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1. Introduction

This paper considers the following heteroscedastic model:

Yi = f (Xi)Ui + g(Xi), i ∈ {1, · · · , n}. (1.1)

In this equation, g(x) is a known mean function, and the variance function r(x)(r(x) := f 2(x)) is
unknown. Both the mean function g(x) and variance function r(x) are defined on [0, 1]. The random
variables U1, . . . ,Un are independent and identically distributed (i.i.d.) with E[Ui] = 0 and V[Ui] = 1.
Furthermore, the random variable Xi is independent of Ui for any i ∈ {1, · · · , n}. The purpose of this
paper is to estimate the mth derivative functions r(m)(x)(m ∈ N) from the observed data
(X1,Y1), · · · , (Xn,Yn) by a wavelet method.

Heteroscedastic models are widely used in economics, engineering, biology, physical sciences and
so on; see Box [1], Carroll and Ruppert [2], Härdle and Tsybakov [3], Fan and Yao [4], Quevedo and
Vining [5] and Amerise [6]. For the above estimation model (1.1), the most popular method is the
kernel method. Many important and interesting results of kernel estimators have been obtained by
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Wang et al. [7], Kulik and Wichelhaus [8] and Shen et al. [9]. However, the optimal bandwidth
parameter of the kernel estimator is not easily obtained in some cases, especially when the function
has some sharp spikes. Because of the good local properties in both time and frequency domains, the
wavelet method has been widely used in nonparametric estimation problems; see Donoho and
Johnstone [10], Cai [11], Nason et al. [12], Cai and Zhou [13], Abry and Didier [14] and Li and
Zhang [15]. For the estimation problem (1.1), Kulik and Raimondo [16] studied the adaptive
properties of warped wavelet nonlinear approximations over a wide range of Besov scales. Zhou
et al. [17] developed wavelet estimators for detecting and estimating jumps and cusps in the mean
function. Palanisamy and Ravichandran [18] proposed a data-driven estimator by applying wavelet
thresholding along with the technique of sparse representation. The asymptotic normality for wavelet
estimators of variance function under α−mixing condition was obtained by Ding and Chen [19].

In this paper, we focus on nonparametric estimation of the derivative function r(m)(x) of the variance
function r(x). It is well known that derivative estimation plays an important and useful role in many
practical applications (Woltring [20], Zhou and Wolfe, [21], Chacón and Duong [22], Wei et al. [23]).
For the estimation model (1.1), a linear wavelet estimator and an adaptive nonlinear wavelet estimator
for the derivative function r(m)(x) are constructed. Moreover, the convergence rates over L p̃(1 ≤ p̃ < ∞)
risk of two wavelet estimators are proved in Besov space Bs

p,q(R) with some mild conditions. Finally,
numerical experiments are carried out, where an automatic selection method is used to obtain the best
parameters of two wavelet estimators. According to the simulation study, both wavelet estimators can
efficiently estimate the derivative function. Furthermore, the nonlinear wavelet estimator shows better
performance than the linear estimator.

This paper considers wavelet estimations of a derivative function in Besov space. Now, we first
introduce some basic concepts of wavelets. Let ϕ be an orthonormal scaling function, and the
corresponding wavelet function is denoted by ψ. It is well known that
{ϕτ,k := 2τ/2ϕ(2τx − k), ψ j,k := 2 j/2ψ(2 jx − k), j ≥ τ, k ∈ Z} forms an orthonormal basis of L2(R). This
paper uses the Daubechies wavelet, which has a compactly support. Then, for any integer j∗, a
function h(x) ∈ L2([0, 1]) can be expanded into a wavelet series as

h(x) =
∑
k∈Λ j∗

α j∗,kϕ j∗,k(x) +
∞∑

j= j∗

∑
k∈Λ j

β j,kψ j,k(x), x ∈ [0, 1]. (1.2)

In this equation, Λ j = {0, 1, . . . , 2 j − 1}, α j∗,k = ⟨h, ϕ j∗,k⟩[0,1] and β j,k = ⟨h, ψ j,k⟩[0,1].

Lemma 1.1. Let a scaling function ϕ be t-regular (i.e., ϕ ∈ C t and |Dαϕ(x)| ≤ c(1 + |x|2)−l for each
l ∈ Z and α = 0, 1, . . . , t). If {αk} ∈ lp and 1 ≤ p ≤ ∞, there exist c2 ≥ c1 > 0 such that

c12 j( 1
2−

1
p )
∥(αk)∥p ≤

∥∥∥∥∥∥∥∥
∑
k∈Λ j

αk2
j
2ϕ(2 jx − k)

∥∥∥∥∥∥∥∥
p

≤ c22 j( 1
2−

1
p )
∥(αk)∥p .

Besov spaces contain many classical function spaces, such as the well known Sobolev and Hölder
spaces. The following lemma gives an important equivalent definition of a Besov space. More details
about wavelets and Besov spaces can be found in Meyer [24] and Härdle et al. [25].

Lemma 1.2. Let ϕ be t-regular and h ∈ Lp([0, 1]). Then, for p, q ∈ [1,∞) and 0 < s < t, the following
assertions are equivalent:
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(i) h ∈ Bs
p,q([0, 1]);

(ii) {2 js∥h − P jh∥p} ∈ lq;

(iii) {2 j(s− 1
p+

1
2 )
∥β j,k∥p} ∈ lq.

The Besov norm of h can be defined by

∥h∥Bs
p,q
=

∥∥∥(ατ,k)∥∥∥p
+

∥∥∥∥(2 j(s− 1
p+

1
2 )
∥β j,k∥p)

j≥τ

∥∥∥∥
q
,

where
∥∥∥β j,k

∥∥∥p

p
=

∑
k∈Λ j

∣∣∣β j,k

∣∣∣p.

2. Wavelet estimators and main theorem

In this section, we will construct our wavelet estimators, and give the main theorem of this paper.
The main theorem shows the convergence rates of wavelet estimators under some mild assumptions.
Now, we first give the technical assumptions of the estimation model (1.1) in the following.

A1: The variance function r : [0, 1]→ R is bounded.
A2: For any i ∈ {0, . . . ,m − 1}, variance function r satisfies r(i)(0) = r(i)(1) = 0.
A3: The mean function g : [0, 1]→ R is bounded and known.
A4: The random variable X satisfies X ∼ U([0, 1]).
A5: The random variable U has a moment of order 2p̃ ( p̃ ≥ 1).
In the above assumptions, A1 and A3 are conventional conditions for nonparametric estimations.

The condition A2 is used to prove the unbiasedness of the following wavelet estimators. In addition,
A4 and A5 are technique assumptions, which will be used in Lemmas 4.3 and 4.5.

According to the model (1.1), our linear wavelet estimator is constructed by

r̂lin
n (x) :=

∑
k∈Λ j∗

α̂ j∗,kϕ j∗,k(x). (2.1)

In this definition, the scale parameter j∗ will be given in the following main theorem, and

α̂ j,k :=
1
n

n∑
i=1

Y2
i (−1)mϕ(m)

j,k (Xi) −
∫ 1

0
g2(x)(−1)mϕ(m)

j,k (x)dx. (2.2)

More importantly, it should be pointed out that this linear wavelet estimator is an unbiased estimator
of the derivative function r(m)(x) by Lemma 4.1 and the properties of wavelets.

On the other hand, a nonlinear wavelet estimator is defined by

r̂non
n (x) :=

∑
k∈Λ j∗

α̂ j∗,kϕ j∗,k(x) +
j1∑

j= j∗

β̂ j,kI{|β̂ j,k |≥κtn}ψ j,k(x). (2.3)

In this equation, IA denotes the indicator function over an event A, tn = 2m j
√

ln n/n,

β̂ j,k :=
1
n

n∑
i=1

(
Y2

i (−1)mψ(m)
j,k (Xi) − w j,k

)
I{∣∣∣∣Y2

i (−1)mψ(m)
j,k (Xi)−w j,k

∣∣∣∣≤ρn

}, (2.4)
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ρn = 2m j
√

n/ln n, and w j,k =
∫ 1

0
g2(x)(−1)mψ(m)

j,k (x)dx. The positive integer j∗ and j1 will also be given
in our main theorem, and the constant κ will be chosen in Lemma 4.5. In addition, we adopt the
following symbol: x+ := max{x, 0}. A ≲ B denotes A ≤ cB for some constant c > 0; A ≳ B means
B ≲ A; A ∼ B stands for both A ≲ B and B ≲ A.

In this position, the convergence rates of two wavelet estimators are given in the following main
theorem.
Main theorem For the estimation model (1.1) with the assumptions A1-A5, r(m)(x) ∈ Bs

p,q([0, 1])(p, q ∈
[1,∞), s > 0) and 1 ≤ p̃ < ∞, if {p > p̃ ≥ 1, s > 0} or {1 ≤ p ≤ p̃, s > 1/p}.

(a) the linear wavelet estimator r̂lin
n (x) with s′ = s − ( 1

p −
1
p̃ )+ and 2 j∗ ∼ n

1
2s′+2m+1 satisfies

E
[∥∥∥r̂lin

n (x) − r(m)(x)
∥∥∥p̃

p̃

]
≲ n−

p̃s′

2s′+2m+1 . (2.5)

(b) the nonlinear wavelet estimator r̂non
n (x) with 2 j∗ ∼ n

1
2t+2m+1 (t > s) and 2 j1 ∼

(
n

ln n

) 1
2m+1 satisfies

E
[∥∥∥r̂non

n (x) − r(m)(x)
∥∥∥p̃

p̃

]
≲ (ln n) p̃−1

(
ln n
n

) p̃δ

, (2.6)

where

δ = min
{

s
2s + 2m + 1

,
s − 1/p + 1/ p̃

2(s − 1/p) + 2m + 1

}
=

 s
2s+2m+1 p > p̃(2m+1)

2s+2m+1
s−1/p+1/p̃

2(s−1/p)+2m+1 p ≤ p̃(2m+1)
2s+2m+1 .

Remark 1. Note that n−
sp̃

2s+1 (n−
(s−1/p+1/p̃) p̃

2(s−1/p)+1 ) is the optimal convergence rate over L p̃(1 ≤ p̃ < +∞) risk for
nonparametric wavelet estimations (Donoho et al. [26]). The linear wavelet estimator can obtain the
optimal convergence rate when p > p̃ ≥ 1 and m = 0.

Remark 2. When m = 0, this derivative estimation problem reduces to the classical variance function
estimation. Then, the convergence rates of the nonlinear wavelet estimator are same as the optimal
convergence rates of nonparametric wavelet estimation up to a ln n factor in all cases.

Remark 3. According to main theorem (a) and the definition of the linear wavelet estimator, it is easy
to see that the construction of the linear wavelet estimator depends on the smooth parameter s of the
unknown derivative function r(m)(x), which means that the linear estimator is not adaptive. Compared
with the linear estimator, the nonlinear wavelet estimator only depends on the observed data and the
sample size. Hence, the nonlinear estimator is adaptive. More importantly, the nonlinear wavelet
estimator has a better convergence rate than the linear estimator in the case of p ≤ p̃.

3. Simulation study

In order to illustrate the empirical performance of the proposed estimators, we produce a numerical
illustration using an adaptive selection method, which is used to obtain the best parameters of the
wavelet estimators. For the problem (1.1), we choose three common functions, HeaviS ine, Corner and
S pikes, as the mean function g(x); see Figure 1. Those functions are usually used in wavelet literature.
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On the other hand, we choose the function f (x) by f1(x) = 3(4x − 2)2e−(4x−2)2
, f2(x) = sin(2πsinπx)

and f3(x) = −(2x − 1)2 + 1, respectively. In addition, we assume that the random variable U satisfies
U ∼ N[0, 1]. The aim of this paper is to estimate the derivative function r(m)(x) of the variance function
r(x)(r = f 2) by the observed data (X1,Y1), . . . , (Xn,Yn). In this section, we adopt r1(x) = [ f1(x)]2,
r2(x) = [ f2(x)]2 and r3(x) = [ f3(x)]2. For the sake of simplicity, our simulation study focuses on the
derivative function r′(x)(m = 1) and r(x)(m = 0) by the observed data (X1,Y1), . . . , (Xn,Yn) (n = 4096).

Furthermore, we use the mean square error (MS E (r̂(x), r(x)) = 1
n

n∑
i=1

(r̂(Xi) − r(Xi))2) and the average

magnitude of error (AME (r̂(x), r(x)) = 1
n

n∑
i=1
|r̂(Xi)− r(Xi)|) to evaluate the performances of the wavelet

estimators separately.

(a) (b) (c)

Figure 1. Three mean functions. (a) HeaviS ine, (b) Corner, (c) S pikes.

For the linear and nonlinear wavelet estimators, the scale parameter j∗ and threshold value λ (λ =
κtn) play important roles in the function estimation problem. In order to obtain the optimal scale
parameter and threshold value of wavelet estimators, this section uses the two-fold cross validation
(2FCV) approach (Nason [27], Navarro and Saumard [28]). During the first example of simulation
study, we choose HeaviS ine as the mean function g(x), and f1(x) = 3(4x − 2)2e−(4x−2)2

. The estimation
results of two wavelet estimators are presented by Figure 2. For the optimal scale parameter j∗ of the
linear wavelet estimator, we built a collection of j∗ and j∗ = 1, . . . , log2(n) − 1. The best parameter
j∗ is selected by minimizing a 2FCV criterion denoted by 2FCV( j∗); see Figure 2(a). According to
Figure 2(a), it is easy to see that the 2FCV( j∗) and MSE both can get the minimum value when j∗ = 4.
For the nonlinear wavelet estimator, the best threshold value λ is also obtained by the 2FCV(λ) criterion
in Figure 2(b). Meanwhile, the parameter j∗ is same as the linear estimator, and the parameter j1 is
chosen as the maximum scale parameter log2(n)−1. From Figure 2(c) and 2(d), the linear and nonlinear
wavelet estimators both can get a good performance with the best scale parameter and threshold value.
More importantly, the nonlinear wavelet estimator shows better performance than the linear estimator.

In the following simulation study, more numerical experiments are presented to sufficiently verify
the performance of the wavelet method. According to Figures 3–10, the wavelet estimators both can
obtain good performances in different cases. Especially, the nonlinear wavelet estimator gets better
estimation results than the linear estimator. Also, the MSE and AME of the wavelet estimators in all
examples are provided by Table 1. Meanwhile, it is easy to see from Table 1 that the nonlinear wavelet
estimators can have better performance than the linear estimators.
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(a) (b) (c) (d)

Figure 2. The estimation results of wavelet estimators when g(x) is HeaviS ine and
r(x) = r1(x). (a) Graphs of the MS E (black line) and 2FCV criterion (red line) of the linear
estimator. (b) Graphs of the MS E (black line) and 2FCV criterion (blue line) of the nonlinear
estimator. (c) Fluctuating data (X,Y) (gray circles), the true variance r(x) (black line), the
linear estimator r̂lin (red line) and the nonlinear estimator r̂non (blue line). (d) The estimation
results of the linear (red line) and nonlinear (blue line) for derivative function r′(x).

(a) (b) (c) (d)

Figure 3. The estimation results of wavelet estimators when g(x) is HeaviS ine and r(x) =
r2(x).

(a) (b) (c) (d)

Figure 4. The estimation results of wavelet estimators when g(x) is HeaviS ine and r(x) =
r3(x).
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(a) (b) (c) (d)

Figure 5. The estimation results of wavelet estimators when g(x) is Corner and r(x) = r1(x).

(a) (b) (c) (d)

Figure 6. The estimation results of wavelet estimators when g(x) is Corner and r(x) = r2(x).

(a) (b) (c) (d)

Figure 7. The estimation results of wavelet estimators when g(x) is Corner and r(x) = r3(x).

(a) (b) (c) (d)

Figure 8. The estimation results of wavelet estimators when g(x) is S pikes and r(x) = r1(x).
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(a) (b) (c) (d)

Figure 9. The estimation results of wavelet estimators when g(x) is S pikes and r(x) = r2(x).

(a) (b) (c) (d)

Figure 10. The estimation results of wavelet estimators when g(x) is S pikes and r(x) = r3(x).

Table 1. The MS E and AME of the wavelet estimators.

HeaviS ine Corner S pikes

r1 r2 r3 r1 r2 r3 r1 r2 r3

MS E(r̂lin, r) 0.0184 0.0073 0.0071 0.0189 0.0075 0.0064 0.0189 0.0069 0.0052
MS E(r̂non, r) 0.0048 0.0068 0.0064 0.0044 0.0070 0.0057 0.0042 0.0061 0.0046
MS E(r̂′lin, r′) 0.7755 0.0547 0.0676 0.7767 0.1155 0.0737 0.7360 0.2566 0.0655
MS E(r̂′non, r′) 0.2319 0.0573 0.0560 0.2204 0.0644 0.0616 0.2406 0.2868 0.0539
AME(r̂lin, r) 0.0935 0.0653 0.0652 0.0973 0.0667 0.0615 0.0964 0.0621 0.0550
AME(r̂non, r) 0.0506 0.0641 0.0619 0.0486 0.0649 0.0583 0.0430 0.0595 0.0518
AME(r̂′lin, r′) 0.6911 0.1876 0.2348 0.7021 0.2686 0.2451 0.6605 0.4102 0.2320
AME(r̂′non, r′) 0.3595 0.1862 0.2125 0.3450 0.2020 0.2229 0.3696 0.4198 0.2095

4. Proof of main theorem

4.1. Auxiliary results

Now, we provide some lemmas for the proof of the main Theorem.

Lemma 4.1. For the model (1.1) with A2 and A4,

E[α̂ j,k] = α j,k, (4.1)
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E

1
n

n∑
i=1

(
Y2

i (−1)mψ(m)
j,k (Xi) − w j,k

) = β j,k. (4.2)

Proof. According to the definition of α̂ j,k,

E[α̂ j,k] = E

1
n

n∑
i=1

Y2
i (−1)mϕ(m)

j,k (Xi) −
∫ 1

0
g2(x)(−1)mϕ(m)

j,k (x)dx


=

1
n

n∑
i=1

E
[
Y2

i (−1)mϕ(m)
j,k (Xi)

]
−

∫ 1

0
g2(x)(−1)mϕ(m)

j,k (x)dx

= E
[
Y2

1 (−1)mϕ(m)
j,k (X1)

]
−

∫ 1

0
g2(x)(−1)mϕ(m)

j,k (x)dx

= E
[
r(X1)U2

1(−1)mϕ(m)
j,k (X1)

]
+ 2E[ f (X1)U1g(X1)(−1)mϕ(m)

j,k (X1)]

+ E
[
g2(X1)(−1)mϕ(m)

j,k (X1)
]
−

∫ 1

0
g2(x)(−1)mϕ(m)

j,k (x)dx.

Then, it follows from A4 that

E
[
g2(X1)(−1)mϕ(m)

j,k (X1)
]
=

∫ 1

0
g2(x)(−1)mϕ(m)

j,k (x)dx.

Using the assumption of independence between Ui and Xi,

E
[
r(X1)U2

1(−1)mϕ(m)
j,k (X1)

]
= E[U2

1]E
[
r(X1)(−1)mϕ(m)

j,k (X1)
]
,

E[ f (X1)U1g(X1)(−1)mϕ(m)
j,k (X1)] = E[U1]E[ f (X1)g(X1)(−1)mϕ(m)

j,k (X1)].

Meanwhile, the conditions V[U1] = 1 and E[U1] = 0 imply E[U2
1] = 1. Hence, one gets

E[α̂ j,k] = E
[
r(X1)(−1)mϕ(m)

j,k (X1)
]

=

∫ 1

0
r(x)(−1)mϕ(m)

j,k (x)dx = (−1)m
∫ 1

0
r(x)ϕ(m)

j,k (x)dx

=

∫ 1

0
r(m)(x)ϕ j,k(x)dx = α j,k

by the assumption A2.
On the other hand, one takes ψ instead of ϕ, and w j,k instead of

∫ 1

0
g2(x)(−1)mϕ(m)

j,k (x)dx. The second
equation will be proved by the similar mathematical arguments. □

Lemma 4.2. (Rosenthal’s inequality) Let X1, . . . , Xn be independent random variables such that
E[Xi] = 0 and E[|Xi|

p] < ∞. Then,

E


∣∣∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣∣∣
p ≲


n∑

i=1
E

[
|Xi|

p] + (
n∑

i=1
E

[
|Xi|

2
]) p

2

, p > 2,(
n∑

i=1
E

[
|Xi|

2
]) p

2

, 1 ≤ p ≤ 2.
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Lemma 4.3. For the model (1.1) with A1–A5, 2 j ≤ n and 1 ≤ p̃ < ∞,

E
[∣∣∣α̂ j,k − α j,k

∣∣∣p̃] ≲ n−
p̃
2 2p̃m j, (4.3)

E
[∣∣∣β̂ j,k − β j,k

∣∣∣ p̃] ≲ (
ln n
n

)− p̃
2

2 p̃m j. (4.4)

Proof. By (4.1) and the independence of random variables Xi and Ui, one has

∣∣∣α̂ j,k − α j,k

∣∣∣ = ∣∣∣∣∣∣∣1n
n∑

i=1

Y2
i (−1)mϕ(m)

j,k (Xi) −
∫ 1

0
g2(x)(−1)mϕ(m)

j,k (x)dx − E
[
α̂ j,k

]∣∣∣∣∣∣∣
=

1
n

∣∣∣∣∣∣∣
n∑

i=1

(
Y2

i (−1)mϕ(m)
j,k (Xi) − E

[
Y2

i (−1)mϕ(m)
j,k (Xi)

])∣∣∣∣∣∣∣
=

1
n

∣∣∣∣∣∣∣
n∑

i=1

Ai

∣∣∣∣∣∣∣ .
In this above equation, Ai := Y2

i (−1)mϕ(m)
j,k (Xi) − E

[
Y2

i (−1)mϕ(m)
j,k (Xi)

]
.

According to the definition of Ai, one knows that E [Ai] = 0 and

E
[
|Ai|

p̃
]
= E

[∣∣∣∣Y2
i (−1)mϕ(m)

j,k (Xi) − E
[
Y2

i (−1)mϕ(m)
j,k (Xi)

]∣∣∣∣p̃]
≲ E

[∣∣∣∣Y2
i (−1)mϕ(m)

j,k (Xi)
∣∣∣∣p̃]

≲ E
[∣∣∣∣(r(X1)U2

1 + g2(X1))(−1)mϕ(m)
j,k (Xi)

∣∣∣∣p̃]
≲ E

[
U2 p̃

1

]
E

[∣∣∣∣r(X1)ϕ(m)
j,k (Xi)

∣∣∣∣p̃] + E
[∣∣∣∣g2(X1)ϕ(m)

j,k (Xi)
∣∣∣∣ p̃] .

The assumption A5 shows E[U2 p̃
1 ] ≲ 1. Furthermore, it follows from A1 and A3 that

E[U2 p̃
1 ]E

[
|r(X1)ϕ(m)

j,k (X1)| p̃
]
≲ E

[
|ϕ(m)

j,k (X1)| p̃
]
,

E
[
g2p̃(X1)|ϕ(m)

j,k (X1)| p̃
]
≲ E

[
|ϕ(m)

j,k (X1)|p̃
]
.

In addition, and the properties of wavelet functions imply that

E
[∣∣∣∣ϕ(m)

j,k (Xi)
∣∣∣∣ p̃] = ∫ 1

0
|ϕ(m)

j,k (x)| p̃dx = 2 j( p̃/2+mp̃−1)
∫ 1

0
|ϕ(m)(2 jx − k)|p̃d(2 jx − k)

= 2 j( p̃/2+mp̃−1)||ϕ(m)||
p̃
p̃ ≲ 2 j( p̃/2+mp̃−1).

Hence,
E

[
|Ai|

p̃
]
≲ 2 j( p̃/2+mp̃−1).

Especially in p̃ = 2, E
[
|Ai|

2
]
≲ 22m j.

AIMS Mathematics Volume 8, Issue 6, 14340–14361.



14350

Using Rosenthal’s inequality and 2 j ≤ n,

E
[∣∣∣α̂ j,k − α j,k

∣∣∣p̃] = 1
np̃ E


∣∣∣∣∣∣∣

n∑
i=1

Ai

∣∣∣∣∣∣∣
p̃

≲


1
np̃

(
n∑

i=1
E

[
|Ai|

p̃
]
+ (

n∑
i=1

E
[
|Ai|

2
]
)

p̃
2

)
, p̃ > 2,

1
np̃

(
n∑

i=1
E

[
|Ai|

2
]) p̃

2

, 1 ≤ p̃ ≤ 2,

≲


1
np̃

(
n · 2 j( p̃

2+mp̃−1) + (n · 22m j)
p̃
2

)
, p̃ > 2,

1
np̃

(
n · 22m j

) p̃
2
, 1 ≤ p̃ ≤ 2,

≲ n−
p̃
2 2p̃m j.

Then, the first inequality is proved.
For the second inequality, note that

β j,k = E

1
n

n∑
i=1

(
Y2

i (−1)mψ(m)
j,k (Xi) − w j,k

)
=

1
n

n∑
i=1

E
[(

Y2
i (−1)mψ(m)

j,k (Xi) −
∫ 1

0
g2(x)(−1)mψ(m)

j,k (x)dx
)]

=
1
n

n∑
i=1

E [Ki]

with (4.2) and Ki := Y2
i (−1)mψ(m)

j,k (Xi) −
∫ 1

0
g2(x)(−1)mψ(m)

j,k (x)dx.

Let Bi := KiI{|Ki |≤ρn} − E
[
KiI{|Ki |≤ρn}

]
. Then, by the definition of β̂ j,k in (2.4),

|β̂ j,k − β j,k| = |
1
n

n∑
i=1

KiI{|Ki |≤ρn} − β j,k| ≤
1
n

∣∣∣∣∣∣∣
n∑

i=1

Bi

∣∣∣∣∣∣∣ + 1
n

n∑
i=1

E
[
|Ki|I{|Ki |>ρn}

]
. (4.5)

Similar to the arguments of Ai, it is easy to see that E [Bi] = 0 and

E
[
|Bi|

p̃
]
≲ E

[∣∣∣KiI{|Ki |≤ρn}

∣∣∣p̃] ≲ E
[
|Ki|

p̃
]
≲ 2 j( p̃

2+mp̃−1).

Especially in the case of p̃ = 2, one can obtain E
[
|Bi|

2
]
≲ 22m j. On the other hand,

E
[
|Ki|I{|Ki |>ρn}

]
≲ E

[
|Ki| ·

|Ki|

ρn

]
=

E
[
K2

1

]
ρn

≲
22m j

ρn
= tn = 2m j

√
ln n
n
. (4.6)
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According to Rosenthal’s inequality and 2 j ≤ n,

E
[
|β̂ j,k − β j,k|

p̃]
≲

1
np̃ E


∣∣∣∣∣∣∣

n∑
i=1

Bi

∣∣∣∣∣∣∣
p̃ + (tn) p̃

≲


1
n p̃

(
n∑

i=1
E

[
|Bi|

p̃
]
+ (

n∑
i=1

E
[
|Bi|

2
]
)

p̃
2

)
+ (tn) p̃, p̃ > 2,

1
n p̃

(
n∑

i=1
E

[
|Bi|

2
]) p̃

2

+ (tn)p̃, 1 ≤ p̃ ≤ 2,

≲


1
n p̃

(
n · 2 j( p̃

2+mp̃−1) + (n · 22m j)
p̃
2

)
+

(
ln n
n

)− p̃
2

· 2p̃m j, p̃ > 2,

1
n p̃

(
n · 22m j

) p̃
2
+

(
ln n
n

)− p̃
2

· 2 p̃m j, 1 ≤ p̃ ≤ 2,

≲

(
ln n
n

)− p̃
2

2 p̃m j.

Then, the second inequality is proved. □

Lemma 4.4. (Bernstein’s inequality) Let X1, . . . , Xn be independent random variables such that
E[Xi] = 0, |Xi| < M and E[|Xi|

2] := σ2. Then, for each ν > 0

P

1
n

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣ ≥ ν
 ≤ 2 exp

{
−

nν2

2(σ2 + νM/3)

}
.

Lemma 4.5. For the model (1.1) with A1–A5 and 1 ≤ p̃ < +∞, there exists a constant κ > 1 such that

P
(∣∣∣β̂ j,k − β j,k

∣∣∣ ≥ κtn

)
≲ n− p̃. (4.7)

Proof. According to (4.5), one gets Ki = Y2
i (−1)mψ(m)

j,k (Xi) −
∫ 1

0
g2(x)(−1)mψ(m)

j,k (x)dx, Bi = KiI{|Ki |≤ρn} −

E
[
KiI{|Ki |≤ρn}

]
and

|β̂ j,k − β j,k| ≤
1
n

∣∣∣∣∣∣∣
n∑

i=1

Bi

∣∣∣∣∣∣∣ + 1
n

n∑
i=1

E
[
|Ki|I{|Ki |>ρn}

]
.

Meanwhile, (4.6) shows that there exists c > 0 such that E
[
|Ki|I{|Ki |>ρn}

]
≤ ctn. Furthermore, the

following conclusion is true.

{
|β̂ j,k − β j,k,u| ≥ κtn

}
⊆


[
1
n

∣∣∣∣∣∣∣
n∑

i=1

Bi

∣∣∣∣∣∣∣ + 1
n

n∑
i=1

E
(
|Ki|I{|Ki |>ρn}

) ]
≥ κtn


⊆

1
n

∣∣∣∣∣∣∣
n∑

i=1

Bi

∣∣∣∣∣∣∣ ≥ (κ − c)tn

 .
Note that the definition of Bi implies that |Bi| ≲ ρn and E [Bi] = 0. Using the arguments of

Lemma 4.3, E[B2
i
] := σ2 ≲ 22m j. Furthermore, by Bernstein’s inequality,
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P

1
n

∣∣∣∣∣∣∣
n∑

i=1

Bi

∣∣∣∣∣∣∣ ≥ (κ − c)tn

 ≲ exp
{
−

n(κ − c)2tn
2

2(σ2 + (κ − c)tnρn/3)

}

≲ exp

− n(κ − c)222m j · ln n
n

2(22m j + (κ − c) · 22m j/3)


= exp

{
−(ln n)

(κ − c)2

2(1 + (κ − c)/3)

}
= n−

(κ−c)2
2(1+(κ−c)/3) .

Then, one can choose large enough κ such that

P
(∣∣∣β̂ j,k − β j,k

∣∣∣ ≥ κtn

)
≲ n−

(κ−c)2
2(1+(κ−c)/3) ≲ n− p̃.

□

4.2. Proof of main theorem

Proof of (a): Note that∥∥∥r̂lin
n (x) − r(m)(x)

∥∥∥p̃

p̃
≲

∥∥∥r̂lin
n (x) − P j∗r

(m)(x)
∥∥∥p̃

p̃
+

∥∥∥P j∗r
(m)(x) − r(m)(x)

∥∥∥p̃

p̃

Hence,

E
[∥∥∥r̂lin

n (x) − r(m)(x)
∥∥∥p̃

p̃

]
≲ E

[∥∥∥r̂lin
n (x) − P j∗r

(m)(x)
∥∥∥p̃

p̃

]
+

∥∥∥P j∗r
(m)(x) − r(m)(x)

∥∥∥ p̃

p̃
. (4.8)

■ The stochastic term E
[∥∥∥r̂lin

n (x) − P j∗r
(m)(x)

∥∥∥ p̃

p̃

]
.

It follows from Lemma 1.1 that

E
[∥∥∥r̂lin

n (x) − P j∗r
(m)(x)

∥∥∥p̃

p̃

]
= E


∥∥∥∥∥∥∥∥
∑
k∈Λ j∗

(
α̂ j∗,k − α j∗,k

)
ϕ j∗,k(x)

∥∥∥∥∥∥∥∥
p̃

p̃


∼ 2 j∗( 1

2−
1
p̃ ) p̃

∑
k∈Λ j∗

E
[∣∣∣α̂ j∗,k − α j∗,k

∣∣∣p̃] .
Then, according to (4.3), |Λ j∗ | ∼ 2 j∗ and 2 j∗ ∼ n

1
2s′+2m+1 , one gets

E
[∥∥∥r̂lin

n (x) − P j∗r
(m)(x)

∥∥∥ p̃

p̃

]
∼ 2 j∗

p̃
2 (2m+1) · n−

p̃
2 ∼ n−

p̃s′

2s′+2m+1 . (4.9)

■ The bias term
∥∥∥P j∗r

(m)(x) − r(m)(x)
∥∥∥p̃

p̃
.

When p > p̃ ≥ 1, s′ = s− ( 1
p −

1
p̃ )+ = s. Using Hölder inequality, Lemma 1.2 and r(m) ∈ Bs

p,q([0, 1]),∥∥∥P j∗r
(m)(x) − r(m)(x)

∥∥∥ p̃

p̃
≲

∥∥∥P j∗r
(m)(x) − r(m)(x)

∥∥∥p̃

p
≲ 2− j∗ p̃s = 2− j∗ p̃s′ ∼ n−

p̃s′

2s′+2m+1 .
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When 1 ≤ p ≤ p̃ and s >
1
p

, one knows that Bs
p,q([0, 1]) ⊆ Bs′

p̃,∞([0, 1]) and

∥∥∥P j∗r
(m)(x) − r(m)(x)

∥∥∥p̃

p̃
≲ 2− j∗ p̃s′ ∼ n−

p̃s′

2s′+2m+1 .

Hence, the following inequality holds in both cases.∥∥∥P j∗r
(m)(x) − r(m)(x)

∥∥∥p̃

p̃
≲ n−

p̃s′

2s′+2m+1 . (4.10)

Finally, the results (4.8)–(4.10) show

E
[∥∥∥r̂lin

n (x) − r(m)(x)
∥∥∥p̃

p̃

]
≲ n−

p̃s′

2s′+2m+1 .

Proof of (b): By the definitions of r̂lin
n (x) and r̂non

n (x), one has∥∥∥r̂non
n (x) − r(m)(x)

∥∥∥ p̃

p̃
≲

∥∥∥r̂lin
n (x) − P j∗r

(m)(x)
∥∥∥p̃

p̃
+

∥∥∥r(m)(x) − P j1+1r(m)(x)
∥∥∥p̃

p̃

+

∥∥∥∥∥∥∥∥
j1∑

j= j∗

∑
k∈Λ j

(
β̂ j,kI{|β̂ j,k |≥κtn} − β j,k

)
ψ j,k(x)

∥∥∥∥∥∥∥∥
p̃

p̃

.

Furthermore,

E
[∥∥∥r̂non

n (x) − r(m)(x)
∥∥∥p̃

p̃

]
≲ T1 + T2 + Q. (4.11)

In this above inequality,

T1 := E
[∥∥∥r̂lin

n (x) − P j∗r
(m)(x)

∥∥∥p̃

p̃

]
,

T2 :=
∥∥∥r(m)(x) − P j1+1r(m)(x)

∥∥∥p̃

p̃
,

Q := E


∥∥∥∥∥∥∥∥

j1∑
j= j∗

∑
k∈Λ j

(
β̂ j,kI{|β̂ j,k |≥κtn} − β j,k

)
ψ j,k(x)

∥∥∥∥∥∥∥∥
p̃

p̃

 .
■ For T1. According to (4.9) and 2 j∗ ∼ n

1
2t+2m+1 (t > s),

T1 ∼ 2 j∗
p̃
2 (2m+1) · n−

p̃
2 ∼ n−

p̃t
2t+2m+1 < n−

p̃s
2s+2m+1 ≤ n− p̃δ. (4.12)

■ For T2. Using similar mathematical arguments as (4.10), when p > p̃ ≥ 1, one can obtain

T2 :=
∥∥∥r(m)(x) − P j1+1r(m)(x)

∥∥∥p̃

p̃
≲ 2− j1 p̃s. This with 2 j1 ∼

(
n

ln n

) 1
2m+1 leads to

T2 ≲ 2− j1 p̃s <

(
ln n
n

) p̃s
2m+1

≤

(
ln n
n

) p̃s
2s+2m+1

≤

(
ln n
n

) p̃δ

.

On the other hand, when 1 ≤ p ≤ p̃ and s >
1
p

, one has Bs
p,q([0, 1]) ⊆ B

s− 1
p+

1
p̃

p̃,∞ ([0, 1]) and

T2 ≲ 2− j1 p̃(s−1/p+1/p̃) ∼

(
ln n
n

) p̃(s−1/p+1/p̃)
2m+1

<

(
ln n
n

) p̃(s−1/p+1/p̃)
2(s−1/p)+2m+1

≤

(
ln n
n

)p̃δ

.
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Therefore, for each 1 ≤ p̃ < ∞,

T2 ≲

(
ln n
n

)p̃δ

. (4.13)

■ For Q. According to Hölder inequality and Lemma 1.1,

Q ≲ ( j1 − j∗ + 1)p̃−1
j1∑

j= j∗

E


∥∥∥∥∥∥∥∥
∑
k∈Λ j

(
β̂ j,kI{|β̂ j,k |≥κtn} − β j,k

)
ψ j,k(x)

∥∥∥∥∥∥∥∥
p̃

p̃


≲ ( j1 − j∗ + 1)p̃−1

j1∑
j= j∗

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

E
[
|β̂ j,kI{|β̂ j,k |≥κtn} − β j,k|

p̃
]
.

Note that

|β̂ j,kI{|β̂ j,k |≥κtn} − β j,k|
p̃ = |β̂ j,k − β j,k|

p̃I{|β̂ j,k |≥κtn,|β j,k |<
κtn
2 }
+ |β̂ j,k − β j,k|

p̃I{|β̂ j,k |≥κtn,|β j,k |≥
κtn
2 }

+ |β j,k|
p̃I{|β̂ j,k |<κtn,|β j,k |>2κtn} + |β j,k|

p̃I{|β̂ j,k |<κtn,|β j,k |≤2κtn}.

Meanwhile,

{|β̂ j,k| ≥ κtn, |β j,k| <
κtn

2
} ⊆ {|β̂ j,k − β j,k| >

κtn

2
},

{|β̂ j,k| < κtn, |β j,k| > 2κtn} ⊆ {|β̂ j,k − β j,k| > κtn} ⊆ {|β̂ j,k − β j,k| >
κtn

2
}.

Then, Q can be decomposed as

Q ≲ ( j1 − j∗ + 1) p̃−1 (Q1 + Q2 + Q3) , (4.14)

where

Q1 :=
j1∑

j= j∗

2 j( 1
2−

1
p̃ )p̃

∑
k∈Λ j

E
[
|β̂ j,k − β j,k|

p̃I{|β̂ j,k−β j,k |>
κtn
2 }

]
,

Q2 :=
j1∑

j= j∗

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

E
[
|β̂ j,k − β j,k|

p̃I{|β j,k |≥
κtn
2 }

]
,

Q3 :=
j1∑

j= j∗

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

|β j,k|
p̃I{|β j,k |≤2κtn}.

■ For Q1. It follows from the Hölder inequality that

E
[
|β̂ j,k − β j,k|

p̃I{|β̂ j,k−β j,k |>
κtn
2 }

]
≤

(
E

[
|β̂ j,k − β j,k|

2 p̃]) 1
2
[
P
(
|β̂ j,k − β j,k| >

κtn

2

)] 1
2
.

By Lemma 4.3, one gets

E
[∣∣∣β̂ j,k − β j,k

∣∣∣2 p̃
]
≲

(
ln n
n

)− p̃

· 22p̃m j.
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This with Lemma 4.5, |Λ j| ∼ 2 j and 2 j1 ∼
(

n
ln n

) 1
2m+1 shows that

Q1 ≲

j1∑
j= j∗

2 j( 1
2−

1
p̃ ) p̃2 j ·

(
ln n
n

) p̃
2

2p̃m j · n−
p̃
2 ≲ n−

p̃
2 < n−p̃δ. (4.15)

■ For Q2. One defines

2 j′ ∼

( n
ln n

) 1
2s+2m+1

.

Clearly, 2 j∗ ∼ n
1

2t+2m+1 (t > s) ≤ 2 j′ ∼
(

n
ln n

) 1
2s+2m+1

< 2 j1 ∼
(

n
ln n

) 1
2m+1 . Furthermore, one rewrites

Q2 =

 j′∑
j= j∗

+

j1∑
j= j′+1

 2 j( 1
2−

1
p̃ )p̃

∑
k∈Λ j

E
[
|β̂ j,k − β j,k|

p̃I{|β j,k |≥
κtn
2 }

]
:= Q21 + Q22. (4.16)

■ For Q21. By Lemma 4.3 and 2 j′ ∼
(

n
ln n

) 1
2s+2m+1

,

Q21 :=
j′∑

j= j∗

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

E
[
|β̂ j,k − β j,k|

p̃I{|β j,k |≥
κtn
2 }

]
≤

j′∑
j= j∗

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

E
[
|β̂ j,k − β j,k|

p̃
]
≲

(
ln n
n

) p̃
2 j′∑

j= j∗

2 j(2m+1) p̃
2

≲

(
ln n
n

) p̃
2

2 j′(2m+1) p̃
2 ∼

(
ln n
n

) p̃s
2s+2m+1

≤

(
ln n
n

)p̃δ

. (4.17)

■ For Q22. Using Lemma 4.3, one has

Q22 :=
j1∑

j= j′+1

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

E
[
|β̂ j,k − β j,k|

p̃I{|β j,k |≥
κtn
2 }

]
≲

(
ln n
n

) p̃
2 j1∑

j= j′+1

2 j( 1
2−

1
p̃ ) p̃+ p̃m j

∑
k∈Λ j

I{|β j,k |≥
κtn
2 }
.

When p > p̃ ≥ 1, by the Hölder inequality, tn = 2m j
√

ln n/n, 2 j′ ∼
(

n
ln n

) 1
2s+2m+1 and Lemma 1.2, one can

obtain that

Q22 ≲

(
ln n
n

) p̃
2 j1∑

j= j′+1

2 j( 1
2−

1
p̃ ) p̃+ p̃m j

∑
k∈Λ j

 |β j,k|

κtn
2

 p̃

≲

j1∑
j= j′+1

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

|β j,k|
p̃ =

j1∑
j= j′+1

2 j( 1
2−

1
p̃ ) p̃

∥∥∥β j,k

∥∥∥p̃

p̃

≤

j1∑
j= j′+1

2 j( 1
2−

1
p̃ ) p̃
· 2 j(1− p̃

p )
∥∥∥β j,k

∥∥∥ p̃

p
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≲

j1∑
j= j′+1

2− jp̃s ≲ 2− j′ p̃s ∼

(
ln n
n

) p̃s
2s+2m+1

≤

(
ln n
n

) p̃δ

. (4.18)

When 1 ≤ p ≤ p̃, it follows from Lemma 1.2 that

Q22 ≲

(
ln n
n

) p̃
2 j1∑

j= j′+1

2 j( 1
2−

1
p̃ ) p̃+ p̃m j

∑
k∈Λ j

 |β j,k|

κtn
2

p

≲

(
ln n
n

) p̃−p
2 j1∑

j= j′+1

2 j( 1
2−

1
p̃ ) p̃+ j( p̃−p)m

∥∥∥β j,k

∥∥∥p

p

≤

(
ln n
n

) p̃−p
2 j1∑

j= j′+1

2− j(sp+ p
2−

p̃
2−( p̃−p)m). (4.19)

Take
ϵ := sp −

p̃ − p
2

(2m + 1).

Then, (4.19) can be rewritten as

Q22 ≲

(
ln n
n

) p̃−p
2 j1∑

j= j′+1

2− jϵ . (4.20)

When ϵ > 0 holds if and only if p > p̃(2m+1)
2s+2m+1 , δ = s

2s+2m+1 and

Q22 ≲

(
ln n
n

) p̃−p
2

2− j′ϵ ∼

(
ln n
n

) p̃s
2s+2m+1

=

(
ln n
n

) p̃δ

. (4.21)

When ϵ ≤ 0 holds if and only if p ≤ p̃(2m+1)
2s+2m+1 , δ = s−1/p+1/p̃

2(s−1/p)+2m+1 . Define

2 j′′ ∼

( n
ln n

) δ
s−1/p+1/p̃

=

( n
ln n

) 1
2(s−1/p)+2m+1

,

and obviously, 2 j′ ∼
(

n
ln n

) 1
2s+2m+1

< 2 j′′ ∼
(

n
ln n

) δ
s−1/p+1/p̃

< 2 j1 ∼
(

n
ln n

) 1
2m+1 . Furthermore, one rewrites

Q22 =

 j′′∑
j= j′+1

+

j1∑
j= j′′+1

 2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

E
[
|β̂ j,k − β j,k|

p̃I{|β j,k |≥
κtn
2 }

]
:= Q221 + Q222.

(4.22)

For Q221. Note that p̃−p
2 +

δϵ
s−1/p+1/ p̃ = p̃δ in the case of ϵ ≤ 0. Then, by the same arguments of (4.20),

one gets

Q221 ≲

(
ln n
n

) p̃−p
2 j′′∑

j= j′+1

2− jϵ ≲

(
ln n
n

) p̃−p
2

2− j′′ϵ ∼

(
ln n
n

)p̃δ

. (4.23)
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For Q222. The conditions 1 ≤ p ≤ p̃ and s > 1/p imply Bs
p,q([0, 1]) ⊂ B

s− 1
p+

1
p̃

p̃,q ([0, 1]). Similar
to (4.18), one obtains

Q222 ≲

(
ln n
n

) p̃
2 j1∑

j= j′′+1

2 j( 1
2−

1
p̃ ) p̃+ p̃m j

∑
k∈Λ j

 |β j,k|

κtn
2

 p̃

≲

j1∑
j= j′′+1

2 j( 1
2−

1
p̃ ) p̃

∥∥∥β j,k

∥∥∥p̃

p̃
≲

j1∑
j= j′′+1

2 j( 1
2−

1
p̃ ) p̃
· 2− j(s− 1

p̃+
1
2 )p̃

≲ 2− j′′(s− 1
p+

1
p̃ ) p̃
∼

(
ln n
n

)p̃δ

. (4.24)

Combining (4.18), (4.21), (4.23) and (4.24),

Q22 ≲

(
ln n
n

)p̃δ

.

This with (4.16) and (4.17) shows that

Q2 ≲

(
ln n
n

) p̃δ

. (4.25)

■ For Q3. According to the definition of 2 j′ , one can write

Q3 =

 j′∑
j= j∗

+

j1∑
j= j′+1

 2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

|β j,k|
p̃I{|β j,k |≤2κtn} := Q31 + Q32.

■ For Q31. It is easy to see that

Q31 :=
j′∑

j= j∗

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

|β j,k|
p̃I{|β j,k |≤2κtn} ≤

j′∑
j= j∗

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

(2κtn) p̃

≲

(
ln n
n

) p̃
2

· 2(2m+1) j′ p̃
2 ∼

(
ln n
n

) p̃s
2s+2m+1

≤

(
ln n
n

) p̃δ

.

■ For Q32. One rewrites Q32 =
j1∑

j= j′+1
2 j( 1

2−
1
p̃ ) p̃ ∑

k∈Λ j

|β j,k|
p̃I{|β j,k |≤2κtn}. When p > p̃ ≥ 1, using the Hölder

inequality and Lemma 1.2,

Q32 ≤

j1∑
j= j′+1

2 j( 1
2−

1
p̃ )p̃

∑
k∈Λ j

|β j,k|
p̃ ≲ 2− j′ p̃s ∼

(
ln n
n

) p̃s
2s+2m+1

≤

(
ln n
n

)p̃δ

.
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When 1 ≤ p ≤ p̃, one has

Q32 ≤

j1∑
j= j′+1

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

|β j,k|
p̃

(
2κtn

|β j,k|

) p̃−p

≲

(
ln n
n

) p̃−p
2 j1∑

j= j′+1

2 j( 1
2−

1
p̃ ) p̃+ j( p̃−p)m

∥∥∥β j,k

∥∥∥p

p

≤

(
ln n
n

) p̃−p
2 j1∑

j= j′+1

2− j(sp+ p
2−

p̃
2−( p̃−p)m)

=

(
ln n
n

) p̃−p
2 j1∑

j= j′+1

2− jϵ .

For the case of ϵ > 0, one can easily obtain that δ = s
2s+2m+1 and

Q32 ≲

(
ln n
n

) p̃−p
2

2− j′ϵ ∼

(
ln n
n

) p̃s
2s+2m+1

=

(
ln n
n

) p̃δ

.

When ϵ ≤ 0, δ = s−1/p+1/ p̃
2(s−1/p)+2m+1 . Moreover, by the definition of 2 j′′ , one rewrites

Q32 =

 j′′∑
j= j′+1

+

j1∑
j= j′′+1

 2 j( 1
2−

1
p̃ )p̃

∑
k∈Λ j

|β j,k|
p̃I{|β j,k |≤2κtn} := Q321 + Q322.

Note that

Q321 ≲

(
ln n
n

) p̃−p
2 j′′∑

j= j′+1

2− jϵ ≲

(
ln n
n

) p̃−p
2

2− j′′ϵ ∼

(
ln n
n

)p̃δ

.

On the other hand, similar to the arguments of (4.24), one has

Q322 ≤

j1∑
j= j′′+1

2 j( 1
2−

1
p̃ ) p̃

∑
k∈Λ j

|β j,k|
p̃ =

j1∑
j= j′′+1

2 j( 1
2−

1
p̃ ) p̃

∥∥∥β j,k

∥∥∥p̃

p̃
≲

(
ln n
n

)p̃δ

.

Therefore, in all of the above cases,

Q3 ≲

(
ln n
n

) p̃δ

. (4.26)

Finally, combining the above results (4.14), (4.15), (4.25) and (4.26), one gets

Q ≲ ( j1 − j∗ + 1)p̃−1
(
ln n
n

) p̃δ

≲ (ln n)p̃−1
(
ln n
n

) p̃δ

.

This with (4.11)–(4.13) shows

E
[∥∥∥r̂non

n (x) − r(m)(x)
∥∥∥p̃

p̃

]
≲ (ln n) p̃−1

(
ln n
n

)p̃δ

.
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5. Conclusions

This paper considers wavelet estimations of the derivatives r(m)(x) of the variance function r(x) in
a heteroscedastic model. The upper bounds over L p̃(1 ≤ p̃ < ∞) risk of the wavelet estimators are
discussed under some mild assumptions. The results show that the linear wavelet estimator can obtain
the optimal convergence rate in the case of p > p̃ ≥ 1. When p ≤ p̃, the nonlinear wavelet estimator
has a better convergence rate than the linear estimator. Moreover, the nonlinear wavelet estimator is
adaptive. Finally, some numerical experiments are presented to verify the good performances of the
wavelet estimators.
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