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Abstract:  This paper suggests reduced-order modeling using the Galerkin proper orthogonal
decomposition (POD) to find approximate solutions for parabolic partial differential equations. We
first transform a parabolic partial differential equation to the frequency-dependent elliptic equations
using the Fourier integral transform in time. Such a frequency-domain method enables efficiently
implementing a parallel computation to approximate the solutions because the frequency-variable
elliptic equations have independent frequencies. Then, we introduce reduced-order modeling to
determine approximate solutions of the frequency-variable elliptic equations quickly. A set of
snapshots consists of the finite element solutions of the frequency-variable elliptic equations with some
selected frequencies. The solutions are approximated using the general basis of the high-dimensional
finite element space in a Hilbert space. reduced-order modeling employs the Galerkin POD for the
snapshot subspace spanned by a set of snapshots. An orthonormal basis for the snapshot space
can be easily computed using the spectral decomposition of the correlation matrix of the snapshots.
Additionally, using an appropriate low-order basis of the snapshot space allows approximating the
solutions of the frequency-variable elliptic equations quickly, where the approximate solutions are used
for the inverse Fourier transforms to determine the approximated solutions in the time variable. Several
numerical tests based on the finite element method are presented to asses the efficient performances of
the suggested approaches.
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1. Introduction

We consider the following parabolic problem to be the target of reduced-order modeling applied in
the frequency-domain method. For a given ug € H}(Q),

1
—u; = V-(ocVu) =f in Qx(0,c),
K
u :0 on GQX(O,OO), (11)

where Q represents an open convex polygon in R?; x € L*(Q) and o € W'(Q) denote positive
functions of x € Q satisfying k. < k < k%, 0. < 0 < 07, and |Vo| < o* with positive constants k., k",
0., and o*; f(-, 1) € L*(Q); and 0Q denotes the boundary of Q.

Recently, many articles have addressed reduced-order modeling to determine low-order models of
dynamical systems, such as very complex turbulence flows and problems of optimization or feedback
control problems (see, e.g., [2,3]). As a tool for deriving low-order models for the given problems,
many researchers have used the proper orthogonal decomposition method (POD) (see, e.g., [7-9, 16]).
The combination of the isogeometric analysis and POD was investigated for parabolic problems in [20]
and unsteady convection-dominated convection-diffusion-reaction problems in [15]. The POD method
provides a reduced-order basis for the modal decomposition of an ensemble of functions, such as data
obtained during the course of experiments or numerical simulations. For example, suppose a finite
series exists with a time step AT of finite element numerical solutions, so-called snapshots, of a time-
dependent partial differential equation, in which the solutions are approximated using the general nodal
basis of a high-dimensional finite element space in a Hilbert space. The space spanned by the snapshots
is called the snapshot space. Then, using the Galerkin POD of the snapshot space, an appropriate low-
order orthonormal basis, so-called a POD basis, can be employed for a low-dimensional subspace of the
snapshot space. Such an orthonormal basis can be easily computed using the spectral decomposition
of the correlation matrix of the snapshots in the Hilbert space. Note that the number of POD basis
functions is much less than the dimension of the snapshot space in general. Once a low-order POD basis
is determined, we can quickly compute approximate solutions of the time-dependent partial differential
equation with time step At that are much less than AT. Thus, we employ the reduced-order modeling
of Galerkin POD.

In this paper, by applying the frequency-domain method to the time-dependent parabolic
equation (1.1), we provide reduced-order modeling of the Galerkin POD to determine approximate
solutions of frequency-dependent elliptic equations quickly. We first transform a parabolic equation to
the frequency-variable elliptic equations using the Fourier integral transform in time. Such a frequency-
domain method enables easily implementing a parallel computation algorithm to approximate the
frequency-variable solutions because the frequency-variable elliptic equations have independent
frequencies (see, e.g., [4-6, 10, 11, 17]; see [12, 13, 18, 19] for the case of using the Laplace
transformation).

Applying the Fourier transformation for the space-time problem (1.1), we have the following set of
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complex-valued elliptic equations depending on the frequency w: for all w € R,
1 A
iw-ia—-V-(oVi) =f inQ,
K
i =0 on 9dQ

(1.2)

where f and u are extended by zero for + < 0 and ¢t > T for the Fourier transformation. The Fourier
transform (-, w) of a function u(-,7) in time and the Fourier inversion are given by

(oe)

u(-,w) = foo u(-, t)exp(—iwt)dt and u(-,t) = % f i(-, w) exp(iwt)dw.

—00

This paper investigates the combination of the frequency-domain method and the reduced-order
modeling. We apply Galerkin POD method to determine approximate solutions of the frequency-
variable elliptic equations (1.2) instead of the time-dependent parabolic equation (1.1). A set of
snapshots consists of the finite element solutions of the frequency-variable elliptic equations with some
sampled frequencies, in which the solutions are approximated using the general high-dimensional
nodal basis of the finite element space. Then, from the spectral decomposition of the correlation
matrix of the snapshots, we determine a low-order Galerkin POD basis for a subspace of the snapshot
space spanned by the snapshots. Using a low-order Galerkin POD basis, we compute approximate
solutions (POD-solutions) of the frequency-variable elliptic equations for sufficiently many frequencies
to determine accurate inverse Fourier transforms for the solutions in the time variable. We use the
Gaussian quadrature rule based on Legendre—Gauss—Lobatto (LGL) points for the accurate numerical
integration of the inverse Fourier transformation. Thus, the selected frequencies for POD-solutions
are sufficiently many LGL points on an appropriate interval. The number of sample snapshots
must be much less than the number of the POD-solutions to reduce the total computational cost
because the snapshots are approximated using full-dimensional basis functions, but the POD solutions
are computed using low-order POD basis functions. Regarding numerical computation, a fast-
solving parallel computation can be run to determine the snapshots to reduce the total computational
time, which is merit of the Galerkin POD method applied to the frequency-variable equations (see,
e.g., [7,8,14]).

The paper is organized as follows. Section 2 provides an overview of the Galerkin POD, and
Section 3 presents reduced-order modeling for the frequency-domain method to approximate the
parabolic equation. Finally, Sections 4 presents some numerical experiments.

2. Galerkin proper orthogonal decomposition

The POD of order £ is to determine a set of ordered orthonormal basis functions, such that the
snapshots can be expressed optimally using the selected first £ basis functions, where ¢ is a positive
integer [7, 8, 16]. We briefly review the Galerkin POD in the context of the finite element method.
Let X, be a finite-dimensional subspace of a given Hilbert space X endowed with the inner product
(,)x and norm || - [|x, and let { ¢, }Z:] be a basis of the space X),. For example, we consider a nodal
basis { ¢, })_; for a Galerkin finite element subspace X, consisting of piecewise linear functions of the
Sobolev space X = H'(Q), where Q is a given domain. For a set of snapshots § = {y, --+, y. } C Xp,
we define a snapshot subspace

XS = Span{Y1,"' ,)’m} C Xha
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and consider the orthonormal basis {Wp}f,= , of Xg, where d = dim Xy is the dimension of Xg. Then, the

method of Galerkin POD of order ¢ < d consists of choosing the orthonormal basis such that the mean
square X-norm error between the snapshots y, and the corresponding ¢-th partial sums is minimized:

m 2

min Z
79 e

subject to (Y, ¥y)x = 6, for 1 < p,g < L. 2.1)

4
Yq — Z (wp’ yq)x 1/
p=1

X
Using the orthogonality of ¢,’s yields that

2

¢ ¢
Yq — Z W Y)x || = lyy ”?( - Z W, yq)i'
p=1 p=1

X

Hence, the minimization problem (2.1) is equivalent to the following maximization problem:

m 14
{fbn?x Z Z (7% yq)f( subject to (i), ¥y)x = 0y, for1 < p,q < €. (2.2)
Plp=1 g=1 p=1

Let X = ((¢p, 99)x ) € R™" be the positive definite finite element matrix. The matrices containing the
coefficients of y, and ¢, are denoted by Y € R™" and ¥ € R™, respectively, in the expansion with
respect to the basis functions ¢,, that is,

n

Y@ = ) Y. dp(0, (g =1, ,m) and () = ) PP, @) $p(x), (g =1, ,d).  (2.3)
p=1

p=1

In addition, each snapshot can be expressed as a linear combination of the orthonormal basis functions
such that

d
o) = > B(p,q)p(x) where  B(p,q) = Uy, yo)x- (2.4)
p=1
Using (2.3) and (2.4) yields

d n

d
Ya = Z Wp Yo)x ¥p = Z B(p,q) ¢, = Z
p=1

d
p:] s=1 =1

¥(s, p) B(p, 61)] ¢s(x)

p

and

B(p,q) = ) W p) ) Y(5,9) (B ¢Ix = ), ¥ (p, ) Xk, 9) ¥ (s, 9)
k=1 s=1

k,s=1

so that we obtain the following identities
Y =V¥B, (2.5)

and
B=Y"XyYy eR»", (2.6)

AIMS Mathematics Volume 8, Issue 7, 15255-15268.



15259

Next, Q' denotes the first £ columns and Q; the first £ rows of a given matrix Q. Then, the problem (2.2)
is equivalent to the following problem of in matrix form:

m 14
max > Bu(p.q)* =max | () R subjectto (¥) XY =1, 2.7)
% %
g=1 p=1
where || - ||z denotes the Frobenius norm of the matrix and /, denotes the identity ¢ X ¢ matrix.

Let ¥ = X2 Y, let U and V be the left and right singular vectors, respectively, in the singular value
decomposition (SVD) of ¥:

D 0

Y=vuzvl =v'DWVH" with 2:[0 0

], D = diag(oy, -+ -, 0p).

For (2.7), using the Fritz John necessary conditions or Karush-Kuhn-Tucker conditions for the
optimality of W (see [1] for details) yields

7T U = UL (D)
and the optimal solution for (2.7) is given by
\Pf — (XI/Z)—I Ué’.

Hence, the optimal solution for the problem (2.1) is given by
U = ) PP gp(x), g =1, L (2.8)
p=1

In contrast, from the singular value decomposition of ¥ that
Y=X"?Yy=X"2UuDWvVH =¥ DWVH.

Thus, the optimal solution for the POD-basis problem (2.1) can be more easily given by using the right
singular vectors of ¥:
Y=yvioH', ¢=1,---,d (2.9)

The error between the snapshots and their POD solutions is given by (see [8, 16])

m ¢ 2 d
Z yq—Z(wp, Yx¥p|| = Z . (2.10)
q=1 p=1 x  p=t+l

Let K be the correlation matrix corresponding to the snapshots {y,}7_, in the Hilbert space X:

K =((gyp)x) € R™.
Then, the right singular vectors V holds the following spectral decomposition of K:
K=Y'Xy=V"Y=vzVvl =vID* V)T, (2.11)
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In the context of the POD-basis approach for the finite element methods, the eigenvalue problem for
m x m matrix ¥7 ¥ is more practical to solve than the eigenvalue problem for n X n matrix ¥ ¥7 in
cases where the size of the input collection m is significantly smaller than the number of coefficients n
needed to represent each function for the general basis functions of finite element space.

Finally, we report on reduced-order modeling for the finite element method. If we have the
following linear system of a Galerkin finite element discretization in the space X;, C X:

Ay =T,

then using the linear transformation y = P! x € R" for x € R!, we obtain the following reduced-order
modeling of order ¢ to approximate the solution for the above linear system:

Alx=(PH"f where A":=(P)T AP e R (2.12)
3. Reduced-order modeling for the frequency-domain method

3.1. Finite element approximation based on the frequency-domain method
This section provides reduced-order modeling using the Galerkin POD for the following complex-
valued elliptic equations depending on w: for all w € R
1 N
iw-ia—-V-(oVir) =f inQ,
K
i =0 on 0Q.

3.1

This paper applies the standard notation and definitions for the real-valued Sobolev spaces H*(L2),
associated with the scalar product (-, -); and norm || - ||, s > 0. Nevertheless, H’(Q) coincides with
L*(Q), in which the associated inner product and norm are denoted by (-,-) and || - ||, respectively.
The real and imaginary parts of a complex-valued vector or scalar function ¥ are denoted by ¥, and ¥;
respectively. Then, the L?>(Q) inner product and norm for complex-valued functions i = #, + if; and
v =V, + iD; are given by

A A AR A R ~ A AL A 12 A 204
(@, V)e :=fuvdx:(u,V) and [[Pll. := D, D)2 = (IDI7 + [I9]]7)2.
Q

From now on, we denote by H}(Q) := H*(Q) x H(Q), LX(Q) := L*(Q) x L*(Q), and H} (Q) :=
H(Q) x Hy(Q) where Hy(Q) is the subspace of H,(€) vanishing on the boundary of Q. We identify
H&C(Q) with V and define the sesquilinear form a,(-,-) : VXV — Cfor w € R as

1
a,(it, V) = iw (—ﬁ, f/) + (oVi, Vv),.
K C

Then, the variational formulation of the equation (3.1) can determine (-, w) € V such that
ay(@,9) = (f,9e, VDEV. (3.2)

For the finite element approximation of (3.1), Let 7}, be a quasi-regular partition of € into triangles
with a diameter bounded by & < 1. We take a standard finite element subspace V;, C V such that

inf {[[0 = @l + Al = Bli} < Ch* [P, VD€ HAQ),

$eVy
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where the positive constant C is independent of # and v, and | - |, and | - |, denote the seminorms
of H!(Q) and H?(Q), respectively. In this paper, we take the standard piecewise linear finite element
space for the space V. We assume that V;, = P, @ i P, where Pj, is the standard piecewise linear real
value finite element subspace of Hé () over T}, with dim(P,) = n and { ¢; }’]’.:1 is the nodal basis of P,,.
Then, the Galerkin finite element approximation is to find it,(w) = it,(-, w) € V), such that

a (W), 0) = (fuv)es D1 € Vi (3.3)

In [10], the authors provided the existence of the solution in Theorem 2.1, the stability in Theorem 2.2
and the error estimation in Theorem 3.1. The error estimation is given as follows. A generic positive
constant denoted by C may differ from place to place.

Theorem 3.1. Let ii(w) be the approximate solutions of the Eq (3.2) and let ii,(w) be the approximate
solutions of the Eq (3.3). Then the following estimations hold:

1) -
li(w) — dp(W)llc < Ch (w + Z) I1f1le (3.4)

and .
() = t(@)lle < ChH* (w2 + Z) I1/1le- (3.5)
For the approximate Fourier inversion of frequency-variable solutions to the time variable solutions,
we apply the Gaussian quadrature rule based on the LGL-points on an appropriate interval [0, w*] with
a sufficiently large w* > 0 such that ii(w) = (-, w) is negligible for |w| > w*. Let G+ = {w j}?/:wl be the
set of LGL-points on the interval [0, w*]. Then, the time variable approximate solution u;(x, t) for the
real-valued solution u(x, t) of the problem (1.1) is approximated by

Ny,
up(x, 1) = %Re [Z fip(x, ;) exp(i w; 1) wj], (3.6)

=

where w; denote the Gaussian quadrature weights corresponding the LGL-points w;. The error
estimation between the approximate solution u;, o, and u(x, ¢) is given in [10] where the approximate
Fourier inversion u, 5, 1S given by using the composite mid-point rule. This paper applies the Gaussian
quadrature rule for the approximate Fourier inversion to reduce the computational cost. We do not
provide an error estimation but we focus on the performance of reduced-order modeling using Galerkin
POD. The error estimation can be proved following the similar arguments given in [10].

3.2. Reduced-order modeling for the frequency-domain method

To determine a Galerkin POD basis, we must construct a set of snapshots consisting of Galerkin
finite element solutions #,(£,) € V), for the problem (3.3) with some selected frequencies, for example,
{&) }21; ,» Where N denotes the number of snapshots. For the efficiency of reduced-order modeling of the
frequency-domain problem, the number of samples N, must be less than the number of approximate
solutions N,, to be used for the Fourier inversion. The sets of the real and imaginary parts of the

snapshots are denoted as
X® = (Re(@ (&) )y, and X' := {Im (€)1,
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We define two correlation matrices for two Galerkin POD-bases:

Ki = ((Remh(fp)), Re(fth(fq))) )E NN,
(@)

and

K, = ((Im(ah(fp)), Im(ah(gq))) )e RNs¥N;

LX(Q)
This paper employs the L?(Q)-inner product for the correlation matrices. The H'!(Q)-inner product
could be used, but we obtained similar results in the experiments. In addition the £2-Euclidean inner
product for the coefficient vectors of the snapshots could also be applied (see [8,9,17]).

We let M, € R™" be the mass matrix over the finite element space P, such that M,(p,q) =
(&> dp )2y and Yr € R™Ns and Y; € R™Ms represent the matrices containing the coefficients of
Re(iiy(£,)) and Im(@i,(€,)) with respect to the basis functions ¢, of P, respectively. Following the
argument in (2.11), suppose that we have the following spectral decompositions for the correlation
matrices Kz and K;:

Kr =Y M, Yy = VDR (Vi and  K; =Y, M, Y] =V D} (VD! (3.7)
where di = dim(Xg) and d; = dim(X;), and Dy = diag(o™,--- ,0'§R) and D; = diag(o,--- ,o'flR ).
Then, the Galerkin POD bases of order ¢ for X® and X’ are given by, forg=1,--- ,¢,

VE) = ) Pr(p. @) ¢p(x) and i) = > Wi(p,q) ¢p(0), (3.8)
p=1 p=1

where ¢ < min{dg, d,; }, and
Pp =Y Vi (Dg)' € R™% and ¥, =Y, V' (D))" e R™. (3.9)
Now we have the reduced-order subspace V,f of V,, of order ¢ such that
Vi=Xf ®iX]

where
Xf = span{ W; ¥ and Xg = span{ :,0(11 I (3.10)

q=1 q=1"
For any w € R, a function i,(w) € V;, = P, ® i P;, can be represented by

(@) = Y ulW) g, +i ) w(w)d).
p=1 p=1
Then, from the problem (3.3) we have the following linear system of order 2n
u(w) f!

[Ar(w) A (w) ] [ w(w) ] = [ r ] 3.11)

where Ag(w), Aj(w) € R*™" are given by

_ aw(¢p7¢q), p:l’...,n’qzl,...,n,
AR((U)(p’Q) _{ aw(¢P9 i¢q), p:n+ l,-.. ’Zn, q= 1’... N,
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_ aw(i¢p,¢q), pzl,"',n,q:1,~..’n,
Al(w)(p,Q) _{ aw(i¢p’ i¢q), p=n+ 1, ,Zn’ q= 1, LN,

and X, £/ € R™! are given by
£(p) = (f. ) (D) =(fidp)es p=1. ..

Following the arguments of reduced-order modeling of order ¢ given in (2.12), we obtain the following
reduced system of order 2 ¢:

Alw)x(w) = f* (3.12)
where o 0 C o
L5 Wy
szrf wyhmwmwﬂd?%}
and R 4 € TfR
ww) | [P, 0], e _ | (FR)
i |20 [ e =[G

Using the reduced-order system (3.12), we can quickly compute POD approximate solutions ﬁi(x, wj)

for the LGL-points {w j}jvzwl, in which the approximate solutions are used for the Fourier inversion

ui(x, 1), the POD solution of order ¢, like the approximate formulation (3.6):

No
ul(x,1) = }TRe [Z il (x, w;) exp(iw; ) wj]. (3.13)

=

4. Numerical experiments

This section presents computational experiments with three examples focused on the error
discretization and elapsed time for the efficient performances of using the POD-basis. For the measure
of approximate errors, we define several error types:

leallo := [| e, 1) = s (6, D || oo 2y Nenlh = [ ) = (2D || 20 71y

legllo := [| e, ) = w6, D || oo 2y NIl = [ ) = 18D | 20 10

where u;,(x, t) and uf;(x, 1) denote the approximate solution using the general full-basis of V), and the
approximate POD-solution using the Galerkin POD-basis of order ¢, respectively, and the errors are
approximately computed where 7 = 1 and Ar = 1/100 are used. The order ¢ of the POD-basis
is selected from the error estimation between the snapshots and their POD-approximations given
in (2.10). The marks ‘Time(Full)’ and ‘Time(POD)’ indicate the total CPU elapsed times to find
approximate solutions using the full and POD bases, respectively.

For every example, we simply take Q = (0, 1)?, and we set k = 1 and o = 1 in the problem (1.1):

u,—V-Vu =f inQx(0,7),
u =0 on 0Q2 x (0,7),
u(x,0) =ug in Q.
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All simulations are computed by using the Matlab program on a 3 GHz Intel Xeon dual-core 64-bit
CPU processor with 4.00 GB RAM, without parallel computation, but parallel computation can be
used for large-scale real-world problems.

Example 1. For the first test problem, we take an elementary separable example:

u(x,y, 1) = h(t) g(x,y),
1

h(t) = ,
® 2+1

g(x,y) = sin (3n(x + 1)/4) sin 3n(y + 1)/4),

where

N —

ix, y, ) = h(w) g(x, y)
where fz(w) = —i exp(—w).

In this example, taking w* = 20 and N,, = 12 is sufficient to illustrate good performance in the
approximate results. For snapshots, we set N, = 2 (i.e., two snapshots) with two frequencies (£; =
(j - %)Aw, Jj = 1,2 with Aw = w*/2). From the snapshot space, we employed only one POD-basis
(i.e., € = 1). Although the order is too small, the solution is very well approximated because of the
simplicity of the problem (see Table 1). The error discretization is similar for the two cases, but the
elapsed CPU times are very different, and that of the POD basis is much less than that of full basis.
The outcome is because N, = 12 LGL frequency approximate solutions using the full-basis are needed
for the full-basis case. But two frequency snapshots using the full-basis and N, = 12 LGL frequency
approximate solutions of POD basis solution are needed for the POD basis case, where the cost of the
spectral decomposition of the correlation matrix must be added, but it is relatively cheap.

Table 1. Discretization errors and CPU time for Example 1.

h lleallo lleall Time(Full) llello lleglln Time(POD)
1/16 1.76e — 04  8.37e¢ — 04 0.03 1.12e-04  5.51le—-04 0.03
1/32 4.18¢ - 05 1.98¢ — 04 0.20 2.65¢ — 05 1.30e — 04 0.06
1/64 1.02e =05  4.80e — 05 1.34 6.44e - 06  3.15¢ - 05 0.16
1/128  2.52e - 06 1.19¢ - 05 8.03 1.60e — 06  7.81e—06 1.17
1/256  6.41e—-07  2.99¢ - 06 46.03 4.18¢ — 07 1.99¢ — 06 5.27

Table 2 compares the numerical results for the trapezoidal midpoint quadrature rule and Gaussian
quadrature rule for the Fourier inversion. Although we employed 240 trapezoidal midpoints, the
performance of this case is much worse than using the Gaussian quadrature rule on the error
discretization and elapsed CPU time. Thus, we apply the Gaussian quadrature rule for the Fourier
inversion.
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Table 2. Discretization errors and CPU time using the midpoint quadrature rule for

Example 1.

h llenllo llenll: Time(Full)
1/16 1.71e — 04 8.24e — 04 0.92
1/32 4.00e - 05 2.00e — 04 5.16
1/64 2.0le - 05 9.27e¢ - 05 30.53
1/128 2.04e - 05 8.81e — 05 180.78
1/256 2.09¢ - 05 8.91e — 05 1010.55

Example 2. In this example, we take the exact solution that has two separable components.

u(x,y, 1) = hi(t) g1(x,y) + ha(1) g2(x, y),

g1(x,y) = sin(3n(x + 1)/4) sin Bn(y + 1)/4),

1
h hit) =— ——r,
where 1(H) e

hy(t) = exp(—1%),  g2(x,y) = sin (nx) cos (ny),

a(x, y, w) = hy(w) g1(x, ) + ha(w) g2(x, )
2

where hy(w) = —i exp(~w), h(w) = V- exp (—%)

In this example, we set w* = 20 and N,, = 20. For the snapshots, we set N, = 4 with four frequencies
&=~ %)Aw, j=1,---,4 where Aw = w*/4. We employ POD basis of order £ = 2. Table 3 lists
the numerical results, which are very similar to those in Example 1.

Table 3. Discretization errors and CPU time for Example 2.

h lleallo llealh Time(Full) llello lleglln Time(POD)
1/16 1.71e — 03 1.25¢ - 02 0.08 1.72¢ — 03 1.26e — 02 0.03
1/32 4.11e-04  2.98e -03 0.38 4.13¢ - 04  3.00e - 03 0.08
1/64 1.00e — 04  7.24e - 04 2.27 1.00e —04  7.28¢ — 04 0.28
1/128  2.46e — 05 1.78e — 04 13.88 247e - 05 1.79e — 04 2.06
1/256  6.07¢-06  4.41e—-05 78.38 6.09¢ — 06  4.43e -05 9.00

Example 3. In this example, we take an exact solution that is not separable.

1
u(x,y,t) = — sin(rrx) sin(my),

T (t—xy)?+1
i(x,y,w) = (xy —i) exp( — w(l +ixy)) sin(zx) sin(rry).

In this example, we set w* = 25 and N, = 24. For the snapshots, we set Ny = 20 with four
frequencies: &; = (j — %)Aw, j=1,---,20 where Aw = w*/20. We take POD basis of order £ = 15.
Table 4 presents the numerical results, which are very similar to those in Examples 1 and 2. However,
we require more POD-basis functions than in the cases of Examples 1 and 2 to achieve better results.
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Table 4. Discretization errors and CPU time for Example 2.

h llenllo llenlls Time(Full) lleslo llegll Time(POD)
1/16 8.10e —04  3.92¢-03 0.13 8.10e — 04  3.92¢-03 0.09
1/32 1.92e - 04  9.27e - 04 0.53 1.93e-04  9.28e - 04 0.17
1/64 4.67¢e —05  2.25¢-04 3.02 470e —05  2.26e - 04 0.77
1/128  1.15¢—-05  5.54e - 05 16.94 1.17¢ =05  5.66¢ — 05 4.17
1/256  2.85¢e—-06  1.38¢—05 95.00 3.15¢-06  1.80e - 05 18.14

5. Conclusions

We investigate reduced-order modeling using Galerkin POD to determine approximate solutions
of time-dependent parabolic problems. We apply the frequency-domain method to the time-domain
problem using the Fourier transformation for a more efficient and fast approximation. This approach
of the frequency-domain method enables easily and efficiently implementing the parallel computation.
Hence, we transformed the time-dependent parabolic problem into a frequency-dependent elliptic
problems. However, these elliptic problems are independent. Next, we provided reduced-order
modeling using Galerkin POD to determine a very small-dimensional subspace with the orthonormal
POD basis. Using such a POD basis, we quickly approximated the elliptic problems for selected
frequencies, in which the frequencies are LGL-points on a given interval.

The approximate solution of the time-dependent parabolic problem was approximated by the inverse
Fourier transformation using the fast Gaussian quadrature rule. In the experiments, we demonstrated
that the proposed reduced-order modeling performs very well in error discretization and reducing
computational costs.
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