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Abstract: We introduce the concepts of multiple attribute decision-making (MADM) using
square root neutrosophic normal interval-valued sets (SRNSNIVS). The square root neutrosophic
(SRNS), interval-valued NS, and neutrosophic normal interval-valued (NSNIV) sets are extensions
of SRNSNIVS. A historical analysis of several aggregating operations is presented in this
article. In this article, we discuss a novel idea for the square root NSNIV weighted averaging
(SRNSNIVWA), NSNIV weighted geometric (SRNSNIVWG), generalized SRNSNIV weighted
averaging (GSRNSNIVWA), and generalized SRNSNIV weighted geometric (GSRNSNIVWG).
Examples are provided for the use of Euclidean distances and Hamming distances. Various algebraic
operations will be applied to these sets in this communication. This results in more accurate models and
is closed to an integer ∆. A medical robotics system is described as combining computer science and
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machine tool technology. There are five types of robotics such as Pharma robotics, Robotic-assisted
biopsy, Antibacterial nano-materials, AI diagnostics, and AI epidemiology. A robotics system should
be selected based on four criteria, including robot controller features, affordable off-line programming
software, safety codes, and the manufacturer’s experience and reputation. Using expert judgments and
criteria, we will be able to decide which options are the most appropriate. Several of the proposed and
current models are also compared in order to demonstrate the reliability and usefulness of the models
under study. Additionally, the findings of the study are fascinating and intriguing.

Keywords: aggregating operators; decision making; generalized square root neutrosophic normal
interval-valued weighted averaging; generalized square root neutrosophic normal interval-valued
weighted geometric
Mathematics Subject Classification: 90B50, 06D72, 03B52

1. Introduction

Decision-makers are increasingly having difficulty identifying the optimal solution to real-world
problems as they become increasingly complex. It is possible to choose the best option despite the
difficulty of deciding between the alternatives. A challenge many firms face is creating opportunities,
objectives, and viewpoint constraints. As a result, individuals and groups must consider multiple
objectives at the same time while engaging in decision-making (DM). The result is that we need to
improve our ability to deal with difficult situations. A variety of methods have been used by researchers
to contribute to this field of study. The uncertainties have been addressed by several theories, such as
fuzzy set (FS) proposed by Zadeh [1], intuitionistic FS (IFS) proposed by Atanassov [2], Pythagorean
FS (PFS) proposed by Yager [3] and NSS proposed by Smarandache [4]. An FS in which each element
of the universe and the grades are called the membership degree (MD). As a result, Atanassov [2]
introduces the IFS that requires the total value of the MD and non-membership degree (NMD) to be
less than or equal to 1. If the MD and NMD sum to greater than 1, we might have difficulty with
DM. Yazbek et al. [5] introduced the Novel Approach to Model the Economic Characteristics of an
Organization by interval-valued complex Pythagorean fuzzy information. PFS logic was developed by
Yager [3] as a generalization of IFS characterized by an MD and NMD with a square sum that must be
less than or equal to 1.

There are many applications based on PFS, as discussed by Akram et al. [6–8]. This paper extends
Rahman et al. [9] discussion of a geometric aggregation operator (AO) based on interval-valued
PFS (IVPFS) to the framework of group DM. Peng et al. [10] proposed a Pythagorean fuzzy AO
with interval values. As an alternative to group with MADM, Rahman et al. [11] have proposed a
Pythagorean IV fuzzy Einstein AO. The idea of IVPFS for MADM with normal AOs were discussed
by Yang et al. [12]. Shami et al. [13] studied the square root FS (SRFS) and its weighted AOs
in the context of DM. The NSS is developed by Smarandache [4]. The neutral mind is known as
“neutrosophy” and it is this neutrality that distinguishes FS from IFS. The NSS has a truth degree (TD),
indeterminacy degree (ID) and falsehood degree (FD). There are three components of TD, ID and FD
which lie between 0 and 1. The Pythagorean NSIV set (PNSIVS) were first discussed by Smarandache
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et al. [14]. An NSS with a single value is applied to medical diagnostics and context analysis [15].
We evaluated MCDM and MADM problems using Ejegwa [16] extended distance measures for IFSs,
including Hamming distance (HD), Euclidean distance (ED) and normalized ED (NED). A MADM for
Pythagorean NSNIV with AOs were introduced by Palanikumar et al. [17]. The majority of distance
functions for PNSNIVSs as a generalization of the PNSIVS. Xu et al. [18] discussed the concept of
regression prediction for fuzzy time series. Yang [19] introduced the notion of a class of fuzzy c-
numbers clustering procedures for fuzzy data.

Peng et al. [20] proposed neutrosophic based on Under MABAC and TOPSIS. Zhang et al. [21]
discussed generalizing PFS based on TOPSIS to MCDM. A number of practical MADM applications
were discussed by Hwang et al. [22]. Jana et al. discussed a generalization of fuzzy soft sets [23]. A
fuzzy bipolar MABAC-based MAGDM approach was presented by Jana [24]. An approach for robust
linear MCDM with bipolar fuzzy soft AOs has been developed by Jana et al. [25]. The Pythagorean
fuzzy dombi AOs have been introduced by Jana et al. [26]. Ullah et al. [27] discussed the concept of
complex PFS with practical applications. The proposed AOs are based on the trapezoidal neutrosophic
MADM by Jana et al. [28]. Jana et al. [29] was developed the neutrosophic dombi power AO.
The MCDM approach was presented by Jana et al. [30] using single-valued trigonometric numbers
(SVTrNs).

Recently, Hesitant FSs with real-life applications were discussed by [31, 32]. Lu et al. [33, 34]
discussed the consensus progress for DM in social networks with incomplete probabilistic hesitant
fuzzy and hesitant multiplicative preference relations. Yazdi et al. [35] introduced the application of
an artificial intelligence in DM for the selection of maintenance strategy. Rojek et al. [36] discussed an
artificial intelligence to supervise machine failures and support their repair. Huang et al. [37] discussed
the concept of design alternative assessment and selection, a Z-cloud rough number-based BWM-
MABAC model. Xiao [38] introduced q-rung orthopair fuzzy DM with new score function and best-
worst method for manufacturer selection. Huang et al. [39] discussed the failure mode and effect
analysis using T -spherical fuzzy maximizing deviation and combined comparison solution methods.
Mahmood et al. [40] discussed the concept of Prioritized muirhead mean AOs under the complex
single-valued neutrosophic settings and their application in MADM. The purpose of this work is to
expand the definition of SRNSNIV sets. We obtain SRNSNIVS based on AOs. We will apply these
operators to DM problems and develop a ranking based on them.

(1) There are new ED and HD measures introduced for SRNSNIVS.

(2) MADM and SRNSNIVN aggregation operators are shown in an example using the new definition.

(3) Determine positive and negative ideal values based on SRNSNIVWA, SRNSNIVWG,
GSRNSNIVWA, and GSRNSNIVWG.

(4) In order to arrive at a result, ∆ is used to make a decision.

The following seven sections make up the paper. A brief explanation of the related ideas can be
found in Section 2. MADM using square root NSNIV number (SRNSNIVN) is discussed in Section 3.
In Section 4 uses SRNSNIVN based on various distances. A few AOs are discussed in Section 5. The
SRNSNIV set is discussed using MADM in Section 6, which includes a numerical example, analysis,
and algorithm. Section 7 contains the conclusion.
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2. Preliminaries

For our future studies, we will quickly review some fundamental terms in this section.

Definition 2.1. [3] Let Ξ be the universe. The PFS 0 in Ξ is 0 =
{
µ,

〈
ΘT

0
(µ),ΘF

0
(µ)

〉∣∣∣µ ∈ Ξ
}
, where

ΘT
0

: Ξ → [0, 1] and ΘF
0

: Ξ → [0, 1] are denotes the MD and NMD of µ ∈ Ξ to 0, respectively and
0 ≤ (ΘT

0
(µ))2 + (ΘF

0
(µ))2 ≤ 1. For, 0 =

〈
ΘT

0
,ΘF

0

〉
is represent a Pythagorean fuzzy number (PFN).

Definition 2.2. [13] The SRFS 0 in Ξ is 0 =
{
µ,

〈
ΘT

0
(µ),ΘF

0
(µ)

〉∣∣∣µ ∈ Ξ
}
, where ΘT

0
: Ξ → [0, 1]

and ΘF
0

: Ξ → [0, 1] are denotes the MD and NMD of µ ∈ Ξ to 0, respectively and 0 ≤ (ΘT
0

(µ))2 +√
ΘF

0
(µ) ≤ 1. For, 0 =

〈
ΘT

0
,ΘF

0

〉
is represent a square root fuzzy number (SRFN).

Definition 2.3. [10] The PIVFS 0 in Ξ is 0̃ =
{
µ,

〈
Θ̃T

0
(µ), Θ̃F

0
(µ)

〉∣∣∣∣µ ∈ Ξ
}
, where Θ̃T

0
: Ξ→ Int([0, 1])

and Θ̃F
0

: Ξ→ Int([0, 1]) denotes the MD and NMD of µ ∈ Ξ to 0, respectively, and 0 ≤ (ΘT U
0

(µ))2 +

(ΘFU
0

(µ))2 ≤ 1. For, 0̃ =
〈[

ΘT L
0

,ΘT U
0

]
,
[
ΘFL

0
,ΘFU

0

]〉
is represent a Pythagorean interval-valued

fuzzy number (PIVFN).

Definition 2.4. [4] The NSS 0 in Ξ is 0 =
{
µ,

〈
ΘT

0
(µ),ΘI

0
(µ),ΘF

0
(µ)

〉∣∣∣µ ∈ Ξ
}
, ΘT

0
: Ξ → [0, 1],

ΘI
0

: Ξ → [0, 1] and ΘF
0

: Ξ → [0, 1] are denotes the TD, ID and FD of µ ∈ Ξ to 0, respectively and
0 ≤ ΘT

0
(µ) + ΘI

0
(µ) + ΘF

0
(µ) ≤ 3. For, 0 =

〈
ΘT

0
,ΘI

0
,ΘF

0

〉
is represent a neutrosophic number (NSN).

Definition 2.5. [14] The PNSS 0 in Ξ is 0 =
{
µ,

〈
ΘT

0
(µ),ΘI

0
(µ),ΘF

0
(µ)

〉∣∣∣µ ∈ Ξ
}
, ΘT

0
: Ξ → [0, 1],

ΘI
0

: Ξ → [0, 1] and ΘF
0

: Ξ → [0, 1] are denotes the TD, ID and FD of µ ∈ Ξ to 0, respectively
and 0 ≤ (ΘT

0
(µ))2 + (ΘI

0
(µ))2 + (ΘF

0
(µ))2 ≤ 2. For, 0 =

〈
ΘT

0
,ΘI

0
,ΘF

0

〉
is represent a Pythagorean

neutrosophic number (PNSN).

Definition 2.6. [10] Let 0̃ =
〈
[ΘT L ,ΘT U ], [ΘFL ,ΘFU ]

〉
, 0̃1 =

〈
[ΘT L

1 ,ΘT U
1 ],

[ΘFL
1 ,ΘFU

1 ]
〉

and 0̃2 =
〈
[ΘT L

2 ,ΘT U
2 ], [ΘFL

2 ,ΘFU
2 ]

〉
be the PIVFNs, and ∆ > 0. Then,

(1) 0̃1 ⊕ 02 =


[√

(ΘT L
1 )2 + (ΘT L

2 )2 − (ΘT L
1 )2 · (ΘT L

2 )2,
√

(ΘT U
1 )2 + (ΘT U

2 )2 − (ΘT U
1 )2 · (ΘT U

2 )2
]
,[

ΘFL
1 · ΘFL

2 , ΘFU
1 · ΘFU

2

] ,
(2) 0̃1 ⊗ 0̃2 =


[
ΘT L

1 · ΘT L
2 , ΘT U

1 · ΘT U
2

]
,[√

(ΘFL
1 )2 + (ΘFL

2 )2 − (ΘFL
1 )2 · (ΘFL

2 )2,
√

(ΘFU
1 )2 + (ΘFU

2 )2 − (ΘFU
1 )2 · (ΘFU

2 )2
],

(3) ∆ · 0̃ =

[[√
1 −

(
1 − (ΘT L )2)∆

,

√
1 −

(
1 − (ΘT U )2)∆

]
,
[
(ΘFL )∆, (ΘFU )∆

]]
,

(4) 0̃∆ =

[[
(ΘT L )∆, (ΘT U )∆

]
,
[√

1 −
(
1 − (ΘFL )2)∆

,

√
1 −

(
1 − (ΘFU )2)∆

]]
.

Definition 2.7. [10] For any PIVFN 0̃ =
〈
[ΘT L ,ΘT U ], [ΘFL ,ΘFU ]

〉
and score function S (0̃) is

defined as S (0̃) = 1
2

(
(ΘT L )2 + (ΘT U )2 − (ΘFL )2 − (ΘFU )2

)
, S (0̃) ∈ [−1, 1], and the accuracy

function H(0̃) is defined as H(0̃) = 1
2

(
(ΘT L )2 + (ΘT U )2 + (ΘFL )2 + (ΘFU )2

)
, H(0̃) ∈ [0, 1].
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Definition 2.8. For any SRIVFN 0̃ =
〈
[ΘT L ,ΘT U ], [ΘFL ,ΘFU ]

〉
and score function S (0̃) is defined

as S (0̃) = 1
2

(
(ΘT L )2 + (ΘT U )2 −

√
ΘFL −

√
ΘFU

)
, S (0̃) ∈ [−1, 1], and the accuracy function

H(0̃) is defined as H(0̃) = 1
2

(
(ΘT L )2 + (ΘT U )2 +

√
ΘFL +

√
ΘFU

)
, H(0̃) ∈ [0, 1].

Definition 2.9. [19] The fuzzy number M(µ) = e−
(
µ−%
τ

)2

, (τ > 0) is called a normal fuzzy number (NFN)
if M = (%, τ) and Ñ is the NFN set (NFNS), where R is a real number.

Definition 2.10. [18] Let Ñ be the NFNS, M1 = (%1, τ1) ∈ Ñand M2 = (%2, τ2) ∈ Ñ, (τ1, τ2 > 0). Then

D(M1,M2) =

√
(%1 − %2)2 + 1

2 (τ1 − τ2)2.

3. Basic operations for SRNSNIVN approach

In this article, we define the SRNSNIVN and its operations in connection with square root NSIVNs
(SRNSIVNs) and NFNs.

Definition 3.1. The SRNSIV set 0̃ in Ξ is 0̃ =
{
µ,

〈
Θ̃T

0
(µ), Θ̃I

0
(µ), Θ̃F

0
(µ)

〉∣∣∣∣µ ∈ Ξ
}
, where Θ̃T

0
: Ξ →

Int([0, 1]), Θ̃I
0

: Ξ → Int([0, 1]) and Θ̃F
0

: Ξ → INT ([0, 1]) are denotes the TD, ID and FD of

µ ∈ Ξ to 0̃, respectively and 0 ≤ (Θ̃T
0

(µ))2 +

√
Θ̃I

0
(µ) +

√
Θ̃F

0
(µ) ≤ 2, implies 0 ≤ (ΘT U

0
(µ))2 +√

ΘI U
0

(µ) +

√
ΘFU

0
(µ) ≤ 2. For, 0̃ =

〈[
ΘT L

0
,ΘT U

0

]
,
[
ΘI L

0
,ΘI U

0

]
,
[
ΘFL

0
,ΘFU

0

]〉
is called a square

root neutrosophic interval-valued number(SRNSIVN).

Definition 3.2. For any SRNSIVN 0̃ =
〈[

ΘT L
0

,ΘT U
0

]
,
[
ΘI L

0
,ΘI U

0

]
,
[
ΘFL

0
,ΘFU

0

]〉
, the score

function S (0̃) =
%

2

(
(ΘT L )2+(ΘT U )2

2 −
√

ΘI L +
√

ΘI U

2 + 1 −
√

ΘFL +
√

ΘFU

2

)
, where S (0̃) ∈ [−1, 1].

Definition 3.3. Let 0̃ =
〈
(%, τ); [ΘT L ,ΘT U ], [ΘI L ,ΘI U ], [ΘFL ,ΘFU ]

〉
is a SRNSNIVN. The

FD, ID and FD are defined as
[
ΘT L ,ΘT U ]

=
[
ΘT L e−

(
µ−%
τ

)2

,ΘT U e−
(
µ−%
τ

)2]
,

[
ΘI L ,ΘI U ]

=[
ΘI L e−

(
µ−%
τ

)2

,ΘI U e−
(
µ−%
τ

)2]
and

[
ΘFL ,ΘFU ]

=
[
1−

(
1−ΘFL )

e−
(
µ−%
τ

)2

, 1−
(
1−ΘFU )

e−
(
µ−%
τ

)2]
, x ∈ X

respectively, where X is a non-empty set and
[
ΘT L ,ΘT U ]

,
[
ΘI L ,ΘI U ]

,
[
ΘFL ,ΘFU ]

∈ ([0, 1]) and
0 ≤

(
ΘT U (µ)

)2
+

√
ΘI U (µ) +

√
ΘFU (µ) ≤ 2, where (%, τ) ∈ Ñ.

Definition 3.4. Let 0̃ =
〈
(%, τ); [ΘT L ,ΘT U ], [ΘI L ,ΘI U ], [ΘFL ,ΘFU ]

〉
, 0̃1 =

〈
(%1, τ1);

[ΘT L
1 ,ΘT U

1 ], [ΘI L
1 ,ΘI U

1 ], [ΘFL
1 ,ΘFU

1 ]
〉

and 0̃2 =
〈
(%2, τ2); [ΘT L

2 ,ΘT U
2 ], [ΘI L

2 ,ΘI U
2 ],

[ΘFL
2 ,ΘFU

2 ]
〉

be any three SRNSNIVNs, and ∆ > 0. Then,
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(1) 0̃1 ⊕ 0̃2 =



(%1 + %2, τ1 + τ2;
(

2∆

√
ΘT L

1 +
2∆

√
ΘT L

2 −
2∆

√
ΘT L

1 ·
2∆

√
ΘT L

2

)2∆

,(
2∆

√
ΘT U

1 +
2∆

√
ΘT U

2 −
2∆

√
ΘT U

1 ·
2∆

√
ΘT U

2

)2∆

 ,
(

∆

√
ΘI L

1 +
∆

√
ΘI L

2 −
∆

√
ΘI L

1 ·
∆

√
ΘI L

2

)∆

,(
∆

√
ΘI U

1 +
∆

√
ΘI U

2 −
∆

√
ΘI U

1 ·
∆

√
ΘI U

2

)∆

 ,[
ΘFL

1 · ΘFL
2 ,ΘFU

1 · ΘFU
2

]


,

(2) 0̃1 ⊗ 0̃2 =



(%1 · %2, τ1 · τ2;
[
ΘT L

1 · ΘT L
2 ,ΘT U

1 · ΘT U
2

]
,

(
∆

√
ΘI L

1 +
∆

√
ΘI L

2 −
∆

√
ΘI L

1 ·
∆

√
ΘI L

2

)∆

,(
∆

√
ΘI U

1 +
∆

√
ΘI U

2 −
∆

√
ΘI U

1 ·
∆

√
ΘI U

2

)∆

 ,
(

2∆

√
ΘFL

1 +
2∆

√
ΘFL

2 −
2∆

√
ΘFL

1 ·
2∆

√
ΘFL

2

)2∆

,(
2∆

√
ΘFU

1 +
2∆

√
ΘFU

2 −
2∆

√
ΘFU

1 ·
2∆

√
ΘFU

2

)2∆




,

(3) ∆ · 0̃ =


(∆ · %,∆ · τ);[(

1 −
(
1 −

2∆
√

ΘT L
)∆

)2∆
,
(
1 −

(
1 −

2∆
√

ΘT U
)∆

)2∆
]
,[

∆

√
ΘI L

1 , ∆

√
ΘI U

1

]
,
[
(ΘFL )∆, (ΘFU )∆

]
 ,

(4) 0̃∆ =

 (%∆, τ∆);
[
(ΘT L )∆, (ΘT U )∆

]
,
[

∆

√
ΘI L

1 , ∆

√
ΘI U

1

]
,[(

1 −
(
1 −

2∆
√

ΘFL
)∆

)2∆
,
(
1 −

(
1 −

2∆
√

ΘFU
)∆

)2∆
]
 .

4. Various distance measure for SRNSNIVN approach

The ED and HD measures for SRNSNIVNs are introduced along with some mathematical features
of the model.

Definition 4.1. For SRNSNIVNs 0̃1 =
〈
(%1, τ1; [ΘT L

1 ,ΘT U
1 ], [ΘI L

1 ,ΘI U
1 ], [ΘFL

1 ,ΘFU
1 ]

〉
and

0̃2 =
〈
(%2, τ2; [ΘT L

2 ,ΘT U
2 ], [ΘI L

2 ,ΘI U
2 ], [ΘFL

2 ,ΘFU
2 ]

〉
. Then

DE

(
0̃1, 0̃2

)
=

1
2

√√√√√√√√√√√√√√√√√√√√√√√
 1+(ΘT L

1 )2−
√

ΘI L
1 −
√

ΘFL
1 +1+(ΘT U

1 )2−
√

ΘI U
1 −
√

ΘFU
1

4 %1

−
1+(ΘT L

2 )2−
√

ΘI L
2 −
√

ΘFL
2 +1+(ΘT U

2 )2−
√

ΘI U
2 −
√

ΘFU
2

4 %2


2

+
1
2

 1+(ΘT L
1 )2−

√
ΘI L

1 −
√

ΘFL
1 +1+(ΘT U

1 )2−
√

ΘI U
1 −
√

ΘFU
1

4 τ1

−
1+(ΘT L

2 )2−
√

ΘI L
2 −
√

ΘFL
2 +1+(ΘT U

2 )2−
√

ΘI U
2 −
√

ΘFU
2

4 τ2


2

where DE

(
0̃1, 0̃2

)
is denote the ED between 0̃1 and 0̃2.
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Also,

DH

(
0̃1, 0̃2

)
=

1
2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 + (ΘT L

1 )2 −

√
ΘI L

1 −

√
ΘFL

1 + 1 + (ΘT U
1 )2 −

√
ΘI U

1 −

√
ΘFU

1

4
%1

−

1 + (ΘT L
2 )2 −

√
ΘI L

2 −

√
ΘFL

2 + 1 + (ΘT U
2 )2 −

√
ΘI U

2 −

√
ΘFU

2

4
%2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 + (ΘT L

1 )2 −

√
ΘI L

1 −

√
ΘFL

1 + 1 + (ΘT U
1 )2 −

√
ΘI U

1 −

√
ΘFU

1

4
τ1

−

1 + (ΘT L
2 )2 −

√
ΘI L

2 −

√
ΘFL

2 + 1 + (ΘT U
2 )2 −

√
ΘI U

2 −

√
ΘFU

2

4
τ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


where DH

(
0̃1, 0̃2

)
denote the HD between 0̃1 and 0̃2.

Theorem 4.1. If any three SRNSNIVNs 0̃1 =
〈
(%1, τ1; [ΘT L

1 ,ΘT U
1 ], [ΘI L

1 ,ΘI U
1 ],

[ΘFL
1 ,ΘFU

1 ]
〉
, 0̃2 =

〈
(%2, τ2; [ΘT L

2 ,ΘT U
2 ], [ΘI L

2 ,ΘI U
2 ], [ΘFL

2 ,ΘFU
2 ]

〉
,

0̃3 =
〈
(%3, τ3; [ΘT L

3 ,ΘT U
3 ], [ΘI L

3 ,ΘI U
3 ], [ΘFL

3 ,ΘFU
3 ]

〉
, then DE(01,02) satisfies the following

properties are holds.

(1) DE(0̃1, 0̃2) = 0 iff 0̃1 = 0̃2.

(2) DE(0̃1, 0̃2) = DE(0̃2, 0̃1).

(3) DE(0̃1, 0̃3) ≤ DE(0̃1, 0̃2) + DE(0̃2, 0̃3).

Proof. Now,
(
DE(01,02 + DE(02,03

)2
=



1
2

√√√√√√√√√√√√√√√√√√√√√√√√


1+(ΘT L

1 )2−
√

ΘI L
1 −
√

ΘFL
1 +1+(ΘT U

1 )2−
√

ΘI U
1 −

√
ΘFU

1
4 %1

−
1+(ΘT L

2 )2−
√

ΘI L
2 −
√

ΘFL
2 +1+(ΘT U

2 )2−
√

ΘI U
2 −

√
ΘFU

2
4 %2


2

+
1
2


1+(ΘT L

1 )2−
√

ΘI L
1 −
√

ΘFL
1 +1+(ΘT U

1 )2−
√

ΘI U
1 −

√
ΘFU

1
4 τ1

−
1+(ΘT L

2 )2−
√

ΘI L
2 −
√

ΘFL
2 +1+(ΘT U

2 )2−
√

ΘI U
2 −

√
ΘFU

2
4 τ2


2

+ 1
2

√√√√√√√√√√√√√√√√√√√√√√√√


1+(ΘT L

2 )2−
√

ΘI L
2 −
√

ΘFL
2 +1+(ΘT U

2 )2−
√

ΘI U
2 −

√
ΘFU

2
4 %2

−
1+(ΘT L

3 )2−
√

ΘI L
3 −
√

ΘFL
3 +1+(ΘT U

3 )2−
√

ΘI U
3 −

√
ΘFU

3
4 %3


2

+
1
2


1+(ΘT L

2 )2−
√

ΘI L
2 −
√

ΘFL
2 +1+(ΘT U

2 )2−
√

ΘI U
2 −

√
ΘFU

2
4 τ2

−
1+(ΘT L

3 )2−
√

ΘI L
3 −
√

ΘFL
3 +1+(ΘT U

3 )2−
√

ΘI U
3 −

√
ΘFU

3
4 τ3


2



2

implies
1
4

(
(Υ1%1 − Υ2%

2
2 +

1
2

(Υ1τ1 − Υ2τ
2
2

)
+

1
4

(
(Υ2%2 − Υ3%

2
3 +

1
2

(Υ2τ2 − Υ3τ
2
3

)
+

1
2

(√
(Υ1%1 − Υ2%

2
2 +

1
2

(Υ1τ1 − Υ2τ
2
2 ×

√
(Υ2%2 − Υ3%

2
3 +

1
2

(Υ2τ2 − Υ3τ
2
3

)
.

Since,

Υ1 =
1 + (ΘT L

1 )2 −

√
ΘI L

1 −

√
ΘFL

1 + 1 + (ΘT U
1 )2 −

√
ΘI U

1 −

√
ΘFU

1

4
,

AIMS Mathematics Volume 8, Issue 8, 17402–17432.
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Υ2 =
1 + (ΘT L

2 )2 −

√
ΘI L

2 −

√
ΘFL

2 + 1 + (ΘT U
2 )2 −

√
ΘI U

2 −

√
ΘFU

2

4
,

Υ3 =
1 + (ΘT L

3 )2 −

√
ΘI L

3 −

√
ΘFL

3 + 1 + (ΘT U
3 )2 −

√
ΘI U

3 −

√
ΘFU

3

4
.

Hence,
(
DE(01,02 + DE(02,03

)2

≥
1
4

(
(Υ1%1 − Υ2%

2
2 +

1
2

(Υ1τ1 − Υ2τ
2
2

)
+

1
4

(
(Υ2%2 − Υ3%

2
3 +

1
2

(Υ2τ2 − Υ3τ
2
3

)
+

1
2

(
(Υ1%1 − Υ2%2 × (Υ2%2 − Υ3%3 +

1
2

(Υ1τ1 − Υ2τ2 × (Υ2τ2 − Υ3τ3

)
=

1
4

(
(Υ1%1 − Υ2%

2
2 + (Υ2%2 − Υ3%

2
3 + 2(Υ1%1 − Υ2%2 × (Υ2%2 − Υ3%3

)
+

1
4

(1
2

(Υ1τ1 − Υ2τ
2
2 +

1
2

(Υ2τ2 − Υ3τ
2
3 + (Υ1τ1 − Υ2τ2 × (Υ2τ2 − Υ3τ3

)
=

1
4

(Υ1%1 − Υ2%2 + Υ2%2 − Υ3%
2
3 +

1
8

(Υ1τ1 − Υ2τ2 + Υ2τ2 − Υ3τ
2
3

=
1
4

(Υ1%1 − Υ3%
2
3 +

1
8

(Υ1τ1 − Υ3τ
2
3

=
1
4

[
(Υ1%1 − Υ3%

2
3 +

1
2

(Υ1τ1 − Υ3τ
2
3

]
= DE(01,0

2
3.

�

Corollary 4.1. If any three SRNSNIVNs 0̃1 =
〈
(%1, τ1; [ΘT L

1 ,ΘT U
1 ], [ΘI L

1 ,ΘI U
1 ],

[ΘFL
1 ,ΘFU

1 ]
〉
, 0̃2 =

〈
(%2, τ2; [ΘT L

2 ,ΘT U
2 ], [ΘI L

2 ,ΘI U
2 ], [ΘFL

2 ,ΘFU
2 ]

〉
,

0̃3 =
〈
(%3, τ3; [ΘT L

3 ,ΘT U
3 ], [ΘI L

3 ,ΘI U
3 ], [ΘFL

3 ,ΘFU
3 ]

〉
. Then

(1) DH(0̃1, 0̃2) = 0 iff 0̃1 = 0̃2.

(2) DH(0̃1, 0̃2) and DH(0̃2, 0̃1) are co-occur.

(3) DH(0̃1, 0̃3) ≤ DH(0̃1, 0̃2) + DH(0̃2, 0̃3).

5. Different aggregation operators for SRNSNIVN

Here we introduced the new operators for SRNSNIVWA, SRNSNIVWG, GSRNSNIVWA, and
GSRNSNIVWG.

5.1. SRNSNIV weighted averaging(SRNSNIVWA) operator

Definition 5.1. Let 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ], [ΘFL

i ,ΘFU
i ]

〉
be the family of

SRNSNIVNs, W = (ε1, ε2, ..., εn) be the weight of 0̃i, εi ≥ 0 and ⊕n
i=1εi = 1. Then SRNSNIVWA

(0̃1, 0̃2, ..., 0̃n) = ⊕n
i=1εi0̃i.

AIMS Mathematics Volume 8, Issue 8, 17402–17432.
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Theorem 5.1. Let 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ], [ΘFL

i ,ΘFU
i ]

〉
be the family of

SRNSNIVNs. Then

S RNS NIVWA(0̃1, 0̃2, ..., 0̃n) =



(
⊕n

i=1 εi%i,⊕
n
i=1εiτi

)
;[ (

1 −©n
i=1

(
1 − 2∆

√
(ΘT L

i )
)εi

)2∆

,
(
1 −©n

i=1

(
1 − 2∆

√
(ΘT U

i )
)εi

)2∆
]
,[ (

1 −©n
i=1

(
1 − ∆

√
(ΘI L

i )
)εi

)∆

,
(
1 −©n

i=1

(
1 − ∆

√
(ΘI U

i )
)εi

)∆
]
,[

©n
i=1 (ΘFL

i )εi ,©n
i=1(ΘFU

i )εi
]


.

Proof. For the proof, we used the mathematical induction method.
Put n = 2, SRNSNIVWA(0̃1, 0̃2) = ε10̃1 ⊕ ε20̃2, where

ε10̃1 =



(
ε1%1, ε1τ1

)
;[ (

1 −
(
1 − 2∆

√
(ΘT L

1 )
)ε1

)2∆

,
(
1 −

(
1 − 2∆

√
(ΘT U

1 )
)ε1

)2∆
]
,[ (

1 −
(
1 − ∆

√
(ΘI L

1 )
)ε1

)∆

,
(
1 −

(
1 − ∆

√
(ΘI U

1 )
)ε1

)∆
]
,[

(ΘFL
1 )ε1 , (ΘFU

1 )ε1
]



ε20̃2 =



(
ε2%2, ε2τ2

)
;[ (

1 −
(
1 − 2∆

√
(ΘT L

2 )
)ε2

)2∆

,
(
1 −

(
1 − 2∆

√
(ΘT U

2 )
)ε2

)2∆
]
,[ (

1 −
(
1 − ∆

√
(ΘI L

2 )
)ε2

)∆

,
(
1 −

(
1 − ∆

√
(ΘI U

2 )
)ε2

)∆
]
,[

(ΘFL
2 )ε2 , (ΘFU

2 )ε2
]


.

Now,

ε10̃1 ⊕ ε20̃2 =



(
ε1%1 + ε2%2, ε1τ1 + ε2τ2

)
;


(
1 −

(
1 − 2∆

√
(ΘT L

1 )
)ε1)

+
(
1 −

(
1 − 2∆

√
(ΘT L

2 )
)ε2)

−
(
1 −

(
1 − 2∆

√
(ΘT L

1 )
)ε1)
·
(
1 −

(
1 − 2∆

√
(ΘT L

2 )
)ε2)


2∆

,


(
1 −

(
1 − 2∆

√
(ΘT U

1 )
)ε1)

+
(
1 −

(
1 − 2∆

√
(ΘT U

2 )
)ε2)

−
(
1 −

(
1 − 2∆

√
(ΘT U

1 )
)ε1)
·
(
1 −

(
1 − 2∆

√
(ΘT U

2 )
)ε2)


2∆


,




(
1 −

(
1 − ∆

√
(ΘI L

1 )
)ε1)

+
(
1 −

(
1 − ∆

√
(ΘI L

2 )
)ε2)

−
(
1 −

(
1 − ∆

√
(ΘI L

1 )
)ε1)
·
(
1 −

(
1 − ∆

√
(ΘI L

2 )
)ε2)


∆

,


(
1 −

(
1 − ∆

√
(ΘI U

1 )
)ε1)

+
(
1 −

(
1 − ∆

√
(ΘI U

2 )
)ε2)

−
(
1 −

(
1 − ∆

√
(ΘI U

1 )
)ε1)
·
(
1 −

(
1 − ∆

√
(ΘI U

2 )
)ε2)


∆


,

[
(ΘFL

1 )ε1 (ΘFL
2 )ε2 , (ΘFU

1 )ε1 (ΘFU
2 )ε2

]
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=



(
ε1%1 + ε2%2, ε1τ1 + ε2τ2

)
;

(
1 −

(
1 − 2∆

√
(ΘT L

1 )
)ε1
·
(
1 − 2∆

√
(ΘT L

2 )
)ε2

)2∆

,(
1 −

(
1 − 2∆

√
(ΘT U

1 )
)ε1
·
(
1 − 2∆

√
(ΘT U

2 )
)ε2

)2∆

 ,
(
1 −

(
1 − ∆

√
(ΘI L

1 )
)ε1
·
(
1 − ∆

√
(ΘI L

2 )
)ε2

)∆

,(
1 −

(
1 − ∆

√
(ΘI U

1 )
)ε1
·
(
1 − ∆

√
(ΘI U

2 )
)ε2

)∆

 ,[
(ΘFL

1 )ε1 · (ΘFL
2 )ε2 , (ΘFU

1 )ε1 · (ΘFU
2 )ε2

]



S RNS NIVWA(0̃1, 0̃2) =



(
⊕2

i=1 εi%i,⊕
2
i=1εiτi

)
;[ (

1 −©2
i=1

(
1 − 2∆

√
(ΘT L

i )
)εi

)2∆

,
(
1 −©2

i=1

(
1 − 2∆

√
(ΘT U

i )
)εi

)2∆
]
,[ (

1 −©2
i=1

(
1 − ∆

√
(ΘI L

i )
)εi

)∆

,
(
1 −©2

i=1

(
1 − ∆

√
(ΘI U

i )
)εi

)∆
]
,[

©2
i=1 (ΘFL

i )εi ,©2
i=1(ΘFU

i )εi
]


.

Also, valid for n ≥ 3, hence S RNS NIVWA(0̃1, 0̃2, ..., 0̃l) =



(
⊕l

i=1 εi%i,⊕
l
i=1εiτi

)
;[ (

1 −©l
i=1

(
1 − 2∆

√
(ΘT L

i )
)εi

)2∆

,
(
1 −©l

i=1

(
1 − 2∆

√
(ΘT U

i )
)εi

)2∆
]
,[ (

1 −©l
i=1

(
1 − ∆

√
(ΘI L

i )
)εi

)∆

,
(
1 −©l

i=1

(
1 − ∆

√
(ΘI U

i )
)εi

)∆
]
,[

©l
i=1 (ΘFL

i )εi ,©l
i=1(ΘFU

i )εi
]


.

If n = l + 1, then SRNSNIVWA (0̃1, 0̃2, ..., 0̃l, 0̃l+1)

=



(
⊕l

i=1 εi%i + εl+1%l+1,⊕
l
i=1εiτi + εl+1τl+1

)
;

 ⊕l
i=1

(
1 −

(
1 − 2∆

√
(ΘT L

i )
)εi)

+
(
1 −

(
1 − 2∆

√
(ΘT L

l+1 )
)εl+1)

−©l
i=1

(
1 −

(
1 − 2∆

√
(ΘT L

i )
)εi)
·
(
1 −

(
1 − 2∆

√
(ΘT L

l+1 )
)εl+1)


2∆

,

 ⊕l
i=1

(
1 −

(
1 − 2∆

√
(ΘT U

i )
)εi)

+
(
1 −

(
1 − 2∆

√
(ΘT U

l+1 )
)εl+1)

−©l
i=1

(
1 −

(
1 − 2∆

√
(ΘT U

i )
)εi)
·
(
1 −

(
1 − 2∆

√
(ΘT U

l+1 )
)εl+1)


2∆


,



 ⊕l
i=1

(
1 −

(
1 − ∆

√
(ΘI L

i )
)εi)

+
(
1 −

(
1 − ∆

√
(ΘI L

l+1 )
)εl+1)

−©l
i=1

(
1 −

(
1 − ∆

√
(ΘI L

i )
)εi)
·
(
1 −

(
1 − ∆

√
(ΘI L

l+1 )
)εl+1)


∆

,

 ⊕l
i=1

(
1 −

(
1 − ∆

√
(ΘI U

i )
)εi)

+
(
1 −

(
1 − ∆

√
(ΘI U

l+1 )
)εl+1)

−©l
i=1

(
1 −

(
1 − ∆

√
(ΘI U

i )
)εi)
·
(
1 −

(
1 − ∆

√
(ΘI U

l+1 )
)εl+1)


∆


,

[
©l

i=1 (ΘFL
i )εi · (ΘFL

l+1 )εl+1 ,©l
i=1(ΘFU

i )εi · (ΘFU
l+1 )εl+1

]
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=



(
⊕l+1

i=1 εi%i,⊕
l+1
i=1εiτi

)
;[ (

1 −©l+1
i=1

(
1 − 2∆

√
(ΘT L

i )
)εi

)2∆

,
(
1 −©l+1

i=1

(
1 − 2∆

√
(ΘT U

i )
)εi

)2∆
]
,[ (

1 −©l+1
i=1

(
1 − ∆

√
(ΘI L

i )
)εi

)∆

,
(
1 −©l+1

i=1

(
1 − ∆

√
(ΘI U

i )
)εi

)∆
]
,[

©l+1
i=1 (ΘFL

i )εi ,©l+1
i=1(ΘFU

i )εi
]


.

�

Theorem 5.2. If all 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ][ΘFL

i ,ΘFU
i ]

〉
are equal, then

SRNSNIVWA(0̃1, 0̃2, ..., 0̃n) = 0̃(idempotency property).

Proof. Given that (%i, τi) = (%, τ), [ΘT L
i ,ΘT U

i ] = [ΘT L ,ΘT U ] , [ΘI L
i ,ΘI U

i ] = [ΘI L ,ΘI U ] and
[ΘFL

i ,ΘFU
i ] = [ΘFL ,ΘFU ] and ⊕n

i=1εi = 1. Now, S RNS NIVWA(0̃1, 0̃2, ..., 0̃n)

=



(
⊕n

i=1 εi%i,⊕
n
i=1εiτi

)
;[ (

1 −©n
i=1

(
1 − 2∆

√
(ΘT L

i )
)εi

)2∆

,
(
1 −©n

i=1

(
1 − 2∆

√
(ΘT U

i )
)εi

)2∆
]
,[ (

1 −©n
i=1

(
1 − ∆

√
(ΘI L

i )
)εi

)∆

,
(
1 −©n

i=1

(
1 − ∆

√
(ΘI U

i )
)εi

)∆
]
,[

©n
i=1 (ΘFL

i )εi ,©n
i=1(ΘFU

i )εi
]


,

=



(
% ⊕n

i=1 εi, τ ⊕
n
i=1 εi

)
;[(

1 −
(
1 − 2∆

√
(ΘT L

i )
)⊕n

i=1εi
)2∆

,

(
1 −

(
1 − 2∆

√
(ΘT U

i )
)⊕n

i=1εi
)2∆]

,[(
1 −

(
1 − ∆

√
(ΘI L

i )
)⊕n

i=1εi
)∆

,

(
1 −

(
1 − ∆

√
(ΘI U

i )
)⊕n

i=1εi
)∆]

,[
(ΘFL

i )⊕
n
i=1εi , (ΘFU

i )⊕
n
i=1εi

]


,

=



(%, τ);[ (
1 −

(
1 − 2∆

√
(ΘT L

i )
))2∆

,
(
1 −

(
1 − 2∆

√
(ΘT U

i )
))2∆

]
,[ (

1 −
(
1 − ∆

√
(ΘI L

i )
))∆

,
(
1 −

(
1 − ∆

√
(ΘI U

i )
))∆

]
,[

(ΘFL
i ), (ΘFU

i )
]


,

= 0̃.

�

Theorem 5.3. Let 0̃i =
〈
(%i j, τi j); [ΘT L

i j ,ΘT U
i j ], [ΘI L

i j ,ΘI U
i j ][ΘFL

i j ,ΘFU
i j ]

〉
(i = 1 to n); ( j = 1 to i j)

be the SRNSNIVWA, where
%̂ = inf %i j, %︸︷︷︸ = sup %i j, τ̂ = sup τi j, τ︸︷︷︸ = inf τi j,

Θ̂T L = inf ΘT L
i j , ΘT L︸︷︷︸ = sup ΘT L

i j , Θ̂T U = inf ΘT U
i j , ΘT U︸︷︷︸ = sup ΘT U

i j ,
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Θ̂I L = inf ΘI L
i j , ΘI L︸︷︷︸ = sup ΘI L

i j , Θ̂I U = inf ΘI U
i j , ΘI U︸︷︷︸ = sup ΘI U

i j ,

Θ̂FL = inf ΘFL
i j , ΘFL︸︷︷︸ = sup ΘFL

i j , Θ̂FU = inf ΘFU
i j , ΘFU︸︷︷︸ = sup ΘFU

i j .

Then,
〈
(̂%, τ̂); [Θ̂T L , Θ̂T U ], [Θ̂I L , Θ̂I U ], [ΘFL︸︷︷︸, ΘFU︸︷︷︸]

〉
≤ S RNS NIVWA(0̃1, 0̃2, ..., 0̃n)

≤
〈
( %︸︷︷︸, τ︸︷︷︸); [ΘT L︸︷︷︸, ΘT U︸︷︷︸], [ΘI L︸︷︷︸, ΘI U︸︷︷︸], [Θ̂FL , Θ̂FU ]

〉
, where 1 ≤ i ≤ n, j = 1, 2, ..., i j

(boundedness property).

Proof. Since, Θ̂T L = inf ΘT L
i j , ΘT L︸︷︷︸ = sup ΘT L

i j Θ̂T U = inf ΘT U
i j , ΘT U︸︷︷︸ = sup ΘT U

i j and

Θ̂T L ≤ ΘT L
i j ≤ ΘT L︸︷︷︸ and Θ̂T U ≤ ΘT U

i j ≤ ΘT U︸︷︷︸. Now,

Θ̂T L + Θ̂T U =

(
1 −©n

i=1

(
1 −

2∆

√
̂(ΘT L )

)εi

)2∆

+

(
1 −©n

i=1

(
1 −

2∆

√
̂(ΘT U )

)εi

)2∆

≤

(
1 −©n

i=1

(
1 − 2∆

√
(ΘT L

i j )
)εi

)2∆

+

(
1 −©n

i=1

(
1 − 2∆

√
(ΘT U

i j )
)εi

)2∆

≤

(
1 −©n

i=1

(
1 − 2∆

√
(ΘT L )︸ ︷︷ ︸)εi

)2∆

+

(
1 −©n

i=1

(
1 − 2∆

√
(ΘT U )︸ ︷︷ ︸)εi

)2∆

= ΘT L︸︷︷︸ + ΘT U︸︷︷︸ .
Since, Θ̂I L = inf ΘI L

i j , ΘI L︸︷︷︸ = sup ΘI L
i j Θ̂I U = inf ΘI U

i j , ΘI U︸︷︷︸ = sup ΘI U
i j and Θ̂I L ≤ ΘI L

i j ≤

ΘI L︸︷︷︸ and Θ̂I U ≤ ΘI U
i j ≤ ΘI U︸︷︷︸. Now,

Θ̂I L + Θ̂I U =

(
1 −©n

i=1

(
1 −

∆

√
̂(ΘI L )

)εi

)∆

+

(
1 −©n

i=1

(
1 −

∆

√
̂(ΘI U )

)εi

)∆

≤

(
1 −©n

i=1

(
1 − ∆

√
(ΘI L

i j )
)εi

)∆

+

(
1 −©n

i=1

(
1 − ∆

√
(ΘI U

i j )
)εi

)∆

≤

(
1 −©n

i=1

(
1 − ∆

√
(ΘI L )︸ ︷︷ ︸)εi

)∆

+

(
1 −©n

i=1

(
1 − ∆

√
(ΘI U )︸ ︷︷ ︸)εi

)∆

= ΘI L︸︷︷︸ + ΘI U︸︷︷︸ .
Since, Θ̂FL = inf ΘFL

i j , ΘFL︸︷︷︸ = sup ΘFL
i j Θ̂FU = inf ΘFU

i j , ΘFU︸︷︷︸ = sup ΘFU
i j and Θ̂FL ≤ ΘFL

i j ≤

ΘFL︸︷︷︸ and Θ̂FU ≤ ΘFU
i j ≤ ΘFU︸︷︷︸. Now,

Θ̂FL + Θ̂FU = ©n
i=1(Θ̂FL )εi +©n

i=1(Θ̂FU )εi

≤ ©n
i=1(ΘFL

i j )εi +©n
i=1(ΘFU

i j )εi

≤ ©n
i=1(ΘFL︸︷︷︸)εi +©n

i=1(ΘFU︸︷︷︸)εi

= ΘFL︸︷︷︸ + ΘFU︸︷︷︸ .
Since, %̂ = inf %i j, %︸︷︷︸ = sup %i j, τ̂ = sup τi j, τ︸︷︷︸ = inf τi j and %̂ ≤ %i j ≤ %︸︷︷︸ and τ︸︷︷︸ ≤ τi j ≤ τ̂.

Thus, ⊕n
i=1εî% ≤ ⊕

n
i=1εi%i j ≤ ⊕

n
i=1εi %︸︷︷︸ and ⊕n

i=1εi τ︸︷︷︸ ≤ ⊕n
i=1εiτi j ≤ ⊕

n
i=1εîτ.
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Hence,

⊕n
i=1εî%

2
×



1−©n
i=1

(
1 −

2∆

√
̂(ΘT L )

)εi


2∆

+

1−©n
i=1

(
1 −

2∆

√
̂(ΘT U )

)εi


2∆

2

−

√√√√√√√1−©n
i=1

(
1 −

∆

√
̂(ΘI L )

)εi

∆

+

√√√√√√√1−©n
i=1

(
1 −

∆

√
̂(ΘI U )

)εi

∆

2

+1 −

√(
©n

i=1(ΘFL︸︷︷︸)εi
)
+

√(
©n

i=1(ΘFU︸︷︷︸)εi
)

2



≤
⊕n

i=1εi%i j

2
×



1−©n
i=1

(
1 − 2∆

√
(ΘT L

i j )
)εi


2∆

+

1−©n
i=1

(
1 − 2∆

√
(ΘT U

i j )
)εi


2∆

2

−

√√√√1−©n
i=1

(
1 − ∆

√
(ΘI L

i j )
)εi


∆

+

√√√√1−©n
i=1

(
1 − ∆

√
(ΘI U

i j )
)εi


∆

2

+1 −

√(
©n

i=1(ΘFL
i j )εi

)
+

√(
©n

i=1(ΘFU
i j )εi

)
2



≤

⊕n
i=1εi %︸︷︷︸

2
×



1−©n
i=1

(
1 − 2∆

√
(ΘT L

i j )︸ ︷︷ ︸)εi


2∆

+

1−©n
i=1

(
1 − 2∆

√
(ΘT U

i j )︸ ︷︷ ︸)εi


2∆

2

−

√√√√√√√1−©n
i=1

(
1 − ∆

√
(ΘI L

i j )︸ ︷︷ ︸)εi

∆

+

√√√√√√√1−©n
i=1

(
1 − ∆

√
(ΘI U

i j )︸ ︷︷ ︸)εi

∆

2

+1 −

√(
©n

i=1(ΘFL
i j )εi

)
+

√(
©n

i=1(ΘFU
i j )εi

)
2


.

Therefore,
〈
(̂%, τ̂); [Θ̂T L , Θ̂T U ], [Θ̂I L , Θ̂I U ], [ΘFL︸︷︷︸, ΘFU︸︷︷︸]

〉
≤ S RNS NIVWA(0̃1, 0̃2, ..., 0̃n)

≤
〈
( %︸︷︷︸, τ︸︷︷︸); [ΘT L︸︷︷︸, ΘT U︸︷︷︸], [ΘI L︸︷︷︸, ΘI U︸︷︷︸], [Θ̂FL , Θ̂FU ]

〉
. �

Theorem 5.4. Let 0̃i =
〈
(%ti j , τti j); [ΘT L

ti j
,ΘT U

ti j
], [ΘI L

ti j
,ΘI U

ti j
], [ΘFL

ti j
,ΘFU

ti j
]
〉

and W̃i =
〈
(%hi j , τhi j);

[ΘT L
hi j

,ΘT U
hi j

], [ΘI L
hi j

,ΘI U
hi j

], [ΘFL
hi j

,ΘFU
hi j

]
〉

be the two families of SRNSNIVWAs. For any i, if there is

%ti j ≤ τhi j ,
√(

ΘT L
ti j

)
+

√(
ΘT U

ti j

)
≤

√(
ΘT L

hi j

)
+

√(
ΘT U

hi j

)
and

√(
ΘI L

ti j

)
+

√(
ΘI U

ti j

)
≤

√(
ΘI L

hi j

)
+√(

ΘI U
hi j

)
and

(
ΘFL

ti j

)
+

(
ΘFU

ti j

)
≥

(
ΘFL

hi j

)
+

(
ΘFU

hi j

)
or 0̃i ≤ W̃i, then S RNS NIVWA

(
0̃1, 0̃2, ..., 0̃n

)
≤

S RNS NIVWA
(
W̃1, W̃2, ..., W̃n

)
, where (i = 1 to n); ( j = 1 to i j) (monotonicity property).

Proof. For any i, %ti j ≤ τhi j . Thus, ⊕n
i=1%ti j ≤ ⊕

n
i=1τhi j .

For any i,
√(

ΘT L
ti j

)
+

√(
ΘT U

ti j

)
≤

√(
ΘT L

hi j

)
+

√(
ΘT U

hi j

)
.

Therefore, 1 − 2∆

√(
ΘT L

ti

)
+ 1 − 2∆

√(
ΘT U

ti

)
≥ 1 − 2∆

√(
ΘT L

hi

)
+ 1 − 2∆

√(
ΘT U

hi

)
.

Hence,

©n
i=1

(
1 − 2∆

√(
ΘT L

ti

))εi

+©n
i=1

(
1 − 2∆

√(
ΘT U

ti

))εi

≥

©n
i=1

(
1 − 2∆

√(
ΘT L

hi

))εi

+©n
i=1

(
1 − 2∆

√(
ΘT U

hi

))εi
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and
(
1 −©n

i=1

(
1 − 2∆

√
(ΘT L

ti )
)εi

)2∆

+

(
1 −©n

i=1

(
1 − 2∆

√
(ΘT U

ti )
)εi

)2∆

≤(
1 −©n

i=1

(
1 − 2∆

√
(ΘT L

hi
)
)εi

)2∆

+

(
1 −©n

i=1

(
1 − 2∆

√
(ΘT U

hi
)
)εi

)2∆

.

For any i,
√(

ΘI L
ti j

)
+

√(
ΘI U

ti j

)
≤

√(
ΘI L

hi j

)
+

√(
ΘI U

hi j

)
.

Therefore, 1 − ∆

√(
ΘI L

ti

)
+ 1 − ∆

√(
ΘI U

ti

)
≥ 1 − ∆

√(
ΘI L

hi

)
+ 1 − ∆

√(
ΘI U

hi

)
.

Hence,

©n
i=1

(
1 − ∆

√(
ΘI L

ti

))εi

+©n
i=1

(
1 − ∆

√(
ΘI U

ti

))εi

≥

©n
i=1

(
1 − ∆

√(
ΘI L

hi

))εi

+©n
i=1

(
1 − ∆

√(
ΘI U

hi

)
2
)εi

and
(
1 −©n

i=1

(
1 − ∆

√
(ΘI L

ti )
)εi

)∆

+

(
1 −©n

i=1

(
1 − ∆

√
(ΘI U

ti )
)εi

)∆

≤(
1 −©n

i=1

(
1 − ∆

√
(ΘI L

hi
)
)εi

)∆

+

(
1 −©n

i=1

(
1 − ∆

√
(ΘI U

hi
)
)εi

)∆

.

For any i,
(
ΘFL

ti j

)
+

(
ΘFU

ti j

)
≥

(
ΘFL

hi j

)
+

(
ΘFU

hi j

)
.

Therefore, 1 −

(
©n

i=1Θ
FL
ti j

)
+

(
©n

i=1Θ
FU
ti j

)
2 ≤ 1 −

(
©n

i=1Θ
FL
hi j

)
+

(
©n

i=1Θ
FU
hi j

)
2 . Hence,

⊕n
i=1%ti j

2
×



1−©n
i=1

(
1 − 2∆

√
(ΘT L

ti )
)εi


2∆

+

1−©n
i=1

(
1 − 2∆

√
(ΘT U

ti )
)εi


2∆

2

−

√√√√1−©n
i=1

(
1 − ∆

√
(ΘI L

ti )
)εi


2∆

+

√√√√1−©n
i=1

(
1 − ∆

√
(ΘI U

ti )
)εi


2∆

2

+1 −

√(
©n

i=1(ΘFL
ti j )

)
+

√(
©n

i=1(ΘFU
ti j )

)
2



≤
⊕n

i=1%hi j

2
×



1−©n
i=1

(
1 − 2∆

√
(ΘT L

hi )
)εi


2∆

+

1−©n
i=1

(
1 − 2∆

√
(ΘT U

hi )
)εi


2∆

2

−

√√√√1−©n
i=1

(
1 − ∆

√
(ΘI L

hi )
)εi


2∆

+

√√√√1−©n
i=1

(
1 − ∆

√
(ΘI U

hi )
)εi


2∆

2

+1 −

√(
©n

i=1(ΘFL
hi j )

)
+

√(
©n

i=1(ΘFU
hi j )

)
2


.

Hence, S RNS NIVWA
(
0̃1, 0̃2, ..., 0̃n

)
≤ S RNS NIVWA

(
W̃1, W̃2, ..., W̃n

)
. �

5.2. SRNSNIV weighted geometric(SRNSNIVWG) operator

Definition 5.2. Let 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ], [ΘFL

i ,ΘFU
i ]

〉
be the family of

SRNSNIVNs. Then SRNSNIVWG (0̃1, 0̃2, ..., 0̃n) = ©n
i=10̃

εi
i .
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Theorem 5.5. Let 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘFL

i ,ΘFU
i ]

〉
be the family of SRNSNIVNs. Prove that



(
©n

i=1 %
εi
i ,©

n
i=1τ

εi
i

)
;
[
©n

i=1 (ΘT L
i )εi ,©n

i=1(ΘT U
i )εi

]
,[ (

1 −©n
i=1

(
1 − ∆

√
(ΘI L

i )
)εi

)∆

,
(
1 −©n

i=1

(
1 − ∆

√
(ΘI U

i )
)εi

)∆
]
,[ (

1 −©n
i=1

(
1 − 2∆

√
(ΘFL

i )
)εi

)2∆

,
(
1 −©n

i=1

(
1 − 2∆

√
(ΘFU

i )
)εi

)2∆
]

.

Theorem 5.6. If all 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ][ΘFL

i ,ΘFU
i ]

〉
(i = 1, 2, ..., n) are equal,

then SRNSNIVWG(0̃1, 0̃2, ..., 0̃n) = 0̃.

Remark 5.1. Using the SRNSNIVWG operator, the boundedness and monotonicity properties are met.

5.3. Generalized SRNSNIVWA (GSRNSNIVWA) operator

Definition 5.3. Let 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ], [ΘFL

i ,ΘFU
i ]

〉
be the family of

SRNSNIVN. Then GSRNSNIVWA (0̃1, 0̃2, ..., 0̃n) =
(
⊕n

i=1 εi0̃
∆
i

)1/∆
.

Theorem 5.7. Let 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ], [ΘFL

i ,ΘFU
i ]

〉
be the family of

SRNSNIVNs. Then

GS RNS NIVWA(0̃1, 0̃2, ..., 0̃n) =



((
⊕n

i=1 εi%
∆
i

)1/∆
,
(
⊕n

i=1 εiτ
∆
i

)1/∆
)
;[((

1 −©n
i=1

(
1 −

(
2∆

√
(ΘT L

i )∆
))εi )2∆

)∆

,

((
1 −©n

i=1

(
1 −

(
2∆

√
(ΘT U

i )∆
))εi )2∆

)∆]
,[((

1 −©n
i=1

(
1 −

(
∆

√
(ΘI L

i )∆
))εi )∆

)∆

,

((
1 −©n

i=1

(
1 −

(
∆

√
(ΘI U

i )∆
))εi )∆

)∆]
,

1 − (
1 − 2∆

√
©n

i=1

( (
1 −

(
1 − 2∆

√
(ΘFL

i )
)∆

)2∆
)εi

)∆


2∆

,1 − (
1 − 2∆

√
©n

i=1

( (
1 −

(
1 − 2∆

√
(ΘFU

i )
)∆

)2∆
)εi

)∆


2∆





.

Proof. It must be demonstrated that,

⊕n
i=1εi0̃

∆
i =



((
⊕n

i=1 εi%
∆
i

)
,
(
⊕n

i=1 εiτ
∆
i

))
;(1 −©n

i=1

(
1 − 2∆

√
(ΘT L

i )∆

)εi)2∆

,

(
1 −©n

i=1

(
1 − 2∆

√
(ΘT U

i )∆

)εi)2∆  ,(1 −©n
i=1

(
1 − ∆

√
(ΘI L

i )∆

)εi)∆

,

(
1 −©n

i=1

(
1 − ∆

√
(ΘI U

i )∆

)εi)∆  ,[
©n

i=1

((
1 −

(
1 − 2∆

√
(ΘFL

i )
)∆

)2∆
)εi

,©n
i=1

((
1 −

(
1 − 2∆

√
(ΘFU

i )
)∆

)2∆
)εi]


.
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Put n = 2, ε101 ⊕ ε202 =

(
ε1%

∆
1 + ε2%

∆
2 , ε1τ

∆
1 + ε2τ

∆
2

)
;


2∆

√(
1 −

(
1 − 2∆

√
(ΘT L

1 )∆

)ε1
)2∆

+
2∆

√(
1 −

(
1 − 2∆

√
(ΘT L

2 )∆

)ε2
)2∆

−
2∆

√(
1 −

(
1 − 2∆

√
(ΘT L

1 )∆

)ε1
)2∆

·
2∆

√(
1 −

(
1 − 2∆

√
(ΘT L

2 )∆

)ε2
)2∆



2∆

,


2∆

√(
1 −

(
1 − 2∆

√
(ΘT U

1 )∆

)ε1
)2∆

+
2∆

√(
1 −

(
1 − 2∆

√
(ΘT U

2 )∆

)ε2
)2∆

−
2∆

√(
1 −

(
1 − 2∆

√
(ΘT U

1 )∆

)ε1
)2∆

·
2∆

√(
1 −

(
1 − 2∆

√
(ΘT U

2 )∆

)ε2
)2∆



2∆



,




∆

√(
1 −

(
1 − ∆

√
(ΘI L

1 )∆

)ε1
)∆

+
∆

√(
1 −

(
1 − ∆

√
(ΘI L

2 )∆

)ε2
)∆

−
∆

√(
1 −

(
1 − ∆

√
(ΘI L

1 )∆

)ε1
)∆

·
∆

√(
1 −

(
1 − ∆

√
(ΘI L

2 )∆

)ε2
)∆



∆

,


∆

√(
1 −

(
1 − ∆

√
(ΘI U

1 )∆

)ε1
)∆

+
∆

√(
1 −

(
1 − ∆

√
(ΘI U

2 )∆

)ε2
)∆

−
∆

√(
1 −

(
1 − ∆

√
(ΘI U

1 )∆

)ε1
)∆

·
∆

√(
1 −

(
1 − ∆

√
(ΘI U

2 )∆

)ε2
)∆



∆



,


( (

1 −
(
1 − 2∆

√
(ΘFL

1 )
)∆

)2∆
)ε1

·

( (
1 −

(
1 − 2∆

√
(ΘFL

2 )
)∆

)2∆
)ε1

,( (
1 −

(
1 − 2∆

√
(ΘFU

1 )
)∆

)2∆
)ε1

·

( (
1 −

(
1 − 2∆

√
(ΘFU

2 )
)∆

)2∆
)ε1





=



((
⊕2

i=1 εi%
∆
i

)
,
(
⊕2

i=1 εiτ
∆
i

))
;(1 −©2

i=1

(
1 − 2∆

√
(ΘT L

i )∆

)εi)2∆

,

(
1 −©2

i=1

(
1 − 2∆

√
(ΘT U

i )∆

)εi)2∆  ,(1 −©2
i=1

(
1 − ∆

√
(ΘI L

i )∆

)εi)∆

,

(
1 −©2

i=1

(
1 − ∆

√
(ΘI U

i )∆

)εi)∆  ,[
©2

i=1

((
1 −

(
1 − 2∆

√
(ΘFL

i )
)∆

)2∆
)εi

,©2
i=1

((
1 −

(
1 − 2∆

√
(ΘFU

i )
)∆

)2∆
)εi]


.

In general,

((
⊕l

i=1 εi%
∆
i

)
,
(
⊕l

i=1 εiτ
∆
i

))
;(1 −©l

i=1

(
1 − 2∆

√
(ΘT L

i )∆

)εi)2∆

,

(
1 −©l

i=1

(
1 − 2∆

√
(ΘT U

i )∆

)εi)2∆  ,(1 −©l
i=1

(
1 − ∆

√
(ΘI L

i )∆

)εi)∆

,

(
1 −©l

i=1

(
1 − ∆

√
(ΘI U

i )∆

)εi)∆  ,[
©l

i=1

((
1 −

(
1 − 2∆

√
(ΘFL

i )
)∆

)2∆
)εi

,©l
i=1

((
1 −

(
1 − 2∆

√
(ΘFU

i )
)∆

)2∆
)εi]


.
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If n = l + 1, then ⊕l
i=1εi0̃

∆
i + εl+10̃

∆
l+1 = ⊕l+1

i=1εi0̃
∆
i .

Now, ⊕l
i=1εi0̃

∆
i + εl+10̃

∆
l+1 = ⊕l+1

i=1εi0̃
∆
i = ε10̃

∆
1 ⊕ ε20̃

∆
2 ⊕ ... ⊕ εl0̃

∆
l ⊕ εl+10̃

∆
l+1

=



(
εi%

∆
i + εl+1%

∆
l+1, εiτ

∆
i + εl+1τ

∆
l+1

)
;


2∆

√(
1 −©l

i=1

(
1 − 2∆

√
(ΘT L

i )∆

)εi
)2∆

+
2∆

√(
1 −

(
1 − 2∆

√
(ΘT L

l+1 )∆

)ε1
)2∆

−
2∆

√(
1 −©l

i=1

(
1 − 2∆

√
(ΘT L

i )∆

)εi
)2∆

·
2∆

√(
1 −

(
1 − 2∆

√
(ΘT L

l+1 )∆

)ε1
)2∆



2∆

,


2∆

√(
1 −©l

i=1

(
1 − 2∆

√
(ΘT U

i )∆

)εi
)2∆

+
2∆

√(
1 −

(
1 − 2∆

√
(ΘT U

l+1 )∆

)ε1
)2∆

−
2∆

√(
1 −©l

i=1

(
1 − 2∆

√
(ΘT U

i )∆

)εi
)2∆

·
2∆

√(
1 −

(
1 − 2∆

√
(ΘT U

l+1 )∆

)ε1
)2∆



2∆



,




∆

√(
1 −©l

i=1

(
1 − ∆

√
(ΘI L

i )∆

)εi
)∆

+
∆

√(
1 −

(
1 − ∆

√
(ΘI L

l+1 )∆

)ε1
)∆

−
∆

√(
1 −©l

i=1

(
1 − ∆

√
(ΘI L

i )∆

)εi
)∆

·
∆

√(
1 −

(
1 − ∆

√
(ΘI L

l+1 )∆

)ε1
)∆



∆

,


∆

√(
1 −©l

i=1

(
1 − ∆

√
(ΘI U

i )∆

)εi
)∆

+
∆

√(
1 −

(
1 − ∆

√
(ΘI U

l+1 )∆

)ε1
)∆

−
∆

√(
1 −©l

i=1

(
1 − ∆

√
(ΘI U

i )∆

)εi
)∆

·
∆

√(
1 −

(
1 − ∆

√
(ΘI U

l+1 )∆

)ε1
)∆



∆



,


©l

i=1

( (
1 −

(
1 − 2∆

√
(ΘFL

i )
)∆

)2∆
)εi

·

( (
1 −

(
1 − 2∆

√
(ΘFL

l+1 )
)∆

)2∆
)ε1

,

©l
i=1

( (
1 −

(
1 − 2∆

√
(ΘFU

i )
)∆

)2∆
)εi

·

( (
1 −

(
1 − 2∆

√
(ΘFU

l+1 )
)∆

)2∆
)ε1





.

Hence,

⊕l+1
i=1εi0̃

∆
i =



((
⊕l+1

i=1 εi%
∆
i

)
,
(
⊕l+1

i=1 εiτ
∆
i

))
;(1 −©l+1

i=1

(
1 − 2∆

√
(ΘT L

i )∆

)εi)2∆

,

(
1 −©l+1

i=1

(
1 − 2∆

√
(ΘT U

i )∆

)εi)2∆  ,(1 −©l+1
i=1

(
1 − ∆

√
(ΘI L

i )∆

)εi)∆

,

(
1 −©l+1

i=1

(
1 − ∆

√
(ΘI U

i )∆

)εi)∆  ,[
©l+1

i=1

((
1 −

(
1 − 2∆

√
(ΘFL

i )
)∆

)2∆
)εi

,©l+1
i=1

((
1 −

(
1 − 2∆

√
(ΘFU

i )
)∆

)2∆
)εi

]


.

Also,
(
©l+1

i=1εi0̃
∆
i

)1/∆
=
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((
©l+1

i=1 εi%
∆
i

)1/∆
,
(
©l+1

i=1 εiτ
∆
i

)1/∆
)
;[((

1 −©l+1
i=1

(
1 −

(
2∆

√
(ΘT L

i )∆
))εi )2∆

)∆

,

((
1 −©l+1

i=1

(
1 −

(
2∆

√
(ΘT U

i )∆
))εi )2∆

)∆]
,[((

1 −©l+1
i=1

(
1 −

(
∆

√
(ΘI L

i )∆
))εi )∆

)∆

,

((
1 −©l+1

i=1

(
1 −

(
∆

√
(ΘI U

i )∆
))εi )∆

)∆]
,

1 − (
1 − 2∆

√
©l+1

i=1

( (
1 −

(
1 − 2∆

√
(ΘFL

i )
)∆

)2∆
)εi

)∆


2∆

,1 − (
1 − 2∆

√
©l+1

i=1

( (
1 −

(
1 − 2∆

√
(ΘFU

i )
)∆

)2∆
)εi

)∆


2∆





.

�

Remark 5.2. The GSRNSNIVWA is switched to the SRNSNIVWA if ∆ = 1.

Theorem 5.8. If all 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ][ΘFL

i ,ΘFU
i ]

〉
(i = 1 to n) are equal,

then GSRNSNIVWA(0̃1, 0̃2, ..., 0̃n) = 0̃.

Remark 5.3. Using the GSRNSNIVWA, the boundedness and monotonicity are met.

5.4. Generalized SRNSNIVWG (GSRNSNIVWG) operator

Definition 5.4. Let 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ], [ΘFL

i ,ΘFU
i ]

〉
be the family of

SRNSNIVNs. Then GSRNSNIVWG (0̃1, 0̃2, ..., 0̃n) = 1
∆

(
©n

i=1 (∆0̃i)εi
)
.

Theorem 5.9. Let 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ], [ΘFL

i ,ΘFU
i ]

〉
be the family of

SRNSNIVNs. Prove that GSRNSNIVWG(0̃1, 0̃2, ..., 0̃n)=

(
1
∆
©n

i=1 (∆%i)εi ,
1
∆
©n

i=1 (∆τi)εi

)
;

1 − (
1 − 2∆

√
©n

i=1

( (
1 −

(
1 − 2∆

√
(ΘT L

i )
)∆

)2∆
)εi

)∆


2∆

,1 − (
1 − 2∆

√
©n

i=1

( (
1 −

(
1 − 2∆

√
(ΘT U

i )
)∆

)2∆
)εi

)∆


2∆


,

[((
1 −©n

i=1

(
1 −

(
∆

√
(ΘI L

i )∆
))εi )∆

)∆

,

((
1 −©n

i=1

(
1 −

(
∆

√
(ΘI U

i )∆
))εi )∆

)∆]
,[((

1 −©n
i=1

(
1 −

(
2∆

√
(ΘFL

i )∆
))εi )2∆

)∆

,

((
1 −©n

i=1

(
1 −

(
2∆

√
(ΘFU

i )∆
))εi )2∆

)∆]



.

Remark 5.4. The GSRNSNIVWG becomes the SRNSNIVWG operator if ∆ = 1.

Remark 5.5. Using the GSRNSNIVWG, the boundedness and monotonicity properties are met.

Theorem 5.10. If all 0̃i =
〈
(%i, τi); [ΘT L

i ,ΘT U
i ], [ΘI L

i ,ΘI U
i ][ΘFL

i ,ΘFU
i ]

〉
(i = 1 to n) are equal,

then GSRNSNIVWG(0̃1, 0̃2, ..., 0̃n) = 0̃.
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6. MADM using SRNSNIV data

Let Ξ̃ = {Ξ̃1, Ξ̃2, ..., Ξ̃n} be the n-alternatives, C = {C1,C2, ...,Cm} be the m-attributes, w =

{ε1, ε2, ..., εm} be the weights of attributes, ˜̃Ξi j =
〈
(%i j, τi j); [ΘT L

i j ,ΘT U
i j ], [ΘI L

i j ,ΘI U
i j ]

[ΘFL
i j ,ΘFU

i j ]
〉

is denote SRNSNIVN of Ξ̃i in C j. Here,
[
ΘT L

i j ,ΘT U
i j

]
,
[
ΘI L

i j ,ΘI U
i j

]
,[

ΘFL
i j ,ΘFU

i j

]
∈ [0, 1] and 0 ≤ (ΘT U

i j (µ))2 +
√

(ΘI U
i j (µ)) +

√
(ΘFU

i j (µ)) ≤ 2.

6.1. Algorithm for SRNSNIV

Step-1: There should be a choice value for SRNSNIV.
Step-2: Choosing the values to be used for normalization. The matrix of choices D = (Ξ̃i j)n×m

is normalized into D̂ = (Ξ̃i j)n×m; put

Ξ̃i j =
〈
(%̂i j, τ̂i j); [Θ̂T L

i j , Θ̂T U
i j ], [Θ̂I L

i j , Θ̂I U
i j ], [Θ̂FL

i j , Θ̂FU
i j ]

〉
and

%̂i j =
%i j

supi(%i j)
, τ̂i j =

τi j

supi(τi j)
·
τi j

%i j
, Θ̂T L

i j = ΘT L
i j , Θ̂T U

i j = ΘT U
i j .

Step-3: Find the aggregate values, Using SRNSNIV operators, attribute C j in Ξ̃i, Ξ̃i j =〈
(%̂i j, τ̂i j); [Θ̂T L

i j , Θ̂T U
i j ], [Θ̂I L

i j , Θ̂I U
i j ], [Θ̂FL

i j , Θ̂FU
i j ]

〉
is aggregated into Ξ̃i =

〈
(%̂i, τ̂i); [Θ̂T L

i , Θ̂T U
i ], [Θ̂I L

i , Θ̂I U
i ], [Θ̂FL

i , Θ̂FU
i ]

〉
.

Step-4: Calculate the positive and negative ideal values:

Ξ̃

P

=

〈(
sup
1≤i≤n

(%̂i j), inf
1≤i≤n

(τ̂i j)
)
; [1, 1], [1, 1], [0, 0]

〉
,

Ξ̃

N

=

〈(
inf

1≤i≤n
(%̂i j), sup

1≤i≤n
(τ̂i j)

)
; [0, 0], [0, 0], [1, 1]

〉
.

Step-5: Find the ED between each option with two ideal values:

DP
i = DE

(
Ξ̃i, Ξ̃

P)
; DN

i = DE

(
Ξ̃i, Ξ̃

N)
.

Step-6: Calculating relative closeness is as follows:

D?i =
DN

i

DP
i + DN

i

.

Step-7: In this case, the best output is supD?i To solve a problem, a decision is to choose the best
option.

AIMS Mathematics Volume 8, Issue 8, 17402–17432.



17421

6.2. Selection process based on medical robotic engineering

Educators, economists, managers, and politicians all face DM challenges every day. Before making
your final robotic engineering choice, take into account the following five points. Based on professional
evaluations against the criteria, we want to choose the best option from a large number of alternatives.
Computer science and machine tool technology have been combined in robotics, a branch of applied
engineering. Computer programming, microelectronics, machine design, and artificial intelligence
are all covered. Currently, we have selected five types of robotic nurses: Pharma robotics, Robotic-
assisted biopsy, Antibacterial nano-materials, AI diagnostics, and AI epidemiology. A robotics system
should be chosen based on the following four criteria: robot controller features (C1), affordable off line
programming software (C2), safety codes (C3), experience and reputation of the robot manufacturer
(C4) and their weights are w = {0.4, 0.3, 0.2, 0.1}.

(1) ROBOTIC NURSES (Ξ̃1):
It is useful to have nursing robots in hospitals as well as in senior living facilities. Nurses may
be able to focus on their work by having robots relieve them of their workloads. Automated
machines have already been considered to support processes such as the distribution of food trays,
medications, and laboratory specimens in hospitals, which are relevant to their primary duties.
A robotic system designed to assist nurses in patient transfers, ambulation, and limiting their
movements could significantly reduce the physical strain they face. Telemedicine might also be
offered by nursing robots. Telepresence platforms equipped with robotic nurses enable doctors
to communicate effectively with patients remotely. Robots usually travel to hospitals using their
onboard screens to make visual contact with patients during routine vital visits. Additionally,
the robot records the patient’s vital signs at regular intervals in accordance with standard clinical
protocols. Sales of health care robots are expected to reach 2.8 billion dollars by 2021. Health care
seems to have a limitless number of applications. Robots for hospitals, housing, and surgery are
all included in this market. Robots that can help with therapy, medication, logistics, telepresence,
and cleaning can also be utilized. This includes surgical robots, training exoskeletons, intelligent
prostheses and bionics, robotic nurses, and robots for assisting with therapy, medication, logistics,
and telepresence. Further, touch sensors, speech recognition, gesture control, and machine vision
are crucial technologies for health care robotics. Robert Din Sow is a patient in Thai and Japanese
hospitals. While keeping an eye on elderly patients, Robert Din Sow conducts video talks with
their families. Using a desktop or laptop computer, a robotic arm can be operated remotely.

(2) PHARMAROBOTICS (Ξ̃2):
Worldwide, dairy farmers administer millions of vaccines and reproductive items to cows. It takes
a lot of training and work to administer these medications. In this sector, only about 70 % of
cows achieve a 100 % compliance rate under current protocols, meaning they don’t receive the
full prescribed schedule of vaccines or reproductive products, which could negatively impact their
health. We are pro-environment and pro-animal health farmers. As part of our efforts to build a
healthier planet, we believe that using our patented technology to automate the process of giving
essential drugs to animals will improve animal health standards. Sure Shot may administer up to
three vaccinations and replica items. An automated gate system, RFID reader, camera ID reader,
and dairy management software can be used to manufacture products based on each cow’s RIFD
tag. As a dairy farmer responsible for several agricultural activities, Alexander was mentored by
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Marinus in 2017. As a first-year college student, Alexander had the idea of improving cow animal
health standards and providing farmers with a sustainable economic future. The idea was patented
and a new challenge was created. A robotic injection system for domestic herd animals. After
that, the concept became a thought program. After the accelerator program, the team was able to
develop a smart business model. February 2019 marked the founding of Pharm Robotics.

(3) ROBOTIC-ASSISTED BIOPSY (Ξ̃3):
The objective of our research was to develop a robot that could perform computer tomography
(CT). The method’s viability, accuracy, and efficacy were evaluated using ten peas placed inside
a gel phantom (mean diameter 9.9t/0.4mm). Using CT imaging to identify the optimal access
point, the position of the phantom was captured using an optical tracking device. The robot
planning system (Linux-based industrial PC outfitted with a video capture card) received locational
information about the phantom and its CT image after the correct angle, pitch, and location were
determined. Using seven degrees of freedom, the robotic arm directed the needle’s trajectory to
the center of the target. A coaxial approach was used to perform the biopsy. After measuring the
length of all harvested specimens, we pushed short bits of a guide into the target to determine the
needle track’s departure from the target. Resting biopsy specimens were available for all targets
(mean length 5.6 t/1.4mm; only a needle pass was needed). As far as the needle tip was concerned,
its mean deviation from the center of the target was 1.2 t/0.9 mm in both axis, and 0.6 t/0.4 mm
in both axes. It was possible to test the perceptual and dexterity abilities of doctors using robotic
assisted biopics in vitro utilizing CT guidance. These biopics early cancer diagnosis with enhanced
detection and precise treatment. The procedures may be steered towards more accurate biopsies
and focused medicines through the use of robotics in this situation. During a biopsy technique,
which is stabilized by robotic manipulation, a tissue sample is obtained from the probable lesion.

(4) ANTIBACTERIAL NANOMATERIALS (Ξ̃4):
By fighting poisons and bacteria constantly, blood does not keep us alive. Due to the rise in
antibiotic-resistant bacteria, robots are being called upon to save the day. It may one day be possible
to save patients from bacterial illnesses that doctors are increasingly finding themselves unable to
treat by using tiny robots. The tiny robots are made of gold nano wire coated with a membrane
that kills bacteria and toxins and propelled by ultrasonic waves from outside the body. There is a
major innovation in the device’s covering. A red blood cell neutralizes bacteria’s poisons, while a
platelet attacks bacteria. Both work their magic through sensors on their exterior membranes. In
order to create the toxin-fighting bot, gold nanowires are covered with the new membrane. Due to
the effectiveness of their method, Ail claims that “we didn’t have a substandard batch of robots”.
By making the nanowire segments concave at one end, Avila made the nanorobots asymmetrical,
so that they would respond to ultrasound more effectively. Using ultrasound, the nanorobots move
at a 35 micron per second speed. This setting does not allow for individual control of nabobs
since they swarm in groups. A blood sample was found to contain an antibiotic-resistant bacterium
called Staphylococcus Atreus. After just five minutes, there were three times fewer germs in the
sample. The gold nanowire will be tested in vivo, among other things, to determine how hazardous
it might be since gold reacts well to acoustic fields.

(5) AI DIAGNOSTICS AND AI EPIDEMIOLOGY (Ξ̃5):
In medicine, robots can do this work most effectively. Through machine learning, scientists can
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train AIs to perform tasks more effectively than people by giving them thousands of instances.
Diagnostic tools of this type have numerous applications, but a few stand out. In an effort to detect
patients who are most likely to develop diabetes, heart failure, or stroke, New York University
created an artificial intelligence that scans thousands of medical records. Over 8000 diseases
and rare genetic disorders can be accurately diagnosed using facial recognition software in the
Facial Dysmorphology Novel Analysis (FDNA) system. In the future, robotics, diagnostic image
analysis, and precision medicine applications may become more and more dependent on robots
due to future restrictions, trends. Computer vision powered by deep learning is one example of
the use of medical machine learning (ML) in the clinical setting. Public health relies heavily on
epidemiology. In the context of COVID-19, machine learning applications in epidemiology have
certainly received increased attention. In addition to the development of highly linked databases
of health records, larger amounts of data with a health impact are becoming available from a
wider source, allowing machine learning to make almost magical predictions from large, high-
dimensional data sets. In epidemiology, informal thinking plays a major role, which can be
reconciled with the casual attitude of the ML. There can be no overstatement of how critical casual
thinking is in epidemiology. Making flimsy claims is an issue worth considering.

A large number of options must be evaluated according to the criteria to determine which is the
best. The following information is needed to make a decision:

Step-1: DM information are, (see Table 1).

Table 1. DM information.

C1 C2 C3 C4

Ξ̃1
〈
(0.8, 0.55); [0.5, 0.52],

〈
(0.6, 0.55); [0.5, 0.55],

〈
(0.7, 0.55); [0.6, 0.65],

〈
(0.85, 0.6); [0.45, 0.55],

[0.6, 0.65], [0.52, 0.57]
〉

[0.6, 0.65], [0.65, 0.7]
〉

[0.5, 0.7], [0.4, 0.5]
〉

[0.7, 0.75], [0.55, 0.6]
〉

Ξ̃2
〈
(0.8, 0.75); [0.3, 0.43],

〈
(0.8, 0.65); [0.55, 0.56],

〈
(0.55, 0.5); [0.4, 0.45],

〈
(0.8, 0.65); [0.5, 0.55],

[0.19, 0.2], [0.4, 0.8]
〉

[0.8, 0.85], [0.3, 0.35]
〉

[0.7, 0.75], [0.55, 0.7]
〉

[0.35, 0.46], [0.45, 0.65]
〉

Ξ̃3
〈
(0.85, 0.7); [0.5, 0.55],

〈
(0.75, 0.7); [0.2, 0.25],

〈
(0.7, 0.65); [0.6, 0.7],

〈
(0.7, 0.55); [0.6, 0.65],

[0.4, 0.75], [0.3, 0.35]
〉

[0.9, 0.95], [0.4, 0.45]
〉

[0.65, 0.76], [0.3, 0.35]
〉

[0.65, 0.7], [0.35, 0.45]
〉

Ξ̃4
〈
(0.65, 0.6); [0.36, 0.51],

〈
(0.7, 0.65); [0.49, 0.53],

〈
(0.8, 0.55); [0.5, 0.55],

〈
(0.8, 0.6); [0.5, 0.55],

[0.37, 0.38], [0.6, 0.65]
〉

[0.65, 0.73], [0.55, 0.65]
〉

[0.55, 0.6], [0.65, 0.75]
〉

[0.4, 0.45], [0.5, 0.73]
〉

Ξ̃5
〈
(0.7, 0.6); [0.45, 0.6],

〈
(0.6, 0.55); [0.25, 0.35],

〈
(0.65, 0.6); [0.45, 0.55],

〈
(0.6, 0.5); [0.5, 0.55],

[0.5, 0.55], [0.25, 0.6]
〉

[0.45, 0.5], [0.75, 0.85]
〉

[0.55, 0.65], [0.5, 0.6]
〉

[0.65, 0.7], [0.45, 0.5]
〉

Table 2 shows the normalized decision matrix.
Step-2: Obtain the normalized decision matrix:
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Table 2. Normalized decision values.

C1 C2 C3 C4

Ξ̃1
〈
(0.9412, 0.5042); [0.5, 0.52],

〈
(0.75, 0.7202); [0.5, 0.55],

〈
(0.875, 0.6648); [0.6, 0.65],

〈
(1, 0.6516); [0.45, 0.55],

[0.6, 0.65], [0.52, 0.57]
〉

[0.6, 0.65], [0.65, 0.7]
〉

[0.5, 0.7], [0.4, 0.5]
〉

[0.7, 0.75], [0.55, 0.6]
〉

Ξ̃2
〈
(0.9412, 0.9375); [0.3, 0.43],

〈
(1, 0.7545); [0.55, 0.56],

〈
(0.6875, 0.6993); [0.4, 0.45],

〈
(0.9412, 0.8125); [0.5, 0.55],

[0.19, 0.2], [0.4, 0.8]
〉

[0.8, 0.85], [0.3, 0.35]
〉

[0.7, 0.75], [0.55, 0.7]
〉

[0.35, 0.46], [0.45, 0.65]
〉

Ξ̃3
〈
(1, 0.7686); [0.5, 0.55],

〈
(0.9375, 0.9333); [0.2, 0.25],

〈
(0.875, 0.9286); [0.6, 0.7],

〈
(0.8235, 0.6648); [0.6, 0.65],

[0.4, 0.75], [0.3, 0.35]
〉

[0.9, 0.95], [0.4, 0.45]
〉

[0.65, 0.76], [0.3, 0.35]
〉

[0.65, 0.7], [0.35, 0.45]
〉

Ξ̃4
〈
(0.7647, 0.7385); [0.36, 0.51],

〈
(0.875, 0.8622); [0.49, 0.53],

〈
(1, 0.5817); [0.5, 0.55],

〈
(0.9412, 0.6923); [0.5, 0.55],

[0.37, 0.38], [0.6, 0.65]
〉

[0.65, 0.73], [0.55, 0.65]
〉

[0.55, 0.6], [0.65, 0.75]
〉

[0.4, 0.45], [0.5, 0.73]
〉

Ξ̃5
〈
(0.8235, 0.6857); [0.45, 0.6],

〈
(0.75, 0.7202); [0.25, 0.35],

〈
(0.8125, 0.8521); [0.45, 0.55],

〈
(0.7059, 0.641); [0.5, 0.55],

[0.5, 0.55], [0.25, 0.6]
〉

[0.45, 0.5], [0.75, 0.85]
〉

[0.55, 0.65], [0.5, 0.6]
〉

[0.65, 0.7], [0.45, 0.5]
〉

Table 3 shows the SRNSNIVWG operator. The following aggregate data is available for each
alternative.

Step-3: Aggregate information based on SRNSNIVWG operator for every alternative (∆ = 1).

Table 3. SRNSNIVWG operator.

S RNS NIVWG operator (∆ = 1)

Ξ̃1
〈
(0.8717, 0.6084); [0.5131, 0.5561], [0.5936, 0.6719], [0.5443, 0.6038]

〉
Ξ̃2

〈
(0.9001, 0.8166); [0.4011, 0.4814], [0.5730, 0.6311], [0.4089, 0.6664]

〉
Ξ̃3

〈
(0.9366, 0.8339); [0.4012, 0.4633], [0.7018, 0.8442], [0.3356, 0.3911]

〉
Ξ̃4

〈
(0.8578, 0.7328); [0.4358, 0.5277], [0.5086, 0.5627], [0.5869, 0.6808]

〉
Ξ̃5

〈
(0.7864, 0.7219); [0.3812, 0.4973], [0.5139, 0.5759], [0.5037, 0.6917]

〉

Step-4: Consider the following alternatives and determine their optimum values, both positive and
negative:

Ξ̃

P

=
[〈

(0.9366, 0.6084), 1, 1, 0
〉]
,

Ξ̃

P

=
[〈

(0.7864, 0.8339), 0, 0, 1
〉]
.

Step-5: ED between each alternative with both ideal values:

DP
1 = 0.3224,DP

2 = 0.3392,DP
3 = 0.3382,DP

4 = 0.3307,DP
5 = 0.3303,

and
DN

1 = 0.0647,DN
2 = 0.0821,DN

3 = 0.0810,DN
4 = 0.0734,DN

5 = 0.0732.

Step-6: Relative closeness is calculated as follows:

D?1 = 0.1672,D?2 = 0.1950,D?3 = 0.1933,D?4 = 0.1817,D?5 = 0.1814.
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Step-7: Ranking of alternatives are

Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃4 ≥ Ξ̃5 ≥ Ξ̃1.

As a result, Pharmarobotics is the best option.

6.3. Comparison for proposed models and existing models

The suggested models are compared with a few existing models in this subsection. In this way, it
demonstrates its value and advantages. Recently, Palanikumar et al. [17] introduced MADM approach
for Pythagorean neutrosophic normal interval-valued aggregation operators. We proposed ED and HD
is based on SRNSNIVWA, SRNSNIVWG, GSRNSNIVWA, and GSRNSNIVWG, respectively. In
both cases, the Euclidean distance method and the Hamming distance method were used. In Tables 4
and 5, existing and proposed methods are compared. The following categories can be used to categorize
distances:

Table 4. Comparison table.

∆ = 1 S RNS NIVWA S RNS NIVWG GS RNS NIVWA GS RNS NIVWG
TOPS IS − Euclidean Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃3 Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃4 Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃3 Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃4

distance (proposed) Ξ̃1 ≥ Ξ̃5 Ξ̃5 ≥ Ξ̃1 Ξ̃1 ≥ Ξ̃5 Ξ̃5 ≥ Ξ̃1

TOPS IS − Hamming Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃3 Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃4 Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃3 Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃4

distance (proposed) Ξ̃1 ≥ Ξ̃5 Ξ̃5 ≥ Ξ̃1 Ξ̃1 ≥ Ξ̃5 Ξ̃5 ≥ Ξ̃1

S core (proposed) Ξ̃5 ≥ Ξ̃1 ≥ Ξ̃3 Ξ̃1 ≥ Ξ̃5 ≥ Ξ̃4 Ξ̃5 ≥ Ξ̃1 ≥ Ξ̃3 Ξ̃1 ≥ Ξ̃5 ≥ Ξ̃4

Ξ̃2 ≥ Ξ̃4 Ξ̃3 ≥ Ξ̃2 Ξ̃2 ≥ Ξ̃4 Ξ̃3 ≥ Ξ̃2

Table 5. Comparison table.

∆ = 1 S RNS NIVWA S RNS NIVWG GS RNS NIVWA GS RNS NIVWG
Euclidean distance [17] Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃5 Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃1 Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃5 Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃1

Ξ̃1 ≥ Ξ̃4 Ξ̃3 ≥ Ξ̃5 Ξ̃1 ≥ Ξ̃4 Ξ̃3 ≥ Ξ̃5

Hamming distance [17] Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃5 Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃1 Ξ̃2 ≥ Ξ̃3 ≥ Ξ̃5 Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃1

Ξ̃4 ≥ Ξ̃1 Ξ̃3 ≥ Ξ̃5 Ξ̃4 ≥ Ξ̃1 Ξ̃3 ≥ Ξ̃5

Score [17] Ξ̃5 ≥ Ξ̃3 ≥ Ξ̃1 Ξ̃1 ≥ Ξ̃4 ≥ Ξ̃5 Ξ̃5 ≥ Ξ̃3 ≥ Ξ̃1 Ξ̃1 ≥ Ξ̃4 ≥ Ξ̃5

Ξ̃2 ≥ Ξ̃4 Ξ̃3 ≥ Ξ̃2 Ξ̃2 ≥ Ξ̃4 Ξ̃3 ≥ Ξ̃2
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EDs for proposed approaches and current methods based on these four aggregating operators are
shown in Figure 1. Figure 1 shows the Graphical representation consisting of euclidean distances.

Figure 1. Euclidean distances.

HDs for proposed approaches and current methods based on these four aggregating operators are
shown in Figure 2. Figure 2 shows the Graphical representation consisting of Hamming distances.

Figure 2. Hamming distances.

Score values for proposed approaches and current methods based on these four aggregating
operators are shown in Figure 3. Figure 3 shows the Graphical representation consisting of score
values.
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Figure 3. Score values.

6.4. Data analysis

MADM conditional dependability changes with the alternative. This test has prerequisites. Using
the SRNSNIVWG approach, the proximity values and ranking are as follows. The ∆ = 2 values
should be changed from the SRNSNIVWG approach. As shown below, the relative closeness values
and orders are as follows: For each alternative, we provide the following aggregate data using the
SRNSNIVWG operator (see Table 6):

Table 6. SRNSNIVWG operator.

Ξ̃1
〈
(0.8717, 0.6084); (0.5131, 0.5561), (0.5929, 0.6716), (0.5434, 0.6032)

〉
Ξ̃2

〈
(0.9001, 0.8166), [0.4011, 0.4814], [0.5508, 0.6096], [0.4076, 0.6628]

〉
Ξ̃3

〈
(0.9366, 0.8339); [0.4012, 0.4633], [0.6922, 0.8424], [0.3352, 0.3906]

〉
Ξ̃4

〈
(0.8578, 0.7328); [0.4358, 0.5277], [0.5041, 0.5565], [0.5867, 0.6806]

〉
Ξ̃5

〈
(0.7864, 0.7219); [0.3812, 0.4973], [0.5129, 0.5747], [0.4969, 0.6900]

〉
Determine the optimum values, both ideal values of the following alternatives:

Ξ̃

P

=
〈
(0.9366, 0.6084), [1, 1], [1, 1], [0, 0]

〉
and

Ξ̃

N

=
〈
(0.7864, 0.8339), [0, 0], [0, 0], [1, 1]

〉
.

ED between each choice with both ideal values:

DP
1 = 0.3222,DP

2 = 0.3350,DP
3 = 0.3371,DP

4 = 0.3298,DP
5 = 0.3294

DN
1 = 0.0645,DN

2 = 0.0779,DN
3 = 0.0800,DN

4 = 0.0725,DN
5 = 0.0723.
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Relative closeness are calculated as follows:

D?1 = 0.1668,D?2 = 0.1887,D?3 = 0.1918,D?4 0.1802,D?5 = 0.1800.

We can see from the data above that the SRNSNIVWG operator is used to determine the alternative
ranking. If ∆ = 2, then new order is Ξ̃3 ≥ Ξ̃2 ≥ Ξ̃4 ≥ Ξ̃5 ≥ Ξ̃1. As a result, robotic-assisted
biopsy becomes the preferred option to pharmarobotics. Similar to SRNSNIVWA, GSRNSNIVWA,
and GSRNSNIVWG operators with ∆ values are used to generate alternate ranks.

Figure 4 shows the Graphical representation consists of TOPSIS based on Hamming-
SRNSNIVWG.

Figure 4. TOPSIS based on Hamming-SRNSNIVWG.

6.5. Advantages

According to the previous study, the applications have numerous advantages. SRNSNIVS is a
combination of square root neutrosophic set and interval valued normal neutrosophic set. According
to SRNSNIVS, human behavior and natural events follow a normal distribution in real life. By
using the SRNSNIVS AOs, we find the most suitable alternative based on a set of options provided
by the decision maker. Thus, the proposed MADM technique based on SRNSNIVS AOs provides
another approach to finding the most effective alternative in DM. A decision maker can select the
outcome according to ∆ and their own preferences. With operators like SRNSNIVWA, SRNSNIVWG,
GSRNSNIVWA, and GSRNSNIVWG, different ranking outcomes of each alternative could be
produced dynamically.
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7. Conclusions

We present the ED and HD measures for SRNSNIVSs. The mathematical simplicity of these
distance measures makes them advantageous. It is demonstrated that ED and HD measures through
the use of numerical examples. We have suggested AO rules for SRNSNIVWA, SRNSNIVWG,
GSRNSNIVWA, and GSRNSNIVWG. As well as providing some examples, we discussed some
of the features of these operators. It is possible for people to choose the best option under
uncertain and inconsistent circumstances by implementing the SRNSNIV MADM. The SRNSNIVWA,
SRNSNIVWG, GSRNSNIVWA, and GSRNSNIVWG operators have been used to solve MADM
problems depending on ∆. Those generalized values of ∆ significantly impact the ranking of
alternatives as shown in the study. To make the decision, DM may select ∆ values on the basis of the
real life problems. The DM can select the method for obtaining results depending on ∆ values. There
are many practical applications of ED and HD measures in data analysis. This paper’s discussion will
be useful to future academics interested in this field. Further discussions will be held on the following
topics are:

(1) Soft sets and expert sets are explored in terms of SRNSNIVS.

(2) Based on SRNSNIVS, we investigate generalized q-Rung interval valued normal neutrosophic set
and cubic q-Rung interval valued normal fuzzy set.

(3) A generalized cubic interval valued normal neutrosophic set and complex interval valued normal
neutrosophic set can be used to solve the problem of MADM.
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