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1. Introduction

In 1965, Zadeh [18] introduced the concept of fuzzy theory, which has since undergone extensive
research and various applications, including Choquet integrals of set-valued functions [5, 6, 20–22],
fuzzy set-valued measures [9, 10, 16], fuzzy random variable applications [1, 4, 17], theory for general
quantum systems interacting with linear dissipative systems [3], and more. The relationship between
fuzzy theory and probability theory has been a subject of much discussion [1, 12, 14], as both
frameworks aim to capture the concept of uncertainty using membership functions and probability
density functions (PDFs) whose values lie within the interval [0, 1].

Fuzzy theory and probability theory are two distinct mathematical frameworks, each with their
own approach to modeling uncertainty. Fuzzy theory represents imprecision and vagueness in human
reasoning using fuzzy sets, which assign degrees of membership to elements of a universe of discourse.
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Probability theory deals with randomness and uncertainty using probability distributions, which assign
probabilities to outcomes of a random event. Despite their differences, both frameworks allow the
expression of uncertainty using values that lie within the range of [0,1], and they provide a means for
decision-making under uncertainty, incorporating expert knowledge and data.

Research has explored the relationships between fuzzy theory and probability theory, revealing
similarities in terms of mathematical structure and some analytical tools. For instance, fuzzy
measures can be viewed as a generalization of probability measures, and Choquet integrals of
set-valued functions are analogous to probability integrals. While the majority of fuzzy probability
measure theories [7, 13, 15, 19] have traditionally considered probability as the expected value of the
membership function of fuzzy events, however, by using fuzzifying a PDF we define the fuzzifying
probability of crisp events.

In this study, we propose the concept of fuzzifying probability for continuous random variables in
the context of crisp events, along with its properties and associations with conventional probability
theories. Therefore, fuzzy theory can be seen as an extension or generalization of probability theory.
The main objective of this study is to introduce fuzzifying probability density functions and to
investigate related properties by applying the concepts of fuzzifying probability of crisp events. This
approach enables investigation of the ambiguities of the PDF and their impact on probability theories.
Relevant definitions in probability theory will be briefly recalled to facilitate this investigation.

Definition 1.1. [8] Let S be a sample space and X be a real-valued continuous random variable on
S . Then, a function fX : S → R+ is a PDF of X if it satisfies the following criteria:

(i) fX(x) is positive everywhere in the support S , i.e., fX(x) > 0 for all x ∈ S , and
(ii)

∫
S

fX(x)dx = 1.

If fX(x) is a PDF of the random variable X, then the probability P that X belongs to an event E is
defined as

P(X ∈ E) =

∫
E

fX(x)dx.

Definition 1.2. [8] Let A be the σ-algebra of a sample space S . A real-valued function P on A is a
probability if P satisfies the following properties:

(i) P(E) ≥ 0 for all E ∈ A,
(ii) P(S ) = 1 and P(∅) = 0, and

(iii) For any sequence of events {E1, E2, · · · } with Ei ∩ E j = ∅ (i , j), it holds

P(∪∞n=1En) =

∞∑
n=1

P(En).

We next recall some basic fuzzy theory notions and definitions. Let U and V be two universal sets
and g : U → V be a crisp function between these sets. Then the fuzzifying function g̃ : U → F (V) is
a mapping from the same domain to a new range F (V) comprising the family of all fuzzy sets on V .
The fuzzy set Ã ∈ F (V) of V can be expressed as

Ã = { (v,mÃ(v))
∣∣∣ v ∈ V},
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wheremÃ : V → [0, 1] is a membership function of Ã (For more details see [2,11]). Recall that a fuzzy
set Ã is said to be normal if there exists v0 ∈ V such that mÃ(v0) = 1.

Let I([0, 1]) be the set of all intervals in [0, 1] whose elements are described as

I([0, 1]) :=
{
[a−, a+]

∣∣∣ 0 ≤ a− ≤ a+ ≤ 1
}
.

In particular, we consider a = [a, a] for any a ∈ [0, 1]. Then the interval operators in I([0, 1]) are
defined as follows.

Definition 1.3. [5, 6, 12] For each ā = [a−, a+], b̄ = [b−, b+] ∈ I([0, 1]), the arithmetic, comparison,
and inclusion operators can be expressed as follows.

(i) ā + b̄ = [a− + b−, a+ + b+],
(ii) kā = [ka−, ka+] for all k ∈ [0, 1],

(iii) āb̄ = [a−b−, a+b+] ,
(iv) ā ∧ b̄ = [a− ∧ b−, a+ ∧ b+],
(v) ā ∨ b̄ = [a− ∨ b−, a+ ∨ b+],

(vi) ā ≤ b̄ if and only if a− ≤ b− and a+ ≤ b+,
(vii) ā < b̄ if and only if ā ≤ b̄ and ā , b̄, and

(viii) ā ⊆ b̄ if and only if b− ≤ a− and a+ ≤ b+.

Also, algebraic operations of fuzzy sets are defined as follows.

Definition 1.4. [11] Let X be a nonempty set and Ã and B̃ be fuzzy sets of X.

(i) The α-cut Ãα of a fuzzy set Ã is defined as

Ãα =
{
x ∈ X|mÃ(x) ≥ α

}
.

(ii) The algebraic sum Ã + B̃ of two fuzzy sets Ã and B̃ of X is defined as

(Ã + B̃)α = Ãα + B̃α for all α ∈ [0, 1],

provided Ãα + B̃α ⊆ [0, 1].
(iii) The algebraic product ÃB̃ of two fuzzy sets Ã and B̃ of X is defined as

(ÃB̃)α = ÃαB̃α for all α ∈ [0, 1].

Let A be a measurable subset of U and f be an integrable function on U. If f̃ is a fuzzifying
function, then the fuzzifying integral [11] of f̃ over A is defined as

(F )
∫

A
f̃ (x)dx :=

{([∫
A

f −α (x)dx,
∫

A
f +
α (x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
, (1.1)

where f −α and f +
α are α-cut functions of f̃ (x), i.e.,(

f̃ (x)
)
α

=
[
f −α (x), f +

α (x)
]

for all x ∈ A.
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2. Fuzzifying PDF and fuzzifying probability

Let S be a sample space with continuous random variable X : S → R and F (R+) be the family
of all fuzzy sets on [0,∞). Using the concepts [2] of fuzzifying functions to a PDF fX : S → [0,∞),
we define a fuzzifying PDF f̃X as follows. In order to facilitate theoretical development throughout the
remainder of the paper, it is assumed that the fuzzifying PDF f̃X is integrable for all α-cuts.

Definition 2.1. Let X be a continuous random variable and fX be a PDF of X. Then we define the
fuzzifying PDF f̃X : S → F (R+) by fuzzifying fX that satisfies the following conditions:

(i) f̃X(x) > 0 for all x ∈ S , i.e.,
m f̃X(x) > 0 for all x ∈ S ,

where m f̃X(x) > 0 means that there exists u ∈ R+ such that m f̃X(x)(u) > 0.
(ii) The fuzzifying integration (1.1) of f̃X satisfies

(F )
∫

S
f̃X(x)dx = 1̃,

where 1̃ is a convex fuzzy set [11] of 1 with m1̃(1) = 1.

Note that from (1.1), the fuzzy set 1̃ in Definition 2.1 (ii) has its α-cuts

(̃1)α =


[∫

S
f −Xα(x)dx,

∫
S

f +
Xα

(x)dx
]

if 0 ≤ α < 1,∫
S

fX(x)dx = 1 if α = 1.

If f̃X is a fuzzifying PDF of X, then the fuzzifying probability P̃ that X belongs to some event E is
given by the fuzzifying integral of f̃X over E, i.e.,

P̃(X ∈ E) = (F )
∫

E
f̃X(x)dx. (2.1)

We consider the fuzzifying probability using the concept of fuzzifying functions in a similar way.

Definition 2.2. Let A be a σ-algebra of a sample space S and P : A → [0, 1] be a probability. Then
the fuzzifying function P̃ : A → F([0, 1]) is called the fuzzifying probability if the following conditions
are satisfied:

(i) 0 ≤ P̃(E) ≤ 1 for each event E of S .
(ii) P̃(S ) = 1̃, where 1̃ is a convex fuzzy set satisfying m1̃(1) = 1.

(iii) For any sequence of events {E1, E2, · · · } with Ei ∩ E j = ∅ (i , j), it holds

P̃(
∞⋃

n=1

En) =

∞∑
n=1

P̃(En).

The following theorem follows from Definitions 2.1 and 2.2.

Theorem 2.3. Let f̃X be a fuzzifying PDF for a continuous random variable X and P̃ be the fuzzifying
probability with the density function f̃X given by (2.1). Then P̃ is a fuzzifying probability.
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Proof. We need only show that P̃ satisfies the three conditions in Definition 2.2.

(i) Let E be an element of S . Then from (1.1) and (2.1),

P̃(X ∈ E) = (F )
∫

E
f̃X(x)dx

=

{([∫
E

f −Xα(x)dx,
∫

E
f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
.

Since 0 ≤
∫

E
f −Xα(x)dx ≤

∫
E

f +
Xα

(x)dx ≤ 1 for all α ∈ [0, 1], it implies 0 ≤ P̃(X ∈ E) ≤ 1. Thus the
first condition holds.

(ii) Since f̃X1(x) = fX(x) for all x ∈ S , the α-cut of P̃(X ∈ S ) at α = 1 can be expressed as(
P̃(X ∈ S )

)
1

=

[∫
S

f −X1
(x)dx,

∫
S

f +
X1

(x)dx
]

=

[∫
S

fX(x)dx,
∫

S
fX(x)dx

]
=1.

Hence the second condition is satisfied.
(iii) Let {E1, E2, · · · } be a sequence of disjoint events. Then

P̃(X ∈
∞⋃

n=1

En) =

∫⋃∞
n=1 En

f −Xα(x)dx,
∫

⋃∞
n=1 En

f +
Xα

(x)dx
 , α∣∣∣∣∣∣α ∈ [0, 1]


=


 ∞∑

n=1

(∫
En

f −Xα(x)dx,
∫

En

f +
Xα

(x)dx
] , α

∣∣∣∣∣∣∣α ∈ [0, 1]


=

∞∑
n=1

{([∫
En

f −Xα(x)dx,
∫

En

f +
Xα

(x)dx
]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

=

∞⋃
n=1

P̃(X ∈ En).

Thus, third condition is satisfied, which completes the proof.

�

Remark 2.4. Theorem 2.3 confirms the fuzzifying probability is a fuzzifying probability. Thus, we
consider the fuzzifying probability to be P̃(E) = P̃(X ∈ E).

Recall the negative-scalar product [11]: for k ∈ R− = (−∞, 0) and some interval [a, b] in R =

(−∞,∞) with a ≤ b, the product [a, b] by k can be expressed as

k[a, b] = [kb, ka]. (2.2)

Consider a fuzzy set P̃∗(E) for E ⊆ S whose α-cuts are defined by(
P̃∗(E)

)
α

=


[∫

E
f +

Xα
(x)dx,

∫
E

f −Xα(x)dx
]

if 0 ≤ α < 1,∫
E

fX(x)dx = P(E) if α = 1.
(2.3)

Then the fuzzifying probability establishes the following property.
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Theorem 2.5. Let X be a continuous random variable on a sample space S and P̃ be a fuzzifying
probability. Then

(i) P̃(Ec) = 1̃ − P̃∗(E) for E ⊆ S ,
(ii) P̃(∅) = 0,

(iii) If E1 ⊆ E2 in S , then P̃(E1) ≤ P̃(E2).

Proof. We need only show that P̃ satisfies the conditions.

(i) From (2.2) with Ec = S − E,

P̃(Ec) = (F )
∫

Ec
f̃X(x)dx

=

{([∫
Ec

f −Xα(x)dx,
∫

Ec
f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

=

{([∫
S

f −Xα(x)dx −
∫

E
f −Xα(x)dx,

∫
S

f +
Xα

(x)dx −
∫

E
f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

=

{([∫
S

f −Xα(x)dx,
∫

S
f +

Xα
(x)dx

]
−

[∫
E

f +
Xα

(x)dx,
∫

E
f −Xα(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

= 1̃ − P̃∗(E),

where the fuzzy set P̃∗(E) is given by (2.3).
(ii) The second condition is trivially satisfied by the definition

P̃(∅) =

{([∫
∅

f −Xα(x)dx,
∫
∅

f +
Xα

(x)dx
]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

= 0.

(iii) Since
∫

E2
f −Xα(x)dx ≤

∫
E1

f −Xα(x)dx and
∫

E1
f +

Xα
(x)dx ≤

∫
E2

f +
Xα

(x)dx for all α ∈ [0, 1],

P̃(E1) =

{([∫
E1

f −Xα(x)dx,
∫

E1

f +
Xα

(x)dx
]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

≤

{([∫
E2

f −Xα(x)dx,
∫

E2

f +
Xα

(x)dx
]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

=P̃(E2).

�

We present an example of the fuzzifying probability obtained from a fuzzifying PDF.

Example 2.6. Let X be a continuous random variable with PDF fX(x) = 3x2, 0 ≤ x ≤ 1. Then, we
consider the fuzzifying PDF f̃X(x) = 3̃x2, 0 ≤ x ≤ 1 of fX, where a fuzzy set 3̃ of the constant 3 is given
by

m3̃(u) =

u − 2 if 2 ≤ u ≤ 3,
−1

2u + 5
2 if 3 < u ≤ 5.
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u

m3̃

0

(3, 1)

2 5

u − 2 −1
2u + 5

2

1

3

Figure 1. Membership function of a fuzzy set 3̃.

Note that the membership function of the fuzzifying function is given by

m f̃X(x)(u) = m3̃x2(u) =

(u − 2)x2 if 2 ≤ u ≤ 3,
(−1

2u + 5
2 )x2 if 3 < u ≤ 5.

From Definition 2.1 (iii), the corresponding fuzzifying probability can be expressed as

P̃(0 < X <
1
3

) =(F )
∫ 1

3

0
f̃X(x)dx

=


∫ 1

3

0
f −Xα(x)dx,

∫ 1
3

0
f +

Xα
(x)dx

 , α
∣∣∣∣∣∣∣α ∈ [0, 1]

 ,
(2.4)

where

f̃Xα(x) =
[
f −Xα(x), f +

Xα
(x)

]
:=

[
(α + 2)x2, (5 − 2α)x2

]
for all α ∈ [0, 1].

Thus, from (2.4),

P̃(0 < X <
1
3

) =


∫ 1

3

0
(α + 2)x2dx,

∫ 1
3

0
(5 − 2α)x2dx

 , α
∣∣∣∣∣∣∣α ∈ [0, 1]


=

{([
α + 2

34 ,
5 − 2α

34

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
,

(2.5)

and hence, (
P̃(0 < X <

1
3

)
)
α

=

[
α + 2

34 ,
5 − 2α

34

]
.

Therefore, the membership of the fuzzifying probability P̃ for 0 < X < 1
3 is given by

mP̃(0<X< 1
3 )(u) =

34u − 2 if 2
34 ≤ u ≤ 1

33 ,
5−34u

2 if 1
33 ≤ u ≤ 5

34 .
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u

mP̃(0<X< 1
3 )

0

( 1
33 , 1)

34u − 2 5−34u
2

2
34

5
34

1

1
33

Figure 2. Membership function of fuzzifying probability P̃(0 < X < 1
3 ).

Note that the probability P over 0 < X < 1
3 is given by

P(0 < X <
1
3

) =

∫ 1
3

0
3x2dx =

1
33 .

Therefore, as observed in the graph of the membership function mP̃(0<X< 1
3 ) in Figure 2, we see that

P̃(0 < X < 1
3 ) establishes a normal fuzzy set of 1

33 since mP̃(0<X< 1
3 )(

1
33 ) = 1.

3. Fuzzifying expected values

We define the fuzzifying expected value of a random variable X with the fuzzifying PDF f̃X as

Ẽ(X) = (F )
∫

x f̃X(x)dx =

{([∫
x f −Xα(x)dx,

∫
x f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

and the fuzzifying expected value for a measurable function g(X) of X for f̃X as

Ẽ(g(X)) = (F )
∫

g(x) f̃X(x)dx.

Thus, we can derive the fuzzifying n-th moment of a random variable as follows.

Theorem 3.1. Let X be a continuous random variable with PDF fX and µn = E(Xn) be the n-th moment
about the origin for X. If f̃X is a fuzzifying PDF, then Ẽ(Xn) = µ̃n is a fuzzy set of µn and (̃µn)1 = µn for
each n ∈ N.

Proof. The definition of Ẽ directly provides that

Ẽ(Xn) =(F )
∫

xn f̃X(x)dx

=

{([∫
xn f −Xα(x)dx,

∫
xn f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
,

(3.1)

hence Ẽ(Xn) = µ̃n is a fuzzy set of µn. The α-cut of Ẽ(Xn) at α = 1 in (3.1) can be expressed as(
Ẽ(Xn)

)
1

=

[∫
xn f −X1

(x)dx,
∫

xn f +
X1

(x)dx
]

=

[∫
xn fX(x)dx,

∫
xn fX(x)dx

]
=E(Xn),

(3.2)

AIMS Mathematics Volume 8, Issue 7, 15486–15498.
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thus (̃µn)1 = µn. �

We now proceed to introduce the concept of the fuzzifying variance of a random variable with a
fuzzifying PDF, expressed in terms of the fuzzifying expected value.

Theorem 3.2. If X is a random variable with a fuzzifying PDF fX and µ = E(X) is the expected value
of X, then fuzzifying variance Ṽar(X) of X can be expressed as

Ṽar(X) = Ẽ((X − µ)2) = Ẽ(X2) − 2µµ̃ + 1̃µ2,

where µ̃ = Ẽ(X) and 1̃ =

{([∫
f −Xα(x)dx,

∫
f +

Xα
(x)dx

]
, α

)∣∣∣∣α ∈ [0, 1]
}
.

Proof. From the definition of the fuzzifying variance,

Ṽar(X) =Ẽ((X − µ)2)

=

{([∫
x2 f −Xα(x)dx,

∫
x2 f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

− 2µ
{([∫

x f −Xα(x)dx,
∫

x f +
Xα

(x)dx
]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

+ µ2
{([∫

f −Xα(x)dx,
∫

f +
Xα

(x)dx
]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

=Ẽ(X2) − 2µµ̃ + 1̃µ2.

�

Remark 3.3. Theorem 3.2 shows the fuzzy set

1̃ =

{([∫
f −Xα(x)dx,

∫
f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

is a generalization of the constant 1. Since f −X1
= f +

X1
= fX when α = 1, (̃1)1 is a PDF of X, hence

(̃1)1 =

[∫
f −X1

(x)dx,
∫

f +
X1

(x)dx
]

=

[∫
fX(x)dx,

∫
fX(x)dx

]
=

∫
fX(x)dx = 1.

We extend Example 2.6 to introduce the concept of fuzzifying expected value and fuzzifying
variance, and establish their relationship with the corresponding crisp measures.

Example 3.4. Consider f̃X(x) = 3̃x2 in Example 2.6. Then, the fuzzifying expected value of X when
n = 1 in Theorem 3.1 is

Ẽ(X) =

{([∫
x f −Xα(x)dx,

∫
x f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
, (3.3)

where f̃ −Xα(x) = (α + 2)x2 and f̃ +
Xα

(x) = (5 − 2α)x2 for all α ∈ [0, 1].
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Therefore,

Ẽ(X) =

{([∫
x3(α + 2)dx,

∫
x3(5 − 2α)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

=

{([
α + 2

4
,

5 − 2α
4

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
.

(3.4)

Thus,
(
Ẽ(X)

)
α

=
[
α+2

4 , 5−2α
4

]
, and hence

mẼ(X)(u) =

4u − 2 if 1
2 ≤ u ≤ 3

4 ,
5−4u

2 if 3
4 ≤ u ≤ 5

4 .
(3.5)

Since E(X) =
∫ 1

0
x3dx = 3

4 , Ẽ(X) can be represented by a fuzzy set 3̃
4 (see Figure 3).

u

mẼ(X)

0 1
2

5
4

4u − 2 5−4u
2

3
4

1

Figure 3. Membership function of fuzzifying expected value Ẽ(X).

We can express Ẽ(X2) and E(X2) as

Ẽ(X2) =

{([∫
x4(α + 2)dx,

∫
x4(5 − 2α)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

=

{([
α + 2

5
,

5 − 2α
5

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
,

(3.6)

hence
(
Ẽ(X)

)
α

=
[
α+2

5 , 5−2α
5

]
for all α ∈ [0, 1] and E(X2) =

∫ 1

0
3x4dx = 3

5 . Thus Ẽ(X2) comprises a

fuzzy set 3̃
5 (Figure 3). From Theorem 3.2,

Ṽar(X) = Ẽ(X2) − 2µ̃ + 1̃µ2,

where 1̃ satisfies

1̃ =

{([∫ 1

0
x2(α + 2)dx,

∫ 1

0
x2(5 − 2α)dx

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}

=

{([
α + 2

3
,

5 − 2α
3

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
,

and hence the membership function of 1̃ is

m1̃(u) =

3u − 2 if 2
3 ≤ u ≤ 1,

5−3u
2 if 1 ≤ u ≤ 5

3 .
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From (2.2), (
Ṽar(X)

)
α

=
(
Ẽ(X2)

)
α
− 2µ(̃µ)α + µ2(̃1)α =

[
α + 2

80
,

5 − 2α
80

]
for each α ∈ [0, 1]. Thus, the fuzzifying variance Ṽar(X) is

Ṽar(X) =

{([
α + 2

80
,

5 − 2α
80

]
, α

)∣∣∣∣∣∣α ∈ [0, 1]
}
,

and the membership function of the fuzzifying variance is

mṼar(X)(u) =

80u − 2 if 1
40 ≤ u ≤ 3

80 ,
5−80u

2 if 3
80 ≤ u ≤ 5

80 .

u

mṼar(X)

0

( 3
80 , 1)

80u − 2 5−80u
2

1
40

5
80

1

3
80

Figure 4. Membership function of fuzzifying variance Ṽar(X).

Since Var(X) = E(X2) − (E(X))2 = 3
5 −

(
3
4

)2
= 3

80 , Ṽar(X) is a fuzzy set of 3
80 (see Figure 4).

In conclusion, the expression for the linearity of expectations for a random variable with a fuzzifying
PDF is as follows.

Theorem 3.5. Let g j be integrable functions of a random variable X and k j be positive integers for
j = 1, 2, · · · ,m. Then,

Ẽ

 m∑
j=1

k jg j(X)

 =

m∑
j=1

k jẼ
(
g j(X)

)
.

Proof. Since g j(X) f̃X(x) = g j(X)[ f −Xα(x), f +
Xα

(x)] = [g j(X) f −Xα(x), g j(X) f +
Xα

(x)] for all x,

Ẽ

 m∑
j=1

k jg j(X)

 =(F )
∫ m∑

j=1

k jg j(X) f̃X(x)dx

=



∫ m∑

j=1

k jg j(X) f −Xα(x)dx,
∫ m∑

j=1

k jg j(X) f +
Xα

(x)dx

 , α

∣∣∣∣∣∣∣α ∈ [0, 1]


=



 m∑

j=1

k j

∫
g j(X) f −Xα(x)dx,

m∑
j=1

k j

∫
g j(X) f +

Xα
(x)dx

 , α

∣∣∣∣∣∣∣α ∈ [0, 1]


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=

 m∑
j=1

k j

([∫
g j(X) f −Xα(x)dx,

∫
g j(X) f +

Xα
(x)dx

]
, α

)∣∣∣∣∣∣∣α ∈ [0, 1]


=

m∑
j=1

k j

(
(F )

∫
g j(X) f̃X(x)dx

)
,

which confirms linearity of fuzzifying expectations Ẽ
(
g j(X)

)
. �

4. Conclusions

In this study, the concept of fuzzifying functions has been introduced to probability theory as a
means of developing a fuzzifying PDF and a fuzzifying probability. Through this approach, we aim to
investigate the ambiguities inherent in probability theories that are affected by uncertainties in the
PDF. The validity of the fuzzifying probability was established through Theorem 2.3, while
Theorems 3.1 and 3.2 provided the fuzzifying n-th moment about the origin of a random variable and
the fuzzifying variance, respectively. To demonstrate the utility of our approach, we presented
modeled examples in which the fuzzifying functions were shown to generalize crisp functions in
probability theory. Examples 2.6 and 3.4 illustrated the fuzzifying probability and the fuzzifying
expected value, respectively. Furthermore, we extended the concept of fuzzifying functions to
Bernoulli, Poisson, and geometric random variables, among others, thus enabling us to investigate the
uncertainties in probability theories arising from the ambiguities in PDFs. In summary, our approach
of employing fuzzifying functions allows for the investigation of the impact of uncertainties in PDFs
on probability theories, and our findings suggest that the concept of fuzzifying functions has the
potential to enhance our understanding of probability theory.
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