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1. Introduction

Efficient and reliable numerical methods are always urgently needed for nonlinear multi-
dimensional problems due to the mass storage and the high computation cost. The split-step method,
also known as the time-splitting method, is one kind of efficient skills for solving nonlinear parabolic
or Schrödinger-type problems in multi-dimensions.

The split-step skill could be efficiently combined with the (compact) finite difference method [1,
2], the finite element method [3, 4], the spectral/pseudospectral method [5, 6], et al. So the authors
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of [7] try to combine the skill with the cubic B-spline collocation (3BC) approach, and they formulate
the split-step 3BC (SS3BC) method sucessfully. However, the SS3BC method is just second-order
accuracy in space, and there is no numerical analysis in [7]. Genarally speaking, the 3BC method has
second-order accuracy, and the quintic B-spline collocation (5BC) method is fourth-order [8]. Thus,
split-step 5BC (SS5BC) methods are constructed in this paper to improve the accuracy in space, and
some analyses are also given.

In this paper, we consider the nonlinear Schrödinger (NLS) equations as follows

i
∂u
∂t

(x, t) + α∆u(x, t) + V(x, t)u(x, t) + β|u(x, t)|2u(x, t) = 0, x ∈ Rd, t ∈ (0,T ], (1.1)

with the initial condition
u(x, 0) = u0(x), x ∈ Rd, (1.2)

and the periodic boundary condition

u(x + L, t) = u(x, t), x ∈ Rd, t ∈ [0,T ], (1.3)

where L = (Lx, Ly, Lz), and Lx, Ly and Lz are the periodic lengths respectively in the x, y and z direction.
u(x, t) is an unknown complex function, V(x, t) and u0(x) are given functions, α, β are real constants,
T > 0 and i2 = −1.

Computing the inner product of Eq (1.1) with u, and taking the imaginary part, one obtains the
following conservation law

Q(t) =
∫

Rd
|u(x, t)|2dx =

∫
Rd
|u(x, 0)|2dx = Q(0). (1.4)

The rest of this paper is organized as follows. In Section 2, some preliminaries are introduced, and
SS5BC methods are constructed in Section 3. In Section 4, solvability, conservation and linear stability
of the schemes are discussed. Numerical experiments are carried out in Section 5, and the present
methods are applied to study BECs in Section 6. Finally, some conclusions are given in Section 7.

2. Preliminaries

We consider Eq (1.1) within x ∈ Ωd ⊆ Rd. Take Ω3 = [xL, xR] × [yL, yR] × [zL, zR], and xR − xL =

Lx, yR − yL = Ly, zR − zL = Lz. Let {xk}
Nx
k=0 ⊗ {yl}

Ny

l=0 ⊗ {zm}
Nz
m=0 be the partition of Ω3, such that

x j = xL + jhx, yk = yL + khy, zl = zL + lhz, j = 1, 2, · · · ,Nx, k = 1, 2, · · · ,Ny, l = 1, 2, · · · ,Nz,

where hx = (xR − xL)/Nx, hy = (yR − yL)/Ny and hz = (zR − zL)/Nz are the step sizes in space, and
Nx,Ny and Nz are positive integers. Obviously, Ω1 and Ω2 are reduced forms of Ω3 which could also
be partitioned. We divide the interval [0,T ] by the partition {tn}

Nt
n=0, where tn = nτ, τ = T/Nt is the step

size in time, and Nt is a positive integer.
For one dimension, let {B j(x)}Nx+2

j=−2 be the quintic B-spline basis functions [8] on the knots {x j}
Nx
j=0,
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such that

B j(x) =
1
h5



(x − x j−3)5, x ∈ [x j−3, x j−2],
(x − x j−3)5 − 6(x − x j−2)5, x ∈ [x j−2, x j−1],
(x − x j−3)5 − 6(x − x j−2)5 + 15(x − x j−1)5, x ∈ [x j−1, x j],
(x − x j−3)5 − 6(x − x j−2)5 + 15(x − x j−1)5 − 20(x − x j)5, x ∈ [x j, x j+1],
(x − x j−3)5 − 6(x − x j−2)5 + 15(x − x j−1)5 − 20(x − x j)5

+15(x − x j+1)5, x ∈ [x j+1, x j+2],
(x − x j−3)5 − 6(x − x j−2)5 + 15(x − x j−1)5 − 20(x − x j)5

+15(x − x j+1)5 − 6(x − x j+2)5, x ∈ [x j+2, x j+3],
0, otherwise.

(2.1)

Similarly, we can define {Bk(y)}Ny+2
k=−2 and {Bl(z)}Nz+2

l=−2 as the basis functions on the knots {yk}
Ny

k=0 and {zl}
Nz
l=0,

respectively.
A global approximation solution UN(x, t) of the exact solution u(x, t) could be expressed in terms

of the quintic B-spline as

UN(x, t) =
Nx+2∑
j=−2

δ j(t)B j(x), (2.2)

where δ j(t) are unknown time dependent parameters which should be determined. According to the
property of the quintic B-spline (2.1), we can get the nodal values as follows:

UN(x j, t) = δ j−2(t) + 26δ j−1(t) + 66δ j(t) + 26δ j+1(t) + δ j+2(t), (2.3)
∂UN

∂x
(x j, t) =

5
hx

[
−δ j−2(t) − 10δ j−1(t) + 10δ j+1(t) + δ j+2(t)

]
, (2.4)

∂2UN

∂x2 (x j, t) =
20
h2

x

[
δ j−2(t) + 2δ j−1(t) − 6δ j(t) + 2δ j+1(t) + δ j+2(t)

]
, (2.5)

∂3UN

∂x3 (x j, t) =
60
h3

x

[
−δ j−2(t) + 2δ j−1(t) − 2δ j+1(t) + δ j+2(t)

]
, (2.6)

∂4UN

∂x4 (x j, t) =
120
h4

x

[
δ j−2(t) − 4δ j−1(t) + 6δ j(t) − 4δ j+1(t) + δ j+2(t)

]
, (2.7)

where j = 0, 1, 2, · · · ,Nx.
For two dimensions, an approximation solution UN(x, y, t) could be expressed as

UN(x, y, t) =
Nx+2∑
j=−2

Ny+2∑
k=−2

δ jk(t)B j(x)Bk(y), (2.8)

where δ jk(t) are unknown time dependent parameters. According to (2.1), we can get the nodal value
UN(x j, yk, t) as

UN(x j, yk, t) = [δ j−2,k−2(t) + 26δ j−2,k−1(t) + 66δ j−2,k(t) + 26δ j−2,k+1(t) + δ j−2,k+2(t)]
+26[δ j−1,k−2(t) + 26δ j−1,k−1(t) + 66δ j−1,k(t) + 26δ j−1,k+1(t) + δ j−1,k+2(t)]
+66[δ j,k−2(t) + 26δ j,k−1(t) + 66δ j,k(t) + 26δ j,k+1(t) + δ j,k+2(t)]
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+26[δ j+1,k−2(t) + 26δ j+1,k−1(t) + 66δ j+1,k(t) + 26δ j+1,k+1(t) + δ j+1,k+2(t)]
+[δ j+2,k−2(t) + 26δ j+2,k−1(t) + 66δ j+2,k(t) + 26δ j+2,k+1(t) + δ j+2,k+2(t)], (2.9)

where j = 0, 1, 2, · · · ,Nx and k = 0, 1, 2, · · · ,Ny. Unfortunately, Eq (2.9) is complicated, and it is
two-dimensional which goes against the dimensionality reduction by the splitting method.

For simplicity, new notations δ̃ j,k(t) and δ̂ j,k(t) are introduced as follows

δ̃ j,k(t) = δ j,k−2(t) + 26δ j,k−1(t) + 66δ j,k(t) + 26δ j,k+1(t) + δ j,k+2(t), (2.10)
δ̂ j,k(t) = δ j−2,k(t) + 26δ j−1,k(t) + 66δ j,k(t) + 26δ j+1,k(t) + δ j+2,k(t). (2.11)

So Eq (2.9) could be rewritten as

UN(x j, yk, t) = δ̃ j−2,k(t) + 26δ̃ j−1,k(t) + 66δ̃ j,k(t) + 26δ̃ j+1,k(t) + δ̃ j+2,k(t), (2.12)

or

UN(x j, yk, t) = δ̂ j,k−2(t) + 26δ̂ j,k−1(t) + 66δ̂ j,k(t) + 26δ̂ j,k+1(t) + δ̂ j,k+2(t). (2.13)

Obviously, either Eq (2.12) or Eq (2.13) is more concise than Eq (2.9). The advantage of the new
writing will also be shown in the following sections.

For three dimensions, an approximation solution UN(x, y, z, t) could be expressed as

UN(x, y, z, t) =
Nx+2∑
j=−2

Ny+2∑
k=−2

Nz+2∑
l=−2

δ jkl(t)B j(x)Bk(y)Bl(z), (2.14)

where δ jkl(t) are unknown time dependent parameters.
Denote

δ̃ j,k,l(t) =
(
δ j,k−2,l−2(t) + 26δ j,k−2,l−1(t) + 66δ j,k−2,l(t) + 26δ j,k−2,l+1(t) + δ j,k−2,l+2(t)

)
+26

(
δ j,k−1,l−2(t) + 26δ j,k−1,l−1(t) + 66δ j,k−1,l(t) + 26δ j,k−1,l+1(t) + δ j,k−1,l+2(t)

)
+66

(
δ j,k,l−2(t) + 26δ j,k,l−1(t) + 66δ j,k,l(t) + 26δ j,k,l+1(t) + δ j,k,l+2(t)

)
+26

(
δ j,k+1,l−2(t) + 26δ j,k+1,l−1(t) + 66δ j,k+1,l(t) + 26δ j,k+1,l+1(t) + δ j,k+1,l+2(t)

)
+

(
δ j,k+2,l−2(t) + 26δ j,k+2,l−1(t) + 66δ j,k+2,l(t) + 26δ j,k+2,l+1(t) + δ j,k+2,l+2(t)

)
,

where the first subscript j related to x direction is fixed. Similarly, δ̂ j,k,l(t) related to y direction and
δ̌ j,k,l(t) related to z direction could be defined, where the second subscript k and the third subscript l are
respectively fixed. Therefore, the nodal value UN(x j, yk, zl, t) could be written as

UN(x j, yk, zl, t) = δ̃ j−2,k,l(t) + 26δ̃ j−1,k,l(t) + 66δ̃ j,k,l(t) + 26δ̃ j+1,k,l(t) + δ̃ j+2,k,l(t)
= δ̂ j,k−2,l(t) + 26δ̂ j,k−1,l(t) + 66δ̂ j,k,l(t) + 26δ̂ j,k+1,l(t) + δ̂ j,k+2,l(t)
= δ̌ j,k,l−2(t) + 26δ̌ j,k,l−1(t) + 66δ̌ j,k,l(t) + 26δ̌ j,k,l+1(t) + δ̌ j,k,l+2(t). (2.15)
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3. Numerical methods

Firstly, the second-order Strang splitting [9, 10] is applied, and Eq (1.1) could be separated as

i
∂u
∂t

(x, t) +
1
2

V(x, t)u(x, t) +
β

2
|u(x, t)|2u(x, t) = 0, (3.1)

i
∂u
∂t

(x, t) + α∆u(x, t) = 0, (3.2)

i
∂u
∂t

(x, t) +
1
2

V(x, t)u(x, t) +
β

2
|u(x, t)|2u(x, t) = 0. (3.3)

So Eq (1.1) could be approximately solved within t ∈ [tn, tn+1] by solving Eqs (3.1)–(3.3) in sequence.
Multipling Eq (3.1) by ū and taking the imaginary part, it follows that

1
2
∂

∂t
|u|2 = 0.

Thus |u|2 in Eq (3.1) is independent of t. So one can take |u(x, t)|2 = |u(x, tn)|2. Consequently, it follows
from Eq (3.1) that

u(x, t) = u(x, tn) exp
{

i
2

[∫ t

tn
V(x, t)dt + β(t − tn)|u(x, tn)|2

]}
, (3.4)

where t ∈ [tn, tn+1]. Equation (3.3) could be solved similarly.

3.1. One-dimensional (1D) scheme

For d = 1, Eq (3.2) could be written as

i
∂u
∂t

(x, t) + α
∂2u
∂x2 (x, t) = 0. (3.5)

Applying the Crank-Nicolson scheme within t ∈ [tn, tn+1], one obtains

i
Un+1

N (x) − Un
N(x)

τ
+
α

2

[
Un+1

Nxx(x) + Un
Nxx(x)

]
= 0,

where Un
N(x) is the approximation of u(x, tn). Taking x = x j, it follows from Eqs (2.3) and (2.5) that

(i + 10αrx)(δn+1
j−2 + δ

n+1
j+2) + (26i + 20αrx)(δn+1

j−1 + δ
n+1
j+1) + (66i − 60αrx)δn+1

j = iUn
N(x j) −

τα

2
Un

Nxx(x j),

where rx = τ/h2
x.

Consequently, Eqs (3.1)–(3.3) for d = 1 could be solved in sequence as follows

Un+1,1
N (x) = Un

N(x) exp
{

i
2

[∫ tn+1

tn
V(x, t)dt + τβ|Un

N(x)|2
]}
, (3.6)

(i + 10αrx)(δn+1,2
j−2 + δ

n+1,2
j+2 ) + (26i + 20αrx)(δn+1,2

j−1 + δ
n+1,2
j+1 ) + (66i − 60αrx)δn+1,2

j

= iUn+1,1
N (x j) −

τα

2
Un+1,1

Nxx (x j), (3.7)

Un+1
N (x) = Un+1,2

N (x) exp
{

i
2

[∫ tn+1

tn
V(x, t)dt + τβ|Un+1,2

N (x)|2
]}
, (3.8)

where j = 0, 1, 2, · · · ,Nx, and n = 0, 1, 2, · · · ,Nt − 1. Un+1,1
N (x) and Un+1,2

N (x) =
∑Nx+2

j=−2 δ
n+1,2
j B j(x) are

intermediate results.
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3.2. Two-dimensional (2D) scheme

For d = 2, Eq (3.2) could be written as

i
∂u
∂t

(x, y, t) + α
(
∂2u
∂x2 +

∂2u
∂y2

)
(x, y, t) = 0. (3.9)

The first-order Lie splitting [10] is applied, and one has

i
∂u
∂t

(x, y, t) + α
∂2u
∂x2 (x, y, t) = 0, (3.10)

i
∂u
∂t

(x, y, t) + α
∂2u
∂y2 (x, y, t) = 0. (3.11)

As the operators ∂2

∂x2 and ∂
2u
∂y2 are commutable, there is no splitting error here.

Similar to Eq (3.5), one can obtain from Eq (3.10) that

i
Un+1

N (x, y) − Un
N(x, y)

τ
+
α

2

[
Un+1

Nxx(x, y) + Un
Nxx(x, y)

]
= 0,

where Un
N(x, y) is the approximation of u(x, y, tn). Taking (x, y) = (x j, yk), it follows from Eqs (2.13)

and (2.5) that

(i+10αrx)(δ̃n+1
j−2,k+ δ̃

n+1
j+2,k)+(26i+20αrx)(δ̃n+1

j−1,k+ δ̃
n+1
j+1,k)+(66i−60αrx)δ̃n+1

j,k = iUn
N(x j, yk)−

τα

2
Un

Nxx(x j, yk).

The above equation is concide benefiting from the new notation δ̃n+1
j,k . Moreover, it forms a (Nx + 1)

system for each value of k which avoids solving a (Nx+1)× (Ny+1) system directly. That is the reason
why the author applies the splitting method in this paper.

Similarly, it follows from Eq (3.11) that

(i+10αry)(δ̂n+1
j,k−2+ δ̂

n+1
j,k+2)+(26i+20αry)(δ̂n+1

j,k−1+ δ̂
n+1
j,k+1)+(66i−60αry)δ̂n+1

j,k = iUn
N(x j, yk)−

τα

2
Un

Nyy(x j, yk),

where ry = τ/h2
y .

Consequently, Eqs (3.1)–(3.3) for d = 2 could be solved approximately as follows

Un+1,1
N (x, y) = Un

N(x, y) exp
{

i
2

[∫ tn+1

tn
V(x, y, t)dt + τβ|Un

N(x, y)|2
]}
, (3.12)

(i + 10αrx)(δ̃n+1,2
j−2,k + δ̃

n+1,2
j+2,k ) + (26i + 20αrx)(δ̃n+1,2

j−1,k + δ̃
n+1,2
j+1,k ) + (66i − 60αrx)δ̃n+1,2

j,k

= iUn+1,1
N (x j, yk) −

τα

2
Un+1,1

Nxx (x j, yk), (3.13)

(i + 10αry)(δ̂n+1,3
j,k−2 + δ̂

n+1,3
j,k+2 ) + (26i + 20αry)(δ̂n+1,3

j,k−1 + δ̂
n+1,3
j,k+1 ) + (66i − 60αry)δ̂n+1,3

j,k

= iUn+1,2
N (x j, yk) −

τα

2
Un+1,2

Nyy (x j, yk), (3.14)

Un+1
N (x, y) = Un+1,3

N (x, y) exp
{

i
2

[∫ tn+1

tn
V(x, y, t)dt + τβ|Un+1,3

N (x, y)|2
]}
, (3.15)

where j = 0, 1, 2, · · · ,Nx, k = 0, 1, 2, · · · ,Ny, and n = 0, 1, 2, · · · ,Nt − 1. Un+1,1
N (x, y) and

Un+1,2
N (x, y) =

Nx+2∑
j=−2

Ny+2∑
k=−2

δn+1,2
j,k B j(x)Bk(y), Un+1,3

N (x, y) =
Nx+2∑
j=−2

Ny+2∑
k=−2

δn+1,3
j,k B j(x)Bk(y)

are intermediate results.
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3.3. Three-dimensional (3D) scheme

For d = 3, Eq (3.2) could be written as

i
∂u
∂t

(x, y, z, t) + α
(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(x, y, z, t) = 0. (3.16)

It follows from the Lie splitting [10] that

i
∂u
∂t

(x, y, z, t) + α
∂2u
∂x2 (x, y, z, t) = 0, (3.17)

i
∂u
∂t

(x, y, z, t) + α
∂2u
∂y2 (x, y, z, t) = 0, (3.18)

i
∂u
∂t

(x, y, z, t) + α
∂2u
∂z2 (x, y, z, t) = 0. (3.19)

Similar to the 2D case, Eqs (3.1)–(3.3) for d = 3 could be solved approximately as follows

Un+1,1
N (x, y, z) = Un

N(x, y, z) exp
{

i
2

[∫ tn+1

tn
V(x, y, z, t)dt + τβ|Un

N(x, y, z)|2
]}
, (3.20)

(i + 10αrx)(δ̃n+1,2
j−2,k,l + δ̃

n+1,2
j+2,k,l) + (26i + 20αrx)(δ̃n+1,2

j−1,k,l + δ̃
n+1,2
j+1,k,l) + (66i − 60αrx)δ̃n+1,2

j,k,l

= iUn+1,1
N (x j, yk, zl) −

τα

2
Un+1,1

Nxx (x j, yk, zl), (3.21)

(i + 10αry)(δ̂n+1,3
j,k−2,l + δ̂

n+1,3
j,k+2,l) + (26i + 20αry)(δ̂n+1,3

j,k−1,l + δ̂
n+1,3
j,k+1,l) + (66i − 60αry)δ̂n+1,3

j,k,l

= iUn+1,2
N (x j, yk, zl) −

τα

2
Un+1,2

Nyy (x j, yk, zl), (3.22)

(i + 10αrz)(δ̌n+1,4
j,k,l−2 + δ̌

n+1,4
j,k,l+2) + (26i + 20αrz)(δ̌n+1,4

j,k,l−1 + δ̌
n+1,4
j,k,l+1) + (66i − 60αrz)δ̌n+1,4

j,k,l

= iUn+1,3
N (x j, yk, zl) −

τα

2
Un+1,3

Nzz (x j, yk, zl), (3.23)

Un+1
N (x, y, z) = Un+1,4

N (x, y, z) exp
{

i
2

[∫ tn+1

tn
V(x, y, z, t)dt + τβ|Un+1,4

N (x, y, z)|2
]}
, (3.24)

where j = 0, 1, 2, · · · ,Nx, k = 0, 1, 2, · · · ,Ny, l = 0, 1, 2, · · · ,Nz, and n = 0, 1, 2, · · · ,Nt − 1.
Un+1,1

N (x, y, z) and

Un+1,2
N (x, y, z) =

Nx+2∑
j=−2

Ny+2∑
k=−2

Nz+2∑
l=−2

δn+1,2
j,k,l B j(x)Bk(y)Bl(z), (3.25)

Un+1,3
N (x, y, z) =

Nx+2∑
j=−2

Ny+2∑
k=−2

Nz+2∑
l=−2

δn+1,3
j,k,l B j(x)Bk(y)Bl(z), (3.26)

Un+1,4
N (x, y, z) =

Nx+2∑
j=−2

Ny+2∑
k=−2

Nz+2∑
l=−2

δn+1,4
j,k,l B j(x)Bk(y)Bl(z) (3.27)

are intermediate results.
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4. Solvability, conservation and linear stability

In this section, solvability, conservation and linear stability are considered for the numerical
methods. The 1D scheme is discussed in details, and the results could be extended to the 2D and
3D ones similarly.

From Eq (3.7), there are Nx + 1 equations with Nx + 5 unknows. So four additional equations are
required. It follows from the periodic boundary condition (1.3) with d = 1 that

∂mu
∂xm (x + Lx, t) =

∂mu
∂xm (x, t),m = 0, 1, 2, 3, 4.

Taking x = xL, one reaches

δn+1,2
−2 (t) + 26δn+1,2

−1 (t) + 66δn+1,2
0 (t) + 26δn+1,2

1 (t) + δn+1,2
2 (t)

= δn+1,2
Nx−2 (t) + 26δn+1,2

Nx−1 (t) + 66δn+1,2
Nx

(t) + 26δn+1,2
Nx+1 (t) + δn+1,2

Nx+2 (t), (4.1)

−δn+1,2
−2 (t) − 10δn+1,2

−1 (t) + 10δn+1,2
1 (t) + δn+1,2

2 (t)
= −δn+1,2

Nx−2 (t) − 10δn+1,2
Nx−1 (t) + 10δn+1,2

Nx+1 (t) + δn+1,2
Nx+2 (t), (4.2)

δn+1,2
−2 (t) + 2δn+1,2

−1 (t) − 6δn+1,2
0 (t) + 2δn+1,2

1 (t) + δn+1,2
2 (t)

= δn+1,2
Nx−2 (t) + 2δn+1,2

Nx−1 (t) − 6δn+1,2
Nx

(t) + 2δn+1,2
Nx+1 (t) + δn+1,2

Nx+2 (t), (4.3)

−δn+1,2
−2 (t) + 2δn+1,2

−1 (t) − 2δn+1,2
1 (t) + δn+1,2

2 (t)
= −δn+1,2

Nx−2 (t) + 2δn+1,2
Nx−1 (t) − 2δn+1,2

Nx+1 (t) + δn+1,2
Nx+2 (t), (4.4)

δn+1,2
−2 (t) − 4δn+1,2

−1 (t) + 6δn+1,2
0 (t) − 4δn+1,2

1 (t) + δn+1,2
2 (t)

= δn+1,2
Nx−2 (t) − 4δn+1,2

Nx−1 (t) + 6δn+1,2
Nx

(t) − 4δn+1,2
Nx+1 (t) + δn+1,2

Nx+2 (t), (4.5)

by using Eqs (2.3)–(2.7). It follows from Eqs (4.1)–(4.5) that

δn+1,2
−2 = δn+1,2

Nx−2 , δ
n+1,2
−1 = δn+1,2

Nx−1 , δ
n+1,2
0 = δn+1,2

Nx
, δn+1,2

1 = δn+1,2
Nx+1 , δ

n+1,2
2 = δn+1,2

Nx+2 . (4.6)

Therefore, Eqs (3.7) combined with (4.6) could be rewritten as

(iA + 10αrxB)δn+1,2 = (iA − 10αrxB)δn+1,1, (4.7)

where

A =



66 26 1 0 0 · · · 1 26
26 66 26 1 0 · · · 0 1
1 26 66 26 1 · · · 0 0
. . .
. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .

. . .

0 0 · · · 1 26 66 26 1
1 0 · · · 0 1 26 66 26
26 1 · · · 0 0 1 26 66


Nx×Nx

, (4.8)
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B =



−6 2 1 0 0 · · · 1 2
2 −6 2 1 0 · · · 0 1
1 2 −6 2 1 · · · 0 0
. . .

. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .

. . .

0 0 · · · 1 2 −6 2 1
1 0 · · · 0 1 2 −6 2
2 1 · · · 0 0 1 2 −6


Nx×Nx

, (4.9)

and
δn+1,m =

(
δn+1,m

1 , δn+1,m
2 , · · · , δn+1,m

Nx

)⊤
,m = 1, 2.

Lemma 4.1. The circulant matrices A and B respectively have eigenvalues as follows

(λA) j = 66 + 52 cos
2π j
Nx
+ 2 cos

4π j
Nx
, (λB) j = −6 + 4 cos

2π j
Nx
+ 2 cos

4π j
Nx
,

where j = 0, 1, 2, · · · ,Nx − 1.
Proof. The eigenvalues could be calculated directly (see [11] and the reference therein). □
Theorem 4.1. The solution of 1D SS5BC schemes (3.6)–(3.8) exists and is unique.
Proof. The coefficient matrix of scheme (3.7) is M = iA + 10αrxB. Using Lemma 4.1, the

eigenvalues of M are

(λM) j = i(λA) j + 10αrx(λB) j

= (66i − 60αrx) + (52i + 40αrx) cos
2π j
Nx
+ (2i + 20αrx) cos

4π j
Nx
,

where j = 0, 1, 2, · · · ,Nx − 1. All the eigenvalues are nonzero, so M is invertible and the solution of
scheme (3.7) exists and is unique. Moreover, Eqs (3.6) and (3.8) are respectively obtained from Eqs
(3.1) and (3.3) exactly. Therefore, the theorem is proved. □

Similarly, one can prove that the solution of 2D SS5BC scheme (3.12)–(3.15) or 3D scheme (3.20)–
(3.24) also exists and is unique.

Lemma 4.2. For any N × N real symmetric matrix C and any complex vector δ = (δ1, δ2, · · · , δN)⊤,
δHCδ is real, where δH is the conjugate transpose of δ and N is a positive integer.

Proof. By matrix operation, one has

δHCδ =
N∑

j=1

N∑
k=1

c jkδ̄ jδk,

where c jk is the element of the matrix lying on the intersection of the jth row and the kth column of C.
Since C is a real symmetric matrix, δHCδ is real. □

Theorem 4.2. The 1D SS5BC schemes (3.6)–(3.8) conserves the discrete quantity

Qn = hx

Nx∑
j=1

|Un
N(x j)|2 = hx

Nx∑
j=1

|U0
N(x j)|2 = Q0, n = 1, 2, · · · ,Nt. (4.10)
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Proof. It follows from Eqs (3.6) and (3.8) that
∣∣∣Un+1,1

N (x)
∣∣∣ = ∣∣∣Un

N(x)
∣∣∣ and

∣∣∣Un+1
N (x)

∣∣∣ = ∣∣∣Un+1,2
N (x)

∣∣∣. So

hx

Nx∑
j=1

|Un+1,1
N (x j)|2 = hx

Nx∑
j=1

|Un
N(x j)|2, hx

Nx∑
j=1

|Un+1
N (x j)|2 = hx

Nx∑
j=1

|Un+1,2
N (x j)|2, (4.11)

where n = 0, 1, 2, · · · ,Nt − 1.
Equation (4.7) is rewritten as

iA
(
δn+1,2 − δn+1,1

)
+ 10αrxB

(
δn+1,2 + δn+1,1

)
= 0. (4.12)

Multiplying Eq (4.12) by
[
A

(
δn+1,2 + δn+1,1

)]H
and taking the imaginary part, one has

Re
[(
δn+1,2 + δn+1,1

)H
A2

(
δn+1,2 − δn+1,1

)]
+ 10αrxIm

[(
δn+1,2 + δn+1,1

)H
AB

(
δn+1,2 + δn+1,1

)]
= 0, (4.13)

where AH is the conjugate transpose of A, and AH = A since A is real symmetric. It is obvious that(
δn+1,2 + δn+1,1

)H
A2

(
δn+1,2 − δn+1,1

)
=

(
δn+1,2

)H
A2δn+1,2 −

(
δn+1,2

)H
A2δn+1,1 +

(
δn+1,1

)H
A2δn+1,2 −

(
δn+1,1

)H
A2δn+1,1. (4.14)

As A2 is real symmetric and
(
δn+1,2

)H
A2δn+1,1 and

(
δn+1,1

)H
A2δn+1,2 are conjugate to each other, one

gets

Re
[
−

(
δn+1,2

)H
A2δn+1,1 +

(
δn+1,1

)H
A2δn+1,2

]
= 0.

By applying Lemma 4.2, one obtains from Eq (4.14) that

Re
[(
δn+1,2 + δn+1,1

)H
A2

(
δn+1,2 − δn+1,1

)]
=

(
δn+1,2

)H
A2δn+1,2 −

(
δn+1,1

)H
A2δn+1,1. (4.15)

Moreover, as AB is a real symmetric matrix, one can obtain from Lemma 4.2 that

Im
[(
δn+1,2 + δn+1,1

)H
AB

(
δn+1,2 + δn+1,1

)]
= 0. (4.16)

It follows from Eqs (4.13), (4.15) and (4.16) that(
δn+1,2A

)H
Aδn+1,2 =

(
δn+1,1A

)H
Aδn+1,1,

i.e.,

hx

Nx∑
j=1

|Un+1,2
N (x j)|2 = hx

Nx∑
j=1

|Un+1,1
N (x j)|2, (4.17)

where
Aδn+1,m =

(
un+1,m

N (x1), un+1,m
N (x2), · · · , un+1,m

N (xNx)
)⊤
,m = 1, 2

is used. Therefore, it follows from Eqs (4.11) and (4.17) that

hx

Nx∑
j=1

|Un+1
N (x j)|2 = hx

Nx∑
j=1

|Un
N(x j)|2, n = 0, 1, 2, · · · ,Nt − 1.
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Thus, Eq (4.10) is reached. □
Similarly, the 2D SS5BC schemes (3.12)–(3.15) and the 3D schemes (3.20)–(3.24) also respectively

preserve the discrete quantity as follows

Qn = hxhy

Nx∑
j=1

Ny∑
k=1

|Un
N(x j, yk)|2 = hxhy

Nx∑
j=1

Ny∑
k=1

|U0
N(x j, yk)|2 = Q0, (4.18)

Qn = hxhyhz

Nx∑
j=1

Ny∑
k=1

Nz∑
l=1

|Un
N(x j, yk, zl)|2 = hxhyhz

Nx∑
j=1

Ny∑
k=1

Nz∑
l=1

|U0
N(x j, yk, zl)|2 = Q0, (4.19)

n = 1, 2, · · · ,Nt.

Next, the linear stability of the SS5BC scheme is considered.
Theorem 4.3. The 1D SS5BC schemes (3.6)–(3.8) is unconditionally stable.
Proof. Substituting Un

N = ξ
neiβ1 x and Un+1,1

N = ξn+1,1eiβ1 x into Eq (3.6), one gets ξn+1,1 = G1ξ
n, where

G1 = exp
{

i
2

[∫ tn+1

tn
V(x, t)dt + τβ|ξn|2

]}
.

Similarly, it follows from Eq (3.8) that ξn+1 = G3ξ
n+1,2, where

G3 = exp
{

i
2

[∫ tn+1

tn
V(x, t)dt + τβ|ξn+1,2|2

]}
.

Equation (3.7) chould be rewritten as

iUn+1,2
N (x j) +

τα

2
Un+1,2

Nxx (x j) = iUn+1,1
N (x j) −

τα

2
Un+1,1

Nxx (x j).

Plugging Un+1,2
N = ξn+1,2eiβ1 x into the above equation, one has ξn+1,2 = G2ξ

n+1,1, where

G2 =
2i − ταβ2

1

2i + ταβ2
1

.

So ξn+1 = Gξn, where G = G3G2G1. Thus, the 1D SS5BC scheme is unconditionally stable, since
|G| = 1. □

Similarly, one can obtain that the 2D and 3D SS5BC schemes are also unconditionally stable.

5. Numerical experiments

Denote
||e||∞ = max

j,k,l,n
|Un

N(x j, yk, zl) − u(x j, yk, zl, tn)|

be the maximum error. For convenience, we take N = Nx = Ny = Nz and h = hx = hy = hz. The
convergence order is approximated as

Order o f convergence ≈
log (||e||∞(h1)/||e||∞(h2))

log (h1/h2)
,

where ||e||∞(h1) is the maximum error corresponding to the step size h1.
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5.1. Test 1

Take α = 1
2 and β = −1. For d = 1, Eq (1.1) has an exact solution

u(x, t) = sin(2πx)e−it,

with
V(x) = −1 + 2π2 + sin2(2πx).

For d = 2, Eq (1.1) has an exact solution

u(x, y, t) = sin(2πx) sin
(
2πy +

π

4

)
e−it,

with
V(x, y) = −1 + 4π2 + sin2(2πx) sin2

(
2πy +

π

4

)
.

And Eq (1.1) with d = 3 has an exact solution

u(x, y, z, t) = sin(2πx) sin
(
2πy +

π

2

)
sin

(
2πz +

π

4

)
e−it,

with
V(x, y, z) = −1 + 6π2/2 + sin2(2πx) sin2(2πy +

π

2
) sin2(2πz +

π

4
).

The initial condition (1.2) could be given according to the exact solution. Take x ∈ [0, 1]d and
T = 1. As V(x, t) = V(x) independent of t, we have∫ tn+1

tn
V(x, t)dt = τV(x)

in the nonlinear schemes. And the linear schemes are solved by the Douple-Sweep method.
It follows from the results in [12] that

||S (r)
3 − f (r)||∞ ≤ ϵr|| f (4)||∞h4−r, r = 0, 1, 2, 3,

||S (r)
5 − f (r)||∞ ≤ ϵ̃r|| f (6)||∞h6−r, r = 0, 1, 2, · · · , 5,

where S 3 and S 5 are respectively the cubic spline and quintic spline associated with the function f . So
the accuracy order of the SS3BC scheme in [7] and the SS5BC scheme in this paper might be O(τ2+h2)
and O(τ2 + h4), respectively.

The above three examples are applied to verify the convergence order of the proposed SS5BC
scheme and the SS3BC scheme in [7]. Thus we take τ = h2 for the SS5BC scheme, and τ = h for the
SS3BC one. The numerical results are listed in Tables 1 and 2, respectively. Table 1 shows that all the
1D, 2D and 3D SS5BC schemes are convergent with second-order in time and fourth-order in space,
and Table 2 shows that all the 1D, 2D and 3D SS3BC schemes are convergent with second-order both
in time and in space. So the proposed SS5BC schemes do improve the accuracy order compared with
the SS3BC schemes [7], which is the aim of this paper.
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Table 1. Error and convergence rate of the SS5BC scheme.

1D 2D 3D
h ||e||∞ rate ||e||∞ rate ||e||∞ rate

1/10 5.62e-2 - 1.11e-1 - 1.66e-1 -
1/20 3.73e-3 3.91 7.37e-3 3.91 1.11e-2 3.91
1/40 2.34e-4 3.99 4.67e-4 3.98 7.01e-4 3.98
1/80 1.46e-5 4.00 2.92e-5 4.00 4.38e-5 4.00

Table 2. Error and convergence rate of the SS3BC scheme.

1D 2D 3D
h ||e||∞ rate ||e||∞ rate ||e||∞ rate

1/20 1.19 - 1.88 - 1.96 -
1/40 3.46e-1 1.78 6.82e-1 1.47 9.98e-1 0.97
1/80 8.92e-2 1.96 1.78e-1 1.94 2.67e-1 1.90

1/160 2.25e-2 1.99 4.49e-2 1.99 6.73e-2 1.99

In the above tests, the SS5BC scheme possesses higher order of accuracy than the SS3BC one.
However, the coefficient matrix is five diagonal for the former scheme while tridiagonal for the later
one, and it seems that the SS5BC scheme might cost more. For further comparison, the computing
time is compared between the two kinds of methods. For the above three examples, one attaines
||e||∞ < 0.002 when the step sizes are free [13]. Take x ∈ [0, 1]d and T = 0.5. Table 3 shows that the
SS5BC methods are more efficient than the SS3BC ones since the formers cost less time.

Table 3. Comparison of computing time to attain ||e||∞ < 0.002.

SS5BC SS3BC
N h, τ ||e||∞ CPU(s) h, τ ||e||∞ CPU(s)

1D 1/20,0.0025 1.95e-3 0.06 1/64,0.00556 1.96e-3 0.20
2D 1/20,0.0018 1.96e-3 1.97 1/64,0.00527 1.94e-3 4.83
3D 1/20,0.00158 1.96e-3 72.70 1/64,0.00517 1.92e-3 236.95

The conserved quantity Q(t) is respectively simulated for d = 1, 2, 3, seeing Eqs (4.10), (4.18) and
(4.19). Taking x ∈ [0, 1]d, h = 0.05, τ = 0.02 and T = 5, the values of Qn at t = 0, 1, 2, 3, 4, 5 are listed
in Table 4. It follows from the table that the 1D, 2D and 3D SS5BC schemes remain the conserved
quantity Qn very well.
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Table 4. Conserved quintity Qn with various values of t.

t 1D 2D 3D
0 0.500000000000000 0.262500000000001 0.144375000000000
1 0.499999999999994 0.262499999999998 0.144375000000000
2 0.499999999999990 0.262499999999998 0.144375000000001
3 0.499999999999987 0.262499999999998 0.144375000000002
4 0.499999999999984 0.262499999999998 0.144375000000003
5 0.499999999999983 0.262499999999998 0.144375000000003

5.2. Test 2

Take α = 1
2 and β = −1. For d = 1, Eq (1.1) has a soliton solution

u(x, t) = exp[−(x − t)2 + i(x − t)],

with
V(x, t) =

1
2
− 2(x − t)2 + exp[−2(x − t)2].

For d = 2, Eq (1.1) has a soliton solution

u(x, y, t) = exp[−(x − t)2 − (y − t)2 + i(x + y − t)],

with
V(x, y, t) = 2 − 2(x − t)2 − 2(y − t)2 + exp[−2(x − t)2 − 2(y − t)2].

For d = 3, Eq (1.1) has a soliton solution

u(x, y, z, t) = exp[−(x − t)2 − (y − t)2 − (z − t)2 + i(x + y + z − t)],

with

V(x, y, t) =
7
2
− 2(x − t)2 − 2(y − t)2 − 2(z − t)2 + exp[−2(x − t)2 − 2(y − t)2 − 2(z − t)2].

The initial condition u(x, 0) in Eq (1.2) could be given according to the exact solutions. Since V(x, t)
can not be integrated exactly, one may apply the following approximation∫ tn+1

tn
V(x, t)dt ≈ τV(x, tn +

τ

2
)

in the schemes. Take x ∈ [−5, 5]d, t ∈ [0, 1], and τ = h2. The error and convergence order are listed in
Table 5. It shows that the 1D, 2D and 3D SS5BC schemes are convergent with order O(τ2 + h4).

Table 5. Error and convergence rate with τ = h2.

1D 2D 3D
N ||e||∞ rate ||e||∞ rate ||e||∞ rate
50 9.62e-4 - 1.35e-3 - 1.89e-3 -

100 6.01e-5 4.00 8.50e-5 3.99 1.19e-4 3.99
160 9.20e-6 3.99 1.30e-5 4.00 1.81e-5 4.00
200 3.77e-6 4.00 5.32e-6 4.00 7.44e-6 3.99
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Taking x ∈ [−5, 10]d, h = 0.1, τ = 0.02 and T = 5, the values of Qn at t = 0, 1, 2, 3, 4, 5 are listed in
Table 6. The table shows that the 1D, 2D and 3D SS5BC schemes also keep the conserved quantity Qn

well in this test.

Table 6. Conserved quintity Qn with various values of t.

t 1D 2D 3D
0 1.253314137315500 1.570796326794896 1.968701243215303
1 1.253314137315498 1.570796326794888 1.968701243215286
2 1.253314137315495 1.570796326794880 1.968701243215271
3 1.253314137315492 1.570796326794872 1.968701243215254
4 1.253314137315489 1.570796326794864 1.968701243215238
5 1.253314137315486 1.570796326794855 1.968701243215222
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Figure 1. Soliton |u|2 of the 1D NLS equation from t = 0 to t = 5. Left: numerical. Right:
exact.

Figure 2. Soliton |u|2 of the 2D NLS equation from t = 0 to t = 5. Left: numerical. Right:
exact.
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Figure 3. Profiles of |u|2 of the 3D NLS equation from t = 0 to t = 5 at x = 0 (Top), y = 2
(Middle) and z = 4 (Bottom). Left: numerical. Right: exact.

Numerical simulations of |u|2 computed by the SS5BC schemes are plotted in Figures 1–3. In
Figure 1, the 1D solitary wave transfers from the left to the right as time inceases which is in accordance
with the exact one. In Figure 2, the 2D solitary waves at t = 0, 1, 2, 3, 4, 5 are plotted which also agree
with the exact ones. For 3D, profiles of |u|2 at x = 0, y = 2 and z = 4 are respectively plotted in
Figure 3, which are still consistent with the exact ones.
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6. Numerical applications

Taking α = 1
2 and the trap potential

V(x, t) = V(x) =


−1

2 x2, d = 1,
−1

2

(
x2 + γ2

yy2
)
, d = 2,

−1
2

(
x2 + γ2

yy2 + γ2
z z2

)
, d = 3,

(6.1)

the NLS equation (1.1) is known as the Gross-Pitaevskii (GP) equation, which is usually used to
model the properties of a Bose-Einstein condensate (BEC) at extremely low temperatures [1, 14].
For normalization [14], the conserved quantity in Eq (1.4) is required as Q(t) = 1 for each t ∈ [0,T ].

For d = 1, the initial condition (1.2) is chosen as

u(x, 0) =
1
π1/4 exp

(
−

1
2

x2
)
.

The condensate width [14] of 1D BEC is numerically approximated as

σn =

√√√
h

N∑
j=1

(x j − x̂)2|Un
N(x j)|2,

where

x̂ = h
N∑

j=1

x j|Un
N(x j)|2.

Take x ∈ [−8, 8],T = 10, h = 0.2, τ = 0.02, and β = −3 in Eq (1.1). The approximated condensate
density |u|2 and the condensate width σn are plotted in Figure 4. And the conserved quantity Qn listed
in Table 7 is about 1, which simulates Q(t) = 1 very well.

0
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0.2

t

5 6
4

2

x

0

|u
|2

-2
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-60

0.4
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0.6

0 2 4 6 8 10
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0.75

0.8

0.85

0.9

0.95

1
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1.1

1.15

Figure 4. Numerical results of 1D BEC from t = 0 to t = 10. Left: The evolution of position
density. Right: The condensate width as a function of time.
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Table 7. Conserved quintity Qn of 1D BEC with various values of t.

t Qn

0 1.000000000000001
2 1.000000000000032
4 1.000000000000063
6 1.000000000000091
8 1.000000000000124

10 1.000000000000155

For d = 2, the condensate widths [14] along the x- and y-axes are respectively approximated as

σn
x =

√√√
h2

N∑
j=1

(x j − x̂)2
N∑

k=1

|Un
N(x j, yk)|2, σn

y =

√√√
h2

N∑
k=1

(yk − ŷ)2
N∑

j=1

|Un
N(x j, yk)|2,

where

x̂ = h2
N∑

j=1

x j

N∑
k=1

|Un
N(x j, yk)|2, ŷ = h2

N∑
k=1

yk

N∑
j=1

|Un
N(x j, yk)|2.

Taking (x, y) ∈ [−8, 8]2,T = 10, h = 0.2, τ = 0.02 and β = −2, two cases are considered as follows:

Case I. Let γy = 1. The initial condition (1.2) is chosen as

u(x, y, 0) =
1
√
π

exp
[
−

1
2

(x2 + γyy2)
]
.

Case II. Let γy = 2. The initial condition is taken as

u(x, y, 0) =
γ1/4

y
√

2π
exp

[
−

1
2

(x2 + γyy2)
]
.

The approximated condensate widths of Cases I and II are plotted in Figure 5. γy is a ratio of the
trap frequencies in x- and y-direction [14]. As γy = 1 in Case I, the trap potential (6.1) and also the
condensate are isotropic. So the condensate widths along the x- and y-axes should be the same for
Case I, which is shown in Figure 5 numerically. The conserved quantities Qn ≈ 1 of the two cases are
both given in Table 8.
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Figure 5. Condensate widths of 2D BECs from t = 0 to t = 10. Left: Case I. Right: Case II.

Table 8. Conserved quintity Qn of 2D BECs with various values of t.

t Case I Case II
0 1.000000000000001 0.999999999999999
2 1.000000000000061 1.000000000000058
4 1.000000000000121 1.000000000000119
6 1.000000000000179 1.000000000000179
8 1.000000000000238 1.000000000000237

10 1.000000000000296 1.000000000000296

For d = 3, the condensate widths [14] along the x-axis is numerically approximated as

σn
x =

√√√
h3

N∑
j=1

(x j − x̂)2
N∑

k=1

N∑
l=1

|Un
N(x j, yk, zl)|2,

where

x̂ = h3
N∑

j=1

x j

N∑
k=1

N∑
l=1

|Un
N(x j, yk, zl)|2.

Similarly, the condensate widths along the y- and z-axes could be approximated respectively. Take
(x, y, z) ∈ [−8, 8]3,T = 5, h = 0.2 and τ = 0.02. The initial condition (1.2) is chosen as

u(x, y, z, 0) =
(γyγz)1/4

(π/4)3/4 exp
[
−2(x2 + γyy2 + γzz2)

]
,

and the following two cases are considered:
Case I. Let β = −0.1, γy = 2, γz = 4.
Case II. Let β = −1, γy = 1, γz = 2.
In Figure 6, the approximated condensate widths of Cases I and II are plotted. As γy = 1 in Case II,

the condensate is symmetric in x- and y-directions, which is shown in Figure 6 that σn
x equals σn

y . In
Table 9, the conserved quantities Qn ≈ 1 are listed.
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Figure 6. Condensate widths of 3D BECs from t = 0 to t = 5. Left: Case I. Right: Case II.

Table 9. Conserved quintity Qn of 3D BECs with various values of t.

t Case I Case II
0 1.00000040147946 1.00000000000005
1 1.00000040147932 0.99999999999997
2 1.00000040147934 0.99999999999981
3 1.00000040147932 0.99999999999974
4 1.00000040147947 1.00000000000011
5 1.00000040147944 1.00000000000016

7. Conclusions

In this paper, the SS5BC schemes are proposed for the one-dimensional and multi-dimensional NLS
equations. The new notations are introduced for the 2D and 3D equations in order to make the schemes
more brief and accomplishable. The solvability, conservation and linear stability are discussed for the
methods. Variable numerical experiments and applications are carried out to prove that the present
schemes are reliable and efficient. The convergence order, conserved quantity and solitary wave are
verified numerically. Finally, the SS5BC methods are applied to study BECs. It is worth to say that the
skills of analysis in this paper could also be applied to the SS3BC schemes, and advanced theoretical
analyses are still open which are expected in the future work.
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