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1. Introduction

In today’s world, the mathematical modeling and manipulation of various kinds of uncertainties
has turned into an increasingly important issue in solving complex problems in a variety of fields
such as engineering, economics, environmental science, medicine, and social sciences. Although
probability theory, fuzzy set theory [1], rough set theory [2], and interval mathematics [3], and so
on are well-known and effective tools for dealing with ambiguity and uncertainty, each has its own set
of limitations; one of a common major weakness among these mathematical techniques is the limitation
of parametrization tools.

Molodtsov [4], in 1999, originated the soft set theory as is a mathematical tool for dealing with
uncertainty which is free of the challenges related with the earlier mentioned theories. Soft sets were
presented as a collection of parameterized possibilities of a universe. The principle of soft set theory
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is based on the idea of parameterization, which suggests that complex objects should be perceived
from myriad aspects and each solo facet only provide a partial and approximate description of the
whole entity (see, [5]). This leads to the rapid growth of soft set theory and its relevant areas in a
short amount of time (see, [6–8]). This development of soft sets is not free from real life applications
(see, [9–12]).

Multiple researchers have applied soft set theory to various mathematical structures like soft
group theory [13], soft ring theory [14], soft category theory [15], soft topology [16, 17], infra-soft
topology [18], supra-soft topology [19, 20], etc. In the frame of soft topologies, it has been studied
the concepts and properties related to soft separation axioms [21, 22] and extensions of soft open
sets [23–25] amply. Hybridized (mixed) methods were developed to address more complex real-world
problems in various disciplines. Dubois and Prade [26] were the first to mix fuzzy and rough set
theories. In this fashion many generalizations of soft sets appeared in the literature (see, [27–31]).

The concept information structure is useful for stochastic control with partial observations and
necessary for control of networked stochastic systems. The term information structure was first
appeared by Witsenhausen in [32] and Marschak and Radner [33], pages 47–49. The information
structure based on partitions offers a fairly simple illustration of how information spreads through a
series of increasingly finer partitions. However, in a general probabilistic context, this structure is
insufficient to explain the spread of information. The set of probable events is actually much richer
than the set of partitions. Determining a structure of events as well as partitions is therefore essential.
Filtration describes the pattern of events that defines the spread of knowledge. But in the discrete case,
particularly finite, information structure and filtration have the same meaning.

The idea behind filtration is to identify all known events at any particular time. It is assumed that
each dealing instant t can be associated with a σ-algebra of events Σt ⊆ Σ composed of all events
known previous to or at time t. It is believed that events are never “forgotten”, i.e. Σt ⊆ Σs, if t < s.
As a result, a time ordering is formed. This ordering is created by an increasing chain of σ-algebras,
each of which corresponds to the time when all of its events are known. This is a filtration process. A
filtration, denoted as {Σt}, is thus an increasing series of all σ-algebras. Each is linked with an instant
t. In some other resources, an information structure on a simple space is considered a σ-algebra of
events (see, [34])

A σ-algebra on a universal (crisp) set is crucial for the growth of several disciplines, including
mathematical analysis, probability theory, dynamical systems and statistical information theory. The
concept of σ-algebras in the context of soft set theory was introduced by Khameneh and Kilicman [35].
They studied some basic properties of softσ-algebras. Some other basic properties of this concept were
mentioned in [36]. Various properties and relations of soft σ-algebras remain untouched. Thence, we
further study this concept and establish a general construction for producing soft σ-algebras. The
construction helps us to study the properties of soft σ-algebras by means of properties of crisp σ-
algebras.

The content of the paper is arranged as follows: We present an overview of the literature on soft set
theory and probability theory in Section 2. Section 3 focuses on the study of soft σ-algebras, along
with some operations. Section 4 establishes two formulas to find the relationships between crisp and
soft σ-algebras. Section 5 provides some applications of soft σ-algebras in information structures.
Section 6 ends the work with a brief conclusion.
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2. Preliminaries

Let X be an initial universe, A be a set of parameters, and P(X) denote the set of all subsets of X.

Definition 2.1. [4] Let F : W → P(X) be a set-valued mapping and let W ⊆ A. An order pair
(F,W) = {(w, F(w)) : w ∈W} is said to be the soft set over X.

A soft set over X is considered as a parameterized class of subsets of X. The family of all soft
subsets of X with the parametric set A (resp. W) is denoted by S A(X) (resp. SW(X)).

Remark 2.1. The soft set (F,W) can be easily extended to the soft set (F, A) by giving F(w) = ∅ for
each w ∈ A −W.

Definition 2.2. [7] The soft complement (F,W)c of a soft set (F,W) is a soft set (Fc,W), where
Fc :W→ P(X) is a mapping having the property that Fc(w) = X − F(w) for all w ∈W.

Notice that ((F,W)c)c = (F,W).

Definition 2.3. [37] A soft set (F,W) over X is called null with respect toW, ΦW, if F(w) = ∅ for all
w ∈W and is called absolute with respect toW, XW, if F(w) = X for all w ∈W. The null and absolute
soft sets are respectively denoted by ΦA and XA.

Evidently, Φc
A = XA and Xc

A = ΦA.

Definition 2.4. [38] A soft set (F,W) is called finite (resp. countable) [38] if F(w) is finite (resp.
countable) for each w ∈W. Otherwise, it is called infinite (resp. uncountable).

Definition 2.5. [16] A soft set (F,W) over X is called a (an ordinary) soft point if F(w) = {x} for all
w ∈ W, where x ∈ X. It is denoted by ({x},W) (or shortly x). It is said x∈̃(F,W) if x ∈ F(w) for all
w ∈W.

Definition 2.6. [7, 39] Let W1,W2 ⊆ A. It is said that (F1,W1) is a soft subset of (F2,W2) (written
by (F1,W1)⊆̃(F2,W2)) if W1 ⊆ W2 and F1(w) ⊆ F2(w) for all w ∈ W1. And (F1,W1) is soft equal to
(F2,W1) if (F1,W1)⊆̃(F2,W2) and (F2,W2)⊆̃(F1,W1).

Definition 2.7. [37, 40] Let {(Fi,W) : i ∈ I} be an indexed family of soft sets over X.

(1) The soft intersection of (Fi,W), for i ∈ I, is a soft set (F,W) such that F(w) =
⋂

i∈I Fi(w) for all
w ∈W and is denoted by (F,W) =

⋂̃
i∈I(Fi,W).

(2) The soft union of (Fi,W), for i ∈ I, is a soft set (F,W) such that F(w) =
⋃

i∈I Fi(w) for all w ∈ W
and is denoted by (F,W) =

⋃̃
i∈I(Fi,W).

Definition 2.8. [41] Let P be a probability function defined on the collection of all possible eventsA
from a sample space X. Then P is called distribution if

∑
x∈X P(x) = 1. The set of all elements with

non-zero probability is called support of P.

Definition 2.9. [41] Let (X,E, P) be a probability space. A random variable R is a mapping defined
on X, which to an outcome x ∈ X associates the value R(x) in a suitable set S of possible values of
some quantity of interest. The function f has to be sufficiently well-behaved so that we can discuss the
probabilities that the quantity will take on particular values. The idea of measurable function expresses
the condition of well-behavedness of R. For F ⊆ S , the set of all the outcomes x ∈ X such that R(x) ∈ F
for an event R−1(F) = {x ∈ X : R(x) ∈ F} ∈ E.
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Definition 2.10. [34] Let X be a sample space or a state space. An event of the state space X is a
collection of outcomes, which is mathematically a subset of X. An information structure is a collection
of specific events. Those events represent only those that may be observed.

Remark 2.2. An information structure E in the language of this work is a soft σ-algebra on the sample
space X (c.f., Note 1 in [34]). Each element of E contain certain information.

3. Soft σ-algebras

Definition 3.1. [35] A family Σ⊆̃SW(X) is called a soft σ-algebra on X if

(1) ΦW is in Σ,

(2) if (F,W) is in Σ, then (F,W)c is in Σ, and,

(3) if (Fn,W) is in Σ, for all n ∈ N, then ∪̃n∈N(Fn,W) is in Σ.

If (3) in the above definition holds true for finitely many members of Σ, then we call Σ a soft algebra
on X.

Example 3.1. The collections {ΦW, XW} and SW(X) are trivially soft σ-algebras. They are respectively
the smallest and the largest soft algebras.

Example 3.2. For any (F,W)∈̃SW(X), {ΦW, (F,W), (F,W)c, XW} is a soft σ-algebra.

Readily, each soft σ-algebra is a soft algebra but not the converse.

Example 3.3. Let X be an infinite set and letW be a set of parameters. The collection

Σ = {(F,W)∈̃SW(X) : either (F,W) or (F,W)c is finite}

is a soft algebra but not a soft σ-algebra.

Lemma 3.1. Let {Σi : i ∈ I} be an indexed family of soft σ-algebras on X. Then
⋂̃

i∈IΣi is a soft
σ-algebra.

Proof. Since each soft σ-algebra Σi contains ΦW, so
⋂̃

i∈IΣi is not null and it contains ΦW. Let
(F,W)∈̃

⋂̃
i∈IΣi. Then (F,W)∈̃Σi for each i ∈ I and therefore (F,W)c∈̃Σi for each i ∈ I. Hence,

(F,W)c∈̃
⋂̃

i∈IΣi. For the same reason,
⋂̃

i∈IΣi is closed under the countable soft union. �

On the other hand, the union of two soft σ-algebras need not be a soft σ-algebra.

Example 3.4. Let X = {1, 2, 3} and letW = {w1,w2}. Given the following two soft σ-algebras: Σ1 =

{ΦW, (F1,W), (F2,W), XW} and Σ2 = {ΦW, (F3,W), (F4,W), XW}, where (F1,W) = {(w1, {1}), (w2, ∅)},
(F1,W) = {(w1, {2, 3}), (w2, X)}, (F3,W) = {(w1, ∅), (w2, {2, 3})}, and (F4,W) = {(w1, X), (w2, {1})}.
Then Σ1∪̃Σ2 is not a soft σ-algebra.

However, the next result demonstrates that the union of soft σ-algebras is a σ-soft algebra under
certain conditions.

Definition 3.2. A subfamily F of SW(X) is called a partition of XW (or soft partition of X) if
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(1) ΦW<̃F ,

(2)
⋃̃

(F,W)∈̃F (F,W) = XW,

(3) for all (F,W), (G,W)∈̃F with (F,W) , (G,W) implies (F,W)∩̃(G,W) = ΦW.

Theorem 3.1. Let {Σi : i ∈ I} be an indexed family of soft σ-algebras on (Xi,W) and let {(Xi,W) : i ∈ I}
be a partition of XW. Then Σ = {

⋃̃
i∈I(Fi,W) : (Fi,W)∈̃Σi} is a soft σ-algebra on XW.

Proof. Clearly ΦW∈̃Σi for each i. Then
⋃̃

i∈IΦW = ΦW∈̃Σ. If (F,W)∈̃Σ, then (F,W) =
⋃̃

i∈I(Fi,W),
where (Fi,W)∈̃Σi. Therefore, (F,W)c = XW −

⋃̃
i∈I(Fi,W) =

⋃̃
i∈I[(Xi,W) − (Fi,W)]. Since each Σi

is a soft σ-algebra on (Xi,W), so (Xi,W) − (Fi,W)∈̃Σi for all i ∈ I. Consequently, (F,W)c∈̃Σ. Let
(Gn,W)∈̃Σ for n = 1, 2, . . . . Then, for each n, (Gn,W) =

⋃̃
i∈I(Fn,i,W), where (Fn,i,W)∈̃Σi. Therefore,⋃̃∞

n=1
(Gn,W) =

⋃̃∞

n=1

⋃̃
i∈I

(Fn,i,W) =
⋃̃

i∈I

⋃̃∞

n=1
(Fn,i,W).

Since
⋃̃∞

n=1(Fn,i,W)∈̃Σi which implies that
⋃̃∞

n=1(Gn,W)∈̃Σ. Hence, Σ is a soft σ-algebra. �

Lemma 3.2. Let C be a subcollection of SW(X). Then there exists a unique σ-algebra Σ on X
containing C in the sense that if Σ∗ is any other algebra containing C, then Σ⊆̃Σ∗.

Proof. Since SW(X) is a soft σ-algebra containing C, so such a soft σ-algebra always exists. Therefore,
the soft σ-algebra Σ obtained in Lemma 3.1 is the required soft σ-algebra. �

We refer to the above soft σ-algebra as the soft σ-algebra on X generated by C and denote it by
σ(C). If C is a countable collection, then σ(C) is called the countably generated soft σ-algebra. The
soft σ-algebra considered in Example 3.2 is the soft σ-algebra generated by {(F,W)}.

Theorem 3.2. Let C,Ci⊆̃SW(X), for i = 0, 1, 2, and let Σ be any soft σ-algebra on X. The soft σ-
algebra σ(C) generated by C has the following properties:

(1) C⊆̃σ(C)⊆̃Σ.

(2) σ(σ(C)) = σ(C).

(3) C is a soft σ-algebra iff C = σ(C).

(4) C1⊆̃C2 implies σ(C1)⊆̃σ(C2).

(5) σ(C1), σ(C2)⊆̃σ(C1)∪̃σ(C2)⊆̃σ(C1∪̃C2) = σ(σ(C1)∪̃σ(C2)).

(6) C⊆̃C0⊆̃σ(C) implies σ(C0) = σ(C).

Proof. (1) It follows from the definition of σ(C).
(2) The first direction, σ(C)⊆̃σ(σ(C)), follows from (1). Now, we always have σ(C)⊆̃σ(C), so σ(C)

is a soft σ-algebra including σ(C). Since σ(σ(C)) is the smallest soft σ-algebra including σ(C). Thus,
σ(σ(C))⊆̃σ(C). Hence, σ(σ(C)) = σ(C).

(3) Straightforward.
(4) By (1), C2⊆̃σ(C2). Since C1⊆̃C2, then C1⊆̃C2⊆̃σ(C2) and so ⊆̃σ(C2) is a soft σ-algebra

containing C1. But σ(C1) is the smallest soft σ-algebra containing C1. Thus, σ(C1)⊆̃σ(C2).
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(5) We only prove the last equality, other inclusions can be concluded easily. Since C1⊆̃C1∪̃C2,
by (4), σ(C1)⊆̃σ(C1∪̃C2). Similarly, σ(C2)⊆̃σ(C1∪̃C2). Therefore, σ(C1)∪̃σ(C1)⊆̃σ(C1∪̃C2). By (4),
σ[σ(C1)∪̃σ(C1)]⊆̃σ(C1∪̃C2).

On the other hand, since C1⊆̃σ(C1) and C2⊆̃σ(C2), then C1∪̃C2⊆̃σ(C1)∪̃σ(C2). By (4),
σ(C1∪̃C2)⊆̃σ[σ(C1)∪̃σ(C2)]. Hence, σ(C1∪̃C2) = σ(σ(C1)∪̃σ(C2)).

(6) It follows from (2) and (4). �

Proposition 3.1. Let (Y,W)∈̃SW(X) − ΦW and let Σ be a soft σ-algebra on X. Then

Σ∩̃(Y,W) = {(F,W)∩̃(Y,W) : (F,W)∈̃Σ}

is a soft σ-algebra on (Y,W) and is denoted by Σ|(Y,W) or simply Σ|Y .

Proof. Since ΦW∩̃(Y,W) = ΦW and ΦW∈̃Σ, so ΦW∈̃Σ|(Y,W). If (G,W)∈̃Σ|(Y,W), then (G,W) =

(F,W)∩̃(Y,W) for some (F,W)∈̃Σ. Since (F,W)c∈̃Σ, we have (G,W)c = (F,W)c∩̃(Y,W). Thus,
(G,W)c∈̃Σ|(Y,W). Suppose that (G1,W), (G2,W), · · · ∈̃Σ|(Y,W). Then (Gn,W) = (Fn,W)∩̃(Y,W) for some
(Fn,W)∈̃Σ. Since ∪̃∞n=1(Fn,W)∈̃Σ, so⋃̃∞

n=1
(Gn,W) =

⋃̃∞

n=1
[(Fn,W)∩̃(Y,W)] = [

⋃̃∞

n=1
(Fn,W)]∩̃(Y,W).

This implies that ∪̃∞n=1(Gn,W)∈̃Σ|(Y,W). �

Theorem 3.3. Let C be a subcollection of SW(X) and let (Y,W)∈̃SW(X) − ΦW. Then

σ(C∩̃(Y,W)) = σ(C)∩̃(Y,W),

where C∩̃(Y,W) = {(F,W)∩̃(Y,W) : (F,W)∈̃C}.

Proof. Let (G,W)∈̃C∩̃(Y,W). Then (G,W) = (F,W)∩̃(Y,W) for some (F,W)∈̃C⊆̃σ(C). Therefore,
(G,W)∈̃σ(C)∩̃(Y,W) and, hence, C∩̃(Y,W)⊆̃σ(C)∩̃(Y,W). Since, by Proposition 3.1, σ(C) ∩̃(Y,W) is
a soft σ-algebra on Y . Thus, Lemma 3.2 guarantees that σ(C∩̃(Y,W))⊆̃σ(C)∩̃(Y,W). To prove the
other way of the inclusion, we first need to check that

Σ = {(H,W)∈̃SW(X) : (H,W)∩̃(Y,W)∈̃σ(C∩̃(Y,W))}

is a soft σ-algebra. Evidently, ΦW∈̃Σ because ΦW∩̃(Y,W) = ΦW∈̃σ(C∩̃(Y,W)). If (H,W)∈̃Σ,
then (H,W)∩̃(Y,W)∈̃ σ(C∩̃(Y,W)). Since (H,W)c∩̃(Y,W) = (Y,W) − [(H,W)∩̃(Y,W)], this means
that (H,W)c∈̃Σ. If (H1,W), (H2,W), · · · ∈̃Σ, then (H1,W)∩̃(Y,W), (H2,W)∩̃(Y,W), · · · ∈̃σ(C∩̃(Y,W)).
Therefore,

[
⋃̃∞

n=1
(Hn,W)]∩̃(Y,W) =

⋃̃∞

n=1
[(Hn,W)∩̃(Y,W)]∈̃σ(C∩̃(Y,W)).

Hence, ∪̃∞n=1(Hn,W)∈̃Σ. This proves that Σ is a soft σ-algebra on X. Suppose that (F,W)∈̃C.
Then (F,W)∩̃(Y,W)∈̃C∩̃(Y,W)⊆̃σ(C∩̃(Y,W)) and, so, (F,W)∈̃Σ. Thus, C⊆̃Σ and, by Lemma 3.2,
σ(C)⊆̃Σ. Now, if (G,W)∈̃σ(C)∩̃(Y,W), then (G,W) = (F,W)∩̃(Y,W) for some (F,W)∈̃σ(C) ⊆̃Σ and,
hence, (G,W)∈̃σ(C∩̃(Y,W)). This concludes that σ(C)∩̃(Y,W)⊆̃σ(C∩̃(Y,W)). Thus, σ(C∩̃(Y,W)) =

σ(C)∩̃(Y,W). �
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Definition 3.3. [42,43] Let X,Y be two different universes parameterized byW,W′, respectively, and
let p : X → Y, q : W → W′ be mappings. The image of a soft set (F,W)⊆̃(X,W) under fp,q or simply
f : (X,W)→ (Y,W′) is a soft subset f (F,W) = ( f (F), q(W)) of (Y,W′) which is given by

f (F)(w′) =


⋃

w∈q−1(w′)∩W
p (F(w)) , q−1(w′) ∩W , ∅,

∅, otherwise,

for each w′ ∈W′.
The inverse image of a soft set (G,W′)⊆̃(Y,W′) under f is a soft subset f −1(G,W′) =

( f −1(G), q−1(W′)) such that

( f −1(G)(w) =

p−1 (G(q(w))) , q(w) ∈W′,
∅, otherwise,

for each w ∈W.
The soft mapping f is bijective if both p and q are bijective.

Lemma 3.3. Let f : (X,W) −→ (Y,W′) be a soft mapping. Then

(1) if Σ is a soft σ-algebra on X, then {(G,W′)⊆̃(Y,W′) : f −1(G,W′)∈̃Σ} is a soft σ-algebra on Y.

(2) if Σ′ is a soft σ-algebra on Y, the set f −1(Σ′) is a soft σ-algebra on X.

Proof. Both (1) and (2) follow from the fact that f −1(ΦW) = ΦW, f −1(YW′−(G,W′)) = XW− f −1(G,W′)
for each soft set (G,W′) over Y and f −1(

⋃
n≥1(Gn,W

′)) =
⋃

n≥1 f −1(Gn,W
′) for each collection

{(Gn,W
′) : n ∈ N} of soft sets over Y (see Theorem 14 in [42]). �

We shall remark that the direct image of a soft σ-algebra under a soft mapping need not be a soft
σ-algebra.

Example 3.5. Let X = {x1, x2, x3}, Y = {y1, y2}, andW =W′ = {w1,w2}. Define the mapping fp,q by

p(x) =

y1, if x , x3;
y2, if x = x3,

and q(w) = w, for all w ∈W. Let Σ = {ΦW, (F1,W), (F2,W), XW}, where (F1,W) = {(w1, {x1}), (w2, ∅)}
and (F2,W) = {(w1, {x2, x3}), (w2, X)}. The image of the soft σ-algebra Σ is fp,q(Σ) = {ΦW, (G1,W), Ỹ},
where (G1,W) = {(w1, {y1}), (w2, ∅)}, which is not a soft σ-algebra on Y.

Theorem 3.4. Let f : (X,W) −→ (Y,W′) be a soft mapping. Then

f −1(σ(C)) = σ( f −1(C)),

for each collection C of soft sets over Y.

Proof. By Lemma 3.3 (2) f −1(σ(C)) is a soft σ-algebra and f −1(C)⊆̃ f −1(σ(C)), and this implies that
σ( f −1(C))⊆̃ f −1(σ(C)). But, by Lemma 3.3 (1), the set Σ = {(G,W′)⊆̃(Y,W′) : f −1(G,W′)∈̃σ( f −1(C))}
is a soft σ-algebra, and it contains C; hence σ(C)⊆̃Σ. Therefore, f −1(σ(C))⊆̃ f −1(Σ) = {(F,W)⊆̃(X,W) :
(F,W) = f −1(G,W′) for some (G,W′)∈̃Σ}⊆̃σ( f −1(C)). This shows that f −1(σ(C)) = σ( f −1(C)). �
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4. Relationships between crisp and soft σ-algebras

Proposition 4.1. Let Σ be a soft σ-algebra on X parameterized byW. Then Σw = {F(w) : (F,W)∈̃Σ}
is a σ-algebra on X for each w ∈W.

Proof. Since ΦW∈̃Σ, then ∅ ∈ Σw for each w ∈ W. Let F(w) ∈ Σw. Then (F,W)∈̃Σ and, since, Σ is a
soft σ-algebra, so (F,W)c∈̃Σ. But, (F,W)c = {(w, X − F(w)) : w ∈W} and, so, Fc(w) = X − F(w) ∈ Σw.
Let {Fn(w) : n ∈ N} be an indexed family of sets in Σw. Then, for each n, (Fn,W)∈̃Σ and, thus,
∪̃n∈N(Fn,W)∈̃Σ. Hence, ∪n∈NFn(w) ∈ Σw. �

We declare that the above result proved in Theorem 3 in [35], but we give a clearer proof. The
converse of this lemma is not always true (see Example 5 in [35]), particularly when |W| > 1. The
scenario is different when |W| = 1, where |W| is the cardinality ofW.

Theorem 4.1. LetW = {e} and let F be a family of subsets of X. Then Σ = {(w, F(w)) : F(w) ∈ F } is
a soft σ-algebra iff Σw = {F(w) : (w, F(w))∈̃Σ} is a (crisp) σ-algebra on X.

Proof. The first direction follows from Proposition 4.1.
Conversely, Suppose Σw is a σ-algebra. Clearly, ∅ ∈ Σw and, so, (w, ∅) = ΦW∈̃Σ. Let (F,W)∈̃Σ.

Then (F,W) = (w, F(w)) and F(w) ∈ Σw. Since Σw is a σ-algebra, so Fc(w) ∈ Σw. Therefore,
(F,W)c = (w, Fc(w))∈̃Σ. Let {(Fn,W) : n ∈ N} be a collection of soft sets in Σ. This implies that
(Fn,W) = (w, Fn(w)) for each n ∈ N and, thus, ∪n∈NFn(w) ∈ Σw as Σw is a σ-algebra on X. Therefore,⋃̃

n∈N
(Fn,W) =

⋃̃
n∈N

(w, Fn(w)) = (w,
⋃
n∈N

Fi(w))∈̃Σ.

This proves that Σ is a soft σ-algebra on X. �

Theorem 4.2. Let E be a (crisp) σ-algebra on X andW be a set of parameters. Then

(1) the family Σ(E) of all soft sets (F,W) forms a soft σ-algebra on X, where (F,W) = {(w, F(w)) :
F(w) ∈ E for each w ∈W}.

(2) the family Σ̂(E) of all soft sets (F,W) forms a soft σ-algebra on X, where (F,W) = {(w, F(w)) :
F(w) = F(w′) ∈ E for each w,w′ ∈W}.

Proof. The proof is quite comparable to the second part of the proof for the preceding result. �

Remark 4.1. The above formula holds true for any family of subsets of a given universe. Namely, we
generate a collection of soft sets from a crisp family of sets.

The soft σ-algebra Σ(E) is called a soft σ-algebra on X generated by E with respect toW. And the
soft σ-algebra Σ̂(E) is called an extended soft σ-algebra on X via E.

Observe that Σw = Σ̂w = E for each w ∈W.
The following examples show how the process in Theorem 4.2 can be used:

Example 4.1. Let X = {x1, x2, x3, x4} andW = {w1,w2}. Consider the following crisp σ-algebra on X:
E = {∅, {x1, x2}, {x3, x4}, X}.

Applying the first formula, we conclude the following soft σ-algebra on X:
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Σ(E) =
{
ΦW, (F1,W), (F2,W), · · · , (F14,W), XW

}
,

where

(F1,W) = {(w1, ∅), (w2, {x1, x2})},
(F2,W) = {(w1, ∅), (w2, {x3, x4})},
(F3,W) = {(w1, ∅), (w2, X)},
(F4,W) = {(w1, {x1, x2}), (w2, ∅)},
(F5,W) = {(w1, {x1, x2}), (w2, {x1, x2})},
(F6,W) = {(w1, {x1, x2}), (w2, {x3, x4})},
(F7,W) = {(w1, {x1, x2}), (w2, X)},
(F8,W) = {(w1, {x3, x4}), (w2, ∅)},
(F9,W) = {(w1, {x3, x4}), (w2, {x1, x2})},

(F10,W) = {(w1, {x3, x4}), (w2, {x3, x4})},
(F11,W) = {(w1, {x3, x4}), (w2, X)},
(F12,W) = {(w1, X), (w2, ∅)},
(F13,W) = {(w1, X), (w2, {x1, x2})}, and

(F14,W) = {(w1, X), (w2, {x3, x4})}.

Applying the second formula, we conclude the following soft σ-algebra on X:

Σ̂(E) =
{
ΦW, (G1,W), (G2,W), XW

}
,

where

(G1,W) = {(w1, {x1, x2}), (w2, {x1, x2})} and

(G2,W) = {(w1, {x3, x4}), (w2, {x3, x4})}.

A less trivial example is

Example 4.2. Let Ecc be the countable-cocountable σ-algebra on X, where Ecc =
{
F ⊆ X :

F is countable or Fc is countable
}
. If X is finite, Ecc = P(X). The softσ-algebra Σ(Ecc) on X generated

by Ecc is given by the following family:

Σ(Ecc) =
{
{(w, F(w)) : w ∈W}∈̃SW(X) : F(w) or F(w)c is countable, for each w ∈W

}
.

When we need to define the countable-cocountable σ-algebra on X in soft settings, we normally do
so as follows:

Σcc =
{
(F,W)∈̃SW(X) : (F,W) or (F,W)c is countable

}
.

However, both Σcc = Σ(Ecc) are equivalent. This example demonstrates how effectively our formulas
produce soft σ-algebras. We shall call Σcc the countable-cocountable soft σ-algebra on X.

It is worth noting that the general formula for constructing soft σ-algebra provided by Theorem 4.2
can be improved by the use of several crisp σ-algebras.
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Corollary 4.1. Let EEE = {Ew : w ∈ W} be a collection of (crisp) σ-algebras on X indexed by a
set of parameters W. The family Σ(EEE ) of all soft sets (F,W) forms a soft σ-algebra on X, where
(F,W) = {(w, F(w)) : F(w) ∈ Ew for each w ∈W}.

Notice that if, for each w,w′ ∈W, Ew = Ew′ = E, then Σ(EEE ) = Σ(E).
We have seen that each soft σ-algebra produces a family of (crisp) σ-algebras of size ≤ |W|, so we

obtain the following:

Lemma 4.1. Let EEE = {Ew : w ∈ W} be the family of all crisp σ-algebras on X from a soft σ-algebra
Σ. Then

Σ⊆̃Σ(EEE ).

Proof. It can be concluded from the definition of soft sets and the soft σ-algebra generated by EEE . �

Theorem 4.3. Let {Ew : w ∈W} be a family of crisp σ-algebras on X indexed byW. Then

Σ
(⋂̃
Ew

)
=

⋂̃
Σ
(
Ew

)
.

Proof. Let (F,W)∈̃Σ
(⋂̃
Ew

)
. Then

=⇒ F(w) ∈
⋂
Ew,

=⇒ F(w) ∈ Ew, for each w ∈W,

=⇒ {(w, F(w)) : w ∈W} ∈ Σ(ww), for each w ∈W,

=⇒ (F,W)∈̃
⋂̃

Σ(ww).

Hence, Σ
(⋂̃
Ew

)
⊆̃
⋂̃

Σ
(
Ew

)
. The converse can be followed by reversing the above steps. �

Consequently, we have the following corollary:

Corollary 4.2. Let E be a subcollection of SW(X) such that ΦW, XW∈̃E. Then

Σ
(
σ(E)

)
= σ

(
Σ(E)

)
,

where Σ(E) is the family of all soft sets {(w, F(w)) : w ∈W} such that F(w) ∈ E for each w ∈W.

5. Applications

The concept of σ-algebras plays a crucial role not only in mathematics but real life problems in
economics and finance. σ-algebra has an intuitive interpretation in probability theory. In this direction,
the concept of soft σ-algebra is used here to characterize information that can be observed, implying
that the soft σ-algebra contains information. This concept is demonstrated via basic examples.

Example 5.1. Suppose that two players 1 and 2 are gambling on the outcomes of a coin tosses. Here,
our set of parameters is W = {player 1, player 2} = {w1,w2} and the sample space for each player is
Xk = {H,T } for k = 1, 2. Assuming that they gamble on the following results obtained by the random
variable Rk and the coin.

Rk(x) =

{
1, x = H,means the tossing is H;
0, x = T,means the tossing is T.
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From Formula (1) in Theorem 4.2 and Remark 4.1, the sample space for this game in soft settings
will be XW = Σ({X1, X2}) =

{
{(w1,H), (w2,H)}, {(w1,H), (w2,T )}, {(w1,T ), (w2,H)}, {(w1,T ), (w2,T )}

}
.

When discussing information in soft σ-algebra, the notion of time is involved.
At time zero, player 1 and player 2 are unaware of the outcomes other than one of the events in XW.

As a result, the information at time zero that they can both discuss is the soft σ-algebra generated by
C0 = {XW} which is Σ0 = {ΦW, XW}.

At time one, the coin had been tossed once by each player, only. They are aware of the events in the
collection

C1 =
{
{(w1,HH), (w2,HT )}, {(w1,TT ), (w2,T H)}

}
.

Therefore, the information at this time that they both can discuss is the soft σ-algebra Σ1 generated C1.
Therefore, Σ1 =

{
ΦW, {(w1,HH), (w2,HT )}, {(w1,TT ), (w2,T H)}, XW

}
.

At time two, the coin had been tossed twice. They are aware of the events in the collection

C2 =
{
{(w1,H), (w2,H)}, {(w1,H), (w2,T )}, {(w1,T ), (w2,H)}, {(w1,T ), (w2,T )}

}
which means they know everything about the gambling results. Hence, the information at this stage
that they both can discuss is the soft σ-algebra Σ2 generated by C2 which is the family of all soft subsets
of XW. That is, Σ2 =

{
ΦW, (F1,W), (F2,W), . . . , (F14,W), XW

}
, where

(F1,W) = {(w1,H), (w2,H)},
(F2,W) = {(w1,H), (w2,T )},
(F3,W) = {(w1,T ), (w2,H)},
(F4,W) = {(w1,T ), (w2,T )},
(F5,W) = {(w1,HH), (w2,T H)},
(F6,W) = {(w1,HT ), (w2,HH)},
(F7,W) = {(w1,HT ), (w2,T H)},
(F8,W) = {(w1,HT ), (w2,T H)},
(F9,W) = {(w1,T H), (w2,TT )},

(F10,W) = {(w1,TT ), (w2,HT )},
(F11,W) = {(w1,HHT ), (w2,HT H)},
(F12,W) = {(w1,HHT ), (w2,HTT )},
(F13,W) = {(w1,HT H), (w2,HHH)}, and

(F14,W) = {(w1,HTT ), (w2,TTT )}.

At each time t > 0, the generating soft σ-algebra gives us more information about the happening
events; and evidently, Σ0⊆̃Σ1⊆̃Σ2.

Each event can be assigned to a probability by the following formula:

P̃(F,W) = P2(ψ(F,W)), (5.1)

where ψ is a mapping from Σ2 into E = σ({HH}, {HT }, {T H}, {TT }) defined by

ψ({(w, F(w)) : w ∈W}) = {

m∏
i=1

f j(wi) : j = 1, . . . ,N} (5.2)
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such that P2 is the (natural) probability of tossing a coin twice, m = |W|, N = |F(w)| for any w ∈ W,
and f j(w) ∈ F(w). To apply the above formulas, we need to take some soft sets in Σ2. Let us examine
(F2,W), (F10,W), and (F11,W). Now,

P̃(F1,W) = P̃
(
{(w1,H), (w2,T )}

)
= P2(ψ

(
{(w1,H), (w2,T )}

)
)

= P2({H,T }) = 1/4,

P̃(F10,W) = P̃
(
{(w1,TT ), (w2,HT )}

)
= P2(ψ

(
{(w1,TT ), (w2,HT )}

)
)

= P2({T H,TT }) = 1/2, and

P̃(F11,W) = P̃
(
{(w1,HHT ), (w2,HT H)}

)
= P2(ψ

(
{(w1,HHT ), (w2,HT H)}

)
)

= P2({HH,HT,T H}) = 3/4.

Remark 5.1. The construction given in the above example is true for any (finite) numbers n of players
and the results are consistent with the natural probability of tossing a coin n times.

Definition 5.1. Let (X,E, P) be a probability space and let (F,W) be an element in the soft σ-algebra Σ

generated by E with respect toW. A parameter w1 is said to be more informative than w2 if P(F(w1)) >
P(F(w2)).

In the earlier example, we have shown how explicitly the concept of soft σ-algebra involved in
applications. In the next illustrations, we may implicitly mention this concept.

Example 5.2. Suppose that our game is rolling two dices. The possible outcomes are X = {(i, j) : i, j =

1, 2, . . . , 6}. Let E be the σ-algebra generated by singletons in X and let Σ(E) be the soft σ-algebra
generated by E with respect to an appropriate set of parameters A = {w1,w2, . . . ,w12}. The probability
P2d of each F(w), w ∈ S ∪ M is presented in Tables 1 and 2, where S = {sum(i, j) : i, j = 1, 2, . . . , 6}
and M = {max(i, j) : i, j = 1, 2, . . . , 6}.

Table 1. The probability of F(w), w ∈ S .

sum(i,j) 2 3 4 5 6 7 8 9 10 11 12

probability 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Table 2. The probability of F(w), w ∈ M.

max(i,j) 1 2 3 4 5 6

probability 1
36

3
36

5
36

7
36

9
36

11
36

Take W = {w1,w2}, where w1 := max(i, j) = 2 and w2 := sum(i, j) = 10. The probability Q̃ of
the soft set (F,W) =

{
(w1, {(1, 2), (2, 2), (2, 1)}), (w2, {(4, 6), (5, 5), (6, 4)})

}
is 1/6. From Example 3.4,
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one can verify that the soft set (F,W) exists in Σ(E) and each missing parameter in the preceding
computation is assigned to the empty set, which has a probability of zero.

According to term given in Definition 5.1, a parameter e that correspond to max = 6 is more
informative as it has the highest probability. Thus, the player shall receive enough information on the
game and gamble on this parameter.

Example 5.3. Let X = {x1, x2, x3, x4, x5, x6, x7} be our universe, where x1 = less than 9th grade, x2 =

9th to 12th grade (no diploma), x3 = high school graduate or equivalent, x4 = some college (no
degree), x5 = associate’s degree, x6 = bachelor’s degree, and x7 = graduate or professional degree.
Suppose the set of parameters A = {w1,w2}, where w1 = male and w2 = female. Let E be the σ-algebra
generated by singletons in X and let Σ(E) be the soft σ-algebra generated by E with respect to A.
Suppose we choose a random US residents over the age of 25. Based on data from the 2010 American
Community Survey, Table 3 shows the distribution of education levels attained by gender:

Table 3. The probability of the soft sample space XW.

XW x1 x2 x3 x4 x5 x6 x7

w1 0.07 0.10 0.30 0.22 0.06 0.16 0.09

w2 0.13 0.09 0.20 0.24 0.08 0.17 0.09

We now demonstrate how the elements of Σ(E) provide information about specific events.
Assume that (F, A) = {(w1, {x1, x3}), (w2, {x2})}, (G, A) = {(w1, {x4}), (w2, {x4})}, and (H, A) =

{(w1, ∅), (w2, {x6, x7})}. Then (F, A) represents a man who has not accomplished a 9th grade certificate,
a man who has graduated from high school, or a woman who has achieved a 9th to 12th grade
certificate. The soft set represents a man who has not accomplished a 9th grade certificate, a man
who has graduated from high school, or a woman who has achieved a 9th to 12th grade certificate.
The soft set (G, A) represents a resident who graduated from a college with no degree. And (H, A)
represents a man with at least a bachelor’s degree. The probability of them are as follows:

P̃(F,W) = P̃({(w1, {x1})}) + P̃({(w1, {x3})}) + P̃({(w2, {x2})})
= 0.07 + 0.30 + 0.09 = 0.46.

P̃(G,W) = (P̃({(w1, {x4})}) + P̃({(w2, {x4})}))/2
= (0.22 + 0.24)/2 = 0.23.

P̃(H,W) = P̃({(w1, ∅)}) + P̃({(w2, {x6, x7})})
= P̃({(w1, ∅)}) + P̃({(w2, {x7})}) + P̃({(w2, {x7})})
= 0 + 0.17 + 0.09 = 0.26.

We finish this part by stating that the soft σ-algebras mentioned in Examples 5.1, 5.2, and 5.3
represent information structures on finite sets of states according to Remark 2.2.
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6. Conclusions and future work

Molodtsov presented several potential applications of soft set theory, and many researchers followed
his direction and used soft sets in various fields. This paper contributes to the field of soft set theory
by investigating the concept of soft σ-algebras. We have discussed some operations on soft σ-
algebras. We have seen that a soft σ-algebra can produce a family of crisp σ-algebras. Then, we
have established two remarkable formulas by which one can construct a soft σ-algebra from a family
of crisp σ-algebras. This construction provides a general framework for studying soft σ-algebras and
investigating their properties in relation to their counterparts in crisp σ-algebras. In particular, one can
study probability theory, measure theory, etc. in the context of soft set theory without defining all the
related terminologies. As applications to this construction, we have offered two examples and shown
that one can compute the probability of a soft set in the soft σ algebra generated by a crisp σ-algebra
with respect to the given set of parameters. The stated examples represent the information structures of
two players. We draw the readers’ attention to the obtained results are consistent with crisp σ-algebras
when the set of parameters contains a single point.

The results obtained in this paper are preliminary and many extensions to this work are needed. A
deep study is needed to determine the accurate relationship between soft σ-algebra and information.
The reason is that a decision-maker may strictly prefer the soft σ-algebra generated by the full
information over the soft σ-algebra generated by the incomplete information. The soft version of
Doob-Dynkin lemma will help us determining which σ-algebra represents information. This could be
the best suggested directions for future research.

Acknowledgments

This study is supported via funding from Prince Sattam bin Abdulaziz University project number
(PSAU/2023/R/1444).

Conflict of interest

The authors declare no conflict of interest.

References

1. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-
9958(65)90241-X

2. Z. Pawlak, Rough sets, Int. J. Comput. Informa. Sci., 11 (1982), 341–356.

3. M. B. Gorzałczany, A method of inference in approximate reasoning based on interval-valued fuzzy
sets, Fuzzy Sets Syst., 21 (1987), 1–17. https://doi.org/10.1016/0165-0114(87)90148-5

4. D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31.
https://doi.org/10.1016/S0898-1221(99)00056-5

5. F. Feng, Q. Wang, R. R. Yager, J. C. R. Alcantud, L. Y. Zhang, Maximal association
analysis using logical formulas over soft sets, Expert Syst. Appl., 159 (2020), 113557.
https://doi.org/10.1016/j.eswa.2020.113557

AIMS Mathematics Volume 8, Issue 6, 14850–14866.

http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/0165-0114(87)90148-5
http://dx.doi.org/https://doi.org/10.1016/S0898-1221(99)00056-5
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113557


14864

6. G. Santos-Garcı́a, J. C. R. Alcantud, Ranked soft sets, Expert Syst., 2023, e13231.
https://doi.org/10.1111/exsy.13231

7. D. W. Pei, D. Q. Miao, From soft sets to information systems, In: 2005 IEEE international
conference on granular computing, 2005. https://doi.org/10.1109/GRC.2005.1547365

8. J. M. Zhan, J. C. R. Alcantud, A survey of parameter reduction of soft sets and corresponding
algorithms, Artif. Intell. Rev., 52 (2019), 1839–1872. https://doi.org/10.1007/s10462-017-9592-0

9. T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to
nutrition, Comput. Appl. Math., 41 (2022), 216. https://doi.org/10.1007/s40314-022-01919-x
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