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1. Introduction

The theory of fixed points is investigated to be the utmost fascinating and dynamic field of research
in the progress of mathematical analysis. In this way, the conception of metric space [1] is one of the
basic parts of mathematical sciences. Because of its outstanding and extraordinary improvement in
various fields, it has been extended and generalized in different directions.

Recently, many compulsive generalizations (or extensions) of the concept of metric space came into
sight. The famous extensions of the concept of metric spaces have been done by Bakhtin [2] which was
formally defined by Czerwik [3] in 1993. Czerwik [3] gave the idea of b-metric space which broadens
the notion of metric space by improving the triangle equality metric axiom by putting a constant s ≥ 1
multiplied to the right-hand side of the inequality, and is one of the enormously applied generalizations
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for metric spaces. Berinde et al. [4] gave a brief survey on the development of fixed point theory,
specially on b-metric spaces and discussed some important related aspects of it. Brzdek [5] proved
and discussed some fixed point results for nonlinear operators, acting on some classes of functions
with values in a b-metric space. Paluszyński et al. [6] discussed quasi-metric space as an extension
of classical metric space and its involvement in a part of harmonic analysis related to the theory of
spaces of homogeneous type. Khamsi et al. [7] reintroduced the notion of b-metric space with the
name metric-type and proved some theorems in this recently introduced space. In [8], Branciari gave
the concept of rectangular metric space and generalized the classical metric space by replacing the
triangle inequality with more general inequality that is called rectangular inequality. This rectangular
inequality consists of a distance between four points. In 2018, Jleli et al. [9] introduced a fascinating
generalization of classical metric space, b-metric space and rectangular metric space that is famous
as an F -metric space. Subsequently, Al-Mazrooei et al. [10] used the notion of F -metric space and
proved some results for rational inequality that includes some non-negative constants.

On the other hand, Samet et al. [11] defined the notion of α-admissibility and (α-ψ)-contraction
in the background of metric spaces and proved some results for these contractions. Subsequently,
Asl et al. [12] generalized the above concept of α-admissibility and gave the notion of α∗-admissible
mappings and established fixed point results for multivalued mappings in 2013. Recently, Hussain et
al. [13] defined the notion of Ćirić type (α-ψ)-contraction in the framework of F -metric space and
proved fixed point theorems.

In this article, we establish common fixed point results for locally rational contractions concerning
control functions of one variable in the background of F -metric spaces. We also establish fixed points
of (α∗-ψ)-contractive and generalized (α∗,ψ, δF )-contractive multifunctions. An important example is
also included to display the originality of our principal result.

2. Preliminaries

Czerwik [3] gave the concept of b-metric space in this manner.

Definition 1. ( [3] ) Let Θ , ∅ and s ≥ 1 be a constant. A function κ : Θ × Θ → [0,∞) is called a
b-metric if the following assertions hold:

(b1) κ(ρ, ~) ≥ 0 and κ(ρ, ~) = 0 if and only if ρ = ~,

(b2) κ(ρ, ~) = κ(~, ρ),
(b3) κ(ρ, ϕ) ≤ s[κ(ρ, ~) + κ(~, ϕ)],
for all ρ, ~, ϕ ∈ Θ.

Then the pair (Θ, κ) is known as a b-metric space.
Jleli et al. [9] gave the following notion of F -metric space in this way.
Let F be the family of continuous functions f : (0,+∞)→ R satisfying

(F1) f is non-decreasing,
(F2) for each {ρ } ⊆ R+, lim →∞ ρ  = 0 if and only if lim →∞ f (ρ ) = −∞.

Definition 2. ( [9]) Let Θ , ∅ and κ : Θ×Θ→ [0,+∞) be a function satisfying the following conditions

(D1) (ρ, ~) ∈ Θ × Θ, κ(ρ, ~) = 0 if and only if ρ = ~,
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(D2) κ(ρ, ~) = κ(~, ρ), for all (ρ, ~) ∈ Θ × Θ,

(D3) for every (ρ, ~) ∈ Θ × Θ and (ρi)N
i=1 ⊂ Θ with

(ρ1, ρN) = (ρ, ~),

there exists ( f , h) ∈ F × [0,+∞) such that

κ(ρ, ~) > 0 implies f (κ(ρ, ~)) ≤ f (
N−1∑
i=1

κ(ρi, ρi+1)) + h,

for all N ∈ N and N ≥ 2.

Then (Θ, κ) is called an F -metric space.

Example 1. Let Θ = R and κ : Θ × Θ→ [0,+∞) be defined by

κ(ρ, ~) =

{
(ρ − ~)2 if (ρ, ~) ∈ [0, 2] × [0, 2]
|ρ − ~| if (ρ, ~) < [0, 2] × [0, 2]

with f (ι) = ln(ι) and h = ln(2), then (Θ, κ) is F -metric space.

Definition 3. ( [9]) Let (Θ, κ) be F -metric space,

(i) a sequence {ρ } in Θ is said to be F -convergent to ρ ∈ Θ if {ρ } is convergent to ρ with regard to
the F -metric κ;

(ii) a sequence {ρ } is F -Cauchy, if

lim
,m→∞

κ(ρ , ρm) = 0;

(iii) if every F -Cauchy sequence in F -metric space (Θ, κ) is F -convergent to an element of Θ, then
(Θ, κ) is said to be F -complete.

Theorem 1. ( [9]) Let (Θ, κ) be F -complete F -metric space and L : Θ→ Θ. Assume that there exists
α ∈ [0, 1) such that

κ(L(ρ),L(~)) ≤ ακ(ρ, ~)

for all ρ, ~ ∈ Θ, then L has a unique fixed point ρ∗ ∈ Θ. Moreover, for any ρ0 ∈ Θ, the sequence
{ρ } ⊂ Θ defined by

ρ +1 = L(ρ ),  ∈ N,

is F -convergent to ρ∗.
Subsequently, Hussain et al. [13] defined α-ψ-contraction in the background of F -metric spaces and

generalized the main result of Jleli et al. [9]. Later on, Ahmad et al. [10] defined a rational contraction
in F -metric space and proved the following result as generalization of main theorem of Jleli et al. [9].

Theorem 2. ( [10]) Let (Θ, κ) be an F -complete F -metric space and L : Θ → Θ. Suppose that there
exists α, β ∈ [0, 1) such that

κ(L(ρ),L(~)) ≤ ακ(ρ, ~) + β
κ(ρ,Lρ)κ(~,L~)

1 + κ(ρ, ~)
for all ρ, ~ ∈ Θ, then L has a unique fixed point.

For more details in the direction of metric space, b-metric space and F -metric space, we refer the
researchers [14–28].
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3. Main results

We state our main result in this way.

Theorem 3. Let (Θ, κ) be an F -complete F -metric space and L1,L2 : Θ→ Θ. If there exist r > 0 and
mappings α, β : Θ→[0, 1) such that

(a) α (L1ρ) ≤ α (ρ) and α (L2ρ) ≤ α (ρ)
β (L1ρ) ≤ β (ρ) and β (L2ρ) ≤ β (ρ) ,

(b) α (ρ) + β (ρ) < 1,
(c)

κ (L1ρ,L2~) ≤ α (ρ) κ (ρ, ~) + β (ρ)
κ(ρ,L1ρ)κ(~,L2~)

1 + κ(ρ, ~)
, (3.1)

for all ρ0, ρ, ~ ∈ B(ρ0, r) and
κ(ρ0,L1ρ0) ≤ (1 − λ)r (3.2)

where λ =
α(ρ0)

1−β(ρ0) < 1, then there exists a unique point ρ∗ ∈ B(ρ0, r) such that L1ρ
∗ = L2ρ

∗ = ρ∗.

Proof. For ρ0 ∈ B(ρ0, r) , define the sequence {ρ } by

ρ2 +1 = L1ρ2  and ρ2 +2 = L2ρ2 +1

for all  = 0, 1, 2, ... By inequality (3.2), we have

κ(ρ0, ρ1) = κ(ρ0,L1ρ0) ≤ (1 − λ)r ≤ r

that is, ρ1 ∈ B(ρ0, r). Assume that ρ2, ρ3, ...ρ  ∈ B(ρ0, r) for some j ∈ N. Now if, 2k + 1 ≤ , then by
inequality (3.1), we have

κ (ρ2k+1, ρ2k+2) = κ (L1ρ2k,L2ρ2k+1) ≤ α (ρ2k) κ (ρ2k, ρ2k+1)

+β (ρ2k)
κ (ρ2k,L1ρ2k) κ (ρ2k+1,L2ρ2k+1)

1 + κ (ρ2k, ρ2k+1)
= α (ρ2k) κ (ρ2k, ρ2k+1)

+β (ρ2k)
κ (ρ2k, ρ2k+1) κ (ρ2k+1, ρ2k+2)

1 + κ (ρ2k, ρ2k+1)
≤ α (ρ2k) κ (ρ2k, ρ2k+1)

+β (ρ2k) κ (ρ2k+1, ρ2k+2) .

By the sequence

κ (ρ2k+1, ρ2k+2) ≤ α
(
L2ρ2 −1

)
κ (ρ2k, ρ2k+1)

+β
(
L2ρ2 −1

)
κ (ρ2k+1, ρ2k+2)

≤ α
(
ρ2 −1

)
κ (ρ2k, ρ2k+1)

+β
(
ρ2 −1

)
κ (ρ2k+1, ρ2k+2)

= α
(
L1ρ2 −2

)
κ (ρ2k, ρ2k+1)
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+β
(
L1ρ2 −2

)
κ (ρ2k+1, ρ2k+2)

≤ α
(
ρ2 −2

)
κ (ρ2k, ρ2k+1)

+β
(
ρ2 −2

)
κ (ρ2k+1, ρ2k+2)

≤ ... ≤ α (ρ0) κ (ρ2k, ρ2k+1)

+β (ρ0) κ (ρ2k+1, ρ2k+2)

and hence

κ (ρ2k+1, ρ2k+2) ≤
α (ρ0)

1 − β (ρ0)
κ (ρ2k, ρ2k+1)

= λκ (ρ2k, ρ2k+1) . (3.3)

Similarly, if 2k ≤ , we deduce

κ (ρ2k, ρ2k+1) ≤
α (ρ0)

1 − β (ρ0)
κ (ρ2k−1, ρ2k)

= λκ (ρ2k−1, ρ2k) . (3.4)

Thus by inequalities (3.3) and (3.4), we have

κ (ρ2k+1, ρ2k+2) ≤ λκ (ρ2k, ρ2k+1) ≤ ... ≤ λ2k+1κ (ρ0, ρ1) (3.5)

κ (ρ2k, ρ2k+1) ≤ λκ (ρ2k−1, ρ2k) ≤ ... ≤ λ2kκ (ρ0, ρ1) . (3.6)

Thus by inequalities (3.5) and (3.6), we have

κ
(
ρ , ρ +1

)
≤ λ κ (ρ0, ρ1)

for some  ∈ N. Now

f
(
κ
(
ρ0, ρ +1

))
≤ f

(
κ
(
ρ0, ρ +1

)
+ κ (ρ1, ρ2) + ... + κ

(
ρ j, ρ +1

))
≤ f

((
1 + ... + λ −1 + λ 

)
κ (ρ0, ρ1)

)
≤ f

(
(1 − λ )
1 − λ

κ (ρ0, ρ1)
)

≤ f
(
(1 − λ )
1 − λ

(1 − λ)r
)

< f (r) .

By (F1), we get ρ +1 ∈ B(ρ0, r). Thus ρ  ∈ B(ρ0, r), for all  ∈ N. Then it follows that

κ
(
ρ , ρ +1

)
≤ λ κ (ρ0, ρ1)

for all  ∈ N. Let ( f , h) ∈ F × [0,+∞) be such that (D3) is satisfied. Let ε > 0 be fixed. By (F2), there
exists δ > 0 such that

0 < ι < δ =⇒ f (ι) < f (δ) − h. (3.7)
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Hence, by (3.7), (F1) and (F2), we have

f (
m−1∑
i= 

κ(ρi, ρi+1)) ≤ f (
m−1∑
i= 

λ (κ(ρ0, ρ1))) ≤ f (
∑
≥ (ε)

λ κ (ρ0, ρ1)) < f (ε) − h (3.8)

for m >  ≥ (ε). Using (D3) and (3.8), we obtain κ(ρ , ρm) > 0, m >  ≥ (ε) implies

f (κ(ρ , ρm)) ≤ f (
m−1∑
i= 

κ(ρi, ρi+1)) + h < f (ε)

which yields by (F1) that κ(ρ , ρm) < ε, m >  ≥ (ε). It shows that {ρ } is F -Cauchy sequence in
B(ρ0, r). Now, B(ρ0, r) is F -complete since B(ρ0, r) is F -closed in Θ, so there exists ρ∗ ∈ B(ρ0, r) such
that the sequence {ρ } is F -convergent to ρ∗, i.e.,

lim
→∞

κ(ρ , ρ∗) = 0. (3.9)

Now, we show that ρ∗ is fixed point of L1. We contrary suppose that κ (ρ∗,L1ρ
∗) > 0. Then from (3.1),

(F1) and (D3), we have

f (κ (ρ∗,L1ρ
∗)) ≤ f (κ

(
ρ∗,L2ρ2 +1

)
+ κ

(
L2ρ2 +1,L1ρ

∗
)
) + h

≤ f
(
κ
(
ρ∗,L2ρ2 +1

)
+ κ

(
L1ρ

∗,L2ρ2 +1

))
+ h

≤ f

κ (ρ∗, ρ2 +2

)
+

 α (ρ∗) κ
(
ρ∗, ρ2 +1

)
+β (ρ∗) κ(ρ∗,L1ρ

∗)κ(ρ2 +1,L2ρ2 +1)
1+κ(ρ∗,ρ2 +1)


 + h

≤ f

κ (ρ∗, ρ2 +2

)
+

 α (ρ∗) κ
(
ρ∗, ρ2 +1

)
+β (ρ∗) κ(ρ∗,L1ρ

∗)κ(ρ2 +1,ρ2 +2)
1+κ(ρ∗,ρ2 +1)


 + h.

Taking the limit as → ∞ and using (F2) and (8), we have

lim
→∞

f (κ (ρ∗,L1ρ
∗)) ≤ lim

→∞
f

κ (ρ∗, ρ2 +2

)
+

 α (ρ∗) κ
(
ρ∗, ρ2 +1

)
+β (ρ∗) κ(ρ∗,L1ρ

∗)κ(ρ2 +1,ρ2 +2)
1+κ(ρ∗,ρ2 +1)


 + h = −∞,

which implies that κ (ρ∗,L1ρ
∗) = 0, a contradiction. Thus ρ∗ = L1ρ

∗. Now we prove that ρ∗ is fixed
point of L2. Then from (3.1), (F1) and (D3), we have

f (κ (ρ∗,L2ρ
∗)) ≤ f (κ

(
ρ∗,L1ρ2 

)
+ κ

(
L1ρ2 ,L2ρ

∗
)
) + h

≤ f

κ (ρ∗, ρ2 +1

)
+

 α
(
ρ2 

)
κ
(
ρ2 , ρ

∗
)

+β
(
ρ2 

)
κ(ρ2 ,L1ρ2 )κ(ρ∗,L2ρ

∗)

1+κ(ρ2 ,ρ∗)


 + h

≤ f

κ (ρ∗, ρ2 +1

)
+

 α
(
ρ2 

)
κ
(
ρ2 , ρ

∗
)

+β
(
ρ2 

)
κ(ρ2 ,ρ2 +1)κ(ρ∗,L2ρ

∗)

1+κ(ρ2 ,ρ∗)


 + h.
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Taking the limit as → ∞ and using (F2) and (8), we have

lim
→∞

f (κ (ρ∗,L2ρ
∗)) ≤ lim

→∞
f

κ (ρ∗, ρ2 +1

)
+

 α
(
ρ2 

)
κ
(
ρ2 , ρ

∗
)

+β
(
ρ2 

)
κ(ρ2 ,ρ2 +1)κ(ρ∗,L2ρ

∗)

1+κ(ρ2 ,ρ∗)


 + h = −∞,

which implies that κ (ρ∗,L1ρ
∗) = 0, a contradiction. Thus ρ∗ = L2ρ

∗.Thus ρ∗ is a common fixed point
of L1 and L2. Now we prove that ρ∗ is unique. We suppose that

ρ/ = L1ρ
/ = L2ρ

/

but ρ∗ , ρ/. Now from (3.1), we have

κ
(
ρ∗, ρ/

)
= κ

(
L1ρ

∗,L2ρ
/
)

≤ α (ρ∗) κ
(
ρ∗, ρ/

)
+ β (ρ∗)

κ (ρ∗,Lρ∗) κ
(
ρ/,L2ρ

/
)

1 + κ
(
ρ∗, ρ/

)
= α (ρ∗) κ

(
ρ∗, ρ/

)
+ β (ρ∗)

κ (ρ∗, ρ∗) κ
(
ρ/, ρ/

)
1 + κ

(
ρ∗, ρ/

) .

This implies that, we have
κ
(
ρ∗, ρ/

)
≤ α (ρ∗) κ

(
ρ∗, ρ/

)
.

As α (ρ∗) < 1, we have
κ
(
ρ∗, ρ/

)
= 0.

Thus ρ∗ = ρ/. �

Example 2. Let Θ=
{
S  = 2  + 1 :  ∈ N

}
be endowed with the F -metric

κ (ρ, ~) =

{
0, if ρ = ~

2|ρ−~|, if ρ , ~

for all ρ, ~ ∈ Θ and f (ι) = ln ι. Then (Θ, κ) is an F -complete F -metric space. Define the mapping
L1,L2 : Θ→ Θ by

L1

(
S 

)
=


S 1, if  = 1,
S 2, if  = 2,

S −2, if  ≥ 3

and

L2

(
S 

)
=

{
S 1, if  = 1, 2
S −1, if  ≥ 3

.

Suppose that m , , then

κ
(
L1

(
S 

)
,L2 (S m)

)
= 2|S −2−S m−1|

= 2|2( −m)−2|

< 2−1 · 2|2( −m)|

≤ α
(
S 

)
κ
(
S , S m

)
+ β

(
S 

) κ (S ,L1S 

)
κ (S m,L2S m)

1 + κ
(
S , S m

) .
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Thus all the assertions of Theorem 3 hold with α : Θ×Θ→[0, 1) defined by α
(
S 

)
= 2−1 and any

β : Θ→[0, 1). Hence S 1 is a unique common fixed point of L1 and L2.

Corollary 1. Let (Θ, κ) be an F -complete F -metric space and L : Θ → Θ. If there exist r > 0 and
mappings α, β : Θ→[0, 1) such that

(a) α (Lρ) ≤ α (ρ) and β (Lρ) ≤ β (ρ) ,
(b) α (ρ) + β (ρ) < 1,
(c)

κ (Lρ,L~) ≤ α (ρ) κ (ρ, ~) + β (ρ)
κ(ρ,Lρ)κ(~,L~)

1 + κ(ρ, ~)
,

for all ρ0, ρ, ~ ∈ B(ρ0, r) and
κ(ρ0,Lρ0) ≤ (1 − λ)r

where λ =
α(ρ0)

1−β(ρ0) < 1, then there exists a unique point ρ∗ ∈ B(ρ0, r) such that Lρ∗ = ρ∗.

Corollary 2. Let (Θ, κ) be an F -complete F -metric space and L1,L2 : Θ→ Θ. If there exist r > 0 and
mappings α : Θ→[0, 1) such that

(a) α (L1ρ) ≤ α (ρ) and α (L2ρ) ≤ α (ρ)
(b) α (ρ) < 1,
(c)

κ (L1ρ,L2~) ≤ α (ρ) κ (ρ, ~) ,

for all ρ0, ρ, ~ ∈ B(ρ0, r) and
κ(ρ0,L1ρ0) ≤ (1 − λ)r

where λ = α (ρ0) < 1, then there exists a unique point ρ∗ ∈ B(ρ0, r) such that L1ρ
∗ = L2ρ

∗ = ρ∗.

Corollary 3. Let (Θ, κ) be an F -complete F -metric space and L1,L2 : Θ→ Θ. If there exist r > 0 and
mapping β : Θ→[0, 1) such that

(a) β (L1ρ) ≤ β (ρ) and β (L2ρ) ≤ β (ρ) ,
(b) α (ρ) + β (ρ) < 1,
(c)

κ (L1ρ,L2~) ≤ β (ρ)
κ(ρ,L1ρ)κ(~,L2~)

1 + κ(ρ, ~)
,

for all ρ0, ρ, ~ ∈ B(ρ0, r) and
κ(ρ0,L1ρ0) ≤ (1 − λ)r

where λ = 1
1−β(ρ0) < 1, then there exists a unique point ρ∗ ∈ B(ρ0, r) such that L1ρ

∗ = L2ρ
∗ = ρ∗.

Corollary 4. Let (Θ, κ) be an F -complete F -metric space and L1,L2 : Θ→ Θ. If there exist r > 0 and
α, β ∈ [0, 1) such that

(a) α + β < 1,
(b)

κ (L1ρ,L2~) ≤ ακ (ρ, ~) + β
κ(ρ,L1ρ)κ(~,L2~)

1 + κ(ρ, ~)
,
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for all ρ0, ρ, ~ ∈ B(ρ0, r) and
κ(ρ0,L1ρ0) ≤ (1 − λ)r

where λ = α
1−β < 1, then there exists a unique point ρ∗ ∈ B(ρ0, r) such that L1ρ

∗ = L2ρ
∗ = ρ∗.

Corollary 5. Let (Θ, κ) be an F -complete F -metric space and L1,L2 : Θ→ Θ. If there exist r > 0 and
α ∈ [0, 1) such that

κ (L1ρ,L2~) ≤ ακ (ρ, ~) ,

for all ρ0, ρ, ~ ∈ B(ρ0, r) and
κ(ρ0,L1ρ0) ≤ (1 − λ)r

where λ = α < 1, then there exists a unique point ρ∗ ∈ B(ρ0, r) such that L1ρ
∗ = L2ρ

∗ = ρ∗.

Corollary 6. Let (Θ, κ) be an F -complete F -metric space and L1,L2 : Θ→ Θ. If there exist r > 0 and
β ∈ [0, 1) such that

κ (L1ρ,L2~) ≤ β
κ(ρ,L1ρ)κ(~,L2~)

1 + κ(ρ, ~)
,

for all ρ0, ρ, ~ ∈ B(ρ0, r) and
κ(ρ0,L1ρ0) ≤ (1 − λ)r

where λ = 1
1−β < 1, then there exists a unique point ρ∗ ∈ B(ρ0, r) such that L1ρ

∗ = L2ρ
∗ = ρ∗.

Remark 1. If we set L1 = L2 = L in the Corollary 5, the we get the main result of Samet et al. [9].

4. α∗-ψ-contractive multivalued results

Let Ψ represents the set of all nondecreasing functions ψ : [0,+∞)→ [0,+∞) such that
∑∞

=1 ψ
(ι) <

+∞, ∀ ι > 0, where ψ  is the -th iterate of these nondecreasing functions ψ.
Now we state a lemma which is useful in the sequel.

Lemma 1. For ψ ∈ Ψ, these conditions hold:

(i) (ψ (ι)) ∈N converges to 0 as → ∞, ∀ι ∈ (0,+∞),
(ii) ψ(ι) < ι, ∀ ι > 0,
(iii) ψ(ι) = 0 iff ι = 0.
Samet et al. [11] gave the theory of α-admissibility and proved the following result.

Definition 4. ( [11]) A mapping L : Θ → Θ is called an α-admissible if there exists a mapping
α : Θ × Θ→ [0,+∞) satisfying

ρ, ~ ∈ Θ, α(ρ, ~) ≥ 1 =⇒ α(Lρ,L~) ≥ 1.

Theorem 4. ( [11]) Let (Θ, κ) be a complete metric space and L be α-admissible mapping. Assume
that

α(ρ, ~)κ(Lρ,L~) ≤ ψ(κ(ρ, ~))

for all ρ, ~ ∈ Θ, where ψ ∈ Ψ, also

(i) there exists ρ0 ∈ Θ such that α(ρ0,Lρ0) ≥ 1;
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(ii) either L is continuous or for any sequence {ρ } in Θ with α(ρ , ρ +1) ≥ 1 for all  ∈ N and ρ  → ρ

as → +∞, we have α(ρ , ρ) ≥ 1 ∀  ∈ N.

Then L has a fixed point.

In 2013, Asl et al. [12] gave the notion of α∗-admissible mappings in this way.

Definition 5. ( [12]) Let α : Θ × Θ → [0,+∞) be a function and L : Θ → CL(Θ) be multivalued
mapping. Then L is said to be α∗-admissible mapping if

∀ρ, ~ ∈ Θ, α∗(ρ, ~) ≥ 1 =⇒ α∗(Lρ,L~) ≥ 1

where α∗(L(ρ),L(~)) = inf{α(a, b) : a ∈ L(ρ), b ∈ L(~)}.

Lemma 2. Let (Θ, κ) be an F -metric space and let< ∈ CL(Θ). Then, for each ρ ∈ Θ with κ(ρ,<) > 0
and q > 1, there exists an member ~ ∈ < such that

κ(ρ, ~) ≤ qκ(ρ,<).

Let (Θ, κ) be an F -metric space. We represent by N(Θ) by set of non empty subsets of Θ, by CL(Θ)
the set of all nonempty closed subsets of Θ and B(Θ) the set of all nonempty bounded subsets of Θ.
Now for< ∈ N(Θ) and ρ ∈ Θ, κ(ρ,<) = inf

{
κ(ρ, ~) : ~ ∈ <

}
. Also for<1,<2 ∈ B(Θ), δF (<1,<2) =

sup
{
κ(ρ, ~) : ρ ∈ <1, ~ ∈ <2

}
. Whenever<1 = {ρ}, we represent δF (<1,<2) by δF (ρ,<2). Let (Θ,�

, κ) be an ordered F -metric space and<1,<2 ⊆ Θ.We say that<1 ≺r <2, if for every ρ ∈ <1, ~ ∈ <2,

we have ρ � ~.

Definition 6. Let (Θ, κ) be an F -metric space. A closed-valued multifunction L : Θ → CL(Θ) is said
to be (α∗-ψ)- contractive multifunction if there exists two functions α : Θ × Θ → [0,+∞) and ψ ∈ Ψ

such that
α∗(L(ρ),L(~))κ(~,L(~)) ≤ ψ(κ(ρ, ~)) (4.1)

for each ρ ∈ Θ and ~ ∈ L(ρ).

Theorem 5. Let (Θ, κ) be an F -metric space and L : Θ → CL(Θ) be an α∗-admissible and (α∗-ψ)-
contractive multifunction. Also suppose that the following assertions holds:

(i) (Θ, κ) is F -complete;
(ii) there exists ρ0 ∈ Θ and ρ1 ∈ L(ρ0) such that α(ρ0, ρ1) ≥ 1.
Then ρ is a fixed point of L iff g(ξ) = κ(ξ,Lξ) is lower semi-continuous at ρ.

Proof. Let ρ0 ∈ Θ be an arbitrary element. Since L(ρ0) , ∅, so there exists ρ1 ∈ L(ρ0). If ρ0 = ρ1, then
ρ0 is a fixed point of L and we have nothing to prove. As L(ρ1) , ∅. So if ρ1 ∈ L(ρ1), then ρ1 is a fixed
point of L. Let ρ1 < L(ρ1). Since L is α∗-admissible, so α∗(L(ρ0),L(ρ1)) ≥ 1. Thus by (4.1), we have

0 < κ(ρ1,L(ρ1)) ≤ α∗(L(ρ0),L(ρ1))κ(ρ1,L(ρ1))
≤ ψ(κ(ρ0, ρ1)). (4.2)

For given q > 1 and by Lemma 2, ∃ρ2 ∈ L(ρ1) such that

0 < κ(ρ1, ρ2) < qκ(ρ1,L(ρ1)). (4.3)
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Thus by (4.2) and (4.3), we have

0 < κ(ρ1, ρ2) ≤ qψ(κ(ρ0, ρ1)). (4.4)

It is clear that ρ2 , ρ1. As κ(ρ1, ρ2) < qψ(κ(ρ0, ρ1)). Since ψ is strictly increasing, so ψ(κ(ρ1, ρ2)) <
ψ(qψ(κ(ρ0, ρ1))). Put q1 =

ψ(qψ(κ(ρ0,ρ1)))
ψ(κ(ρ1,ρ2)) . Then q1 > 1. If ρ2 ∈ L(ρ2), then ρ2 is fixed point of L. Assume

that ρ2 < L(ρ2). As α∗(ρ1, ρ2) ≥ 1 and L is α∗-admissible, so α∗(L(ρ1),L(ρ2)) ≥ 1. Then from (4.1), we
get

0 < κ(ρ2,L(ρ2)) ≤ α∗(L(ρ1),L(ρ2))κ(ρ2,L(ρ2)) (4.5)
≤ ψ(κ(ρ1, ρ2)).

For given q1 > 1 and by Lemma 2, ∃ρ3 ∈ L(ρ2) such that

0 < κ(ρ2, ρ3) < qκ(ρ2,L(ρ2)). (4.6)

Thus by (4.5) and (4.6), we have

0 < κ(ρ2, ρ3) ≤ q1ψ(κ(ρ1, ρ2))
= ψ(qψ(κ(ρ0, ρ1))).

It is clear that ρ3 , ρ2. As κ(ρ2, ρ3) < ψ(qψ(κ(ρ0, ρ1))). Since ψ is strictly increasing, so ψ(κ(ρ2, ρ3)) <
ψ2(qψ(κ(ρ0, ρ1))). Put q2 =

ψ2(qψ(κ(ρ0,ρ1)))
ψ(κ(ρ2,ρ3)) . Then q2 > 1. If ρ3 ∈ L(ρ3), then ρ3 is fixed point of L. Assume

that ρ3 < Lρ3. As α∗(ρ2, ρ3) ≥ 1 and L is α∗-admissible, so α∗(L(ρ2),L(ρ3)) ≥ 1. Then from (4.1), we
get

0 < κ(ρ3,L(ρ3)) ≤ α∗(L(ρ2),L(ρ3))κ(ρ3,L(ρ3))
≤ ψ2(qψ(κ(ρ0, ρ1))). (4.7)

For given q2 > 1 and by Lemma 2, ∃ρ4 ∈ L(ρ3) such that

0 < κ(ρ3, ρ4) < q2κ(ρ3,L(ρ3)). (4.8)

Thus by (4.7) and (4.8), we have

0 < κ(ρ3, ρ4) ≤ ψ2(qψ(κ(ρ0, ρ1))).

Pursuing the same, we obtain {ρ } in Θ such that ρ  ∈ Lρ −1 and ρ  , ρ −1, and

κ(ρ , ρ +1) ≤ ψ −1(qψ(κ(ρ0, ρ1))) (4.9)

for all , which yields that

m−1∑
i= 

κ(ρi, ρi+1) ≤
m−1∑
i= 

ψi−1(qψ(κ(ρ0, ρ1))). (4.10)
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Now for m > . Fix ε > 0 and let (ε) ∈ N such that
∑

≥ (δ) ψ
i−1(qψ(κ(ρ0, ρ1))) < ε. Now suppose that

( f , h) ∈ F × [0,+∞) be such that (D3) is satisfied. Let ε > 0 be fixed. By (F2), ∃ δ > 0 such that

0 < ι < δ =⇒ f (ι) < f (δ) − h. (4.11)

Hence, by (4.10), (4.11) and (F1), we have

f (
m−1∑
i= 

κ(ρi, ρi+1)) ≤ f (
m−1∑
i= 

ψi−1(qψ(κ(ρ0, ρ1))) ≤ f (
∑
≥ (δ)

ψi−1(qψ(κ(ρ0, ρ1))) < f (ε) − h (4.12)

for m >  ≥ (ε). Using (D3) and (4.12), we obtain κ(ρ , ρm) > 0, m >  ≥ (ε) implies

f (κ(ρ , ρm)) ≤ f (
m−1∑
i= 

κ(ρi, ρi+1)) + h < f (ε)

which implies by (F1) that κ(ρ , ρm) < ε, m >  ≥ (ε). This proves that {ρ } is F -Cauchy. Since (Θ, κ)
is F -complete, there exists ρ∗ ∈ Θ such that {ρ } is F -convergent to ρ∗, i.e.,

lim
→∞

κ(ρ , ρ∗) = 0. (4.13)

Suppose g(ξ) = κ(ξ,Lξ) is lower semi-continuous at ρ, then

f (κ(ρ∗,L(ρ∗))) ≤ f
(
lim inf


g(ρ )

)
= f

(
lim inf


κ(ρ ,L(ρ ))

)
= −∞,

which implies that κ(ρ∗,L(ρ∗)) = 0. Therefore ρ∗ ∈ L(ρ∗). By the closedness of L it yields that ρ∗ ∈
L(ρ∗). Conversely, assume that ρ∗ is a fixed point of L, then κ(ρ∗,L(ρ∗)) = 0, which implies that

g(ρ∗) = 0 ≤ lim inf


g(ρ ).

�

Corollary 7. Let (Θ,�, κ) be an ordered F -metric space, ψ ∈ Ψ be a strictly increasing mapping and
L : Θ→ CL(Θ) be a mapping such that for each ρ ∈ Θ and ~ ∈ L(ρ) with ρ � ~, we have

κ(~,L(~)) ≤ ψ(κ(ρ, ~)).

Also, assume that

(i) (Θ, κ) is F -complete;
(ii) there exists ρ0 ∈ Θ and ρ1 ∈ L(ρ0) such that ρ0 � ρ1;
(iii) if ρ � ~, then Lρ ≺r L~.

Then ρ is a fixed point of L iff g(ξ) = κ(ξ,Lξ) is lower semi-continuous at ρ.

Proof. Define α : Θ × Θ→ [0,∞) by

α(ρ, ~) =

{
1, if ρ � ~,

0, otherwise.
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By using condition (i) and the definition of α, we have α(ρ0, ρ1) = 1. Also, from condition (iii),
we have ρ � ~, then Lρ ≺r L~, by using the definitions of α and ≺r,wehave α(ρ, ~) = 1 implies
α∗(Lρ,L~) = 1. Furthermore, it is simple to check that L is a strictly generalized (α∗, ψ)-contractive
mapping. Therefore, by Theorem 5, ρ is a fixed point of L if and only if g(ξ) = κ(ξ,Lξ) is lower
semi-continuous at ρ. �

Definition 7. Let (Θ, κ) be an F -metric space and L : Θ → B(Θ) be a mapping. We say that L : Θ →

B(Θ) is said to be generalized (α∗,ψ, δF )-contractive mapping if there exists two functions α : Θ×Θ→

[0,+∞) and ψ ∈ Ψ such that

α∗(L(ρ),L(~))δF (~,L(~)) ≤ ψ(κ(ρ, ~)) (4.14)

for each ρ ∈ Θ and ~ ∈ L(ρ).

Theorem 6. Let (Θ, κ) be an F -metric space and L : Θ → B(Θ) be an α∗-admissible and generalized
(α∗,ψ, δF )-contractive mapping. Also suppose that the following assertions holds:

(i) (Θ, κ) is F -complete;
(ii) there exists ρ0 ∈ Θ and ρ1 ∈ L(ρ0) such that α(ρ0, ρ1) ≥ 1.
Then there exists ρ ∈ Θ such that {ρ} = L(ρ) iff g(ξ) = κ(ξ,L(ξ)) is lower semi-continuous at ρ.

Proof. By the hypothesis of the theorem, there exist ρ0 ∈ Θ and ρ0 ∈ L(ρ0) such that α(ρ0, ρ1) ≥ 1.
Assume that ρ0 , ρ1, for otherwise, ρ0 is a fixed point. Let ρ1 < L(ρ1). As L is α∗-admissible, we have
α∗(L(ρ0),L(ρ1)) ≥ 1. Then

δF (ρ1,L(ρ1)) ≤ α∗(L(ρ0),L(ρ1))δF (ρ1,L(ρ1))
≤ ψ(κ(ρ0, ρ1)). (4.15)

Since L(ρ1) , ∅, there is ρ2 ∈ L(ρ1). Then

0 < κ(ρ1, ρ2) ≤ δF (ρ1,L(ρ1)). (4.16)

From (4.15) and (4.16), we have

0 < κ(ρ1, ρ2) ≤ ψ(κ(ρ0, ρ1)).

Since ψ is nondecreasing, we have

ψ(κ(ρ1, ρ2)) ≤ ψ2(κ(ρ0, ρ1)).

As ρ2 ∈ Lρ1, we have α(ρ1, ρ2) ≥ 1. Since L(ρ2) , ∅, there is ρ3 ∈ L(ρ2). Assume that ρ2 , ρ3, for
otherwise, ρ2 is a fixed point of L. Then

δF (ρ2,L(ρ2)) ≤ α∗(L(ρ1),L(ρ2))δF (ρ2,L(ρ2)) (4.17)
≤ ψ(κ(ρ1, ρ2)).

Since L(ρ2) , ∅, there is ρ3 ∈ L(ρ2). Then

0 < κ(ρ2, ρ3) ≤ δF (ρ2,L(ρ2)). (4.18)
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From (4.17) and (4.18), we have

0 < κ(ρ2, ρ3) ≤ ψ(κ(ρ1, ρ2)).

By (4.16), we have

0 < κ(ρ2, ρ3) ≤ ψ(κ(ρ1, ρ2))
≤ ψ2(κ(ρ0, ρ1)).

Since ψ is nondecreasing, we have

ψ(κ(ρ2, ρ3)) ≤ ψ3(κ(ρ0, ρ1)).

By continuing in this way, we get a sequence {ρ } in Θ such that ρ +1 ∈ L(ρ ) and ρ  , ρ +1 for
 = 0, 1, 2, .... Further we have

0 < κ(ρ , ρ +1) ≤ δF (ρ ,L(ρ )) ≤ ψ (κ(ρ0, ρ1)). (4.19)

This yields that
m−1∑
i= 

κ(ρi, ρi+1) ≤
m−1∑
i= 

ψi(κ(ρ0, ρ1)). (4.20)

Now for m > . Fix ε > 0 and let (ε) ∈ N such that
∑

≥ (δ) ψ
i(κ(ρ0, ρ1)) < ε. Now assume that

( f , h) ∈ F × [0,+∞) be such that (D3) is satisfied. Let ε > 0 be fixed. By (F2), ∃ δ > 0 such that

0 < ι < δ =⇒ f (ι) < f (δ) − h. (4.21)

Hence, by (4.20), (4.21) and (F1), we have

f

m−1∑
i= 

κ(ρi, ρi+1)

 ≤ f

m−1∑
i= 

ψi(κ(ρ0, ρ1))

 ≤ f

 ∑
≥ (δ)

ψi(κ(ρ0, ρ1))

 < f (ε) − h (4.22)

for m >  ≥ (ε). Using (D3) and (4.22), we obtain κ(ρ , ρm) > 0, m >  ≥ (ε) implies

f
(
κ(ρ , ρm)

)
≤ f

m−1∑
i= 

κ(ρi, ρi+1)

 + h < f (ε)

which implies by (F1) that κ(ρ , ρm) < ε, m >  ≥ (ε). This proves that {ρ } is F -Cauchy. Since (Θ, κ)
is F -complete, there exists ρ∗ ∈ Θ such that {ρ } is F -convergent to ρ∗. Letting  → ∞ in (4.19), we
have

lim
→∞

δF (ρ ,L(ρ )) = 0.

Suppose g(ξ) = δF (ξ,Lξ) is lower semi-continuous at ρ, then by (F1), we have

f (δF (ρ∗,L(ρ∗))) ≤ f
(
lim inf


g(ρ )

)
= f

(
lim inf


δF (ρ ,L(ρ ))

)
= −∞.

Therefore {ρ∗} ∈ L(ρ∗), because δF (<1,<2) = 0 implies <1 = <2 = {a}. Conversely, suppose that
{ρ∗} ∈ L(ρ∗) , then

g(ρ∗) = 0 ≤ lim inf


g(ρ ).

�
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Corollary 8. Let (Θ,�, κ) be an ordered F -metric space, ψ ∈ Ψ be a strictly increasing mapping and
L : Θ→ B(Θ) be a mapping such that for each ρ ∈ Θ and ~ ∈ L(ρ) with ρ � ~, we have

δF (~,L(~)) ≤ ψ(κ(ρ, ~)).

Also, assume that

(i) (Θ, κ) is F -complete,
(ii) there exists ρ0 ∈ Θ and {ρ0} ∈ L(ρ0) i.e., there exists ρ1 ∈ L(ρ0) such that ρ0 � ρ1,

(iii) if ρ � ~, then Lρ ≺r L~.

Then there exists ρ ∈ Θ such that {ρ} = L(ρ) iff g(ξ) = κ(ξ,L(ξ)) is lower semi-continuous at ρ.

Proof. Define α : Θ × Θ→ [0,∞) by

α(ρ, ~) =

{
1, if ρ � ~,

0, otherwise.

By using condition (i) and the definition of α, we have α(ρ0, ρ1) = 1.Also, from condition (iii), we have
ρ � ~, then Lρ ≺r L~, by using the definitions of α and ≺r,wehave α(ρ, ~) = 1 implies α∗(Lρ,L~) =

1. Furthermore, it is simple to check that L is a strictly generalized (α∗,ψ, δF )-contractive mapping.
Therefore, by Theorem 5, there exists ρ ∈ Θ such that {ρ} = L(ρ) if and only if g(ξ) = δF (ξ,Lξ) is
lower semi-continuous at ρ. �

5. Applications

A representative stability result based on fixed point theory arguments follows a number of basic
arguments adapted to the special structure of the equation under consideration. It leads to large number
of results in the literature for different classes of equations, see [29, 30]. In the present section, we
investigate the existence of solution of differential equation

ρ/(ι) = −a(ι)ρ(ι) + b(ι)g(ρ(ι − r(ι))) + c(ι)ρ/(ι − r(ι)). (5.1)

We state a lemma of Djoudi et al. [31] which will be used in proving of our theorem.

Lemma 3. ( [31]) Assume that r/(ι) , 1 ∀ι ∈ R. Then ρ(ι) is a solution of (5.1) if and only if

ρ(ι) =

(
ρ(0) −

c(0)
1 − r/(0)

ρ(−r(0))
)

e−
∫ ι

0 a(s)ds +
c(ι)

1 − r/(ι)
ρ(ι − r(ι))

−

∫ ι

0
(h(υ))ρ(υ − r(υ))) − b(υ)g (ρ(υ − r(υ)))) e−

∫ ι
υ

a(s)dsdυ (5.2)

where

h(υ) =
r//(υ)c(υ) +

(
c/(υ) + c(υ)a(υ)

)
(1 − r/(υ))

(1 − r/(υ))2 . (5.3)

Now suppose that ϑ : (−∞, 0] → R is a bounded and continuous function, then ρ(ι) = ρ(ι, 0, ϑ) is a
solution of (5.1) if ρ(ι) = ϑ(ι) for ι ≤ 0 and satisfies (5.1) for ι ≥ 0. Assume that C is the collection of
ρ : R→ R which are continuous. Define ℵϑ by

ℵϑ = {ρ : R→ R such that ϑ(ι) = ρ(ι) if t ≤ 0, ρ(ι)→ 0 as ι→ ∞, ρ ∈ C} .

Then ℵϑ is a Banach space endowed with ‖·‖.
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Lemma 4. ( [13]) The space (ℵϑ, ‖ · ‖) with the F -metric d defined by

d(ι, ι∗) = ||ι − ι∗|| = sup
ρ∈I
|ι(ρ) − ι∗(ρ)|

for all ι, ι∗ ∈ ℵϑ, is F -metric space.

Theorem 7. Let L : ℵϑ → ℵϑ be a mapping defined by

(Lρ)(ι) =

(
ρ(0) −

c(0)
1 − r/(0)

ρ(−r(0))
)

e−
∫ ι

0 a(s)ds +
c(ι)

1 − r/(ι)
τ(ι − r(ι))

−

∫ ι

0
(h(υ)ρ(υ − r(υ)) − b(υ)g (ρ(υ − r(υ))))e−

∫ ι
υ

a(s)dsdυ, ι ≥ 0 (5.4)

for all ρ ∈ ℵϑ . Assume that there exists α : ℵϑ × ℵϑ→[0, 1) such that

α (ρ(ι), ~(ι)) =

{∣∣∣∣∣ c(ι)
1 − r/(ι)

∣∣∣∣∣ +

∫ ι

0
(|h(υ)| + |b(υ)|) e−

∫ ι
υ

a(s)ds

}
< 1.

Then L has a fixed point.

Proof. It follows from (5.3) that L(ρ),L(~) ∈ ℵϑ. Now from (5.4), we have

|(Lρ)(ι) − (L~)(ι)| ≤
∣∣∣∣∣ c(ι)
1 − r/(ι)

∣∣∣∣∣ ‖ρ − ~‖
+

∫ ι

0
|h(υ)(ρ(υ − r(υ))) − ~(υ − r(υ))|e−

∫ ι
υ

a(s)ds

+

∫ ι

0
|(b(υ))g(ρ(υ − r(υ))) − g(~(υ − r(υ)))|e−

∫ ι
υ

a(s)ds

≤

{∣∣∣∣∣ c(ι)
1 − r/(ι)

∣∣∣∣∣ +

∫ ι

0
(|h(υ)| + |b(υ)|) e−

∫ ι
υ

a(s)ds

}
‖ρ − ~‖

≤ α (ρ) ‖ρ − ~‖

≤ α (ρ) ‖ρ − ~‖ + β (ρ)
‖ρ − Lρ‖ ‖~ − L~‖

1 + ‖ρ − ~‖
.

Hence,

κ(Lρ,L~) ≤ α (ρ) κ(ρ, ~) + β (ρ)
κ(ρ,Lρ)κ(~,L~)

1 + κ(ρ, ~)

for any β : Θ→[0, 1). Thus all the assumptions of Corollary 1 are satisfied and L has a unique fixed
point in ℵϑ which solves (5.1). �

6. Conclusions

This article is precised on the notion of F -metric space to prove common fixed points of six
mappings for generalized rational contractions involving control functions of one variable. A non-
trivial example is also provided to show the validity of obtained results. We also established fixed

AIMS Mathematics Volume 8, Issue 7, 16887–16905.
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points of (α∗-ψ)-contractive and generalized (α∗,ψ, δF )-contractive multifunctions. As application, we
discussed the solution of nonlinear neutral differential equation.

Common fixed points of fuzzy mappings in the background of F -metric space can be interesting
outline for the future work in this direction. Differential and integral inclusions can be investigated as
applications of these results.
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