such that (x, y) ∈ E. Then xα, yα ∈ Y . If Y ×Y ⊆ E, then (xα, yα) ∈ E. If (Y ×Y)∩E = idY ,
then x = y, and so (xα, yα) ∈ E. Hence, α ∈ S E(X,Y). �

3. Regularity on S E(X,Y)

Recall that, for an element a in a semigroup S , a is said to be regular if there exists x ∈ S such that
a = axa. In particular, if all elements of S are regular, then S is called a regular semigroup. We begin
this section by characterizing all regular elements in S E(X,Y). To do this, the following lemma is a
crucial tool.

Lemma 3.1. Let α ∈ S E(X,Y). Then, for each A ∈ X/E, there exists B ∈ X/E such that (A ∩ Y)α ⊆
B ∩ Y , ∅.

Proof. Let A ∈ X/E. It is clear in the case of A ∩ Y = ∅. Let x ∈ A ∩ Y . Then there exists B ∈ X/E
such that xα ∈ B and so B∩ Y , ∅. To show (A∩ Y)α ⊆ B∩ Y , we let y ∈ A∩ Y . Since x and y belong
to the same partition, (x, y) ∈ E. Since x, y ∈ Y and α ∈ S E(X,Y), (xα, yα) ∈ E and yα ∈ Y . Hence,
yα ∈ B ∩ Y , as required. �

Theorem 3.1. Let α ∈ S E(X,Y). Then α is regular if and only if, for each A ∈ X/E, there exists
B ∈ X/E such that B ∩ Y , ∅ and A ∩ Xα ∩ Y ⊆ (B ∩ Y)α.
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Proof. Assume α is regular and let A ∈ X/E. Then α = αβα for some β ∈ S E(X,Y). From Lemma 3.1,
there exists B ∈ X/E such that (A ∩ Y)β ⊆ B ∩ Y , ∅. For each x ∈ A ∩ Xα ∩ Y , we have x = aα for
some a ∈ X, and so x = aα = aαβα = xβα ∈ (B ∩ Y)α. Hence, A ∩ Xα ∩ Y ⊆ (B ∩ Y)α.

Conversely, assume that the condition hold. For each A ∈ X/E in which A ∩ Y , ∅, by the
assumption, we can fix BA ∈ X/E such that BA ∩ Y , ∅ and A ∩ Xα ∩ Y ⊆ (BA ∩ Y)α. Let yA ∈ BA ∩ Y
be fixed. Consider x ∈ A ∩ Y . If x ∈ A ∩ Y ∩ Xα, then we choose x′ ∈ BA ∩ Y such that x′α = x. If
x ∈ (A ∩ Y) \ Xα, then we set x′ = yA. For each x ∈ Xα \ Y , we choose x′ ∈ X such that x′α = x. Now,
define β : X → X by

xβ =

x′, if x ∈ Xα ∪ Y,

x, otherwise.

To show β ∈ S E(X,Y), let x, y ∈ Y in which (x, y) ∈ E. It is clear that xβ, yβ ∈ Y and x and y belong to
the same equivalence class, say A. Then xβ = x′ and yβ = y′ are both in BA, that is, (xβ, yβ) ∈ E. To
show α = αβα, let x ∈ X. Then xαβα = (xα)βα = (xα)′α = xα. This completes the proof. �

Theorem 3.2. Let ∅ , Y ⊆ X. Then S E(X,Y) is a regular semigroup if and only if one of the following
conditions hold:

(1) |Y | = 1.

(2) Y = X and E = X × X.

(3) Y = X and E = idX.

Proof. Assume that all conditions are false.
Case 1. |Y | , 1 and Y , X. Then there exist distinct a, b ∈ Y and X \ Y , ∅. Define α : X → X by

xα =

b, if x ∈ Y,

a, otherwise.

It is clear that α ∈ S E(X,Y). Let A ∈ X/E such that a ∈ A. For each B ∈ X/E, we have (B ∩ Y)α ⊆
Yα = {b}. Since a ∈ A ∩ Y ∩ Xα, we obtain A ∩ Xα ∩ Y * (B ∩ Y)α for all B ∈ X/E. By Theorem 3.1,
α is not regular.
Case 2. |Y | , 1, Y = X, E , X × X and E , idX. Then there exists A ∈ X/E such that A , X and
|A| ≥ 2. Let a and b be two distinct elements in A. Define α : X → X by

xα =

a, if x ∈ A,

b, otherwise.

It is clear that α ∈ S E(X,Y) and (B ∩ X)α = Bα is a singleton set, for all B ∈ X/E. Since a, b ∈
A ∩ Xα ∩ X, we get A ∩ Xα ∩ X * (B ∩ X)α. By Theorem 3.1, α is not regular.

Conversely, assume one of three aforementioned conditions holds. Let α ∈ S E(X,Y). If |Y | = 1, then
we let Y = {y}. Hence, there exists B ∈ X/E such that y ∈ B. In this case, A∩ Xα∩ Y ⊆ {y} = (B∩ Y)α
for all A ∈ X/E, and so α is regular. For the case of Y = X and E = X × X, we have X is exactly
one equivalence class in X/E and X ∩ Y ∩ Xα = Xα = (X ∩ Y)α. This implies α is regular. Finally,
if Y = X and X = idX, then each equivalence class in X/E is a singleton set of elements in X = Y .
Consider {x} ∈ X/E. If x < Xα, then {x} ∩ Y ∩ Xα = ∅ ⊆ ({x} ∩ Y)α. If x ∈ Xα, then x = x′α for some
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x′ ∈ X. Hence, {x} ∩ X ∩ Xα = {x} = ({x′} ∩ X)α, and so α is regular. Therefore, S E(X,Y) is regular, as
required. �

If X = Y , then S E(X,Y) = TE(X), and we have the following corollaries, which first appeared in [8].

Corollary 3.1. [8] α ∈ TE(X) is regular if and only if for each A ∈ X/E, there exists B ∈ X/E such
that A ∩ Xα ⊆ Bα.

Corollary 3.2. [8] TE(X) is regular if and only if E = idX or X × X.

4. Abundance of S E(X,Y)

For any semigroup S , denote by S 1 the semigroup obtained from S by adjoining an identity if S has
no identity and S 1 = S if S is a monoid. For any a, b ∈ S , define

aL b if and only if S 1a = S 1b,

or equivalently, aL b if and only if a = xb, b = ya for some x, y ∈ S 1. Dually, define

aR b if and only if aS 1 = bS 1,

or equivalently, aR b if and only if a = bx, b = ay for some x, y ∈ S 1. Moreover,

aL∗ b if and only if aL b in some oversemigroup of S .

Analogously,

aR∗ b if and only if aR b in some oversemigroup of S .

It is well-known that all four aforementioned relations are equivalence relations on S in which L ⊆ L∗

and R ⊆ R∗. Particularly, if S is a regular semigroup, thenL = L∗ and R = R∗. In addition, S is said to
be left abundant if each L∗-class contains an idempotent. Right abundant semigroup is defined dually.
If S is both left and right abundant, then S is called an abundant semigroup. Since all L-classes and
R-classes of any regular semigroups always contain at least one idempotent, all regular semigroups are
abundant.

In fact, S E(X,Y) is not regular in general. Here, we study the relations L, R, L∗ and R∗ on S E(X,Y)
and apply the results to describe the condition for S E(X,Y) to be abundant.

Theorem 4.1. Let α, β ∈ S E(X,Y). Then α = γβ for some γ ∈ S E(X,Y) if and only if Xα ⊆ Xβ and,
for each A ∈ X/E, there exists B ∈ X/E such that (A ∩ Y)α ⊆ (B ∩ Y)β. Consequently, αL β if and
only if Xα = Xβ and, for each A ∈ X/E, there exist B,C ∈ X/E such that (A ∩ Y)α ⊆ (B ∩ Y)β and
(A ∩ Y)β ⊆ (C ∩ Y)α.

Proof. Assume α = γβ for some γ ∈ S E(X,Y). Clearly, Xα = (Xγ)β ⊆ Xβ. Let A ∈ X/E. By
Lemma 3.1, there exists B ∈ X/E such that (A∩Y)γ ⊆ B∩Y . Hence, (A∩Y)α = (A∩Y)γβ ⊆ (B∩Y)β.

Conversely, assume the conditions hold. For each A ∈ X/E, we fix A′ ∈ X/E such that (A ∩ Y)α ⊆
(A′ ∩ Y)β. Let x ∈ X. Then there exists Ax ∈ X/E such that x ∈ Ax. If x ∈ Y , we choose x′ ∈ A′x ∩ Y
such that xα = x′β. If x < Y , then there exists x′ ∈ X such that xα = x′β. Define γ : X → X by
xγ = x′ for all x ∈ X. To show γ ∈ S E(X,Y), let x, y ∈ Y in which (x, y) ∈ E. Then x, y belong to the
same equivalence class in X/E, say A. Hence x′, y′ ∈ A′ ∩ Y . Therefore, (xγ, yγ) = (x′, y′) ∈ E and
xγ, yγ ∈ Y . For each x ∈ X, we have xγβ = x′β = xα. Hence α = γβ. This completes the proof. �
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Theorem 4.2. Let α, β ∈ S E(X,Y). Then α = βγ for some γ ∈ S E(X,Y) if and only if π(β) refines π(α)
and εY(β) refines εY(α). Consequently, αR β if and only if π(β) = π(α) and εY(β) = εY(α).

Proof. Assume that α = βγ for some γ ∈ S E(X,Y). It is clear that π(β) refines π(α). To show that εY(β)
refines εY(α), let U ∈ εY(β). Then U = (A ∩ Y)β−1 and A ∩ Xβ ∩ Y , ∅ for some A ∈ X/E. Thus
Uβ ⊆ A ∩ Y . Since γ ∈ S E(X,Y), we get (A ∩ Y)γ ⊆ B ∩ Y , ∅ for some B ∈ X/E. This implies
Uα = Uβγ ⊆ (A ∩ Y)γ ⊆ B ∩ Y . Hence, U ⊆ (B ∩ Y)α−1 ∈ εY(α), as required.

On the other hand, assume the conditions hold. For each x ∈ Xβ, choose x′ ∈ X such that x = x′β.
For each A ∈ X/E in which A ∩ Xβ ∩ Y , ∅, choose xA ∈ A ∩ Xβ ∩ Y . Define γ : X → X by

xγ =


x′α, if x ∈ Xβ,

x′Aα, if x ∈ A ∩ Y \ Xβ and A ∩ Xβ ∩ Y , ∅ and A ∈ X/E,

x, otherwise.

To show γ ∈ S E(X,Y), let x, y ∈ Y and (x, y) ∈ E. Then there exists A ∈ X/E such that x, y ∈ A. Clearly,
xγ, yγ ∈ Y. If A ∩ Xβ ∩ Y = ∅, then (xγ, yγ) = (x, y) ∈ E. If A ∩ Xβ ∩ Y , ∅, then (x, xA), (y, xA) ∈ E.
Assume x ∈ Xβ and y < Xβ (the other cases can be proved similar). Then x, xA ∈ A ∩ Xβ ∩ Y , and so
xβ−1, xAβ

−1 ⊆ (A ∩ Y)β−1 ∈ εY(β). Since εY(β) = εY(α), (A ∩ Y)β−1 = (B ∩ Y)α−1 for some B ∈ X/E
such that B ∩ Y ∩ Xα , ∅. Since x′ ∈ xβ−1 and x′A ∈ xAβ

−1, we get x′, x′A ∈ (A ∩ Y)β−1 = (B ∩ Y)α−1.
Hence, x′α, x′Aα ∈ B which yields (xγ, yγ) = (x′α, x′Aα) ∈ E. Let x ∈ X be such that xβ = y. Since
y′β = y, x, y′ ∈ yβ−1 ∈ π(β) = π(α), we obtain xα = y′α. This implies that xβγ = yγ = y′α = xα and so
α = βγ. �

Next, we provide necessary and sufficient conditions for any two elements of S E(X,Y) to be L∗-
related and R∗-related. To prove the results, we need the following three lemmas.

Lemma 4.1. [6] Let S be a semigroup and a, b ∈ S . Then the following statements are equivalent:

(1) aL∗ b.

(2) For all x, y ∈ S 1, ax = ay if and only if bx = by.

Lemma 4.2. [6] Let S be a semigroup and a, b ∈ S . Then the following statements are equivalent:

(1) aR∗ b.

(2) For all x, y ∈ S 1, xa = ya if and only if xb = yb.

Lemma 4.3. [3] Let α, β ∈ T (X).

(1) αL β if and only if Xα = Xβ.

(2) αR β if and only if π(α) = π(β).

Theorem 4.3. Let α, β ∈ S E(X,Y). Then αL∗ β if and only if Xα = Xβ.

Proof. Assume that Xα = Xβ. By Lemma 4.3(1), αL β in T (X). As T (X) is an oversemigroup of
S E(X,Y) then (by definition of L∗) αL∗β.

Conversely, assume αL∗β. Let A ∈ X/E. If A ∩ Xα ∩ Y , ∅, then we choose xA ∈ A ∩ Xα ∩ Y . If
A ∩ Xα ∩ Y = ∅, then we choose xA ∈ Xα ∩ Y . Define γ : X → X by
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xγ =

x, if x ∈ Xα,

xA, if x ∈ A \ Xα for some A ∈ X/E.

Let x, y ∈ Y be such that (x, y) ∈ E. Then x, y ∈ A for some A ∈ X/E. If A ∩ Xα ∩ Y , ∅, then
x, y, xA ∈ A ∩ Y , which implies (xγ, yγ) ∈ E and xγ, yγ ∈ Y . If A ∩ Xα ∩ Y = ∅, then x, y < Xα. Hence,
(xγ, yγ) = (xA, xA) ∈ E and xγ, yγ ∈ Y . Thus γ ∈ S E(X,Y) in which αγ = α = αidX. By Lemma 4.1,
βγ = βidX = β. This implies that Xβ = Xβγ ⊆ Xγ = Xα. By the same argument, we can show that
Xα ⊆ Xβ. Therefore, Xα = Xβ, as required. �

Notice that the element γ, as define in the proof of Theorem 4.3, is an idempotent and Xγ = Xα.
Therefore, an arbitrary L∗-class of S E(X,Y) contains an idempotent and we obtain the following:

Theorem 4.4. The semigroup S E(X,Y) is left abundant.

Theorem 4.5. Let α, β ∈ S E(X,Y). Then αR∗β if and only if π(α) = π(β).

Proof. Assume that π(α) = π(β). By Lemma 4.3(2), αRβ in T (X) and so αR∗β.
Conversely, assume αR∗β. Let a, b ∈ X. To show aα = bα if and only if aβ = bβ, we first assume,

for the if part, that aα = bα.
Case 1. a ∈ Y or b ∈ Y . Without loss of generality, we assume that b ∈ Y . Since X/E is a partition of
X, there exists A ∈ X/E such that a ∈ A. If A ∩ Y = Y or a < Y , then we let Z = Y \ {a}. If A ∩ Y , Y
and a ∈ Y , then we set Z = Y \ A. Define γ, δ : X → X by

xγ =

b, if x ∈ Z,

a, otherwise,

and xδ = b for all x ∈ X. Clearly, γ, δ ∈ S E(X,Y) and γα = δα. By Lemma 4.2, we obtain γβ = δβ and
so aβ = aγβ = aδβ = bβ.
Case 2. a, b < Y . Choose c ∈ Y . Define γ, δ : X → X by

xγ =

c, if x ∈ Y,

a, otherwise,

and

xδ =


c, if x ∈ Y,

a, if x = a,

b, otherwise.

Clearly, γ, δ ∈ S E(X,Y) and γα = δα. By Lemma 4.2, we obtain γβ = δβ and so aβ = bγβ = bδβ = bβ.
The only part can be proved similar. Therefore, π(α) = π(β), as required. �

However, S E(X,Y) is probably not right abundant. Consider X = {1, 2, 3, 4, 5, 6}, E is an equivalence
relation on X such that X/E = {{1, 2, 3}, {4, 5}, {6}} and

α =

(
1 2 3 4 5 6
1 1 2 2 3 3

)
∈ S E(X, X).
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We can see that there is no idempotent γ ∈ S E(X, X) such that π(γ) = π(α). Hence, the R∗-class
containing α has no idempotent.

In the last part of this paper, we will present the the conditions for being abundant of S E(X,Y).

Theorem 4.6. S E(X,Y) is abundant if and only if |{A ∈ X/E : |A ∩ Y | ≥ 2}| ≤ 1 or |A ∩ Y | < 3 for all
A ∈ X/E.

Proof. Assume that there exist A, B ∈ X/E such that |A ∩ Y | ≥ 3, |B ∩ Y | ≥ 2 and A , B. Choose
a1, a2, a3 ∈ A ∩ Y and b1, b2 ∈ B ∩ Y that are all distinct elements. Define α : X → X by

xα =


a1, if x = a3,

a2, if x = b1,

a3, if x = b2,

x, otherwise.

Then α ∈ S E(X,Y) and {{a1, a3}, {a2, b1}, {b2}} ⊆ π(α). Let γ ∈ S E(X,Y) be such that γ2 = γ. We
will show that (α, γ) < R∗. Suppose that (α, γ) ∈ R∗. Then π(α) = π(γ). Since γ2 = γ, we have
b2γ = b2 ∈ B. From (b1, b2) ∈ E, we get b1γ, b2γ ∈ B. Hence a2γ = b1γ ∈ B. From (a1, a2) ∈ E,
we obtain (a1γ, a2γ) ∈ E. Thus a1γ ∈ B. Since a1γ ∈ {a1, a3}, we have {a1, a3} ∩ B , ∅ which is a
contradition. Therefore (α, γ) < R∗. Hence S E(X,Y) is not abundant.

Conversely, assume |{A ∈ X/E : |A ∩ Y | ≥ 2}| ≤ 1 or |A ∩ Y | < 3 for all A ∈ X/E.
Case 1. |A ∩ Y | < 3 for all A ∈ X/E. Let α ∈ S E(X,Y). For each A ∈ X/E such that A ∩ Xα ∩ Y , ∅,
let RA = {xα−1 : x ∈ A ∩ Xα ∩ Y}. By assumption, we have |RA| ≤ 2. Now, let A ∈ X/E be such that
A∩ Xα∩ Y , ∅ and RA * πB∩Y(α) for all B ∈ X/E. For each P ∈ RA, if P∩ Y , ∅, then fix xP ∈ P∩ Y .
If P∩ Y = ∅, then fix xP ∈ P. Next, let A ∈ X/E be such that A∩ Xα∩ Y , ∅ and there exists B ∈ X/E
such that RA ⊆ πB∩Y(α). Choose A′ ∈ X/E such that RA ⊆ πA′∩Y(α). Hence P ∩ A′ ∩ Y , ∅ for all
P ∈ RA. We fix xP ∈ P∩A′∩Y for all P ∈ RA. Finally, for P ∈ π(α) such that P = xα−1 and x ∈ Xα \Y ,
fix xP ∈ P. Define γ : X → X by xγ = xP where P ∈ π(α) and x ∈ P. Let x ∈ X. Then there exists a
unique P ∈ π(α) such that x ∈ P. Let P = yα−1 for some y ∈ Xα ∩ Y . Thus P ∈ RA for some A ∈ X/E.
If P ∈ RB for some B ∈ X/E, then y ∈ B ∩ Y . Hence, B = A and so γ is well-defined. We claim
γ ∈ S E(X,Y). Let x, y ∈ Y and (x, y) ∈ E. Then (xα, yα) ∈ E and xα, yα ∈ Y . There exists a unique
A ∈ X/E such that xα, yα ∈ A. Thus P = (xα)α−1, Q = (yα)α−1 and so P,Q ∈ RA. We may assume
P , Q. Note that x ∈ P, y ∈ Q and (x, y) ∈ E. Since |RA| = 2, we get RA ⊆ πA′∩Y(α). This implies that
xP, xQ ∈ A′ ∩ Y . Hence (xγ, yγ) ∈ E and xγ, yγ ∈ Y . Therefore γ ∈ S E(X,Y). For each P ∈ π(α) and
x ∈ P, we have xγ = xP. Clearly, π(γ) = π(α). We have (γ, α) ∈ R∗. Consider xγ2 = xpγ = xp = xγ.
Thus γ is an idempotent. Hence S E(X,Y) is right abundant. This means that S E(X,Y) is abundant.
Case 2. |{A ∈ X/E : |A ∩ Y | ≥ 2}| ≤ 1. Let A ∈ X/E be such that |A ∩ Y | ≥ 2. Then, for all B ∈ X/E,
B , A implies |B ∩ Y | ≤ 1. For each P ∈ π(α), if P ∩ A ∩ Y , ∅, then we choose xP ∈ P ∩ A ∩ Y . If
P ∩ Y , ∅, then choose xP ∈ P ∩ Y . If P ∩ Y = ∅, then choose xP ∈ P. Define γ : X → X by xγ = xP

where P ∈ π(α) and x ∈ P. Let x, y ∈ Y and (x, y) ∈ E. If x, y ∈ A for some A ∈ X/E, then x ∈ P∩A∩Y
and y ∈ Q ∩ A ∩ Y . Thus xP, xQ ∈ A ∩ Y . Therefore (xγ, yγ) ∈ E and xγ, yγ ∈ Y . Hence γ ∈ S E(X,Y).
If x, y < A, then x, y ∈ B ∩ Y for some B ∈ X/E. Thus x = y and so xγ = yγ. Therefore γ ∈ S E(X,Y).
For each P ∈ π(α) and x ∈ P, we have xγ = xP. Clearly, π(γ) = π(α). We obtain that (γ, α) ∈ R∗. From
xP ∈ P, we have xPγ = xP. This implies that xγ2 = xPγ = xP = xγ. Hence γ is an idempotent. This
means that S E(X,Y) is right abundant. Therefore, S E(X,Y) is abundant. �
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