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Abstract: Wave equations describing a wide variety of wave phenomena are commonly seen in
mathematical physics. The inclusion of a noise term in a deterministic wave equation allows neglected
degrees of freedom or fluctuations of external fields describing the environment to be considered in
the equation. Moreover, adding a noise term to the deterministic equation reveals remarkable new
features in the qualitative behavior of the solution. For example, noise can lead to singularities in some
equations and prevent singularities in others. Taking into account the effects of the fluctuations along
with a space-time white noise, we consider a relativistic wave equation with weak and strong damping
terms and investigate the effect of multiplicative noise on the behavior of solutions. The existence of
local and global solutions is provided, and some qualitative properties of solutions, such as continuous
dependence of solutions on initial data, and blow up of solutions, are given. Moreover, an upper bound
is provided for the blow up time.
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1. Introduction

Stochastic evolution equations (SEE) have been used as an effective tool for spatio-temporal
biological, chemical and physical systems under random effects. Interest in such equations has
increased recently due to their success in describing systems that include uncertainty. The
randomness in these equations can appear in the form of uncertain parameters, random sources,
fluctuating forces and random boundary conditions and take the form of additive or multiplicative
noise. The multiplicative noise, in which the noise intensity depends on the variables of the equation,
can result from adiabatically eliminating the fast variables of a system or allowing a parameter in a
phenomenological equation of motion to be a random variable with predetermined statistics when
modeling an undulating environment or superimposed external fluctuation. The multiplicative noise
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has been considered experimentally in modeling some physical phenomena, such as liquid crystals,
electrical circuits and chemical reactions [1]. It is worth examining SEE with multiplicative noise
since they can exhibit a rich dynamical behavior, although multiplicative noise leads to analytical and
statistical difficulties. Inspired by this fact, we investigate the qualitative behavior of the following
equation with space-time multiplicative white noise:

dut + [αut + λu − ∆u − ∆ut] dt = κ (u) dt + h (u, ut,∇u) dW (x, t) , x ∈ D, t > 0, (1.1)

and initial and boundary conditions

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ D, (1.2)
u (x, t) = 0, x ∈ ∂D, t > 0. (1.3)

Here, D ⊂ Rd, d ≥ 1 is a bounded domain, W (x, t) is a Wiener process, ut and ∆ut are damping
terms, and κ (u) is a nonlinear source term. The term −∆ut (strong damping) arises in modeling the
motion of viscoelastic materials, such as transverse vibrations of a homogeneous string and
longitudinal vibrations of a homogeneous rod with viscous effects. The weak damping term αut,
with α > 0, occurs when there exists dynamical friction (for more detailed information on physical
applications, see [2]).

When h = 0, in the absence of damping terms, Eq (1.1) is a relativistic wave equation describing
propagation of spinless particles (also known as a Klein-Gordon equation). It was proposed as a
relativistic generalization of the Schrdinger equation. In 1966, Nelson derived the nonrelativistic
Schrdinger equation with a stochastic model including Newton’s second law. In [3], Lehr and Park
extended Nelson’s work to the relativistic case and derived a relativistic wave equation using elements
of stochastic mechanics. Arbab [4] showed that fluctuations of the charge densities behave as a
quantum particle governed by the Klein-Gordon equation. The Klein-Gordon equation also arises in
the modeling of dislocations in crystals and has been considered from different perspectives in
numerous papers [5–9].

For the deterministic case, in the absence of damping terms, the Cauchy problem for Eq (1.1) is
known to have solutions locally in time if κ satisfies some local Lipschitz conditions. If

∫ u

0
κ(s)ds < 0,

then all solutions associated with the Cauchy problem of the deterministic form of Eq (1.1) without
damping terms exist globally, but in some cases (for example, if κ(s) = |s|p−1 s, p > 1) there exist
solutions blowing up in a finite time [10]. A deterministic form of Eq (1.1) with damping terms is also
investigated in [5, 7, 11, 12].

The solution’s behavior for stochastic wave equations with or without damping terms has received
much attention from a mathematical viewpoint [13–23]. Chow [13] investigated local and global
solutions of the following stochastic wave equation

∂2
t v = ∇2v + f (v) + σ(v)∂tW(t, x), x ∈ Rd, t > 0,

with a polynomial nonlinearity in some Sobolev spaces for d ≤ 3. The same author also studied global
nonexistence of solutions for stochastic wave equations that have no damping terms [16,24]. Chow also
considered in [15] a stochastic weakly damped wave equation. The solution’s global existence and the
equilibrium solution’s exponential stability were proved in [15]. Moreover, the conditions providing
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the existence of a unique invariant measure were given. Wang and Zhou [25, 26] and Wang et al. [27]
considered the asymptotic behavior of solutions for the following strongly damped wave equations:

vtt − α∆vt + vt + f (v) − ∆v = g + cv ◦
dW
dt
, (1.4)

vtt − ∆vt + αvt − ∆v + λv + f (x, v) = g(x) +

m∑
j=1

h j(x)
dW j

dt
, (1.5)

dvt + dv + ( f (v) − ∆v − α∆vt) dt = gdt +

m∑
j=1

h jdW j, (1.6)

respectively. Equation (1.4) was considered on a bounded domain with multiplicative noise of the
Stratonovich sense and Dirichlet boundary condition. The asymptotic behavior of Eq (1.5) was studied
on an unbounded domain with additive noise. To tackle the lack of compact Sobolev embedding on
unbounded domains, the authors used some uniform estimates together with a splitting technique when
investigating the global attractor for Eq (1.5). Equation (1.6) was studied on a bounded domain with
Neumann boundary condition and additive noise. Jones and Wang [28] investigated the wave equation

utt + µut + βu − ∆u − ∆ut − λ∆utt + h (x, u) = ϕ (x) + σ (x)
dW (t)

dt
x ∈ Rd, t > 0, (1.7)

with both weak and strong damping. They converted the equation into a deterministic system with
random parameters. Using uniform estimates and a cut-off method, the asymptotic behavior of
solutions for the above wave equation was studied in [28]. Equation (1.7) was also studied in [29–31].
Existence, uniqueness and asymptotic robustness of pullback random attractors for (1.7) with operator
type noise was studied in [29], where the stochastic integral was taken in the sense of Stratonovich.
In [30], global existence and random dynamics of (1.7) with infinite-dimensional nonlinear noise
were handled. Some time-related features of the random attractor were investigated in [31] on an
unbounded domain. Bo et al. [22] investigated explosive solutions of the damped wave equation

vtt − ∆v + Avt = µ |v|p v + f (v, vt,Du)
∂

∂t
W(t, x), (1.8)

where a particular case of nonlinear term (α|v|pv) was taken. The Cauchy problem of (1.8) was
considered separately for weak and strong damping terms. First, the local existence results were
provided, and then the conditions ensuring the explosion of solutions were given for weak and strong
damping terms, respectively. Although it was stated that a multiplicative noise was considered, the
noise was taken as additive while examining the explosion of the solutions. Parshad et al. [19] studied
global existence and blow up of solutions for a class of nonlinearly damped stochastic wave equation.
They showed that in the case of large initial data and the domination of the source term on the
damping term, solutions of their problem blow up in finite time in the mean Lp norm. Some numerical
simulations were also performed in [19] to verify the theoretical results.

In this paper, we are concerned with blow up of solutions of (1.1) and (1.2). As in the deterministic
case, blow up means for the stochastic case that trajectories may tend to infinity when time
approaches a finite time T ∗ which mostly depends on some certain sample path [32]. This work
differs from [22] in two aspects. First, unlike [22], a general source term is used, and both strong and
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weak damping terms are handled together. Second, the noise term is taken as a multiplicative noise.
To the author’s knowledge, the blow up of solutions for the stochastic relativistic wave Eq (1.1) with a
general nonlinear term f (u) and double dissipative (damping) terms has not been investigated so far.
The proof of our main result is based on a “concavity method” which mainly defines a nonnegative
functional θ(t) that includes the L2-norms of the solution with some additional terms and does not
need the positivity of the solution.

The paper is organized as follows: In the second section, we give the notations, spaces and lemmas
to be used throughout the paper. In Section 3, we impose some conditions on nonlinear terms κ and h
to guarantee the existence of solutions in a finite time interval, and then we extend the existence to an
infinite time interval by an energy inequality. We also prove the continuous dependence of solutions
on initial data. In the fourth section, we state our main result about the blow up of the solutions for the
problems (1.1) and (1.2) via a differential inequality and provide an upper bound for the finite blow up
time.

2. Preliminaries

Let Lp (D) indicate the class of all measurable functions u on D for which
∫
D
|u (x)|p dx < ∞,

endowed with the norm ‖·‖Lp . In the case of p = 2, L2 (D) corresponds to a Hilbert space with the inner
product (·, ·), and we denote its norm by ‖·‖. Let Wm,p (D) be the m − th order Sobolev space,

Wm,p (D) = {u ∈ Lp (D) : Dαu ∈ Lp (D) , 0 ≤ |α| ≤ m} ,

furnished with the inner product and the norm given by

(u, v)m =
∑

0≤|α|≤m

(Dαu,Dαv)

and

‖u‖Wm,p(D) =

 ∑
0≤|α|≤m

‖Dαu‖p
Lp


1/p

,

respectively, where m = 1, 2, 3, .... Here, Dαu denotes the weak derivative. For p = 2, the Sobolev
space Wm,2 (D) is demonstrated by Hm (D). It is obvious that H0 = L2, and it is denoted by H. The
norm of H1

0 (D) is denoted by ‖·‖1.
Throughout the paper, we use the spaceH := H1

0 × H that is equipped with the norm

‖φ‖H =
{
‖u‖21 + ‖v‖2

}1/2

for any φ = (u, v) ∈ H .
Assume that (Ω,F , P) with a filtration {Ft, t ≥ 0} of increasing sub σ−fields is a complete

probability space. Let W (x, t) , x ∈ D, t ≥ 0 be an H−valued R−Wiener process, where R is a
covariance operator. W (x, t) has mean zero, and its covariance function is given
by EW (x, t) W (y, s) = (t ∧ s)r(x, y), where (t ∧ s) = min(t, s), r(x, y), x, y ∈ G, is a spatial correlation
function that is assumed to be bounded and continuous for bounded domains, and

∫
G

r(x, x) < ∞ for
unbounded domains G. The operator R is self-adjoint, compact and of trace class with TrR < ∞. For
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problems (1.1) and (1.2), TrR =
∫

G
r(x, x)h2(u, v,∇u)dx. Note also that R may be written in the

following form:
Rek = λkek, (2.1)

where {λk} is a bounded sequence of nonnegative eigenvalues of R satisfying
∑∞

k=1 λk < ∞, and {ek}

are the corresponding eigenfunctions with c∗ := sup
k≥1
‖ek‖∞ < ∞ forming a complete orthonormal base

in H [33]. In that case, W (x, t) may be expanded as in the following form:

W (x, t) =

∞∑
k=1

√
λkBk (t) ek,

where {Bk (t)} is a sequence of independent real-valued Brownian motions. Let us indicate that the
above series is convergent in L2 [33] since

E ‖W‖2 = E


∥∥∥∥∥∥∥
∞∑

k=1

√
λkBk (t) ek

∥∥∥∥∥∥∥
2 =

∞∑
k=1

λkE (Bk (t))2 = t
∞∑

k=1

λk = tTrR < ∞. (2.2)

Problems (1.1) and (1.3) may be treated as a system as in the following form:
du = vdt,
dv = ((−λI + ∆) u + (−αI + ∆) v + κ(u))dt + h(u, v,∇u)dW (x, t) ,
u(x, 0) = u0 (x) , ut(x, 0) = u1 (x) ,
u(x, t) = 0.

(2.3)

We notify that −∆ generates a semigroup S (t) in H that is strongly continuous. For the deterministic
case, Bahuguna [34] handled the problem (1.1), (1.2) as a particular case of the following abstract
equation:

u′′(t) + (αI + A) u′(t) + (λI + A) u(t) = κ
(
t, u(t), u′(t)

)
,

where A = −∆. As mentioned in [35] replacing the operator A by Ā = A+γI for a proper constant γ ∈ R
and rearranging the constants λ, α accordingly, it may be assumed that every complex number µ ∈ C
with Reµ > −r, r > 0, is included in the resolvent ρ(−A) of the generator −A. For the local existence
and uniqueness of mild solutions, the authors of [34] realized that, inspired by the work of Engler et
al. [35], absorbing the terms (λI + A) u and αu′(t) into the source term κ does not change the character
of the problem, and that it is adequate to study the following problem:

u′′(t) + Au′(t) = κ
(
t, u(t), u′(t)

)
,

where −A generates a strongly continuous semigroup S (t) on a Banach space E.
Without loss of generality, one may take α = λ = 1 for the sake of simplicity. Then system (2.3)

can be reduced to an Ito equation:{
dZ(t) = (ΛZ(t) + K(Z(t))) dt + Θ(Z(t))dW(t),
Z(0) = Z0 = (u0, u1)T ,

(2.4)

where

Z(t) =

(
u(t)
v(t)

)
, Λ =

(
0 I

−I + ∆ −I + ∆

)
,
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K(Z(t)) =

(
0
κ(u)

)
, Θ(Z(t)) =

(
0

h (u, v,∇u)

)
.

It is more appropriate to look for the existence of mild solutions for problem (2.4) rather than strong
solutions that require too much regularity of solution. So we define a mild solution in the following.

Remark 2.1. A mild solution is an Ft adaptedH = H1
0 × H− valued processZ (t) , t ∈ [0,T ] to (2.4)

that is predictable and satisfies the following integral equation

Z(t) = etΛZ(0) +

t∫
0

e(t−s)ΛK(Z(s))ds +

t∫
0

e(t−s)ΛΘ(Z(s))dW(s), (2.5)

where Λ is the infinitesimal generator of the semigroup
{
etΛ, t ≥ 0

}
inH .

Lemma 2.1. [36] For every (u, v) ∈ H and 1 < p ≤ d
(d−2)+ there exist constants C,C0 such that

‖u‖L2p ≤ C ‖u‖1 ,∥∥∥up−1v
∥∥∥

L2 ≤ C0 ‖u‖
p−1
1 ‖v‖1 ,

where (s)+ = max{0, s}.

Lemma 2.2. [37] Assume that a twice-differentiable, positive function Υ(t) satisfies the inequality

Υ′′(t)Υ(t) − (1 + ς)
(
Υ′(t)

)2
≥ 0,

where ς > 0. If Υ(0) > 0,Υ′(0) > 0, then Υ(t)→ ∞ as t → t∗ ≤ t∗ =
Υ(0)
ςΥ′(0) .

3. Local and global existence of solutions

Let us define the fuctional e(·) : H → R+ = [0,∞)

e(t) = ‖u‖21 + ‖v‖2 , (3.1)

where (u, v) ∈ H . Throughout the paper, “E” stands for expectation. In the following, by imposing
some conditions on nonlinear terms, we obtain local and global in time existence of solutions for
problem (2.4). We expand the local solution to the global solution, provided that the energy is bounded.

3.1. Existence of local solution

In this subsection, we will prove with the aid of a truncation technique that the solution exists locally
if f and h satisfy certain conditions. While the Ito formula performs well for parabolic equations, it
fails for the mild solutions of hyperbolic equations due to the required smoothness of solutions, so a
truncation technique is used for the proof of the following theorem.

Theorem 3.1. Assume that κ and h satisfies the following conditions:
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L1. For u1, u2 ∈ H1
0

|κ (u)|2 ≤ C1

(
1 + |u|2(p−1)

)
|u|2 ,∣∣∣∣κ (u1

)
− κ

(
u2

)∣∣∣∣2 ≤ C2

(
1 +

∣∣∣u1
∣∣∣2(p−1)

+
∣∣∣u2

∣∣∣2(p−1)
) ∣∣∣u1 − u2

∣∣∣2 ,
where C1,C2 > 0 and p > 1.

L2. p ∈ (1,∞), if d = 1, 2, and 1 < p ≤ d
(d−2)+ otherwise. Let h(·) : [0,T ] → L(H) be a continuous

map for any h : Rd+2 → R. For any u1, v1, u2, v2 ∈ R, there exist C3,C4 > 0 such that

|h (u, v,∇u)|2 ≤ C3

(
1 + |u|2p + |v|2 + |∇u|2

)
,

and∣∣∣∣h (
u1, v1,∇u1

)
− h

(
u2, v2,∇u2

)∣∣∣∣2 ≤ C4[(1+
∣∣∣u1

∣∣∣2(p−1)
+
∣∣∣u2

∣∣∣2(p−1)
)
∣∣∣u1 − u2

∣∣∣2+∣∣∣v1 − v2
∣∣∣2+∣∣∣∇u1 − ∇u2

∣∣∣2].

L3. W is a Wiener process with value in H-and with covariance operator R satisfying TrR < ∞.

In that case for u0 ∈ H1
0 and u1 ∈ H, problem (2.4) has a unique local mild solution (u, v) in the

energy spaceZ = (u, v)T ∈ C([0,T ],H).

Proof. As we stated above, the proof of the theorem relies on a truncation technique. To this end,
for N > 0 let us define a mollifier function ηN(·) : R+ = [0,∞) → [0, 1], which is a C∞ function such
that

ηN(s) =


1,

∈ (0, 1) ,
0,

|s| ≤ N,
N < |s| < N + 1,
otherwise,

(3.2)

and assume that ‖ηN‖∞ ≤ 2. Introducing

KN(Z(t)) =

(
0

κN(u)

)
, ΘN(Z(t)) =

(
0

hN (u, v,∇u)

)
,

one can write the system (2.4) as{
dZ(t) = ΛZ(t)dt + KN(Z(t))dt + ΘN(Z(t))dW(t),
Z(0) = Z0 = (u0, u1)T ,

(3.3)

where κN (u (t)) = ηN(‖u‖1)κ(u) and hN(u, v,∇u, x, t) = ηN(‖u‖1)h(u, v,∇u, x, t). Without any loss of
generality, let us assume that

∥∥∥u1
∥∥∥

1
≤

∥∥∥u2
∥∥∥

1
. Using Hlder inequality and Lemma 2.1, we obtain∥∥∥κN(u1) − κN(u2)

∥∥∥2
=

∥∥∥ηN(
∥∥∥u1

∥∥∥
1
)κ(u1) − ηN(

∥∥∥u2
∥∥∥

1
)κ(u2)

∥∥∥2

≤

∥∥∥∥(ηN

(∥∥∥u1
∥∥∥

1

)
− ηN(

∥∥∥u2
∥∥∥

1

)
κ(u1)

∥∥∥∥2

+ ηN(
∥∥∥u1

∥∥∥
1
)
∥∥∥κ(u1) − κ(u2)

∥∥∥2

≤ C5 ‖ηN‖
2
∞

∣∣∣∥∥∥u1
∥∥∥

1
−

∥∥∥u2
∥∥∥

1

∣∣∣2 (
1 +

∥∥∥u1
∥∥∥2p

2p

)
χ{‖u2‖1≤N+1}
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+ C6ηN

(∥∥∥u2
∥∥∥

1

) ∥∥∥∥∣∣∣u1 − u2
∣∣∣ (1 +

∣∣∣u1
∣∣∣p−1

+
∣∣∣u2

∣∣∣p−1
)
∥∥∥∥2

≤ C5 ‖ηN‖
2
∞

∣∣∣∥∥∥u1
∥∥∥

1
−

∥∥∥u2
∥∥∥

1

∣∣∣2 (
1 +

∥∥∥u1
∥∥∥2p

2p

)
χ{‖u2‖1≤N+1}

+ C6ηN(
∥∥∥u2

∥∥∥
1
)
∥∥∥u1 − u2

∥∥∥2

L2p

(∥∥∥u1
∥∥∥2(p−1)

L2p +
∥∥∥u2

∥∥∥2(p−1)

L2p

)
≤ 2C5C2p

∥∥∥u1 − u2
∥∥∥2

1

∥∥∥1 + u1
∥∥∥2p

1
χ{‖u2‖1≤N+1}

+ 2C6C2pηN(
∥∥∥u2

∥∥∥
1
)
∥∥∥u1 − u2

∥∥∥2

1

(∥∥∥u1
∥∥∥2(p−1)

1
+

∥∥∥u2
∥∥∥2(p−1)

1

)
≤ C7 (N, p)

∥∥∥u1 − u2
∥∥∥2

1
, (3.4)

where χB is the indicator function of B. The above inequality yields

‖KN(Z) − KN(Z′)‖2 ≤ C8(N, p) ‖Z −Z′‖2H . (3.5)

Similar to (3.4) and (3.5), we get

‖KN(Z)‖2 ≤ C9(N, p)
(
1 + ‖Z‖

2
H

)
. (3.6)

For u, v ∈ H , using Lemma 2.1 and the assumptions L2 of Theorem 3.1, we have

Tr[hN(u, v,∇u)Rh∗N(u)] =

∞∑
i=1

(hN(u, v,∇u)Rei, hN(u, v,∇u)ei)

=

∞∑
i=1

λi (hN(u, v,∇u)ei, hN(u, v,∇u)ei)

≤ C9

∞∑
i=1

λiη
2
N(‖u‖1)

∫
D

e2
i (x)[1 + |u|2p + v2 + |∇u|2]dx

≤ C9

∞∑
i=1

λiη
2
N(‖u‖1)

[
‖ei‖

2 + sup
i≥1
‖ei‖

2
∞

(
‖u‖2p

L2p + ‖v‖2 + ‖∇u‖2
)]

≤ C9

∞∑
i=1

λiη
2
N(‖u‖1)

[
1 + sup

i≥1
‖ei‖

2
∞

(
C2p ‖u‖2p

1 + ‖v‖2 + ‖∇u‖2
)]
,

which yields
Tr[ΘN(Z)RΘ∗N(Z)] ≤ C10(N, p)(1 + ‖Z‖

2
H ). (3.7)

Similar to the above computations, we get

Tr
[(

hN(u1, v1,∇u1) − hN(u2, v2,∇u2)
)

R
(
hN(u1, v1,∇u1) − hN(u2, v2,∇u2)

)∗]
=

∞∑
i=1

λi

∥∥∥∥(hN(u1, v1,∇u1) − hN(u2, v2,∇u2)
)

ei

∥∥∥∥2

≤2
∞∑

i=1

λi

∥∥∥∥(ηN(
∥∥∥u1

∥∥∥
1
) − ηN(

∥∥∥u2
∥∥∥

1
)
)

h(u1, v1,∇u1)ei

∥∥∥∥2
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+ 2ηN(
∥∥∥u2

∥∥∥
1
) sup

i≥1
‖ei‖

2
∞ TrR

∥∥∥h(u1, v1,∇u1) − h(u2, v2,∇u2)
∥∥∥2

≤ 8λi

∥∥∥u1 − u2
∥∥∥2

1

∥∥∥h(u1, v1,∇u1)ei

∥∥∥2
χ{‖u2‖1≤N+1} + C11 sup

i≥1
‖ei‖

2
∞ TrRηN(

∥∥∥u2
∥∥∥

1
)
[
‖u1 − u2

∥∥∥2

+
∥∥∥∥∣∣∣u1

∣∣∣p−1 ∣∣∣u1 − u2
∣∣∣∥∥∥∥2

+
∥∥∥∥∣∣∣u2

∣∣∣p−1 ∣∣∣u1 − u2
∣∣∣∥∥∥∥2

+
∥∥∥v1 − v2

∥∥∥2
+

∥∥∥∇u1 − ∇u2
∥∥∥2

]
,

from which we conclude that

Tr
[(

ΘN(Z) − ΘN(Z′)
)

R
(
ΘN(Z) − ΘN(Z′)

)∗]
≤ C12(N, p) ‖Z −Z′‖2H . (3.8)

The results obtained in (3.5)–(3.8) shows that the truncated system (3.3) fulfills the linear growth
and global Lipschitz condition. Thus, we deduce from Theorem 7.2 of [33] that the truncated
system (3.3) has a unique mild solution ZN = (uN , vN) ∈ H (uN := ηN(‖u‖1)u, vN := ηN(‖u‖1)v)
for t ∈ [0,T ]. If there exists t > 0, such that ‖uN‖1 > N for fixed number N, then we define a stopping
time τN as

τN = inf {t ≥ 0 : ‖uN‖1 ≥ N} .

Subsequently, for t < τN , Z = ZN is the solution of (3.3). Since τN is nondecreasing in N, we can
define ζ = lim

N→∞
τN a.s. For t < ζ, we have t < τN for some N > 0 and define the solution u = uN .

Moreover, lim
t→ζ
‖u‖1 = ∞ if ζ < τ and therefore u is the unique local solution.

3.2. Extending the local solution to the global solution

In this subsection, we construct a uniform bound on the functional defined as

ek(t) = e(t) + 2k ‖u‖p+1
p+1 ,

to prevent the unlimited growth of a solution.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 holds, and let us define Υ(u) = −
∫ u

0
κ(s)ds

that satisfies for any β > 0
Υ(u) ≥

(
β + k |u|2p

)
|u|2 . (3.9)

Then, under the above assumptions for any T > 0, problem (2.4) has a unique continuous solution Z
that satisfies

E sup
0≤t≤T

ek(t) < ∞. (3.10)

Proof. To extend the local solution to a global one, we should first prove that for any finite time T > 0,
there is a constant CT depending on T , so that

Eek(u(t ∧ τN)) ≤ CT , (3.11)

where u(t ∧ τN) denotes the value of u = uN at time t ∧ τN . Applying the Ito formula (Theorem 4.32
of [33]) gives

e(u(t ∧ τN)) + 2
∫ t∧τN

0
‖v(s)‖2ds+2

∫ t∧τN

0
‖∇v(s)‖2ds
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= 2
∫
D

Υ(u(t ∧ τN))dx − 2
∫
D

Υ(u(0))dx + e(u0)

+ 2
∫ t∧τN

0
(v, hdW)ds +

∫ t∧τN

0
Tr[hRh∗]ds. (3.12)

Employing Υ(u) ≥
(
β + k |u|2p

)
|u|2, we have

ek(u(t∧τN))+β ‖u(t ∧ τN)‖2 ≤ e(u0)−2
∫
D

Υ(u(0))dx+2
∫ t∧τN

0
(v, hdW)ds+

∫ t∧τN

0
Tr[hRh∗]ds. (3.13)

Using the properties of the covariance operator R, we get

t∫
0

Tr[hRh∗]ds =

∞∑
i=1

t∫
0

(hRei, hei) ds ≤ c2
∗TrR

t∫
0

‖h‖2 ds. (3.14)

The above inequality together with (3.13) yields

ek(u(t ∧ τN)) + β ‖u(t ∧ τN)‖2 ≤ e(u0) − 2
∫
D

Υ(u(0))dx

+ 2
∫ t∧τN

0
(v, hdW)ds + Ct + M

∫ t∧τN

0
ek(u(t ∧ τN))ds, (3.15)

where C and M are constants. Considering positivity of β and taking the expected value of both sides
of (3.15), we have

Eek(u(t ∧ τN)) ≤ Ee(u0) − 2E
∫
D

Υ(u(0))dx + Ct + ME
∫ t∧τN

0
ek(u(t ∧ τN))ds. (3.16)

Now, using L1 of Theorem 3.1, we have∣∣∣∣∣∫
D

Υ(u(0))dx
∣∣∣∣∣ =

∣∣∣∣∣∫
D

∫ u

0
κ(s)dsdx

∣∣∣∣∣ ≤ C ‖u‖p+1
≤ ‖u‖p+1

1 < ∞.

Taking into account the above inequality and applying the integral version of Gronwall’s lemma
to (3.16), we get

Eek(u(t ∧ τN)) ≤
(
Eek (u0) + 2E

∫
D

Υ(u(0))dx + CT
)

eMT ≤ CT . (3.17)

Now, we should prove that as N → ∞, ZN(t) = Z(t ∧ τN) → Z(t) a.s. for any t ≤ T . To accomplish
this, it is sufficient to demonstrate that τN → ∞ whenever N → ∞ with a probability of one. To this
end, we will make use of the Borel-Cantelli lemma. By definition of τN , one can write

Eek(u(t ∧ τN)) ≥ E {`(τN ≤ T )ek(u (t ∧ τN))}

≥ E
{
‖u‖21 `(τN ≤ T )

}
≥ N2P {τN ≤ T } ,
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where ` stands for indicator function. If the inequality (3.11) holds, then we obtain

P {τN ≤ T } ≤ Eek(u(t ∧ τN))/N2 ≤ CT/N2.

Making use of the Borel-Cantelli lemma, we come to the following conclusion

P {ζ ≤ T } = 0,

and, consequently, P {ζ > T } = 1, i.e., ζ = lim
N→∞

τN = ∞ a.s. In this way, lim
N→∞

uN = u is the global

solution on
[
ζ ∧ T

]
, as claimed.

To confirm the bound (3.10) for the energy, for N → ∞ we take the limit in (3.12)

e(u(t)) + 2

t∫
0

‖v (s)‖2 ds + 2

t∫
0

‖∇v (s)‖2 ds =e(u0) + 2
∫
D

Υ(u(t))dx + 2
∫
D

Υ(u(0))dx

+ 2

t∫
0

(v, hdW)ds +

t∫
0

Tr[h(u, v)Rh∗(u, v)]ds.

Taking the expectation in the above inequality and using (3.9) gives

E sup
0≤t≤T

ek(u(t) ≤ Ee(u0) + 2E
∫
D

Υ(u0)dx + 2E sup
0≤t≤T

t∫
0

(v, hdW)ds + E

t∫
0

Tr[h(u, v)Rh∗(u, v)]ds.

(3.18)

The first and second terms of r.h.s. of (3.18) are finite, i.e., Ee(u0) < ∞ , 2E
∫

Υ(u0)dx < ∞. The

term
t∫

0
(v, hdW)ds on the r.h.s. of (3.18) is a local martingale, for an estimation of its supremum, we

use Burkholder-Davis-Gundy inequality. For any constants M0,M1 > 0, we have

E sup
0≤t≤T

∣∣∣∣∣∣∣∣
t∫

0

(v, hdW)ds

∣∣∣∣∣∣∣∣ ≤ M0E

 sup
0≤t≤T

‖v‖2


t∫

0

Tr[h(u, v)Rh∗(u, v)]ds


1/2

≤
1
2

E
[

sup
0≤t≤T

‖v‖2
]

+ M0E

t∫
0

Tr[h(u, v)Rh∗(u, v)]ds

≤ E
[

sup
0≤t≤T

1
2
‖v‖2

]
+ M1.

where use was made of (3.14). Using the above inequality in (3.18), we get

E sup
0≤t≤T

ek(u(t)) ≤ M2 + M3

t∫
0

E sup
0≤t≤T

ek(u(t))ds, (3.19)
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which, together with the Gronwall inequality, yields

E sup
0≤t≤T

ek(u(t)) ≤ M2eM3T ,

where M2,M3 > 0. From the above inequality, we conclude that

E sup
0≤t≤T

ek(t) < ∞.

This finishes the proof.

Remark 3.1. We should point out that the inequality (3.10) given in the global existence theorem is
the key point to avoid the unlimited growth, that is, in the absence of this inequality, the solution will
cease to exist, i.e., blows up in a finite time.

3.3. Continuous dependence on initial data

The quality of mathematical models is measured by how well they fit the physical phenomena they
model. When a physical process is described (modeled) with the initial and/or boundary value problem
of a PDE, it is desirable that any errors made in the measurement of the initial data do not affect the
solution too much. This is because the solution with incorrect initial data may not be close enough to
the real solution to predict the behavior of the problem. Mathematically, this is known as the continuous
dependence of the solution of an initial and/or boundary value problem on the data.

In this section, we investigate the continuous dependence of the solution for problems (1.1)
and (1.2). To this end, we pick up two solutions u and w with any two initial data (u1

0, u
1
1) and (u2

0, u
2
1)

for problems (1.1) and (1.2). Let V = u − w, and V0 (x) = u1
0 (x) − u2

0 (x), V1 (x) = u1
1 (x) − u2

1 (x) and
Ṽ = (V0,V1)T . Let us also define κ∗ (V) = κ (u) − κ (w) , h∗ (V,Vt,∇V) = h (u, ut,∇u) − h (w,wt,∇w).
Then, the following theorem can be stated.

Theorem 3.3. Let the initial datum (V(0),Vt(0)) ∈ H . Assume that for κ and h, (3.4)–(3.8) are satisfied
with the same constants. Let V(t) be the unique mild solution of

dVt + [αVt + λV − ∆V − ∆Vt] dt = κ∗ (V) dt + h∗ (V,Vt,∇V) dW (x, t) x ∈ Rd, t > 0, (3.20)
V (x, 0) = V0(x), Vt (x, 0) = V1(x). (3.21)

Then,
E ‖V(t ∧ τ)‖2H ≤ CE

∥∥∥Ṽ
∥∥∥2

H
, (3.22)

where τ is the stopping time defined by

τ(·) = inf
{
t > 0; ‖u(t, ·)‖21 ≥ 2 ‖u0‖

2
1 or ‖v(t, ·)‖21 ≥ 2 ‖u1‖

2
1

}
. (3.23)

Proof. Let u and w be two different solutions of problems (1.1) and (1.2) with V = u − w . Without
loss of generality we may take α = λ = 1. Multiplying (3.20) by Vt, using Ito’s formula and taking
expectation, we get

d
[
E ‖Vt(t ∧ τ)‖2 + E ‖V(t ∧ τ)‖21

]
=2E (κ∗ (V(t ∧ τ)) ,Vt(t ∧ τ)) dt
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+2
[
E ‖h∗ (V(t ∧ τ),Vt(t ∧ τ),∇V(t ∧ τ))‖2 − E ‖Vt(t ∧ τ)‖21

]
dt.
(3.24)

Conditions (3.4)–(3.8) imposed on nonlinear terms yield estimates for the right hand side of (3.24)

(κ∗ (V(t ∧ τ)) ,Vt(t ∧ τ)) ≤ C
(
1 + |u(t ∧ τ)|p−1 + |w(t ∧ τ)|p−1

)
‖V(t ∧ τ)‖2 ‖Vt(t ∧ τ)‖ (3.25)

≤ C (‖V(t ∧ τ)‖1 + ‖Vt(t ∧ τ)‖) , (3.26)

and

‖h∗ (V(t ∧ τ),Vt(t ∧ τ),∇V(t ∧ τ))‖2 ≤ C
(
‖V(t ∧ τ)‖21 + ‖Vt(t ∧ τ)‖2

)
. (3.27)

which yields

d
dt

[
E ‖Vt(t ∧ τ)‖2 + E ‖V(t ∧ τ)‖21

]
+ 2E ‖Vt(t ∧ τ)‖21 ≤ C

(
E ‖V(t ∧ τ)‖21 + E ‖Vt(t ∧ τ)‖2

)
, (3.28)

and hence
d
dt

[
E ‖Vt(t ∧ τ)‖2 + E ‖V(t ∧ τ)‖21

]
≤ C

(
E ‖V(t ∧ τ)‖21 + E ‖Vt(t ∧ τ)‖2

)
. (3.29)

The required result is obtained by integrating the above inequality, which completes the proof.

4. Blow up of solutions

In this section, we discuss the solutions growing with no boundary in a finite time interval to the
problems (1.1)–(1.3) or equivalently problem (2.4) (i.e., as t ↑ T∗, E ‖u‖ → ∞), which is a type
of singularity. Such behaviors have physical meaning in thermal runaway problems, accumulation of
shock waves, etc. One of the methods used to prove the blow up of solutions is Levine’s concavity
method, which mainly depends on concavity of a nonnegative, twice differentiable function Ψ = [θ]−α.
Demonstrating the concavity of Ψ is actually equivalent to demonstrating the existence of the following
differential inequality

θ (t) θ′′ (t) − β
[
θ′ (t)

]2
≥ 0, t ≥ 0, β > 1.

Then, under the conditions, θ(0) > 0 and θ′(0) > 0, Ψ decays to zero in a finite time T∗ =
θ(0)

(β−1)θ′(0) ,
i.e., θ → ∞. The function θ usually contains the L2 norms of the solution and some additional terms
depending on the equation studied.

In the following, will give some assumptions concerning initial data and noise intensity to ensure
the blow up of solutions. The proof of the blow up theorem will be performed with an energy bound
and the concavity method.

The energy equation related with (1.1) is

E (t) =
1
2
‖v (t)‖2 +

1
2
‖u (t)‖2 +

1
2
‖∇u (t)‖2 −

∫
D

Ψ (u (t)) dx. (4.1)

where Ψ (u) =
∫ u

0
κ (s) ds.

The following lemma provides an energy bound that is indispensable for the proof of the main
result.
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Lemma 4.1. Assume that (u, v) is the unique pair of mild solution of problem (2.4) with values in H1

and H. Then the followings are satisfied:

EE (t) ≤ EE (0) − E
∫ t

0
‖v‖21 ds +

1
2

c2
∗TrR

∫ t

0

∫
D

h2dxds, (4.2)

and

E (u, v) = E (u0, u1) + E
∫ t

0
‖v‖2 ds −

1
2

E ‖u‖21 − E
∫ t

0
‖u‖21 ds +

1
2

E ‖u0‖
2
1 + E

∫ t

0
(u, κ (u)) ds. (4.3)

Proof. We make use of the Ito formula for ‖v‖2 to get control of EE (t)

‖v‖2 = ‖u1‖
2 + 2

∫ t

0
(v, dv) +

∫ t

0
(dv, dv)

= ‖u1‖
2
− 2

∫ t

0
(∇u,∇v) ds − 2

∫ t

0
‖v‖2 ds − 2

∫ t

0
(u, v) ds − 2

∫ t

0
‖∇v‖2 ds

+ 2
∫ t

0
(v, κ) ds + 2

∫ t

0
(v, hdW) +

∞∑
k=1

∫ t

0
(hRek, hek) ds. (4.4)

By direct computation, we get

2
∫ t

0
(u, v) ds = ‖u‖2 − ‖u0‖

2 , (4.5)

2
∫ t

0
(∇u,∇v) ds = ‖∇u‖2 − ‖∇u0‖

2 , (4.6)

and

2
∫ t

0
(v, κ) ds = 2

∫
Rd

(Ψ (u) − Ψ (u0)) dx. (4.7)

Employing (4.5)–(4.7) and (2.1) in (4.4) yield

‖v‖2 = 2E (0) − ‖∇u‖2 − 2
∫ t

0
‖v‖2 ds − ‖u‖2 + 2

∫
D

Ψ (u) dx − 2
∫ t

0
‖∇v‖2 ds

+ 2
∫ t

0
(v, hdW) +

∞∑
k=1

λk

∫ t

0

∫
D

h2e2
k (x) dxds. (4.8)

By introducing c∗ := sup
k≥1
‖ek‖∞ < ∞ (where ‖.‖∞ stands for the super-norm), keeping in mind

that TrR =
∑∞

k=1 λk and taking the expectation in (4.8), (4.2) can be deduced.
Now it’s time to prove (4.3). Let us assume that (u, v) is a global mild solution of problem (2.4),

then for each k ≥ 1, both of {(u (t) , ẽk) ; t ≥ 0} and {(v (t) , ẽk) ; t ≥ 0} are {Ft}t≥0 adapted and the first
one is a continuous process of finite variation while the second one is a continuous semi-martingale,
where {̃ek}k≥1 is an orthonormal base of L2. Then, by the Ito formula

(u (t) , ẽk) (v (t) , ẽk) = (u0, ẽk) (u1, ẽk) +

∫ t

0
(u (t) , ẽk) d (v (t) , ẽk) +

∫ t

0
(v (t) , ẽk) d (u (t) , ẽk) ,
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from which we have

(u, v) = (u0, u1) +

∫ t

0
(u, dv) +

∫ t

0
(v, du)

= (u0, u1) −
1
2
‖u‖21 +

1
2
‖u0‖

2
1 −

∫ t

0
‖u‖2 ds −

∫ t

0
‖∇u‖2 ds

+

∫ t

0
‖v‖2 ds +

∫ t

0
(u, κ) ds +

∫ t

0
(u, hdW) . (4.9)

Taking the expectation in (4.9) gives the desired identity.

For the proof of the main theorem, we impose the following condition on h instead of condition (L2).

L4. Let h : Rd+2 → R be a continuous function and satisfies

‖h (u, v,∇u)‖2 ≤
η

(2η + 1) c2
∗TrR

‖v‖21 , (4.10)

where η is a positive constant.

Let us define for any t < T ,

Ξ (t) := E ‖u‖2 + E

t∫
0

‖u‖21 ds + (T − t) E ‖u0‖
2
1 + γ (t + µ)2 , (4.11)

where γ and µ are positive parameters that are appropriately chosen in the proof of the blow up theorem.
Then by Lemmas 4.1, 4.5 and 4.6, we get

Ξ′ (t) =2E (u, v) + E ‖u‖21 − E ‖u0‖
2
1 + 2γ (t + µ)

=2E (u, v) + 2E

t∫
0

(u, v)1 ds + 2γ (t + µ)

=2E (u0, u1) − 2E

t∫
0

‖u‖21 ds + 2E

t∫
0

(u, κ (u)) ds + 2E

t∫
0

‖v‖2 ds + 2γ (t + µ) , (4.12)

and taking the inner product of (1.1) by u (t), we obtain

Ξ′′ (t) = 2E (u, vt) + 2E ‖v‖2 + 2E (u, v)1 + 2γ
= −2E ‖u‖21 + 2E (u, κ (u)) + 2E ‖v‖2 + 2γ.

Theorem 4.1. Assume that conditions (L1), (L2) and (L4) are fulfilled, and that for (u0, u1) ∈ H
problems (1.1)–(1.3) or (2.4) have a unique local mild solution u ∈ H1 with ut ∈ H. Then, under the
following conditions,

(i) (u, κ (u)) ≥ 2 (2η + 1) (Ψ (u) , 1) , where η > 0 and (Ψ (u) , 1) =
∫
D

Ψ (u (x)) dx.
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(ii) 2 (Ψ (u0) , 1) − γ ≥ (u0, u0)1 + (u1, u1) +

(
1 +

1
2η + 1

) t∫
0

(u1, u1)1 ds.

The solution u exists only in a finite time interval (0,T ∗) such that

lim
t→T ∗−

E ‖u‖2 + E

t∫
0

‖u‖21 ds

 = +∞.

Furthermore, the finite time T ∗ can be estimated from above by

T ∗ ≤ 4ηγ−1
[
S +

(
S 2 + 4η2γE ‖u0‖

2
)1/2

]
,

where S and γ are given in the proof.

Proof. For the proof of the theorem, let us define

Φ (t) = Ξ−η (t) ,

for any η > 0. By direct computation, we have

Φ′ (t) = −ηΞ−(η+1)Ξ′ (t) ,

Φ′′ (t) = −ηΞ−(η+2) (t)
{
Ξ (t) Ξ′′ (t) − (η + 1)

[
Ξ′ (t)

]2
}
.

By aid of the above computations on Ξ (t) , we can write the bracketed statement on the right hand side
of the above equality as follows:

Ξ (t) Ξ′′ (t) − (η + 1)
[
Ξ′ (t)

]2
= 2Ξ (t)

[
E ‖v‖2 − E ‖u‖21 + E

∫
D

uκ (u) dx + γ

]

− 4 (η + 1)

E (u, v) + E

t∫
0

(u, v)1 ds + γ (t + µ)2


2

. (4.13)

Employing Schwarz, Hölder and Young inequalities yield

E (u, v) ≤ E ‖u‖ E ‖v‖ ,E

t∫
0

(u, v)1 ds


2

≤

E

t∫
0

‖u‖21 ds


E

t∫
0

‖v‖21 ds

 ,

2E (u, v)

E

t∫
0

(u, v)1 ds

 ≤ 2E ‖u‖ E ‖v‖

E

t∫
0

‖u‖21 ds


1/2 E

t∫
0

‖v‖21 ds


1/2

,

≤ E ‖u‖2 E

t∫
0

‖v‖21 ds + E ‖v‖2 E

t∫
0

‖u‖21 ds,
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from which we deduce that

Ξ (t) Ξ′′ (t) − (η + 1)
[
Ξ′ (t)

]2
≥ 2Ξ (t) Ξ′′ (t)

− 4 (η + 1)

E ‖u‖2 + E

t∫
0

‖u‖21 ds + γ (t + µ)2


E ‖v‖2 + E

t∫
0

‖v‖21 ds + γ


=2Ξ (t) Ξ′′ (t) − 4 (η + 1)

(
Ξ (t) − (T − t) E ‖u0‖

2
1

) E ‖v‖2 + E

t∫
0

‖v‖21 ds + γ

 .
(4.14)

By the positivity of the term −
[
− (T − t) E ‖u0‖

2
1

] E ‖v‖2 + E

t∫
0

‖v‖21 ds

, inequality (4.14) turns into

Ξ (t) Ξ′′ (t) − (η + 1)
[
Ξ′ (t)

]2
≥ 2Ξ (t)

[
E

∫
D

uκ (u) dx − E ‖u‖21 − (2η + 1) E ‖v‖2

−2 (η + 1) E

t∫
0

‖v‖21 ds − γ (2η + 1)

 .
Let

J (t) := E (u, κ (u)) − E ‖u‖21 − (2η + 1) E ‖v‖2 − 2 (η + 1) E

t∫
0

‖v‖21 ds − γ (2η + 1) . (4.15)

Next, we prove that J (t) ≥ 0. For this purpose, we differentiate (4.15)

dJ (t)
dt

=
d
dt

E (u, κ (u)) − 2E (u, v)1 − 2 (2η + 1) E (v, vt) − 2 (η + 1) E ‖v‖21

=
d
dt

E (u, κ (u)) − 2E (u, v)1 − 2 (2η + 1)
[
−E (u, v)1 − E ‖v‖21 + E (v, κ (u))

+E
∞∑

k=1

λk

∫
D

h2e2
kdxds

 − 2 (η + 1) E ‖v‖21

=
d
dt

E (u, κ (u)) + 4ηE (u, v)1 + 2ηE ‖v‖21

− 2 (2η + 1) E (v, κ (u)) − 2 (2η + 1) E
∞∑

k=1

λk

∫
D

h2e2
kdxds, (4.16)

where use was made of

E

t∫
0

(v, vt) ds = −E

t∫
0

‖v‖2 ds − E

t∫
0

(u, v)1 ds − E

t∫
0

‖∇v‖2 ds
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+ E

t∫
0

(v, κ (u)) ds + E
∞∑

k=1

λk

t∫
0

∫
D

h2e2
kdxds.

Integrating (4.16) from 0 to t yields

J (t) = J (0) + E (u, κ (u)) − E (u0, κ (u0)) + 2η
(
E ‖u‖21 − E ‖u0‖

2
1

)
− 2 (2η + 1) E

∫
D

(Ψ (u) − Ψ (u0)) dx − 2 (2η + 1) E
∞∑

k=1

λk

t∫
0

∫
D

h2e2
kdxds

+ 2ηE

t∫
0

‖v‖21 ds.

Using the assumption (i) of the theorem, c∗ := sup
k≥1
‖ek‖∞ < ∞, and TrR =

∑∞
k=1 λk, we have

J (t) ≥ J (0) − E (u0, κ (u0)) + 2 (2η + 1)
∫
D

Ψ (u0) dx − 2ηE ‖u0‖
2
1 + 2ηE

t∫
0

‖v‖21 ds

− 2 (2η + 1) c2
∗TrR

t∫
0

∫
D

h2 (s, x) dxds

= − (2η + 1) E ‖u0‖
2
1 − (2η + 1) E ‖u1‖

2 + 2ηE

t∫
0

‖v‖21 ds + 2 (2η + 1)
∫
D

Ψ (u0) dx

− 2 (η + 1) E

t∫
0

‖u1‖
2
1 ds − 2 (2η + 1) c2

∗TrR

t∫
0

∫
D

h2 (s, x) dxds − γ (2η + 1) .

Then by (4.10) and presumption (ii) of the theorem, we get J (t) ≥ 0, for all t ≥ 0, which results in

Ξ (t) Ξ′′ (t) − (Ξ + 1)
[
Ξ′ (t)

]2
≥ 0,

for any

γ ∈

0, 2E
∫
D

Ψ (u0) dx − E ‖u1‖
2
− E ‖u0‖

2
1 −

(
1 +

1
2η + 1

)
E

t∫
0

‖u1‖
2
1 ds

 . (4.17)

Moreover,
Ξ (0) = E ‖u0‖

2 + T E ‖u0‖
2
1 + γµ2 ≥ 0,

and
Ξ′ (0) = 2E (u0, u1) + 2γµ ≥ 0,

where µ is chosen as

µ > max
{

0,
E (u0, u1)

γ

}
, (4.18)
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and γ satisfies (4.17). Then since

(Φ (t))′′ = −ηΞ−η−2 (t)
[
Ξ (t) Ξ′′ (t) − (η + 1)

[
Ξ′ (t)

]2
]
≤ 0,

one conclude that Φ would be concave for Ξ (t) , 0. In this way, if Ξ (0) , 0, then as a consequence of
concavity Ξ−η (t) ≤ Ξ−η (0) − ηtΞ′ (0) Ξ−η−1 (0). Thus, we have

Ξη (t) ≥ Ξη+1 (0)
[
Ξ (0) − ηtΞ′ (0)

]−1 ,

which shows that all the requirements of Theorem 2.2 are satisfied and as t ↑ T ∗−(≤ Ξ (0) / (ηΞ′ (0))),
Ξ (t)→ ∞.

Now, we will estimate the upper bound for the blow up time. To this end, we should choose
appropriate µ and T . Let µ be any number satisfying (4.18). As a consequence of blow up result T can
be chosen as

T =
E ‖u0‖

2 + γµ2

2ηE (u0, u1) − E ‖u0‖
2
1 + 2ηγµ

= T (γ, µ). (4.19)

By a simple computation, it can be shown that T (γ, µ) has a minimum value of

T = min
µ>0

T (γ, µ) = T (γ, µ0) = 4ηγ−1
[
S +

(
S 2 + 4η2γE ‖u0‖

2
)1/2

]
, (4.20)

for
µ0 = (2ηγ)−1

[
S +

(
S 2 + 4η2γE ‖u0‖

2
)1/2

]
,

on the interval ( E‖u0‖
2
1−2ηE(u0,u1)

2ηγ ,+∞), where S = E ‖u0‖
2
1 − 2ηE (u0, u1). So, the lifespan T ∗ is bounded

by

T ∗ ≤ 4ηγ−1
[
S +

(
S 2 + 4η2γE ‖u0‖

2
)1/2

]
.

4.1. An example

In this subsection, we take some particular functions to check our assumptions. Without loss of
generality one may takeD =

{
x = (x1, x2) ∈ R2 | x1 > 0

}
. Let us consider the following equation

dut + [αut + λu − ∆u − ∆ut] dt = aupdt + h0 tan−1
(
1 + |u|2p + |∇u|2 + |v|2

)
e−btdW (x, t) , t > 0, x ∈ D,

(4.21)
with initial and boundary conditions

u (x, 0) =
δ

1 + |x|2
, ut (x, 0) =

1
1 + |x|2

, x ∈ D, (4.22)

u (x, t) |x1=0 = 0, t > 0. (4.23)

where W(x, t) stands for a Wiener random field that has covariance function r(x, y) = r0 exp{−σ(x·y)}
for x, y ∈ D, p is an integer, x · y = x1y1 + x2y2, and a, b, δ, σ, h0, r0 are positive constants.

Now, it’s time to meet the conditions (i) and (ii) of Theorem 4.1. A direct computation yields

(u, κ(u)) = a
∫
D

up+1dx, (4.24)
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Ψ(u) = a
∫ u

0
sp+1ds =

a
p + 1

up+1, (4.25)

and
(Ψ(u), 1) =

a
p + 1

∫
D

up+1dx. (4.26)

Combining (4.24) and (4.26), one can conclude that the condition (i) is satisfied for appropriately
chosen p and η. For (ii), let us compute a number of integrals for H1 norms of initial data.

‖u0‖
2 = δ

∫
D

dx(
1 + |x|2

) =
δπ

2
, ‖u1‖

2 =

∫
D

dx(
1 + |x|2

) =
π

2
, (4.27)

‖∇u0‖
2 = 4δ2

∫
D

|x|2(
1 + |x|2

)4 dx =
π

3
δ2, ‖∇u1‖

2 = 4
∫
D

|x|2(
1 + |x|2

)4 dx =
π

3
, (4.28)

(Ψ (u0) , 1) =
a

p + 1

∫
D

(
δ

1 + |x|2

)p+1

dx =
aπδp+1

2p(p + 1)
. (4.29)

Inserting (4.27)–(4.29) in (ii), one can see that condition (ii) is also satisfied for an appropriate a,
and the solution of problems (1.1)–(1.3) blow up in a finite time.

5. Conclusions

In the present work, we examined the qualitative behavior of solutions for a stochastic relativistic
wave equation driven by a multiplicative Gaussian white noise. We can summarize our results as
follows. We first provided the necessary conditions (Lipschitz continuity of nonlinear terms κ and h and
linear growth estimates for these nonlinear terms) for a solution to exist in a small time interval (0,T ],
and then gave the requirements for extending this solution to an infinite time interval (0,∞). We also
investigated the continuous dependency of solutions on the initial data. Finally, we examined the blow
up of solutions in a finite time, which is the main purpose of this study. The interaction of the source
term, damping terms and noise intensity specify the behavior of the solutions for problems (1.1)–(1.3).
When the noise intensity vanishes (h = 0, the deterministic case), the domination of damping terms on
source term guarantees the global in-time solutions. For this result to be valid for Eq (1.1), the noise
density should be large. As the results reveal, if the source term κ dominates the damping terms, and
the noise intensity is less than or equal to H1 norm of the damping terms (condition (4.10)), then a
small noise cannot prevent the explosion.
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