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1. Introduction

We consider the following parabolic problem to be the target of reduced-order modeling applied in
the frequency-domain method. For a given u0 ∈ H1

0(Ω),


1
κ

ut − ∇ · (σ∇u) = f in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),
u(x, 0) = u0 in Ω

(1.1)

where Ω represents an open convex polygon in R2; κ ∈ L2(Ω) and σ ∈ W1,∞(Ω) denote positive
functions of x ∈ Ω satisfying κ∗ ⩽ κ ⩽ κ∗, σ∗ ⩽ σ ⩽ σ∗, and |∇σ| ⩽ σ∗ with positive constants κ∗, κ∗,
σ∗, and σ∗; f (·, t) ∈ L2(Ω); and ∂Ω denotes the boundary of Ω.

Recently, many articles have addressed reduced-order modeling to determine low-order models of
dynamical systems, such as very complex turbulence flows and problems of optimization or feedback
control problems (see, e.g., [2, 3]). As a tool for deriving low-order models for the given problems,
many researchers have used the proper orthogonal decomposition method (POD) (see, e.g., [7–9, 16]).
The combination of the isogeometric analysis and POD was investigated for parabolic problems in [20]
and unsteady convection-dominated convection-diffusion-reaction problems in [15]. The POD method
provides a reduced-order basis for the modal decomposition of an ensemble of functions, such as data
obtained during the course of experiments or numerical simulations. For example, suppose a finite
series exists with a time step ∆T of finite element numerical solutions, so-called snapshots, of a time-
dependent partial differential equation, in which the solutions are approximated using the general nodal
basis of a high-dimensional finite element space in a Hilbert space. The space spanned by the snapshots
is called the snapshot space. Then, using the Galerkin POD of the snapshot space, an appropriate low-
order orthonormal basis, so-called a POD basis, can be employed for a low-dimensional subspace of the
snapshot space. Such an orthonormal basis can be easily computed using the spectral decomposition
of the correlation matrix of the snapshots in the Hilbert space. Note that the number of POD basis
functions is much less than the dimension of the snapshot space in general. Once a low-order POD basis
is determined, we can quickly compute approximate solutions of the time-dependent partial differential
equation with time step ∆t that are much less than ∆T . Thus, we employ the reduced-order modeling
of Galerkin POD.

In this paper, by applying the frequency-domain method to the time-dependent parabolic
equation (1.1), we provide reduced-order modeling of the Galerkin POD to determine approximate
solutions of frequency-dependent elliptic equations quickly. We first transform a parabolic equation to
the frequency-variable elliptic equations using the Fourier integral transform in time. Such a frequency-
domain method enables easily implementing a parallel computation algorithm to approximate the
frequency-variable solutions because the frequency-variable elliptic equations have independent
frequencies (see, e.g., [4–6, 10, 11, 17]; see [12, 13, 18, 19] for the case of using the Laplace
transformation).

Applying the Fourier transformation for the space-time problem (1.1), we have the following set of
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complex-valued elliptic equations depending on the frequency ω: for all ω ∈ R,iω
1
κ

û − ∇ · (σ∇û) = f̂ in Ω,

û = 0 on ∂Ω
(1.2)

where f and u are extended by zero for t < 0 and t > T for the Fourier transformation. The Fourier
transform û(·, ω) of a function u(·, t) in time and the Fourier inversion are given by

û(·, ω) =
∫ ∞

−∞

u(·, t) exp(−iωt)dt and u(·, t) =
1

2π

∫ ∞

−∞

û(·, ω) exp(iωt)dω.

This paper investigates the combination of the frequency-domain method and the reduced-order
modeling. We apply Galerkin POD method to determine approximate solutions of the frequency-
variable elliptic equations (1.2) instead of the time-dependent parabolic equation (1.1). A set of
snapshots consists of the finite element solutions of the frequency-variable elliptic equations with some
sampled frequencies, in which the solutions are approximated using the general high-dimensional
nodal basis of the finite element space. Then, from the spectral decomposition of the correlation
matrix of the snapshots, we determine a low-order Galerkin POD basis for a subspace of the snapshot
space spanned by the snapshots. Using a low-order Galerkin POD basis, we compute approximate
solutions (POD-solutions) of the frequency-variable elliptic equations for sufficiently many frequencies
to determine accurate inverse Fourier transforms for the solutions in the time variable. We use the
Gaussian quadrature rule based on Legendre–Gauss–Lobatto (LGL) points for the accurate numerical
integration of the inverse Fourier transformation. Thus, the selected frequencies for POD-solutions
are sufficiently many LGL points on an appropriate interval. The number of sample snapshots
must be much less than the number of the POD-solutions to reduce the total computational cost
because the snapshots are approximated using full-dimensional basis functions, but the POD solutions
are computed using low-order POD basis functions. Regarding numerical computation, a fast-
solving parallel computation can be run to determine the snapshots to reduce the total computational
time, which is merit of the Galerkin POD method applied to the frequency-variable equations (see,
e.g., [7, 8, 14]).

The paper is organized as follows. Section 2 provides an overview of the Galerkin POD, and
Section 3 presents reduced-order modeling for the frequency-domain method to approximate the
parabolic equation. Finally, Sections 4 presents some numerical experiments.

2. Galerkin proper orthogonal decomposition

The POD of order ℓ is to determine a set of ordered orthonormal basis functions, such that the
snapshots can be expressed optimally using the selected first ℓ basis functions, where ℓ is a positive
integer [7, 8, 16]. We briefly review the Galerkin POD in the context of the finite element method.
Let Xh be a finite-dimensional subspace of a given Hilbert space X endowed with the inner product
(·, ·)X and norm ∥ · ∥X, and let { ϕp }

n
p=1 be a basis of the space Xh. For example, we consider a nodal

basis { ϕp }
n
p=1 for a Galerkin finite element subspace Xh consisting of piecewise linear functions of the

Sobolev space X = H1(Ω), where Ω is a given domain. For a set of snapshots S = { y1, · · · , ym } ⊂ Xh,
we define a snapshot subspace

XS = span{ y1, · · · , ym } ⊂ Xh,
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and consider the orthonormal basis {ψp}
d
p=1 of XS , where d = dim XS is the dimension of XS . Then, the

method of Galerkin POD of order ℓ ≤ d consists of choosing the orthonormal basis such that the mean
square X-norm error between the snapshots yq and the corresponding ℓ-th partial sums is minimized:

min
{ψp}

ℓ
p=1

m∑
q=1

∥∥∥∥∥∥∥ yq −

ℓ∑
p=1

(
ψp, yq

)
X ψp

∥∥∥∥∥∥∥
2

X

subject to (ψp, ψq)X = δpq for 1 ≤ p, q ≤ ℓ. (2.1)

Using the orthogonality of ψp’s yields that∥∥∥∥∥∥∥ yq −

ℓ∑
p=1

(
ψp, yq

)
X ψp

∥∥∥∥∥∥∥
2

X

= ∥ yq ∥
2
X −

ℓ∑
p=1

(
ψp, yq

)2
X.

Hence, the minimization problem (2.1) is equivalent to the following maximization problem:

max
{ψp}

ℓ
p=1

m∑
q=1

ℓ∑
p=1

(
ψp, yq

)2
X subject to (ψp, ψq)X = δpq for 1 ≤ p, q ≤ ℓ. (2.2)

Let X̂ =
(

(ϕp, ϕq)X
)
∈ Rn×n be the positive definite finite element matrix. The matrices containing the

coefficients of yq and ψq are denoted by Y ∈ Rn×m and Ψ ∈ Rn×d, respectively, in the expansion with
respect to the basis functions ϕp, that is,

yq(x) =
n∑

p=1

Y(p, q) ϕp(x), (q = 1, · · · ,m) and ψq(x) =
n∑

p=1

Ψ(p, q) ϕp(x), (q = 1, · · · , d). (2.3)

In addition, each snapshot can be expressed as a linear combination of the orthonormal basis functions
such that

yq(x) =
d∑

p=1

B(p, q)ψp(x) where B(p, q) = (ψp, yq)X. (2.4)

Using (2.3) and (2.4) yields

yq =

d∑
p=1

(
ψp, yq

)
X ψp =

d∑
p=1

B(p, q)ψp =

n∑
s=1

 d∑
p=1

Ψ(s, p) B(p, q)

 ϕs(x)

and

B(p, q) =
n∑

k=1

Ψ(k, p)
n∑

s=1

Y(s, q)
(
ϕk, ϕs)X =

n∑
k,s=1

ΨT (p, k) X̂(k, s) Y(s, q)

so that we obtain the following identities
Y = Ψ B, (2.5)

and
B = ΨT X̂ Y ∈ Rd×m. (2.6)
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Next, Qℓ denotes the first ℓ columns and Qℓ the first ℓ rows of a given matrix Q. Then, the problem (2.2)
is equivalent to the following problem of in matrix form:

max
Ψℓ

m∑
q=1

ℓ∑
p=1

Bℓ(p, q)2 = max
Ψℓ

∥∥∥ (Ψℓ)T X̂ Y
∥∥∥2

F
subject to (Ψℓ)T X̂Ψℓ = Iℓ (2.7)

where ∥ · ∥F denotes the Frobenius norm of the matrix and Iℓ denotes the identity ℓ × ℓ matrix.
Let Ŷ = X̂1/2 Y , let U and V be the left and right singular vectors, respectively, in the singular value

decomposition (SVD) of Ŷ:

Ŷ = U ΣVT = Ud D (Vd)T with Σ =

[
D 0
0 0

]
, D = diag(σ1, · · · , σd).

For (2.7), using the Fritz John necessary conditions or Karush-Kuhn-Tucker conditions for the
optimality of Ψℓ (see [1] for details) yields

Ŷ ŶT Uℓ = Uℓ (D2)ℓ

and the optimal solution for (2.7) is given by

Ψℓ = (X̂1/2)−1 Uℓ.

Hence, the optimal solution for the problem (2.1) is given by

ψq(x) =
n∑

p=1

Ψℓ(p, q) ϕp(x), q = 1, · · · , ℓ. (2.8)

In contrast, from the singular value decomposition of Ŷ that

Y = X̂−1/2 Ŷ = X̂−1/2 Ud D (Vd)T = ΨD (Vd)T .

Thus, the optimal solution for the POD-basis problem (2.1) can be more easily given by using the right
singular vectors of Ŷ:

Ψℓ = Y Vℓ (Dℓ)−1, ℓ = 1, · · · , d. (2.9)

The error between the snapshots and their POD solutions is given by (see [8, 16])

m∑
q=1

∥∥∥∥∥∥∥ yq −

ℓ∑
p=1

(ψp, yq)X ψp

∥∥∥∥∥∥∥
2

X

=

d∑
p=ℓ+1

σ2
p. (2.10)

Let K be the correlation matrix corresponding to the snapshots {yq}
m
q=1 in the Hilbert space X:

K =
(

(yq, yp)X
)
∈ Rm×m.

Then, the right singular vectors V holds the following spectral decomposition of K:

K = YT X̂ Y = ŶT Ŷ = V ΣVT = Vd D2 (Vd)T . (2.11)

AIMS Mathematics Volume 8, Issue 7, 15255–15268.



15260

In the context of the POD-basis approach for the finite element methods, the eigenvalue problem for
m × m matrix ŶT Ŷ is more practical to solve than the eigenvalue problem for n × n matrix Ŷ ŶT in
cases where the size of the input collection m is significantly smaller than the number of coefficients n
needed to represent each function for the general basis functions of finite element space.

Finally, we report on reduced-order modeling for the finite element method. If we have the
following linear system of a Galerkin finite element discretization in the space Xh ⊂ X:

A y = f,

then using the linear transformation y = Ψℓ x ∈ Rn for x ∈ Rℓ, we obtain the following reduced-order
modeling of order ℓ to approximate the solution for the above linear system:

Aℓ x = (Ψℓ)T f where Aℓ := (Ψℓ)T AΨℓ ∈ Rℓ×ℓ. (2.12)

3. Reduced-order modeling for the frequency-domain method

3.1. Finite element approximation based on the frequency-domain method

This section provides reduced-order modeling using the Galerkin POD for the following complex-
valued elliptic equations depending on ω: for all ω ∈ Riω

1
κ

û − ∇ · (σ∇û) = f̂ in Ω,

û = 0 on ∂Ω.
(3.1)

This paper applies the standard notation and definitions for the real-valued Sobolev spaces H s(Ω),
associated with the scalar product (·, ·)s and norm ∥ · ∥s, s ≥ 0. Nevertheless, H0(Ω) coincides with
L2(Ω), in which the associated inner product and norm are denoted by (·, ·) and ∥ · ∥, respectively.
The real and imaginary parts of a complex-valued vector or scalar function v̂ are denoted by v̂r and v̂i

respectively. Then, the L2(Ω) inner product and norm for complex-valued functions û = ûr + iûi and
v̂ = v̂r + iv̂i are given by

(û, v̂)c :=
∫
Ω

û ¯̂v dx = (û, ¯̂v) and ∥v̂∥c := (v̂, ¯̂v)
1
2 = (∥v̂r∥

2 + ∥v̂i∥
2)

1
2 .

From now on, we denote by H s
c(Ω) := H s(Ω) × H s(Ω), L2

c(Ω) := L2(Ω) × L2(Ω), and H1
0,c(Ω) :=

H1
0(Ω) × H1

0(Ω) where H1
0(Ω) is the subspace of H1

0(Ω) vanishing on the boundary of Ω. We identify
H1

0,c(Ω) with V and define the sesquilinear form aω(·, ·) : V × V → C for ω ∈ R as

aω(û, v̂) = iω
(
1
κ

û, v̂
)

c
+ (σ∇û,∇v̂)c.

Then, the variational formulation of the equation (3.1) can determine û(·, ω) ∈ V such that

aω(û, v̂) = ( f̂ , v̂)c, ∀ v̂ ∈ V. (3.2)

For the finite element approximation of (3.1), Let Th be a quasi-regular partition of Ω into triangles
with a diameter bounded by h < 1. We take a standard finite element subspace Vh ⊂ V such that

inf
ϕ̂∈Vh

{
∥v̂ − ϕ̂∥c + h|v̂ − ϕ̂|1,c

}
⩽ C h2 |v̂|2,c, ∀v̂ ∈ H2

c (Ω),
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where the positive constant C is independent of h and v, and | · |1,c and | · |2,c denote the seminorms
of H1

c (Ω) and H2
c (Ω), respectively. In this paper, we take the standard piecewise linear finite element

space for the space Vh. We assume that Vh = Ph ⊕ i Ph where Ph is the standard piecewise linear real
value finite element subspace of H1

0(Ω) over Th with dim(Ph) = n and { ϕ j }
n
j=1 is the nodal basis of Ph.

Then, the Galerkin finite element approximation is to find ûh(ω) = ûh(·, ω) ∈ Vh such that

aω(ûh(ω), v̂h) = ( f̂ , v)c, v̂h ∈ Vh. (3.3)

In [10], the authors provided the existence of the solution in Theorem 2.1, the stability in Theorem 2.2
and the error estimation in Theorem 3.1. The error estimation is given as follows. A generic positive
constant denoted by C may differ from place to place.

Theorem 3.1. Let û(ω) be the approximate solutions of the Eq (3.2) and let ûh(ω) be the approximate
solutions of the Eq (3.3). Then the following estimations hold:

∥û(ω) − ûh(ω)∥1,c ≤ C h
(
ω +

1
ω

)
∥ f̂ ∥c (3.4)

and

∥û(ω) − ûh(ω)∥c ≤ C h2
(
ω2 +

1
ω

)
∥ f̂ ∥c. (3.5)

For the approximate Fourier inversion of frequency-variable solutions to the time variable solutions,
we apply the Gaussian quadrature rule based on the LGL-points on an appropriate interval [0, ω∗] with
a sufficiently large ω∗ > 0 such that û(ω) = û(·, ω) is negligible for |ω| > ω∗. Let Gω∗ = {ω j}

Nω

j=1 be the
set of LGL-points on the interval [0, ω∗]. Then, the time variable approximate solution uh(x, t) for the
real-valued solution u(x, t) of the problem (1.1) is approximated by

uh(x, t) =
1
π

Re

 Nω∑
j=1

ûh(x, ω j) exp(iω j t) w j

 , (3.6)

where w j denote the Gaussian quadrature weights corresponding the LGL-points ω j. The error
estimation between the approximate solution uh,∆ω and u(x, t) is given in [10] where the approximate
Fourier inversion uh,∆ω is given by using the composite mid-point rule. This paper applies the Gaussian
quadrature rule for the approximate Fourier inversion to reduce the computational cost. We do not
provide an error estimation but we focus on the performance of reduced-order modeling using Galerkin
POD. The error estimation can be proved following the similar arguments given in [10].

3.2. Reduced-order modeling for the frequency-domain method

To determine a Galerkin POD basis, we must construct a set of snapshots consisting of Galerkin
finite element solutions ûh(ξp) ∈ Vh for the problem (3.3) with some selected frequencies, for example,
{ ξp }

Ns
p=1, where Ns denotes the number of snapshots. For the efficiency of reduced-order modeling of the

frequency-domain problem, the number of samples Ns must be less than the number of approximate
solutions Nω to be used for the Fourier inversion. The sets of the real and imaginary parts of the
snapshots are denoted as

XR := {Re (ûh(ξp)) }Ns
p=1 and XI := { Im (ûh(ξp)) }Ns

p=1.
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We define two correlation matrices for two Galerkin POD-bases:

KR =

( (
Re(ûh(ξp)), Re(ûh(ξq))

)
L2(Ω)

)
∈ RNs×Ns

and

KI =

( (
Im(ûh(ξp)), Im(ûh(ξq))

)
L2(Ω)

)
∈ RNs×Ns .

This paper employs the L2(Ω)-inner product for the correlation matrices. The H1(Ω)-inner product
could be used, but we obtained similar results in the experiments. In addition the ℓ2-Euclidean inner
product for the coefficient vectors of the snapshots could also be applied (see [8, 9, 17]).

We let Mh ∈ R
n×n be the mass matrix over the finite element space Ph such that Mh(p, q) =(

ϕq, ϕp
)

L2(Ω), and YR ∈ R
n×Ns and YI ∈ R

n×Ns represent the matrices containing the coefficients of
Re(ûh(ξp)) and Im(ûh(ξp)) with respect to the basis functions ϕp of Ph, respectively. Following the
argument in (2.11), suppose that we have the following spectral decompositions for the correlation
matrices KR and KI:

KR = YR Mh YT
R = VdR

R D2
R (VdR

R )T and KI = YI Mh YT
I = VdI

I D2
I (VdI

I )T , (3.7)

where dR = dim(XR) and dI = dim(XI), and DR = diag(σR
1 , · · · , σ

R
dR

) and DI = diag(σI
1, · · · , σ

I
dR

).
Then, the Galerkin POD bases of order ℓ for XR and XI are given by, for q = 1, · · · , ℓ,

ψR
q (x) =

n∑
p=1

ΨℓR(p, q) ϕp(x) and ψI
q(x) =

n∑
p=1

ΨℓI(p, q) ϕp(x), (3.8)

where ℓ ≤ min{ dR, dI }, and

ΨR = YR VdR
R (DR)−1 ∈ Rn×dR and ΨI = YI VdI

I (DI)−1 ∈ Rn×dI . (3.9)

Now we have the reduced-order subspace Vℓ
h of Vh of order ℓ such that

Vℓ
h = XR

ℓ ⊕ i XI
ℓ

where
XR
ℓ = span{ψR

q }
ℓ
q=1 and XI

ℓ = span{ψI
q }

ℓ
q=1. (3.10)

For any ω ∈ R, a function ûh(ω) ∈ Vh = Ph ⊕ i Ph can be represented by

ûh(ω) =
n∑

p=1

uR
p(ω) ϕp + i

n∑
p=1

uI
p(ω) ϕp.

Then, from the problem (3.3) we have the following linear system of order 2n

[ AR(ω) AI(ω) ]
[

uR(ω)
uI(ω)

]
=

[
fR

f I

]
(3.11)

where AR(ω), AI(ω) ∈ R2n×n are given by

AR(ω)(p, q) =
{

aω(ϕp, ϕq), p = 1, · · · , n, q = 1, · · · , n,
aω(ϕp, i ϕq), p = n + 1, · · · , 2n, q = 1, · · · , n,
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AI(ω)(p, q) =
{

aω(i ϕp, ϕq), p = 1, · · · , n, q = 1, · · · , n,
aω(i ϕp, i ϕq), p = n + 1, · · · , 2n, q = 1, · · · , n,

and fR, f I ∈ Rn×1 are given by

fR(p) = ( f̂ , ϕp )c, f I(p) = ( f̂ , i ϕp )c, p = 1, · · · , n.

Following the arguments of reduced-order modeling of order ℓ given in (2.12), we obtain the following
reduced system of order 2 ℓ:

Aℓ(ω) xℓ(ω) = fℓ (3.12)

where

Aℓ(ω) =
[

(ΨℓR)T 0
0 (ΨℓI)

T

]
[ AR(ω) AI(ω) ]

[
ΨℓR 0
0 ΨℓI

]
,

and [
uR(ω)
uI(ω)

]
=

[
ΨℓR 0
0 ΨℓI

]
xℓ(ω) and fℓ =

[
(ΨℓR)T fR

(ΨℓI)
T f I

]
.

Using the reduced-order system (3.12), we can quickly compute POD approximate solutions ûℓh(x, ω j)
for the LGL-points {ω j}

Nω

j=1, in which the approximate solutions are used for the Fourier inversion
uℓh(x, t), the POD solution of order ℓ, like the approximate formulation (3.6):

uℓh(x, t) =
1
π

Re

 Nω∑
j=1

ûℓh(x, ω j) exp(iω j t) w j

 . (3.13)

4. Numerical experiments

This section presents computational experiments with three examples focused on the error
discretization and elapsed time for the efficient performances of using the POD-basis. For the measure
of approximate errors, we define several error types:

∥eh∥0 :=
∥∥∥ u(x, t) − uh(x, t)

∥∥∥
L2(0,T ;L2(Ω))

, ∥eh∥1 :=
∥∥∥ u(x, t) − uh(x, t)

∥∥∥
L2(0,T ;H1(Ω))

,

∥eℓh∥0 :=
∥∥∥ u(x, t) − uℓh(x, t)

∥∥∥
L2(0,T ;L2(Ω))

, ∥eℓh∥1 :=
∥∥∥ u(x, t) − uℓh(x, t)

∥∥∥
L2(0,T ;H1(Ω))

,

where uh(x, t) and uℓh(x, t) denote the approximate solution using the general full-basis of Vh and the
approximate POD-solution using the Galerkin POD-basis of order ℓ, respectively, and the errors are
approximately computed where T = 1 and ∆t = 1/100 are used. The order ℓ of the POD-basis
is selected from the error estimation between the snapshots and their POD-approximations given
in (2.10). The marks ‘Time(Full)’ and ‘Time(POD)’ indicate the total CPU elapsed times to find
approximate solutions using the full and POD bases, respectively.

For every example, we simply take Ω = (0, 1)2, and we set κ = 1 and σ = 1 in the problem (1.1):
ut − ∇ · ∇u = f in Ω × (0,T ),

u = 0 on ∂Ω × (0,T ),
u(x, 0) = u0 in Ω.
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All simulations are computed by using the Matlab program on a 3 GHz Intel Xeon dual-core 64-bit
CPU processor with 4.00 GB RAM, without parallel computation, but parallel computation can be
used for large-scale real-world problems.

Example 1. For the first test problem, we take an elementary separable example:

u(x, y, t) = h(t) g(x, y),

where h(t) =
1
π
·

t
t2 + 1

, g(x, y) = sin
(
3π(x + 1)/4

)
sin

(
3π(y + 1)/4

)
,

û(x, y, ω) = ĥ(ω) g(x, y)

where ĥ(ω) = −i exp(−ω).

In this example, taking ω∗ = 20 and Nω = 12 is sufficient to illustrate good performance in the
approximate results. For snapshots, we set Ns = 2 (i.e., two snapshots) with two frequencies (ξ j =

( j − 1
2 )∆ω, j = 1, 2 with ∆ω = ω∗/2). From the snapshot space, we employed only one POD-basis

(i.e., ℓ = 1). Although the order is too small, the solution is very well approximated because of the
simplicity of the problem (see Table 1). The error discretization is similar for the two cases, but the
elapsed CPU times are very different, and that of the POD basis is much less than that of full basis.
The outcome is because Nω = 12 LGL frequency approximate solutions using the full-basis are needed
for the full-basis case. But two frequency snapshots using the full-basis and Nω = 12 LGL frequency
approximate solutions of POD basis solution are needed for the POD basis case, where the cost of the
spectral decomposition of the correlation matrix must be added, but it is relatively cheap.

Table 1. Discretization errors and CPU time for Example 1.

h ∥eh∥0 ∥eh∥1 Time(Full) ∥eℓh∥0 ∥eℓh∥1 Time(POD)
1/16 1.76e − 04 8.37e − 04 0.03 1.12e − 04 5.51e − 04 0.03
1/32 4.18e − 05 1.98e − 04 0.20 2.65e − 05 1.30e − 04 0.06
1/64 1.02e − 05 4.80e − 05 1.34 6.44e − 06 3.15e − 05 0.16

1/128 2.52e − 06 1.19e − 05 8.03 1.60e − 06 7.81e − 06 1.17
1/256 6.41e − 07 2.99e − 06 46.03 4.18e − 07 1.99e − 06 5.27

Table 2 compares the numerical results for the trapezoidal midpoint quadrature rule and Gaussian
quadrature rule for the Fourier inversion. Although we employed 240 trapezoidal midpoints, the
performance of this case is much worse than using the Gaussian quadrature rule on the error
discretization and elapsed CPU time. Thus, we apply the Gaussian quadrature rule for the Fourier
inversion.

AIMS Mathematics Volume 8, Issue 7, 15255–15268.



15265

Table 2. Discretization errors and CPU time using the midpoint quadrature rule for
Example 1.

h ∥eh∥0 ∥eh∥1 Time(Full)
1/16 1.71e − 04 8.24e − 04 0.92
1/32 4.00e − 05 2.00e − 04 5.16
1/64 2.01e − 05 9.27e − 05 30.53
1/128 2.04e − 05 8.81e − 05 180.78
1/256 2.09e − 05 8.91e − 05 1010.55

Example 2. In this example, we take the exact solution that has two separable components.

u(x, y, t) = h1(t) g1(x, y) + h2(t) g2(x, y),

where h1(t) =
1
π
·

t
t2 + 1

, g1(x, y) = sin
(
3π(x + 1)/4

)
sin

(
3π(y + 1)/4

)
,

h2(t) = exp(−t2), g2(x, y) = sin
(
πx

)
cos

(
πy

)
,

û(x, y, ω) = ĥ1(ω) g1(x, y) + ĥ2(ω) g2(x, y)

where ĥ1(ω) = −i exp(−ω), ĥ2(ω) =
√
π · exp

(
−
ω2

4

)
.

In this example, we setω∗ = 20 and Nω = 20. For the snapshots, we set Ns = 4 with four frequencies
ξ j = ( j − 1

2 )∆ω, j = 1, · · · , 4 where ∆ω = ω∗/4. We employ POD basis of order ℓ = 2. Table 3 lists
the numerical results, which are very similar to those in Example 1.

Table 3. Discretization errors and CPU time for Example 2.

h ∥eh∥0 ∥eh∥1 Time(Full) ∥eℓh∥0 ∥eℓh∥1 Time(POD)
1/16 1.71e − 03 1.25e − 02 0.08 1.72e − 03 1.26e − 02 0.03
1/32 4.11e − 04 2.98e − 03 0.38 4.13e − 04 3.00e − 03 0.08
1/64 1.00e − 04 7.24e − 04 2.27 1.00e − 04 7.28e − 04 0.28

1/128 2.46e − 05 1.78e − 04 13.88 2.47e − 05 1.79e − 04 2.06
1/256 6.07e − 06 4.41e − 05 78.38 6.09e − 06 4.43e − 05 9.00

Example 3. In this example, we take an exact solution that is not separable.

u(x, y, t) =
1
π
·

t
(t − xy)2 + 1

sin(πx) sin(πy),

û(x, y, ω) = (xy − i) exp
(
− ω(1 + i xy)

)
sin(πx) sin(πy).

In this example, we set ω∗ = 25 and Nω = 24. For the snapshots, we set Ns = 20 with four
frequencies: ξ j = ( j − 1

2 )∆ω, j = 1, · · · , 20 where ∆ω = ω∗/20. We take POD basis of order ℓ = 15.
Table 4 presents the numerical results, which are very similar to those in Examples 1 and 2. However,
we require more POD-basis functions than in the cases of Examples 1 and 2 to achieve better results.
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Table 4. Discretization errors and CPU time for Example 2.

h ∥eh∥0 ∥eh∥1 Time(Full) ∥eℓh∥0 ∥eℓh∥1 Time(POD)
1/16 8.10e − 04 3.92e − 03 0.13 8.10e − 04 3.92e − 03 0.09
1/32 1.92e − 04 9.27e − 04 0.53 1.93e − 04 9.28e − 04 0.17
1/64 4.67e − 05 2.25e − 04 3.02 4.70e − 05 2.26e − 04 0.77

1/128 1.15e − 05 5.54e − 05 16.94 1.17e − 05 5.66e − 05 4.17
1/256 2.85e − 06 1.38e − 05 95.00 3.15e − 06 1.80e − 05 18.14

5. Conclusions

We investigate reduced-order modeling using Galerkin POD to determine approximate solutions
of time-dependent parabolic problems. We apply the frequency-domain method to the time-domain
problem using the Fourier transformation for a more efficient and fast approximation. This approach
of the frequency-domain method enables easily and efficiently implementing the parallel computation.
Hence, we transformed the time-dependent parabolic problem into a frequency-dependent elliptic
problems. However, these elliptic problems are independent. Next, we provided reduced-order
modeling using Galerkin POD to determine a very small-dimensional subspace with the orthonormal
POD basis. Using such a POD basis, we quickly approximated the elliptic problems for selected
frequencies, in which the frequencies are LGL-points on a given interval.

The approximate solution of the time-dependent parabolic problem was approximated by the inverse
Fourier transformation using the fast Gaussian quadrature rule. In the experiments, we demonstrated
that the proposed reduced-order modeling performs very well in error discretization and reducing
computational costs.
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