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Abstract: Let 7(X) be the full transformation semigroup on a nonempty set X. For an equivalence
relation £ on X and a nonempty subset Y of X, let

EE(X, Y)={aeTX):Vx,ye Y, (x,y) € E= (xa,ya) € E, xa,ya € Y}.

Then Sz(X,Y) is a subsemigroup of 7T (X) consisting of all full transformations that leave Y and the
equivalence relation E on Y invariant. In this paper, we show that S z(X, Y) is not regular in general
and determine all its regular elements. Then we characterize relations £, £*, R and R* on §E(X, Y)
and apply these characterizations to obtain the abundance on such semigroup.
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1. Introduction

Let X be an arbitrary nonempty set. The full transformation semigroup on X, denoted by 7'(X), is
the semigroup consisting of all mappings from X to X under the operation of composition of functions.
It is well-known that 7'(X) is a regular semigroup (see [3], for details). Moreover, every semigroup can
be embedded in 7'(X) for some appropriate set X.

For a fixed nonempty subset Y of X, let

SX,Y)={aeT(X): YaC Y).


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2023926

18224

Then S(X,Y) is a semigroup of total transformations of X which leave a subset Y of X invariant.
In 1975, Symons [17] described the automorphism group of this semigroup. In 2005, Nenthein,
Youngkhong and Kemprasit [7] showed that the semigroup S (X, Y) is regular if and only if X = Y
or Y contains exactly one element, and R = {a € S(X,Y) : XaNY = Ya} is the set of all regular
elements of S (X, Y). In addition, they determined the number of regular elements in S (X, Y) when X
is a finite set. In 2011, Honyam and Sanwong [4] characterized when S (X, Y) is isomorphic to 7'(Z)
for some set Z and proved that every semigroup A can be embedded in S(A!, A). They also described
Green’s relations of the semigroup S (X, Y), its group H-classes, and its ideals. In 2013, Choomanee,
Honyam and Sanwong [2] described left regular, right regular and intra-regular elements of S(X,Y)
and considered the relationships between these elements. Furthermore, they found the number of left
regular elements of S (X, Y) when X is a finite set. In [14], Sun and Wang studied the natural partial
order in S (X, Y). They determined when two elements of S (X, Y) are related, found the elements which
are compatible and described the maximal elements, the minimal elements and the greatest lower bound
of two elements. Also, they showed that the semigroup S (X, Y) is abundant. In [13], Sun L. and Sun
J. investigated all the elements in the semigroup S (X, ¥) which are left compatible with respect to the
natural partial order. In [1], Chinram and Baupradist characterized left magnifying elements and right
magnifying elements of semigroups of transformations with invariant set.
Let E be an equivalence relation on a set X. Consider the following subset of 7'(X):

Te(X)={a e T(X):Vx,y € X, (x,y) € E implies (xa, ya) € E}.

It is obvious that if E is a non-trivial equivalence relation, then Tx(X) is a proper subsemigroup of 7'(X)
and if E is the identity or universal relation, then Tg(X) and 7'(X) are identical. In 1994 and 1996, Pei
discussed a-congruences and some regular subsemigroup inducing a certain lattice on Tz(X) [9, 10].
In 2005, Pei [8] investigated regularity of elements and Green’s relations on the semigroup Tg(X).
In [11], Pei determined the rank of the homeomorphism group and considered the rank of 7(X) when
X is a finite set and each class of the equivalence E has the same cardinality. Furthermore, he also
studied the rank of I'(X), the semigroup of all closed function @ on a topological space X for which £
classes form a basis. In 2008, Sun, Pei and Cheng [15] characterized the natural partial order on the
semigroup 7x(X). The compatibility of multiplication and all compatible elements were investigated.
Moreover, they found maximal, minimal and covering elements with respect to the order. In 2011, Pei
and Zhou [12] considered the relations £* and R* on the semigroup 7z(X) and the equivalence relations
E under which Tg(X) becomes abundant. In 2019, Sun [16] investigated the left and right compatibility
with respect to the natural partial order on Tg(X). Kaewnoi, Petapirak and Chinram studied left and
right magnifying elements of the semigroup 7¢(X) in [5].

In our work, we introduce a new transformation subsemigroup of 7'(X) by letting Y be a fixed
nonempty subset of X and define

SeX,Y)={aeTX): Vx,ye Y, (x,y) € E = (xa,ya) € E, xa,ya € Y}.

Then S g(X,Y) is a generalization of all aforementioned semigroups. In Section 3, we describe all
regular elements on S g(X, Y) and give necessary and sufficient conditions for S z(X, Y) to be regular.
In Section 4, we characterize relations £, £*, R and R* on S z(X,Y). Consequently we prove that
S £(X, Y) is always left abundant but not right abundant, in general. Also, we determine the conditions
for S (X, Y) to be abundant.
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2. Preliminary and notation

This section provides some basic properties of S z(X, Y) and notation which will be used throughout
the paper. In addition, [3] is suggested for more basic concepts in semigroup theory.

Let X be a nonempty set and E an equivalence relation on X. Hereafter, we denote by X/E the
quotient set of X by E, i.e., the set of all E-classes. By A € X/E, we mean that A is an equivalence
class of E that can be viewed both as an element of X/FE and as a subset of X. Let A and B be two
collections of nonempty subsets of X. Then A is said to refine B, if for each A € A, there exists B € 8
such that A C B. For @, € T(X), the composition of @ and S, denoted by af3, is a mapping obtained
by performing first @ and then 8. The notation x@ means the image of x under @ and Xa = {xa : x € X}
is the range of . Moreover, () is a partition of X induced by «, i.e.,

1

m(a) = {xa ' : x € Xa},

where xa ! is the inverse image of x under «. Note that by a slight abuse of notation, we write Pa = x,

where P = xa~! € n(a). Particularly,

@) ={Aa"' : A e X/E and A N Xa # 0},

where Aa™! = J{xa™' : x € A N Xa}. Obviously, n(a) refines &(e). For a nonempty subset Y of X, we

define restrictions to Y of m(@) and (@) by
ny(ad) ={Pen(a): PNY # 0}

and
ey@)={ANY)a':AeX/EandANnXaNnY # 0.

Let Y be a nonempty subset of a set X. Consider
§E(X, Y)={aeTX):Vx,ye Y, (x,y) € E= (xa,ya) € E, xa,ya € Y}.

We can see that EE(X, Y) is a subsemigroup of 7'(X) and _S (X,Y) and idy, the identity map on X,
belongs to S g(X, Y). We first present relationships between S (X, Y) and some famous transformation
semigroups as follows:

Proposition 2.1. S z(X,Y) C Tx(X) if and only if either one of the following hold:
(1) E=XXX;
(2) foreachze X\Y,a € X, (z,a) € E implies z = a.

Consequently, Se(X,Y) = Te(X) ifand only if Y = X.

Proof. Assume that £ # X X X and there exists (z,a) € E, such thatz € X \ Y, a € X in which z # a.
Since E # X X X, |X/E| > 2, and so there exists A € X/FE such that z ¢ A.
Case.ANY #0.Letbe ANY and @ : X — X be defined by

z, ifx=z
xa = )
b, otherwise.
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Let x,y € Y and (x,y) € E. Then (xa,yax) = (b,b) € E, which implies « € Se(X,Y). However,
a ¢ Tg(X) since (za,aa) = (z,b) ¢ E.
Case2. ANY =0. Choose b e Aand c € Y. Define @ : X — X by

b, ifx=z
xa = )
¢, otherwise.

Let x,y € Y and (x,y) € E. Then (xa,ya) = (c,c) € E, which implies a € EE(X, Y). However,
a ¢ Tg(X) since (za, aa) = (b,c) ¢ E.

The converse is obvious in the case of E = XxX. Assume E # XxX and (2) holds. Leta € S (X, Y)
and let x,y € X be such that (x,y) € E. If x € Y, theny € Y. Thus (xa,ya) € E. If x ¢ Y, then x =y
by (2) and so (xa, ya) € E. Hence a € Tg(X).

Consequently, if ¥ C X, there exists z € X \ Y and X, € Tg(X), where X, is a constant map on X
with Xa = {z}. Clearly, & ¢ S (X, Y) and so Tx(X) # S z(X, Y). O

Proposition 2.2. SE(X,Y) =S(X,Y) ifand only if Y XY C E or (Y X Y) N E = idy, where idy is the
identity relation on Y.

Proof. Assume that Y X Y ¢ E and (Y X Y) N E # idy. Then there exist distinct a,b € Y such that
(a,b) ¢ E and there exist distinct ¢, d € Y such that (¢,d) € E. Define @ : X — X by

a, ifx=c,
xa=4b, ifx=d,

x, otherwise.

Then a € S(X,Y), but @ ¢ S z(X, Y) since (ca, da) = (a,b) ¢ E.

Assume that Y X Y € E or (Y X Y) N E = idy. Clearly, Sg(X,Y) C S(X,Y). Leta € S(X,Y) and
x,y € Y be such that (x,y) € E. Then xa,ya € Y. If Y XY C E, then (xa,ya) € E. If (Y XY)NE = idy,
then x = y, and so (xa, ya) € E. Hence, a € Se(X,Y). |

3. Regularity on S ;(X,Y)

Recall that, for an element a in a semigroup S, a is said to be regular if there exists x € S such that
a = axa. In particular, if all elements of S are regular, then S is called a regular semigroup. We begin
this section by characterizing all regular elements in S (X, Y). To do this, the following lemma is a
crucial tool.

Lemma 3.1. Ler o € Sg(X,Y). Then, for each A € X/E, there exists B € X/E such that (AN Y)a C
BNnY #0.

Proof. Let A € X/E. Itis clear in the case of ANY = (. Let x € AN Y. Then there exists B € X/E
such that xa € Bandso BNY # (. Toshow (ANY)a S BNY,welety e ANY. Since x and y belong
to the same partition, (x,y) € E. Since x,y € Y and a € §E(X, Y), (xa,ya) € E and ya € Y. Hence,
ya € BN'Y, as required. O

Theorem 3.1. Let @ € Sp(X,Y). Then « is regular if and only if, for each A € X/E, there exists
B e X/E suchthat BNY #0and ANXanY C(BNY)a.
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Proof. Assume « is regular and let A € X/E. Then « = afa for some 3 € S z(X, Y). From Lemma 3.1,
there exists B € X/E suchthat (ANY)BC BNY # (. Foreachx €e AN Xa NY, we have x = aa for
some a € X, and so x = aa = aafa = xfa € (BN Y)a. Hence, ANXaNY C(BNY)a.

Conversely, assume that the condition hold. For each A € X/FE in which ANY # 0, by the
assumption, we can fix B, € X/E suchthat ByNY #0andANXanNY C(ByNY)a. Lety, € BaNY
be fixed. Consider x e ANY. If x € AN Y N Xa, then we choose x’ € B, NY such that xX’a = x. If
x€(ANY)\ Xa, then we set x" = y,. For each x € Xa \ Y, we choose x" € X such that x’a = x. Now,
define 8 : X — X by

{x’, ifxe XaUY,
xp =

X, otherwise.

To show B € S (X, Y), let x,y € Y in which (x,y) € E. It is clear that x8, y8 € Y and x and y belong to
the same equivalence class, say A. Then x8 = x" and y8 = y’ are both in By, that is, (xf5,y8) € E. To
show a = afa, let x € X. Then xafa = (xa)Ba = (xa)' @ = xa. This completes the proof. i

Theorem 3.2. Let O # Y C X. Then S (X, Y) is a regular semigroup if and only if one of the following
conditions hold:

(1) 1Yl =1
(2) Y=Xand E = X X X.
(3) Y=Xand E = idx.

Proof. Assume that all conditions are false.
Case 1. |Y| # 1 and Y # X. Then there exist distinct a,b € Y and X \ Y # (. Define @ : X — X by

b, ifxey,
xa = ]
a, otherwise.

It is clear that @ € S(X,Y). Let A € X/E such that a € A. For each B € X/E, we have (BN Y)a C
Ya ={b}. Sinceac ANY NXa,weobtainANXaNY E(BNY)a forall Be X/E. By Theorem 3.1,
@ is not regular.

Case2. |Y| #1,Y = X, E # X X X and E # idx. Then there exists A € X/E such that A # X and
|A| > 2. Let a and b be two distinct elements in A. Define @ : X — X by

a, ifxeA,
xa = ]
b, otherwise.

It is clear that @ € Sg(X,Y) and (B N X)a = Ba is a singleton set, for all B € X/E. Since a,b €
ANXenX,wegetANXaNX¢Z (BN X)a. By Theorem 3.1, a is not regular.

Conversely, assume one of three aforementioned conditions holds. Let a € Se(X,Y). If|Y| = 1, then
we let Y = {y}. Hence, there exists B € X/E such thaty € B. In thiscase, ANXaNY C{y} =(BNY)x
for all A € X/E, and so « is regular. For the case of Y = X and E = X X X, we have X is exactly
one equivalence class in X/E and X N Y N Xa = Xa = (X N Y)a. This implies « is regular. Finally,
if Y = X and X = idy, then each equivalence class in X/FE is a singleton set of elements in X = Y.
Consider {x} € X/E. If x ¢ Xa, then {x} N Y N Xa =0 C ({x} N Y)a. If x € Xa, then x = x'a for some
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x" € X. Hence, {x} N X N Xa = {x} = ({x'} N X)a, and so « is regular. Therefore, Se(X,Y)is regular, as
required. o

If X = Y, then S (X, Y) = T(X), and we have the following corollaries, which first appeared in [8].

Corollary 3.1. [8] a € Tg(X) is regular if and only if for each A € X/E, there exists B € X/E such
that AN Xa C Ba.

Corollary 3.2. [8] Tg(X) is regular if and only if E = idx or X X X.
4. Abundance of S (X, Y)

For any semigroup S, denote by S! the semigroup obtained from S by adjoining an identity if S has
no identity and S! = S if S is a monoid. For any a,b € S, define

a Lbif and only if S'a = S'b,
or equivalently, a £ b if and only if a = xb, b = ya for some x,y € S'. Dually, define
aRbif and only if aS' = bS',
or equivalently, a R b if and only if a = bx, b = ay for some x,y € § !, Moreover,
a L* b if and only if a L b in some oversemigroup of S.
Analogously,
a R b if and only if a R b in some oversemigroup of S'.

It is well-known that all four aforementioned relations are equivalence relations on S in which £ C L*
and R C R*. Particularly, if S is a regular semigroup, then £ = £* and R = R*. In addition, § is said to
be left abundant if each L*-class contains an idempotent. Right abundant semigroup is defined dually.
If § is both left and right abundant, then S is called an abundant semigroup. Since all L-classes and
R-classes of any regular semigroups always contain at least one idempotent, all regular semigroups are
abundant.

In fact, S (X, Y) is not regular in general. Here, we study the relations £, R, £* and R* on Se(X,Y)
and apply the results to describe the condition for S z(X, Y) to be abundant.

Theorem 4.1. Let a,8 € Sp(X,Y). Then a = yB for some y € Sg(X,Y) if and only if Xa € X8 and,
for each A € X/E, there exists B € X/E such that (AN Y)a C (BN Y)B. Consequently, « L if and
only if Xa = XB and, for each A € X/E, there exist B,C € X/E such that (AN Y)a C (BN Y)B and
ANY)Bc(CnY).

Proof. Assume a = 7y for some y € Sg(X,Y). Clearly, Xa = (Xy)8 C XB. Let A € X/E. By
Lemma 3.1, there exists B € X/E suchthat (ANY)y € BNY. Hence, (ANY)a = (ANY)yB C (BNY)B.

Conversely, assume the conditions hold. For each A € X/E, we fix A’ € X/E such that (AN Y)a C
(A’ N Y)B. Let x € X. Then there exists A, € X/E such that x € A,. If x € Y, we choose x’ € A’ NY
such that xa = x’8. If x ¢ Y, then there exists x’ € X such that x& = x’8. Define y : X — X by
xy = x’ for all x € X. To show y € Sg(X,Y), let x,y € Y in which (x,y) € E. Then x, y belong to the
same equivalence class in X/E, say A. Hence x’,y" € A’ Nn'Y. Therefore, (xy,yy) = (x’,y’) € E and
xy,yy € Y. For each x € X, we have xyB = x'f = xa. Hence @ = yB. This completes the proof. O
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Theorem 4.2. Let a,8 € S p(X,Y). Then a = By for some y € S (X, Y) if and only if n(B) refines n(a)
and gy(B) refines ey(a). Consequently, « RS if and only if n(B) = n(a) and ey(B) = ey(@).

Proof. Assume that @ = By for some y € S z(X, Y). It is clear that 7(8) refines 7(a). To show that £y(8)
refines ey(a), let U € ey(B). Then U = (A N Y6 'and AN XBNY # 0 for some A € X/E. Thus
UBCANY. Sincey € Sg(X,Y),weget(ANY)yy C BNY # 0 for some B € X/E. This implies
Ua=UByC(ANY)yCBNY.Hence, UC (BNY)a' € ey(a), as required.

On the other hand, assume the conditions hold. For each x € X8, choose x" € X such that x = x'.
For each A € X/E in whichANXBNY # 0, choose x4, e ANXBNY. Definey : X = X by

Xa, ifxeXp,
xy ={x,a, ifxeANY\XBandANXBNY #DandA € X/E,

X, otherwise.

To show y € Se(X,Y), let x, y € Y and (x,y) € E. Then there exists A € X/E such that x,y € A. Clearly,
xy,yye YIfFANXBNY =0, then (xy,yy) =(x,y) e EEIfANXBNY # 0, then (x, x4),(y,x4) € E.
Assume x € X and y ¢ XS (the other cases can be proved similar). Then x,x4 € AN XBNY, and so
BB CANY)B! € ey(B). Since ey(B) = ey(a), ANY)B! = (BN Y)a! for some B € X/E
such that BN Y N Xa # 0. Since x’ € x87 " and x, € x,87", we get X', x, e (ANY)B' = (BN Y.
Hence, x'a, X, € B which yields (xy,yy) = (X', x,a) € E. Let x € X be such that x8 = y. Since
yB=y,x,Y €y8 € n(B) = n(a), we obtain xa = y'«. This implies that x8y = yy = y’@ = xa and so
a = py. |

Next, we provide necessary and sufficient conditions for any two elements of S z(X, Y) to be L*-
related and R*-related. To prove the results, we need the following three lemmas.

Lemma 4.1. [6] Let S be a semigroup and a,b € S. Then the following statements are equivalent:
(1) a L b.
(2) Forall x,y € S', ax = ay if and only if bx = by.

Lemma 4.2. [6] Let S be a semigroup and a,b € S. Then the following statements are equivalent:
(1) aR"b.
(2) Forall x,y € S', xa = ya if and only if xb = yb.

Lemma 4.3. [3] Let a,B € T(X).
(1) a LB if and only if Xa = XB.
(2) aRB if and only if n(a) = n(B).

Theorem 4.3. Let a,8 € S p(X,Y). Then o L* 8 if and only if Xa = XB.

Proof. Assume that Xa = XB. By Lemma 4.3(1), « LB in T(X). As T(X) is an oversemigroup of
S (X, Y) then (by definition of £*) a.L*.

Conversely, assume aL*B. Let A € X/E. If AnXaNY # 0, then we choose x4 e ANXaNY.If
ANXaNnY =0, then we choose x4 € Xa NY. Definey : X — X by

AIMS Mathematics Volume 8, Issue 8, 18223—-18233.



18230

X, if x € Xa,
Xy =
4 x4, 1fxe A\ XaforsomeA € X/E.

Let x,y € Y be such that (x,y) € E. Then x,y € A forsome A € X/E. f AnXanNY # 0, then
x,y, x4 € ANY, which implies (xy,yy) € Eand xy,yy € Y. If AnXanNY =0, then x,y ¢ Xa. Hence,
(xy,yy) = (xa,x4) € E and xy,yy € Y. Thus y € S (X, Y) in which @y = @ = aidy. By Lemma 4.1,
By = Bidx = B. This implies that X = XBy € Xy = Xa. By the same argument, we can show that
Xa € XpB. Therefore, Xa = XB, as required. |

Notice that the element 7y, as define in the proof of Theorem 4.3, is an idempotent and Xy = Xa.
Therefore, an arbitrary L*-class of S g(X, ¥) contains an idempotent and we obtain the following:

Theorem 4.4. The semigroup S (X, Y) is left abundant.
Theorem 4.5. Let o, € Se(X,Y). Then aR’B if and only if n(a) = n(B).

Proof. Assume that 7(«) = n(8). By Lemma 4.3(2), @RB in T'(X) and so aR*S.

Conversely, assume aR*B. Let a,b € X. To show aa = ba if and only if a8 = bB, we first assume,
for the if part, that aa = ba.
Case 1. a € Y or b € Y. Without loss of generality, we assume that b € Y. Since X/E is a partition of
X, there exists A € X/E suchthata e A. If ANY =Yora¢ Y,thenweletZ=Y \{a}. fANY #Y
anda € Y, thenwe set Z = Y \ A. Define y,6 : X — X by

b, ifxeZ,
XY = )
a, otherwise,

and x0 = b for all x € X. Clearly, y,6 € EE(X, Y) and ya = da. By Lemma 4.2, we obtain yf = 6 and

so a3 = ayf = adf3 = bp.
Case 2. a,b ¢ Y. Choose c € Y. Define y,0 : X — X by

c, ifxeY,
Xy = .
a, otherwise,
and

¢, ifxeY,
x6=1a, ifx=a,

b, otherwise.

Clearly, 7,6 € S (X, Y) and ya = ée. By Lemma 4.2, we obtain y3 = §8 and so a8 = by = b6 = bg.
The only part can be proved similar. Therefore, (@) = 7(8), as required. O

However, §E(X, Y) is probably not right abundant. Consider X = {1, 2, 3,4, 5, 6}, E is an equivalence
relation on X such that X/E = {{1, 2, 3}, {4, 5}, {6}} and

123456 —
“‘(1 1223 3)€SE(X’X)‘
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We can see that there is no idempotent y € S (X, X) such that n(y) = n(a). Hence, the R*-class
containing @ has no idempotent.
In the last part of this paper, we will present the the conditions for being abundant of S g(X, Y).

Theorem 4.6. S (X, Y) is abundant ifandonly if [A € X/E : |ANY| =22} < 1or|ANnY| <3 forall
A€ X/E.

Proof. Assume that there exist A,B € X/E suchthat [ANY| > 3,|[BNY| >2and A # B. Choose
ai,az,az € ANY and by, b, € BN Y that are all distinct elements. Define @ : X — X by

a;, 1ifx=as,

as, if x = bl,
xa = .

as, if x = bz,

X, otherwise.

Then a € Sg(X,Y) and {{a,, a3}, {az, b1}, (b2}} € n(@). Lety € Sg(X,Y) be such that > = y. We
will show that (a,y) ¢ R*. Suppose that (@,y) € R*. Then n(a) = n(y). Since y*> = y, we have
b,y = b, € B. From (by,b,) € E, we get byy, b,y € B. Hence a,y = byy € B. From (a;,a,) € E,
we obtain (a;y,a,y) € E. Thus a;y € B. Since a1y € {a;, a3}, we have {a;,a;} N B # () which is a
contradition. Therefore (a,y) ¢ R*. Hence S £(X,Y) is not abundant.
Conversely, assume [{A € X/E:|[ANY|>2}|<lor|lANnY|<3forall A€ X/E.

Casel. |JANY|<3forall A € X/E. Leta € Sg(X,Y). Foreach A € X/E suchthat AN XaNY # 0,
let Ry = {xa™' : x € AN Xa N Y}. By assumption, we have |[R4| < 2. Now, let A € X/E be such that
ANXanY #0and Ry € npny(e) forall B€ X/E. ForeachP € Ry, if PNY # 0, thenfix xp € PNY.
If PNY =0, then fix xp € P. Next, let A € X/E be such that AN Xa NY # () and there exists B € X/E
such that R4 C mpny(a). Choose A’ € X/E such that Ry C man~y(a). Hence PN A’ NY # 0 for all
P € R,. Wefix xp € PNA’NY forall P € R,. Finally, for P € n(a) such that P = xa~! and x € Xa'\ Y,
fix xp € P. Define y : X — X by xy = xp where P € n(«) and x € P. Let x € X. Then there exists a
unique P € n(a) such that x € P. Let P = ya~! for some y € Xa N'Y. Thus P € R, for some A € X/E.
If P € Rg for some B € X/E, theny € BNY. Hence, B = A and so y is well-defined. We claim
y € Se(X,Y). Let x,y € Y and (x,y) € E. Then (xa, ya) € E and xa, ya € Y. There exists a unique
A € X/E such that xa,ya € A. Thus P = (xa)a™', Q = (ya)a! and so P,Q € R,. We may assume
P # Q. Notethat x € P,y € Q and (x,y) € E. Since |[R4| = 2, we get Ry C many(@). This implies that
xp,xp € A’NY. Hence (xy,yy) € E and xy,yy € Y. Therefore y € S&(X,Y). For each P € n(e) and
x € P, we have xy = xp. Clearly, n(y) = m(@). We have (y,@) € R*. Consider xy* = x,y = x, = xy.
Thus vy is an idempotent. Hence §E(X, Y) is right abundant. This means that §E(X, Y) is abundant.
Case2. |{Ae X/E:|ANnY|>2} <1. LetA € X/E be such that |A N Y| > 2. Then, for all B € X/E,
B # A implies [BN Y| < 1. Foreach P € n(@),if PNANY # 0, then we choose xp € PNANY. If
PNY # 0, then choose xp € PNY. If PNY = 0, then choose xp € P. Definey : X —» X by xy = xp
where P € (o) and x € P. Letx,y € Yand (x,y) € E. If x,y € Aforsome A € X/E,thenx € PNANY
andy e QNANY. Thus xp, xg € AN Y. Therefore (xy,yy) € E and xy,yy € Y. Hence y € Sp(X, V).
If x,y ¢ A, then x,y € BN Y for some B € X/E. Thus x = y and so xy = yy. Therefore y € S (X, Y).
For each P € n(@) and x € P, we have xy = xp. Clearly, n(y) = n(a). We obtain that (y, @) € R*. From
xp € P, we have xpy = xp. This implies that xy?> = xpy = xp = xy. Hence 7y is an idempotent. This
means that EE(X, Y) is right abundant. Therefore, §E(X, Y) is abundant. m]
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