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Abstract: The heat and mass transfer within non-Newtonian fluid flow results in complex 

mathematical equations and solution in this regard remains a challenging task for researchers. The 

present paper offers a numerical solution for the non-Newtonian flow field by using Artificial neural 

networking (ANN) model with the Levenberg Marquardt training technique. To be more specific, we 

considered thermally magnetized non-Newtonian flow headed for inclined heated surfaces. The flow 

is carried with viscous dissipation, stagnation point, heat generation, mixed convection, and thermal 

radiation effects. The concentration aspects are entertained by the owing concentration equation. The 

shooting method is used to solve the mathematical flow equations. The quantity of interest includes 

the temperature and heat transfer coefficient. Two different artificial neural networking models have 

been built. The training of networks is done by use of the Levenberg Marquardt technique. The values 
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of the coefficient of determination suggest artificial neural networks as the best method for predicting 

the Nusselt number at both surfaces. The thermal radiation parameter and Prandtl number admit a 

direct relationship to the Nusselt number while the differing is the case for variable thermal 

conductivity and Casson parameters. Further, by using Nusselt number (NN)-ANN models, we found 

that for cylindrical surface, the strength of the NN is greater than the flat surface. 

Keywords: neural networking; Levenberg-Marquardt algorithm; shooting method; heat transfer; 

thermal radiations; mixed convection 

Mathematics Subject Classification: 35A25, 65MO6, 76D05 

 

1. Introduction 

Non-Newtonian fluids are used in a variety of products, including culinary items, personal 

protective equipment, printing technologies, damping and braking systems, and drag-reducing agents [1]. 

Fluids that are not Newtonian exhibit complex rheological behavior [2]. Unlike Newtonian fluids, 

these materials do not behave linearly between the shear rate or shear and viscosity. Non-Newtonian 

fluids [3,4] are categorized into many groups based on how they react to changes in shear stress or rate. 

Based on their behavior, non-Newtonian fluids can be classified as shear thinning [5,6], shear 

thickening [7,8], thixotropic, visco-plastic, and rheopectic fluids. Following such characteristics, 

various studies were given by researchers to explore the type of non-Newtonian fluid models and the 

corresponding daily life applications. In this direction, the Casson fluid model is one of the non-

Newtonian fluid models that best capture yield stress and has noteworthy applications in the 

biomechanics and polymer sectors. Several different goods, including synthetic lubricants, medicinal 

compounds, paints, coal, china clay, and many others, can be prepared using Casson fluid. Human 

blood can also be referred to as Casson fluid since it contains a variety of components including human 

red blood cells, fibrinogen, protein, and globulin in aqueous base plasma. The operative use of Casson 

fluid in biological treatments, drilling processes, bio-engineering and food processing has captured the 

attention of researchers like the analysis of diffusion phenomena in stenosed capillary-tissue exchange 

systems provided by Siddiqui and Mishra [9]. In order to depict the blood flow they utilize a modified 

Casson's fluid description. Through the alteration of a measure known as the retention parameter, the 

severity of the condition could be evaluated. Another significant aspect of this analysis was the increase 

of these variables together with the progression of the stenosis. For the investigation of the normal and 

sick states, the concentration profiles were identified. In the recent past, according to Abolbashari et al. 

[10], engineering and industrial applications have found usage for nano-fluids because of their fantastic 

thermal conductivity increase. Due to their significance, analyze the fluid non-Newtonian flow with 

nanoparticles towards the sheet. In special circumstances, the current analytical solution shows a very 

strong correlation with those of the earlier research that was published. The impact of various flow 

physical factors were thoroughly explored. Bhattacharyya et al. [11] conducted an examination of 

Casson fluid flow past a shrinking surface with different effects. Self-similar nonlinear ordinary 

differential equations (ODEs) were obtained. The translated energy and velocity equations both had 

two exact answers. According to the depicted data, the temperature drops for greater values of radiation 

parameter, Prandtl number, and power-law exponent. Additionally, the thickness of the thermal 

boundary layer increases with direct variation in wall temperature. In some instances, temperature 
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overshoot was seen in the temperature field's graphical depiction. Therefore, under some 

circumstances, heat transfer from the surface happens instead of heat absorption at the surface. In the 

presence of fluctuating suction, Abd El-Aziz and Yahya [12] investigated the impact of Hall current 

on the Casson fluid flow over a sheet. To obtain non-dimensional flow fields, the resulting equations 

were analytically solved. The temperature and velocity profiles are studied for various parameter 

values that entered the problem and were displayed graphically. Physically relevant Nusselt number was 

sorted out and displayed as graphics. For an axisymmetric Casson stagnation point, Nawaz et al. [13] 

looked at the effects of Joule heating and viscous dissipation. The ensuing boundary value issue was 

resolved using the homotopy analysis method. The homotopy solutions and the numerical outcomes 

were compared. The behavior of various parameters was examined. The Casson fluid parameter's 

resultant effect seems to accelerate the fluid's velocity. The actions of dissipation and Joule heating 

cause the system to warm up. The thermal and velocity slip effects on a Magnetohydrodynamics (MHD) 

Casson fluid were studied by Usman et al. [14] over a cylinder with Buongiorno's model. The Casson 

nanofluid model's equations were constructed and reduced by using similarity transformation. The 

collocation approach was used to arrive at the numerical solution. The graphs that compare the nanofluid 

fluid flow to the emerging physical parameters provide an analysis of the physical quantities of interest. 

The effects of Newtonian heating on the Casson fluid flow were examined by Tassaddiq et al. [15]. In 

this study, porous effects for such fluids and MHD effects were also taken into account. Equations 

involving partial differentials were used to model the fundamental issue. The analytical tool is known 

as the Laplace transform was used to achieve the "Velocity" and "Temperature" functions. In order to 

analyze the modeling parameters that were used, graphical representations were used. To verify the 

facts, numerical calculations were made. The graphical results show that velocity clearly declines for 

magnetic parameter is intensified and increases as the porosity parameter is increased (conjugate 

parameter). For all conceivable Casson parameter values, the fluid flow might be controlled. A 

comparative examination of multiphase flow over a steep channel was carried out by Hussain et al. [16]. 

The combination of microscopic gold particles with Casson fluid creates an intuitive non-Newtonian 

particulate suspension. Consideration of a uniformly slanted conduit allowed for the consideration of 

gravitational and magnetic influences. The shear-thinning phenomena is further influenced by heating 

effects at the channel's edge. For two-phase fluid flow with heat transfer, an exaction was found. In 

addition, Newtonian-gold particulate flow and Casson-gold particulate flow, which was a non-

Newtonian suspension of particle flow, are contrasted. It was discovered that the shear-thinning effects 

of magnetized Newtonian particle suspension across the inclined channel are more pronounced and 

experience reduced skin friction. However, it was discovered that Casson fluid was a very helpful 

suspension for the fabrication and coatings processes, among other things. Additionally, the magnetic 

field affects the mobility of both phases as a resistive force. Due to the system's significant viscous 

dissipation, more energy was added. Akolade and Tijani [17] discussed the effect of various transport 

parameters on Casson- nanofluids through a Riga surface. After imposing sufficient similarity factors, 

the flow equations were derived. To account for all relevant flow characteristics, the spectral quasi-

linearization technique (SQLM) was used. Aside from great agreement with previously published work, 

the approach performance (numerical estimation tools) was examined in terms of CPU time and 

mistakes. For the current challenge, engineering dimensionless parameters were also supplied. The 

outcomes demonstrated that the Casson fluid had a lower flow resistance than the Williamson fluid. 

Furthermore, Casson fluid diffuses and conducts less than Williamson fluid. Siddiqui et al. [18] 

investigated the Casson nanofluid between two spinning and stretchy disks in this study. The effects 
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of thermal radiation, magnetic field, Darcy Forchheimer flow, and heat source were investigated. The 

shooting strategy was owned to solve the existing equations with the help of MATLAB packages. The 

temperature profile when the Prandtl number was varied was also discussed. Furthermore, the thermal 

profile towards the thermophoresis, radiation, and Brownian parameter was investigated. Graphs were 

used to evaluate the impact of nanoparticle concentration on microorganisms with rising Peclet and 

Lewis numbers. References [19–22] provide an evaluation of the most recent attempts at Casson fluid 

flow in a variety of configurations. 

In this paper, we used the prediction application of artificial intelligence to examine the thermal 

stagnation point magnetized flow field of non-Newtonian fluid flow due to inclined heated stretched 

surfaces with thermos-physical effects namely viscous dissipation, mixed convection, heat generation, 

and variable thermal conductivity. The flow is mathematically formulated for a cylindrical surface and 

later mathematical reduction is done for thermal flow over a flat surface. The ultimate results are obtained 

by using the shooting method and are offered as line graphs. The quantity of interest includes the 

temperature and NN at both flat and cylindrical surfaces. Two different ANN models are constructed to 

forecast the heat transfer coefficient at surfaces. We are confident that the thermal findings by the use of 

ANN models will helpful for investigators affiliated with the area of thermal engineering. 

2. Flow formulation 

Stretching inclined surfaces, such as the cylinder and plate, are used to introduce non-Newtonian fluid 

flow. By taking into account the magnetic field [23–25], mixed convection, stagnation point flow [26], 

temperature-dependent conductivity [27], viscous dissipation [28], and heat generation [29] the 

novelty of the flow field is strengthened. By utilizing the concentration equation, the mass transfer is 

taken into account. It is assumed that the strength of temperature and concentration is considered higher 

at surfaces in comparison with strength far away from the surface. The concluding Casson fluid flow 

equations [26] for the given problem are expressed as 

𝜕(𝑟̂𝑢̂)

𝜕𝑥̂
+
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The radioactive flux and thermal conductivity relations are given as: 
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The flow conditions are: 

𝑢̂ = 𝑈̂𝑤 = 𝑎𝑥̂, , 𝐶̂ = 𝐶̂𝑤, 𝑣̂ = 0𝑇̂ = 𝑇̂𝑤, at 𝑟̂ = 𝑅𝑐 , 

𝑢̂ = 𝑢̂𝑒 = 𝑑𝑥̂, 𝐶̂ → 𝐶̂∞, 𝑇̂ → 𝑇̂∞, as 𝑟̃ → ∞.    (6) 

Here, 𝜈 is kinematic viscosity, 𝑅𝑐 stands for radius of cylinder, 𝐵𝑇  is the thermal expansion 

coefficient,𝐵𝐶 denote the coefficient of solutal expansion, 𝜌, 𝑇̂, 𝐶̂, 𝑄0, 𝜀, 𝜅∞and 𝐷𝑚 are fluid density, 

temperature, concentration, heat generation coefficient, small parameter, heat conductivity far from 

the surface and mass diffusivity respectively. By using NN-ANN model, we are interested in 

comparing how flow parameters affect the Nusselt number and temperature of Casson fluid flow 

toward both surfaces. Consequently, we must convert these partial differential equations (PDEs) into 

corresponding ODEs in order to solve Eq (1) through (4). For this reason, we have own the following 

set of variables [26,27]: 
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Owning Eq (7), Eqs (1)–(3) turns into 
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and flow conditions reduced as: 
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The Casson fluid parameter, Prandtl number, Eckert number, thermal radiation parameter, Solutal 

Grashof number, thermal Grashof number, velocities ratio parameter, and Schmidt number are 

symbolized by 𝛽𝑝, 𝑃𝑟, 𝐸𝑛 , 𝑅𝑝, 𝐺𝐶 , 𝐺𝑇 , 𝐴𝑝and 𝑆𝑐.  The heat transfer at inclined surfaces is considered 

a key physical effect and to evaluate heat transfer we considered the Nusselt number. The mathematical 

relationship [26] of NN is: 

𝑁𝑢𝑥̂ =
𝑥̂𝑞𝑤

𝜅(𝑇̂𝑤−𝑇̂∞)
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3
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,

𝑁𝑢𝑥̂

√𝑅𝑒𝑥̂
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}.     (13) 

3. Numerical scheme 

The lower order equations, Eqs (8)–(10), can be used to examine the non-Newtonian fluid flow 

regime. Due to their coupling and nonlinearity, they are challenging to solve analytically. The flow 

differential equations are reported using a number of various solution approaches [30–35], however, 

the shooting method will be employed to get numerical solution for the present research problem. The 

name of the shooting technique is taken from an analogy with target shooting: we shoot at the target and 

watch where it lands; based on the misses, we can modify our aim and shoot again in the hopes that it 

would hit close to the target. To convert boundary value problems into similar initial value problems, the 

shooting method was developed. The supportive material in this regard can be accessed in Refs. [25–27]. 

Having an initial value system is a vital first step in this regard. We can achieve it by presuming: 

𝑌1 = 𝐹(𝜂), 𝑌2 = 𝐹′(𝜂), 𝑌3 = 𝐹′′(𝜂), 

𝑌4 = 𝜃𝑛(𝜂), 𝑌5 = 𝜃𝑛′(𝜂), 

𝑌6 = 𝜙𝑛(𝜂), 𝑌7 = 𝜙𝑛′(𝜂),        (14) 

under Eq (14), Eqs (8)–(10) reduces to 
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𝑌6′ = 𝑌7, 

𝑌7′ =
−𝑆𝑐𝑌1𝑌6−2𝛾𝑝𝑌7

(1+2𝜂𝛾𝑝)
.        (15) 
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The flow equations turns down to: 

𝑌1 = 0, 𝑌2 = 1, 𝑌6 = 1, 𝑌4 = 1,at𝜂 = 0, 

𝑌2 → 𝐴𝑝, 𝑌6 → 0, 𝑌4 → 0,as𝜂 = ∞.        (16) 

The self-coding scheme of shooting is carried out in Matlab for the present problem and outcomes 

are shared in terms of graphs and numerical data. 

4. Artificial neural networking model 

Mathematical modeling is done for the Casson flow over heated stretched surfaces. The equations 

for non-Newtonian flow are numerically solved. Both a flat plate and a cylindrical surface are used to 

evaluate the Nusselt number. The Nusselt number at surfaces is predicted using ANN models in both 

situations. Researchers firmly think that the multilayer perceptron (MLP) and ANN model [36–40] 

have excellent learning capabilities and can be utilized to anticipate a variety of physical occurrences. 

In MLP networks, three separate layers are utilized. The first layer uses the inputs, while the centrally 

important layer is referred to as the hidden layer. The output layer, which is the final layer, is where 

the prediction data is stored. The NN-ANN-I and II are two ANN models that we have created. 

Whereas NN-ANN-II is designed to provide predictions of Nusselt number values at cylindrical 

surfaces, NN-ANN-I is built to forecast the Nusselt number at flat surfaces. The five parameters are 

employed as inputs and the NN is taken into account as an output for both NN-ANN models. Variable 

thermal conductivity, heat generation, Prandtl number, the Casson fluid, and the thermal radiation 

parameters are the flow parameters. 

Table 1 provides the symbolic information for models. Network architecture is given in Figure 1. 

We have gathered 80 samples for the five inputs, leading to 80 sample values for the Nusselt number. 

15% of the data is used for validation while the remaining 70% is used to train the network. Testing 

also makes advantage of the 15%. Table 2 provides all available details in this regard. Ten (10) neurons 

are taken into account in the hidden layer, and the network is trained using the Levenberg-Marquardt 

method. The transfer functions used in hidden and output have the following expressions: 

 

Figure 1. Architecture of ANN. 
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Table 1. Neural networking detail. 

Model Surface Input Output 

NN-ANN Model-I (𝛾𝑝=0.0) (𝜀𝑇) (𝐻𝑝) (𝑃𝑟) (𝛽𝑝) (𝑅𝑝) NN 

NN-ANN Model-II (𝛾𝑝=0.5) (𝜀𝑇) (𝐻𝑝) (𝑃𝑟) (𝛽𝑝) (𝑅𝑝) NN 

Table 2. Description of NN data. 

Samples NN-ANN Model-I NN-ANN Model-II 

Total samples 80 80 

Training 56 56 

Validation 12 12 

Testing 12 12 

𝐹𝑇(𝑥) =
1

1+𝑒−𝑥,         (17) 

Pureline(x)=x.         (18) 

We have taken into consideration the mean squared error (MSE) and coefficient of determination 

(R) for performance analysis of ANN models. The mathematical formulas are expressed as: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋num(𝑖) − 𝑋ANN(𝑖))

2𝑁
𝑖=1 .     (19) 

𝑅 = √1 −
∑ (𝑋num(𝑖)−𝑋ANN(𝑖))

2𝑁
𝑖=1

∑ (𝑋num(𝑖))
2𝑁

𝑖=1

.      (20) 

5. Results and discussion 

Using ANN models, the Casson flow toward two distinct heated surfaces is studied. The heat 

transfer coefficient and Casson fluid temperature are included in the quantity of interest. A 

mathematical formulation and shooting method is used to solve flow equations. 

By taking the curvature parameter's zero value into consideration, the Casson fluid flow over a 

flat surface is assessed. The most important flow parameters for studying the flow field are the thermal 

radiation parameter, Prandt number, heat generation parameter, and variable thermal conductivity. We 

have assessed these parameters' effects on the NN at flat and cylindrical surfaces see Tables 3–10. 

Table 3 shows the variation in the NN in the presence of positive values for the variable thermal 

conductivity parameter. Both plates and cylinders are subject to this kind of inspection. The heat 

transfer normal to the surface is measured as a Nusselt number. The NN is seen to decrease for 

variations in the variable thermal conductivity parameter. For cylindrical surfaces, the Nusselt number 

is larger in magnitude. Table 4 shows the influence of a varied thermal conductivity parameter on the 

NN in the absence of heat generation. 
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Table 3. Impact of 𝜀𝑇 on NN. 

 

𝜺𝑻 

𝜽𝒏′(𝟎) −(𝟏 + 𝟒/𝟑𝑹𝒑) 

𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5(Cylinder) 𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5 (Cylinder) 

0.1 −0.3868 −0.5200 0.5415 0.7280 

0.2 −0.3782 −0.5152 0.5295 0.7213 

0.3 −0.3702 −0.5107 0.5183 0.7150 

0.4 −0.3625 −0.5064 0.5075 0.7090 

0.5 −0.3553 −0.5023 0.4974 0.7032 

0.6 −0.3484 −0.4985 0.4878 0.6979 

0.7 −0.3419 −0.4947 0.4787 0.6926 

0.8 −0.3357 −0.4912 0.4700 0.6877 

0.9 −0.3298 −0.4877 0.4617 0.6828 

1.0 −0.3187 −0.4813 0.4462 0.6738 

Table 4. Impact of 𝜀𝑇on NN when 𝐻𝑝 = 0. 

 

𝜺𝑻 

𝜽𝒏′(𝟎) −(𝟏 + 𝟒/𝟑𝑹𝒑) 

𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5(Cylinder) 𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5 (Cylinder) 

0.1 −1.3699 −0.9213 1.9179 1.2898 

0.2 −1.3414 −0.9107 1.8780 1.2750 

0.3 −1.3145 −0.9005 1.8403 1.2607 

0.4 −1.2890 −0.8908 1.8046 1.2471 

0.5 −1.2649 −0.8815 1.7709 1.2341 

0.6 −1.2420 −0.8726 1.7388 1.2216 

0.7 −1.2203 −0.8641 1.7084 1.2097 

0.8 −1.1995 −0.8559 1.6793 1.1983 

0.9 −1.1798 −0.8480 1.6517 1.1872 

1.0 −1.1609 −0.8404 1.6253 1.1766 

The NN permits the inverse relation with varied heat conductivity for both surfaces. It is 

significant to notice that the Nusselt number's strength is higher for flat surfaces than for cylindrical 

surfaces. At the plate and cylinder, the effect of the Prandtl number on the NN is explored (see Table 5). It 

is obvious that the NN displays levels of stimulation for higher Prandtl numbers. When the influence of 

heat generation is taken into account, the effect of the Prandtl number on NN is explored (see Table 6). We 

have seen, the NN rises as the Prandtl number does for both plates and cylinders. Both plate and 

cylindrical surfaces are considered in the evaluation of the Casson fluid parameter's impact on the 

Nusselt number. About the scenario of heat generation, Table 7 is provided. We found that the Nusselt 

number declines normally when Casson fluid parameter values increase. Moreover, cylindrical 

surfaces have a somewhat greater Nusselt number magnitude. 

In Table 8, the NN at both surfaces are analyzed in relation to the Casson fluid parameter for the 

case when heat generation has no impact. We found that heat transfer normal to the surface tends to 

incline for larger Casson fluid parameter values. 
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Table 5. Impact of 𝑷𝒓 on NN. 

 

𝑷𝒓 

𝜽𝒏′(𝟎) −(𝟏 + 𝟒/𝟑𝑹𝒑) 

𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5(Cylinder) 𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5 (Cylinder) 

0.7 −0.4278 −0.5235 0.5989 0.7329 

0.8 −0.4588 −0.5283 0.6423 0.7396 

0.9 −0.4879 −0.5333 0.6831 0.7466 

1.0 −0.5152 −0.5385 0.7213 0.7539 

2.0 −0.5652 −0.5492 0.7913 0.7689 

3.0 −0.6114 −0.5601 0.8560 0.7841 

4.0 −0.6537 −0.5708 0.9152 0.7991 

5.0 −0.6931 −0.5815 0.9703 0.8141 

6.0 −0.7301 −0.5914 1.0221 0.8280 

7.0 −0.8893 −0.6333 1.245 0.8866 

Table 6. Impact of 𝑷𝒓on NN when 𝐻𝑝 = 0. 

 

𝑷𝒓 

𝜽𝒏′(𝟎) −(𝟏 + 𝟒/𝟑𝑹𝒑) 

𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5(Cylinder) 𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5 (Cylinder) 

0.7 −0.4356 −0.5686 0.6098 0.7960 

0.8 −0.4669 −0.5781 0.6537 0.8093 

0.9 −0.4964 −0.5875 0.6950 0.8225 

1.0 −0.5242 −0.5969 0.7339 0.8357 

2.0 −0.7450 −0.6839 1.0430 0.9575 

3.0 −0.9102 −0.7546 1.2743 1.0564 

4.0 −1.0471 −0.8102 1.4659 1.1343 

5.0 −1.1662 −0.8547 1.6327 1.1966 

6.0 −1.2728 −0.8911 1.7819 1.2475 

7.0 −1.3699 −0.9213 1.9179 1.2898 

Table 7. Impact of 𝛽𝑝 on NN [26]. 

 

𝜷𝒑 

𝜽𝒏′(𝟎) −(𝟏 + 𝟒/𝟑𝑹𝒑) 

𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5(Cylinder) 𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5 (Cylinder) 

0.1 −0.4052 −0.6093 0.5673 0.8530 

0.2 −0.3953 −0.6095 0.5534 0.8533 

0.3 −0.3911 −0.6089 0.5475 0.8525 

0.4 −0.3888 −0.6085 0.5443 0.8519 

0.5 −0.3863 −0.6082 0.5408 0.8515 

0.6 −0.3855 −0.6080 0.5397 0.8512 

0.7 −0.3850 −0.6078 0.5390 0.8509 

0.8 −0.3845 −0.6077 0.5383 0.8508 

0.9 −0.3840 −0.6076 0.5376 0.8506 

1.0 −0.3838 −0.6075 0.5373 0.8505 
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Table 8. Impact of 𝛽𝑝 on NN when 𝐻𝑝 = 0 [26]. 

 

𝜷𝒑 

𝜽𝒏′(𝟎) −(𝟏 + 𝟒/𝟑𝑹𝒑) 

𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5(Cylinder) 𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5 (Cylinder) 

0.1 −0.2982 −0.2125 0.4175 0.2975 

0.2 −0.3281 −0.4017 0.4593 0.5624 

0.3 −0.3412 −0.4635 0.4777 0.6489 

0.4 −0.3489 −0.4940 0.4885 0.6916 

0.5 −0.3534 −0.5120 0.4948 0.7168 

0.6 −0.3562 −0.5238 0.4987 0.7333 

0.7 −0.3582 −0.5283 0.5015 0.7396 

0.8 −0.3592 −0.5384 0.5029 0.7538 

0.9 −0.3605 −0.5432 0.5047 0.7605 

1.0 −0.4250 −0.5470 0.5950 0.7658 

Table 9 shows how the thermal radiation parameter affects the NN. NN increases as thermal 

radiation strength does. Also, in the case of cylindrical surfaces, the NN is larger. When the heat 

generation effect is absent, Table 10 shows how the thermal radiation parameter affects the NN at both 

surfaces. For both frames, we saw that greater radiation parameter values lead to larger NN values. It 

is significant to notice that in the case of flat plates, the Nusselt number strength is higher. Our interest 

is to predict the values of the NN by using ANN models. For the prediction of the Nusselt number at 

both surfaces, we have built two separate ANN models (NN-ANN-I and NN-ANN-II). At a flat surface, 

NN-ANN-I owns the Nusselt number values, whereas NN-ANN-II owns the Nusselt number values at 

a cylindrical surface. One crucial step in the development of an ANN model is network training. The 

network was trained using the Levenberg-Marquardt method. Figures 2 and 3 show the training results 

for NN-ANN models. Specifically, Figure 2 presents the training of the ANN model for the forecast of 

NN at a flat surface, whereas Figure 3 for the prediction of NN at a cylindrical surface. For NN-ANN-

I, the finest validation (FV) is 0.029329 at epoch 5 and for NN-ANN-II, the FV is 0.0.0099961 at 

epoch 29. We noticed that the MSE values for both graphs start out high and then start to decline as 

the stages go-on. The error histogram (EH) of the NN-ANN models being built to forecast Nusselt 

number values is shown in Figures 4 and 5. The EH of model-I is shown in Figure 4, whereas the EH 

of the model-II for a cylindrical surface is shown in Figure 5. The EHs in both cases have 20 Bins. 

 

Figure 2. ANN model-I training performance graph. Figure 3. ANN model-II training performance graph. 
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Figure 4. ANN model-I error histogram.         Figure 5. ANN model-II error histogram. 

Table 9. Impact of 𝑅𝑝 on NN [26]. 

 

𝑹𝒑 

𝜽𝒏′(𝟎) −(𝟏 + 𝟒/𝟑𝑹𝒑) 

𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5(Cylinder) 𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5 (Cylinder) 

0.1 −0.5235 −0.4278 0.5933 0.4848 

0.2 −0.5215 −0.4058 0.6605 0.5140 

0.3 −0.5200 −0.3868 0.7280 0.5415 

0.4 −0.5188 −0.3703 0.7954 0.5678 

0.5 −0.5179 −0.3557 0.8631 0.5929 

0.6 −0.5171 −0.3428 0.9308 0.6170 

0.7 −0.5166 −0.3314 0.9988 0.6407 

0.8 −0.5161 −0.3212 1.0667 0.6638 

0.9 −0.5157 −0.3121 1.1345 0.6867 

1.0 −0.5154 −0.3038 1.2026 0.7089 

Table 10. Impact of 𝑹𝒑 on NN when 𝐻𝑝 = 0. 

 

𝑹𝒑 

𝜽𝒏′(𝟎) −(𝟏 + 𝟒/𝟑𝑹𝒑) 

𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5(Cylinder) 𝛾𝑝 = 0 (Plate) 𝛾𝑝 = 0.5 (Cylinder) 

0.1 −1.4994 −0.9564 1.6993 1.0839 

0.2 −1.4302 −0.9383 1.8116 1.1885 

0.3 −1.3699 −0.9213 1.9179 1.2898 

0.4 −1.3167 −0.9054 2.0189 1.3883 

0.5 −1.2693 −0.8905 2.1155 1.4842 

0.6 −1.2267 −0.8765 2.2081 1.5777 

0.7 −1.1882 −0.8633 2.2972 1.669 

0.8 −1.1530 −0.8509 2.3829 1.7585 

0.9 −1.1208 −0.8392 2.4658 1.8462 

1.0 −1.0912 −0.8281 2.5461 1.9322 
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Since both NN-ANN models' error values are quite low, the training stages of NN-ANN-I and 

NN-ANN-II to estimate Nusselt numbers at both surfaces are successfully finished. The mean square 

error graphs for the Nusselt number are shown in Figures 6 and 7. Here, Figure 6 shows the MSE for 

the NN at the plat surface, and Figure 7 shows the MSE for the NN at cylinder. Both figures show that 

NN-ANN-I and NN-ANN-II have successfully completed their learning stages. For use of 80 data 

samples, the MSE values are displayed. The MSE values' proximity to zero indicates that the NN-

ANN models were trained with fewer mistakes to predict the Nusselt number. While MSE is recorded 

as 0.03261 for flat surface, and the average MSE for cylindrical surfaces is 0.008562777. The 

regression outcomes of Nusselt number data for both surfaces are given in Figures 8 and 9. It is key to 

remember that the regression value provides a correlation between the objectives and forecasts values; 

if this value is near to one (1), we can state there is a close link.  

The developed NN-ANN-I and NN-ANN-II are the best models to forecast the NN at both 

surfaces, according to Figures 8 and 9.  

 

Figure 6. MSE for NN at plate.                  Figure 7. MSE for NN at cylinder. 

  

Figure 8. Values of regression for the ANN model I. Figure 9. Values of regression for the ANN model II. 
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Figures 10 and 11 compare the Nusselt number's actual values with those predicted by an artificial 

neural networking model. Figure 10 compares NN-ANN and the target data set for plate whereas 

Figure 11 compares NN-ANN and the target data set for cylinder. We can note from figures that the 

bulk of NN-ANN model outputs is in good agreement with the Nusselt number target values. Due to 

this overlap, we may conclude that the generated models, NN-ANN-I and NN-ANN-II, are highly 

accurate in predicting Nusselt numbers. 

 

Figure 10. Result comparison for ANN-I.         Figure 11. Result comparison for ANN-II. 

The effect of a positive modification in the 𝐻𝑝on temperature is shown in Figures 12 and 13. 

Figure 12 shows the impact of heat generation on temperature for a plate, while Figure 13 shows the 

impact of heat generation on temperature for a cylindrical surface. It can be demonstrated that the 

temperature of the Casson fluid and the heat generation parameter are directly related. Positive values 

of the 𝐻𝑝 cause energy generation, which raises the temperature. The effect of the Pr on the 

temperature is seen in Figures 14 and 15. In more detail, Figures 14 and 15 show how the Prandt 

number affects the temperature of a fluid over a flat surface and a cylindrical surface, respectively. We 

have seen that the Prandt number enables an indirect relation to Casson fluid temperature. 

 

Figure 12. Effect of 𝐻𝑝  on temperature at flat surface. Figure 13. Effect of 𝐻𝑝  on 

temperature at cylindrical surface. 
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Figure 14. Effect of Pr on temperature at flat surface. Figure 15. Effect of Pr on 

temperature at cylindrical surface. 

As the Prandtl number admits an inverse relationship to thermal conductivity, larger Prandtl 

number values result in a decrease in thermal conductivity. The fluid temperature drops as a result. For 

both flat and cylindrical surfaces, the effect of varying thermal conductivity on Casson fluid 

temperature is examined. Figures 16 and 17 provide evidence in this regard. Figure 16 describes the 

effect of variable thermal conductivity on the temperature in more detail, and we found that 

temperature rises as the 𝜀𝑇  rises. Similar to Figure 16, Figure 17 demonstrates how 𝜀𝑇 affects 

temperature over a cylinder. We found that fluid temperature exhibits tendencies that are indicative of 

variations in 𝜀𝑇. Table 11 provides performance details for both ANN models, and it is clear that the 

constructed models are capable of accurately forecasting the values of the heat transfer coefficient at 

both flat and cylindrical surfaces. 

 

Figure 16. Effect of 𝜀𝑇 on temperature at flat surface. Figure 17. Effect of 𝜀𝑇 on 

temperature at cylindrical surface. 
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Table 11. Grades of NN-ANN models. 
 

MSE R 

Model Surface Training Validation Test Training Validation Test 

NN-Model-I (𝛾𝑝=0.0) 0.0350 0.0293 0.0246 0.9547 0.9727 0.9619 

NN-Model-II (𝛾𝑝=0.5) 0.0094 0.0100 0.0032 0.9549 0.9442 0.9605 

6. Conclusions 

Thermally magnetized Casson stagnation flow over an inclined surfaces is studied numerically. 

Mixed convection, thermal radiations, heat generation, viscous dissipation, and temperature-dependent 

thermal conductivity all contribute to the flow. Using artificial neural networking models, the NN is 

evaluated at both surfaces toward five various flow factors. The following are the key outcomes: 

• For an inclined cylindrical surface, an average Mean Square Error (MSE) is recorded as 

0.008562777 while for a flat surface it is recorded as 0.03261. 

• The values of the coefficient of determination suggest artificial neural networks as the best 

method for predicting the NN at both surfaces. 

• For both surfaces, the temperature admits direct relation for heat generation and thermal 

conductivity parameters. 

• For higher Prandtl number, the Casson fluid temperature shows decline values. The such 

trend holds for both surfaces. 

• According to the predictions made by NN-ANN models, we found that for cylindrical 

surface, the strength of the NN is greater than the flat surface. 

• The Nusselt number admits indirect relation for variable thermal conductivity, and Casson 

parameters while the opposite is the case for thermal radiation parameter and Prandtl number. 

• A neural networking approach can be used to predict the surface quantities being involved for 

the fluid flow over non-linear stretched surfaces having engineering standpoints.  
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