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1. Introduction

This paper considers the following heteroscedastic model:
Y= f(X)U; + g(Xp),i €{1,--- ,n}. (1.1)

In this equation, g(x) is a known mean function, and the variance function r(x)(r(x) := f2(x)) is
unknown. Both the mean function g(x) and variance function r(x) are defined on [0, 1]. The random
variables Uy, ..., U, are independent and identically distributed (i.i.d.) with E[U;] = 0 and V[U;] = 1.
Furthermore, the random variable X; is independent of U; for any i € {1,--- ,n}. The purpose of this
paper is to estimate the mth derivative functions r™(x)(m € N) from the observed data
(X1, Y1), ,(X,,Y,) by a wavelet method.

Heteroscedastic models are widely used in economics, engineering, biology, physical sciences and
so on; see Box [1], Carroll and Ruppert [2], Hirdle and Tsybakov [3], Fan and Yao [4], Quevedo and
Vining [5] and Amerise [6]. For the above estimation model (1.1), the most popular method is the
kernel method. Many important and interesting results of kernel estimators have been obtained by
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Wang et al. [7], Kulik and Wichelhaus [8] and Shen et al. [9]. However, the optimal bandwidth
parameter of the kernel estimator is not easily obtained in some cases, especially when the function
has some sharp spikes. Because of the good local properties in both time and frequency domains, the
wavelet method has been widely used in nonparametric estimation problems; see Donoho and
Johnstone [10], Cai [11], Nason et al. [12], Cai and Zhou [13], Abry and Didier [14] and Li and
Zhang [15]. For the estimation problem (1.1), Kulik and Raimondo [16] studied the adaptive
properties of warped wavelet nonlinear approximations over a wide range of Besov scales. Zhou
et al. [17] developed wavelet estimators for detecting and estimating jumps and cusps in the mean
function. Palanisamy and Ravichandran [18] proposed a data-driven estimator by applying wavelet
thresholding along with the technique of sparse representation. The asymptotic normality for wavelet
estimators of variance function under a—mixing condition was obtained by Ding and Chen [19].

In this paper, we focus on nonparametric estimation of the derivative function ™ (x) of the variance
function r(x). It is well known that derivative estimation plays an important and useful role in many
practical applications (Woltring [20], Zhou and Wolfe, [21], Chacén and Duong [22], Wei et al. [23]).
For the estimation model (1.1), a linear wavelet estimator and an adaptive nonlinear wavelet estimator
for the derivative function 7 (x) are constructed. Moreover, the convergence rates over L7(1 < p < o0)
risk of two wavelet estimators are proved in Besov space B, (R) with some mild conditions. Finally,
numerical experiments are carried out, where an automatic selection method is used to obtain the best
parameters of two wavelet estimators. According to the simulation study, both wavelet estimators can
efficiently estimate the derivative function. Furthermore, the nonlinear wavelet estimator shows better
performance than the linear estimator.

This paper considers wavelet estimations of a derivative function in Besov space. Now, we first
introduce some basic concepts of wavelets. Let ¢ be an orthonormal scaling function, and the
corresponding wavelet function is denoted by . It is well known that
{Prs := 272¢(27x — k), Y ;5 = 2/*y(2/x — k), j = 7,k € Z} forms an orthonormal basis of L*(R). This
paper uses the Daubechies wavelet, which has a compactly support. Then, for any integer j,., a
function A(x) € L*([0, 1]) can be expanded into a wavelet series as

) = > @i+ D) Buthia(), x € [0, 1]. (12)

keAj, J=Jx keA;
In this equation, Aj = {O, 1, ey 2j - 1}, Qj k= <h, ¢j*,k>[0,l] and ,Bj,k = <I’l, lﬁj’k>[0,1].

Lemma 1.1. Let a scaling function ¢ be t-regular (i.e., ¢ € €' and |D*¢(x)| < c¢(1 + |x*)! for each
leZand a =0,1,...,0. If{ax} € [, and 1 < p < oo, there exist c; > ¢; > 0 such that

(l_1 J P (l_1
127 (@l < Zak22¢(2fx—k) <2/ (@l -

kEAj p

Besov spaces contain many classical function spaces, such as the well known Sobolev and Holder
spaces. The following lemma gives an important equivalent definition of a Besov space. More details
about wavelets and Besov spaces can be found in Meyer [24] and Hérdle et al. [25].

Lemma 1.2. Let ¢ be t-regular and h € LP([0, 1]). Then, for p,q € [1,00) and 0 < s < t, the following
assertions are equivalent:
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(i) h € B, ([0, 1]);
(i) (27|lh = P;hll } € 1

(i) (27 DBl )} € Ly
The Besov norm of h can be defined by

WAl = o), + @7 215l ||

p P
where ”,Efj,k”p =3 ng’k| )
kE/\j

2. Wavelet estimators and main theorem

In this section, we will construct our wavelet estimators, and give the main theorem of this paper.
The main theorem shows the convergence rates of wavelet estimators under some mild assumptions.
Now, we first give the technical assumptions of the estimation model (1.1) in the following.

Al: The variance function r : [0, 1] — R is bounded.

A2: For any i € {0, ...,m — 1}, variance function r satisfies 7?(0) = r(1) = 0

A3: The mean function g : [0, 1] — R is bounded and known.

A4: The random variable X satisfies X ~ U(]0, 1]).

AS5: The random variable U has a moment of order 2p (p > 1).

In the above assumptions, Al and A3 are conventional conditions for nonparametric estimations.
The condition A2 is used to prove the unbiasedness of the following wavelet estimators. In addition,
A4 and A5 are technique assumptions, which will be used in Lemmas 4.3 and 4.5.

According to the model (1.1), our linear wavelet estimator is constructed by

P (x) = Z a;, 1P, 1 (). 2.1)

kE/\j*

In this definition, the scale parameter j. will be given in the following main theorem, and

e :‘ZY2< breon - [ @eenrea 22

More importantly, it should be pointed out that this linear wavelet estimator is an unbiased estimator
of the derivative function 7™ (x) by Lemma 4.1 and the properties of wavelets.
On the other hand, a nonlinear wavelet estimator is defined by

J1
1o (x) 1= Z @, k). x(x) + ZBj,kl{w_;,k|2Kzn}‘/’flk(x)‘ 2:3)

kEAj* J=Jx

In this equation, 14 denotes the indicator function over an event A, t,, = 2™ \Inn/n,

Bix :=%Z(Y2< D" = wi) T

i=1

(2.4)

{‘Yiz(—l)’"l//;fz)(xi)_wj,k

Spn} ’
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Pn = 2" \n/Inn, and wj; = fol g2(x)(—1)mw5.fz)(x)dx. The positive integer j, and j; will also be given
in our main theorem, and the constant x will be chosen in Lemma 4.5. In addition, we adopt the
following symbol: x, := max{x,0}. A < B denotes A < ¢B for some constant ¢ > 0; A > B means
B < A; A ~ B stands for both A < B and B < A.

In this position, the convergence rates of two wavelet estimators are given in the following main
theorem.
Main theorem For the estimation model (1.1) with the assumptions A1-AS5, r"(x) € B;, ([0, 1])(p, g €
[1,00),s>0)and 1 < p<oo,if{p>p=>1,s>0}or{l <p<p,s>1/p}.

(a) the linear wavelet estimator #"(x) with s’ = s — (£ — 1), and 2/ ~ n3vwr satisfies

p b
Bl
1

(b) the nonlinear wavelet estimator 7°"(x) with 2/« ~ N (t>s)and 2/' ~ (h’l—ln)m satisfies

in( ) - r(m)(x)”;] < o (2.5)

Anon (m) p -1 Inn po
B[ @) - r @] s anmy? (=2 (2.6)
n
where

= s pm+1)

5:mm{ S S_l/p+1/p }:{23+2m/+] ) p>2’;+2m

’ - s—1/p+1/p pQ2m+1)
2s+2m+1 2(s—1/p)+2m+1 m p5£c+2m+1-

sp (=1/ptlp)p | . _ 5 .
Remark 1. Note that - %+ (n” 2<S*pl/P>ilp) is the optimal convergence rate over L”(1 < p < +o0) risk for

nonparametric wavelet estimations (Donoho et al. [26]). The linear wavelet estimator can obtain the
optimal convergence rate when p > p > 1 and m = 0.

Remark 2. When m = 0, this derivative estimation problem reduces to the classical variance function
estimation. Then, the convergence rates of the nonlinear wavelet estimator are same as the optimal
convergence rates of nonparametric wavelet estimation up to a In n factor in all cases.

Remark 3. According to main theorem (a) and the definition of the linear wavelet estimator, it is easy
to see that the construction of the linear wavelet estimator depends on the smooth parameter s of the
unknown derivative function 7™ (x), which means that the linear estimator is not adaptive. Compared
with the linear estimator, the nonlinear wavelet estimator only depends on the observed data and the
sample size. Hence, the nonlinear estimator is adaptive. More importantly, the nonlinear wavelet
estimator has a better convergence rate than the linear estimator in the case of p < p.

3. Simulation study

In order to illustrate the empirical performance of the proposed estimators, we produce a numerical
illustration using an adaptive selection method, which is used to obtain the best parameters of the
wavelet estimators. For the problem (1.1), we choose three common functions, HeaviS ine, Corner and

S pikes, as the mean function g(x); see Figure 1. Those functions are usually used in wavelet literature.
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On the other hand, we choose the function f(x) by fi(x) = 3(4x — 2)2e~“2"| £,(x) = sin(2nsinmx)
and f3(x) = —(2x — 1)> + 1, respectively. In addition, we assume that the random variable U satisfies
U ~ N[0, 1]. The aim of this paper is to estimate the derivative function r™(x) of the variance function
r(x)(r = f?) by the observed data (X;,Y)),...,(X,,Y,). In this section, we adopt r;(x) = [fi(x)]*,
r(x) = [fA(x)]? and r3(x) = [f3(x)]*. For the sake of simplicity, our simulation study focuses on the
derivative function ' (x)(m = 1) and r(x)(m = 0) by the observed data (X, Y;), ..., (X,,Y,) (n = 4096).

Furthermore, we use the mean square error (MS E (7(x), r(x)) = % Z(?(Xi) — r(X;))?) and the average

i=1
magnitude of error (AME (#(x), r(x)) = % > 17(X;) — r(X;)]) to evaluate the performances of the wavelet
i=1

estimators separately.

06 o0s 10 00 02 04 06 o0s 10 00 02 04
X X X

(a) (b) (c)
Figure 1. Three mean functions. (a) HeaviS ine, (b) Corner, (c) S pikes.

For the linear and nonlinear wavelet estimators, the scale parameter j, and threshold value A (1 =
kt,) play important roles in the function estimation problem. In order to obtain the optimal scale
parameter and threshold value of wavelet estimators, this section uses the two-fold cross validation
(2FCV) approach (Nason [27], Navarro and Saumard [28]). During the first example of simulation
study, we choose HeaviS ine as the mean function g(x), and f;(x) = 3(4x — 2)2e~*2" The estimation
results of two wavelet estimators are presented by Figure 2. For the optimal scale parameter j, of the
linear wavelet estimator, we built a collection of j, and j. = 1,...,log2(n) — 1. The best parameter
J« 1s selected by minimizing a 2FCV criterion denoted by 2FCV(.); see Figure 2(a). According to
Figure 2(a), it is easy to see that the 2FCV(}j,) and MSE both can get the minimum value when j, = 4.
For the nonlinear wavelet estimator, the best threshold value A is also obtained by the 2FCV () criterion
in Figure 2(b). Meanwhile, the parameter j,. is same as the linear estimator, and the parameter j; is
chosen as the maximum scale parameter log2(n)—1. From Figure 2(c) and 2(d), the linear and nonlinear
wavelet estimators both can get a good performance with the best scale parameter and threshold value.
More importantly, the nonlinear wavelet estimator shows better performance than the linear estimator.

In the following simulation study, more numerical experiments are presented to sufficiently verify
the performance of the wavelet method. According to Figures 3—10, the wavelet estimators both can
obtain good performances in different cases. Especially, the nonlinear wavelet estimator gets better
estimation results than the linear estimator. Also, the MSE and AME of the wavelet estimators in all
examples are provided by Table 1. Meanwhile, it is easy to see from Table 1 that the nonlinear wavelet
estimators can have better performance than the linear estimators.
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Figure 2. The estimation results of wavelet estimators when g(x) is HeaviSine and
r(x) = ri(x). (a) Graphs of the MS E (black line) and 2FCV criterion (red line) of the linear
estimator. (b) Graphs of the MS E (black line) and 2FCV criterion (blue line) of the nonlinear
estimator. (c) Fluctuating data (X, Y) (gray circles), the true variance r(x) (black line), the
linear estimator 7" (red line) and the nonlinear estimator 7" (blue line). (d) The estimation
results of the linear (red line) and nonlinear (blue line) for derivative function r/(x).
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Figure 3. The estimation results of wavelet estimators when g(x) is HeaviS ine and r(x) =

I’z(X).
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Figure 4. The estimation results of wavelet estimators when g(x) is HeaviS ine and r(x) =
r3(x).
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Figure 5. The estimation results of wavelet estimators when g(x) is Corner and r(x) = r;(x).
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Figure 6. The estimation results of wavelet estimators when g(x) is Corner and r(x) = r,(x).
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Figure 7. The estimation results of wavelet estimators when g(x) is Corner and r(x) = r3(x).
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Figure 8. The estimation results of wavelet estimators when g(x) is S pikes and r(x) = r;(x).

AIMS Mathematics

(b)

()

(d)

Volume 8, Issue 6, 14340-14361.



14347

| MSER )
“|—=— 2FCv()

—&— 2FCV()D)

AAAAA

PN
8 E
E

(a)

(b)

(©)

(d)

Figure 9. The estimation results of wavelet estimators when g(x) is S pikes and r(x) = r,(x).

21— MSEG, &)
—=— 2FCV(j»)

[

MSE(r,
02

AAAAA

—a— 2FCV(n)

My m
g8 E
g2

(a)

(b)

(©)

(d)

Figure 10. The estimation results of wavelet estimators when g(x) is S pikes and r(x) = r3(x).

Table 1. The MS E and AME of the wavelet estimators.

HeaviSine Corner S pikes
r L) 3 r L) 3 r L) r3
MSE®@#™ r)  0.0184 0.0073 0.0071 0.0189 0.0075 0.0064 0.0189 0.0069 0.0052
MSE@™,r) 0.0048 0.0068 0.0064 0.0044 0.0070 0.0057 0.0042 0.0061 0.0046
MSE®"™, ) 0.7755 0.0547 0.0676 0.7767 0.1155 0.0737 0.7360 0.2566 0.0655
MSE@E™™, r) 0.2319 0.0573 0.0560 0.2204 0.0644 0.0616 0.2406 0.2868 0.0539
AME@®™,r)  0.0935 0.0653 0.0652 0.0973 0.0667 0.0615 0.0964 0.0621 0.0550
AME@G#™", r)  0.0506 0.0641 0.0619 0.0486 0.0649 0.0583 0.0430 0.0595 0.0518
AME®#'™ )y 0.6911 0.1876 0.2348 0.7021 0.2686 0.2451 0.6605 0.4102 0.2320
AME@™", r)  0.3595 0.1862 0.2125 0.3450 0.2020 0.2229 0.3696 0.4198 0.2095

4. Proof of main theorem

4.1. Auxiliary results

Now, we provide some lemmas for the proof of the main Theorem.

Lemma 4.1. For the model (1.1) with A2 and A4,

AIMS Mathematics
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1n
El-
n

(Y21l - wj,k)] = Bjk- (4.2)

i=1

Proof. According to the definition of & j,
1
Eld] = l Z Y=1)"g00 (X)) ~ fo g2<x)(—1)'"¢§.’j,?<x>d4
1
=~ ;E[Y?(—l)%;’f,ikxo] - fo g 01"} (x)dx

1
=E[Y}(-1)"¢" x| - fo g0 (1"} (x)dx
= E[r(X)UT(=1)"¢%) (X0)| + 2BLA(XD)U1g(X1)(~1)"¢ (X))
1
E|g*(X)(-1)"g"0(x))] - fo g 01"} (x)dx.

Then, it follows from A4 that

1
E |22 (X)(-1)"¢" (X)) = f g1} (Ddx.
0
Using the assumption of independence between U; and X,

E [r(X)UL(=1)"¢")(X))| = BIUTIE | r(X) (- 1" (X)),

E[f(X)U18(X)(=1)"¢"(X1)] = E[ULJEL£(X1)g(X)(= 1"} (X))].
Meanwhile, the conditions V[U,] = 1 and E[U,] = 0 imply [Ulz] = 1. Hence, one gets

Eld] = E|r(X)(=1)"¢% (X))
1 1
= fo r)(=1)"¢ (0dx = (=1)" fo r(0eg; (x)dx

i
= f r ()¢ ()dx = a i
0

by the assumption A2.

On the other hand, one takes y instead of ¢, and w ; instead of fol gz(x)(—l)m¢§.'z)(x)dx. The second
equation will be proved by the similar mathematical arguments. O

Lemma 4.2. (Rosenthal’s inequality) Let X,,...,X, be independent random variables such that
E[X;] = 0 and E[|X;|P] < 0. Then,

p
n

,,] S E [|X|P]+(2E[|X|]) p>2.
<

n

S

i=1

i=1 i=1
P

(Z [IXiIz])2 : 1<p<2.

AIMS Mathematics Volume 8, Issue 6, 14340-14361.
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Lemma 4.3. For the model (1.1) with AI-A5,2/ <nand 1 < p < oo,

E||aj - aul’] s n¥2mi, (4.3)

'En

2

! -
E[|Bi - Bul] < (n") 2, 4.4)

Proof. By (4.1) and the independence of random variables X; and U;, one has

1 < 1
P

_1 D (YD) - E [K»z(—1>m¢§f'i)(xf)])‘

n|<—=
Ll
:Z;Ai.

In this above equation, A; := Y*(— 1)’"¢('")(X )-E [Y 2(— 1)’"(/)('”)(X )]
According to the definition of A;, one knows that E [A;] = 0 and

E[lap] = B||v21ra o0 - B[ e o) |

<E|[enregon)|

[ 2 2 m 4 (m) p
<E[[exvi + 2on-1"s 0| |
m m ﬁ
<E[UP]E[fecoscol | + B[ [ecosonl|
The assumption AS shows E[U ] < 1. Furthermore, it follows from Al and A3 that

ELUIE [InX)e ) (0P | < E[I6% 0P ).
E[g7(X0Io}, (X0 < B[l (X0

In addition, and the properties of wavelet functions imply that

<’")(X)| f 675 ()P dax = 2/0/m=D f 672 x = k)P d(2x = k)

= J(p/24mp~ 1)||¢(M)||Ij < 2J(B[2+mp=1)
5 S .

Hence,
E [| Ai|i>] < J(p/2+mp=1)

Especially in p = 2, E[JA,*] < 22"/,

AIMS Mathematics Volume 8, Issue 6, 14340-14361.
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Using Rosenthal’s inequality and 2/ < n,

1 n p

S

Ll i=1

G ZE[Ar]+CE [|Al~|2])’£’), p>2.

n? \ioq

E[|au - aul’] = n—lpE

N
IS

n 2
—X E[|Al~|2]) : 1<p<2,
— (n- 200D 4 (- 220)E) > 2,

—(n- 22,,,,-)2 : 1

7
-3

<2,

IA
a1l

Then, the first inequality is proved.
For the second inequality, note that

Bix=E
naI

! > (PRl - w,;k)]

n

1 1
= - E[(Y,?(—l)mwji’,:>(xi)— f g2<x><—1>'"w§1’;><x)dx)]
g 0
1 n
= - ) EIKi
n

i=1

. m 1 m. g (m
with (4.2) and K; := Y2(=1y"y0 (%) = [ g2(=1)"y (x)dx.
Let B,‘ = KiI[{lKiIS,Dn} -E [Ki]I{IK,-ISpn}]' Then, by the definition Ofﬁj;k in (24),

n

>

i=1

n

+ % D E[IKillkisp | - (4.5)

i=1

A 1 <& 1
Bjse = Biul =1 Z; Kilii<oy = Binl =

Similar to the arguments of A;, it is easy to see that E [B;] = 0 and
E [|Bi|ﬁ] <E “K"HlleISpn}m <E [lKilﬁ] < Di(5mp-1).

Especially in the case of p = 2, one can obtain E [lBilz] < 2%, On the other hand,

E|IKiljk o0 | < B =1, = 2" \[—. (4.6)

|K,~|-|K"l]:E[Kﬂ 22mj  [Inn

n

AIMS Mathematics Volume 8, Issue 6, 14340-14361.



14351

According to Rosenthal’s inequality and 2/ < n,

g P

S

| i=1

+ (1,

E [IBj,k _ﬁj,klﬁ] < %E

1 n = n p - -
— (S E[IBP|+(ZE [|B,~|2])‘z) + ). p>2,
nP \i=1 i=1
< o 2
—(%E [|B,-|2]) @), 1<p<2,
nf \i=1
b
i ) -5
i_ (n L IGAmp=1) 4 (. 22mj)§) + (hl_n) 2P B> 2,
n? n
S P
1 o\s  (Inm) o
—(p . 02mj i A pmj ~
nﬁ(n2 )+(n) 2pmi, 1<p<2,
L
() 7 oy
“\n
Then, the second inequality is proved. O
Lemma 4.4. (Bernstein’s inequality) Let X,,...,X, be independent random variables such that

E[X;] =0, |X;| < M and E[|X;*] := 0. Then, for each v > 0

n 1= 202 +vM/3) |

i=1
Lemma 4.5. For the model (1.1) with AI-A5 and 1 < p < +oo, there exists a constant k > 1 such that

P (l’éj’k —ﬂj,k| > Kln) < n?. “4.7)

Proof. According to (4.5), one gets K; = Y2(—=1)"y (X)) - fol )1y (x)dx, Bi = Killjp,) ~
E|Kiljk<p, | and

n n

+ % Z E [|Ki|]I{IK1|>Pn}] :

i=1

B;

N 1
B <=
Bix = Bjxl < "

i=1
Meanwhile, (4.6) shows that there exists ¢ > 0 such that E[IK,-II[{|K,.|>pn}] < ct,. Furthermore, the
following conclusion is true.

n

{|Bj,k = Bikul = Kt,,} C { ’11 Z B;

i=1
1
n

Note that the definition of B; implies that |B;| < p, and E[B;] = 0. Using the arguments of
Lemma 4.3, E[B?] := 0 < 2*"/. Furthermore, by Bernstein’s inequality,

+ % ; E (IKf|]I{|K,~|>pn})] 2 K’n}

n

>

i=1

N

> (k— c)t,,} .
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> t n(k = oty
(K= | S XP\ ™22 1 (= ] 3)

A

n(K_C)222mj 1r]11n
P72 + (k= o) - 2277/3)
{ns )

—nn) A o7

(K*C')z
= n G-I |

= exp

Then, one can choose large enough « such that

(k-0 =

(lﬂ]k ﬁ]k| > Kt, ) <n Qe <n?.

O
4.2. Proof of main theorem
Proof of (a): Note that
w00 = @) s (|G - P @) + ([P e - K]
Hence,
E[[#f"0 = rooll7] < B[/ 00 = Pr@o)2] + 1P ) = <)) (4.8)
m The stochastic term E [ #lin(x) — P;, r(’”)(x)”i].
It follows from Lemma 1.1 that
p
E[[f1"0 = Pr 7] = E (|| > (a4 = @.k) 5.40)
keA, P
2 S o — .
keAj,
Then, according to (4.3), |A;,| ~ 2/* and 2/ ~ N, one gets
B [[[# o) = Prro[7] ~ 2500 p7F st 4.9)

m The bias term ||P;,r(x) - * (x|,
Whenp>p>1,5 =s5— l - —)Jr = 5. Using Holder inequality, Lemma 1.2 and " € Bj, ([0, 1]),

Bs’

”Pj*r(m)(x) _ r(m)(x)”;:’ < ”Pj*r(m)(x) _ r(m)(x)”l; < QTIPS = 2=ibs’ n—m.
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1 /
When 1 < p < pand s > —, one knows that B, ([0,1]) € B;oo([(), 1]) and
P 9 9

1P1.r ) = FP ] s 27 ~
Hence, the following inequality holds in both cases.
||Pj*r(m)(x) - r(’")(x)”Z < Parcr

Finally, the results (4.8)—(4.10) show

E|[[#"(x) = M )|[7] < 7o

Proof of (b): By the definitions of ?ff”(x) and 7,°"(x), one has

) = r || s

#lin(x) — Pj*”(m)(X)”Z + || r ) - le+1i’(m)(x)||i
b

J1
+ Z Z (Bj’kl[{lﬁj,klzmn} _ﬁj’k)wj,k(x) .

J=J. keA;

Furthermore, p
E[|[fp 0 = o l)] < T+ T + 0.
In this above inequality,
Ty = E|[[#" 0 - Pr 7]
Ty = [[f" 00 = Pir™ @),
; p
0:=E i Z (B\j,kl[{wjﬂzmn} —ﬁj,k)lﬂj,k(x)
= ked; 5

m For 7. According to (4.9) and 2/ ~ nzmm (1 > s),

. P p pt ps <
Tl ~ 2j*§(2m+1) . n_g ~ n_2/+gm+l < n_z.s+g;:+l < n_pé.

m For 7,. Using similar mathematical arguments as (4.10), when p > p > 1, one

~ 1
Ty := (%) = Py || < 2775, This with 271 ~ ()™ leads to

1 bt 1 P 1 pé

. nn\2+ nn\zmr nn

T, <277 < < < '
n n n

1 o1l
On the other hand, when 1 < p < p and s > —, one has B; q([O, 1] C BﬁO§+’7([O, 1]) and
p k k)

p(s=1/p+1/p) p(s—1/p+1/p)

pTrS] 26-T/p)romsT pé
T, < 2-hne-tprip (107 (Inn < ()
n n n

(4.10)

(4.11)

(4.12)

can obtain
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Therefore, for each 1 < p < oo,

Inn\”
" )

T2S(—

m For Q. According to Holder inequality and Lemma 1.1,

. p
J1
0 5 Gy = o+ P DY (Bistip i —Bit)rs()
= ke, 5
Ji
.. 5 (1 15 N i
<SGh—ju+ 1P 1 Z 2i(z=5)P Z E [Wj,kﬂ{u?j,kemn} _ﬁj’k|p] _
]':].* kEAj

Note that

AT R WP — B R IPT . Ao _p T .
Wj,kﬂ{wj,uzm} Bikl” = 1Bjx — Bjl H{w,-,klzmn,wj,kk%} + Bk = Bjal H{w(f,k|2’(tn’|ﬁj,k|2”7n}
+ Bl "L 1<t ot 20t) + 1Bk L 1<t <201

Meanwhile,
. Kt, R Kt
{IBjxl = «t,, |Bjxl < 7} C{lBjx —Bjxl > 7},
N A ~ Kt,
1Bl < «t, 1Bkl > 2ct,} S{IBjx — Bkl > «tn} S{IBjx — Bl > 7}-
Then, Q can be decomposed as

05 (i—Jj+ D01+ 0r + Q3),

where
Ji .
e — J(5=3)P o _ ] T
Ql - Z 2 2 p Z E I:Iﬂj,k ﬁ],kl I[{Iﬁj,k_ﬁj,k|>%}:| s
j:j* kEAj
jl 1_1
. i(5—=)p N ~
0 = Z 2/ 2=5)P Z E [|ﬁj’k _ﬁj’klp]l{w]‘,kh%}] ,
j:j* kEA_/
J1
: JG=$)p P
Q3 = Z 2 2 p Z Iﬁj,kl H{LB/',HSZKI,;}'
]=]»< kGAj

m For Q. It follows from the Holder inequality that

[P(Iléj,k — Bl > %tn)]z

1
2

E [I/3’,-,k ~ Bl ]I{Léj,k—ﬂ,-,k»%}] <(E [Léj,k —ﬁj,klzﬁ])

By Lemma 4.3, one gets

X -p
E [l,@j,k —,Bj,k|2p] < (lnn) .02,

n

(4.13)

(4.14)
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1

This with Lemma 4.5, |A;| ~ 2/ and 2/' ~ ()™ shows that

1 : o P P o
0, < 22,«»);72] ( n”) 2l 8 <t <, (4.15)

J=J«

m For ;. One defines
1
o n 2s5+2m+1
2~ ()T
Inn
1

1
i R i’ s+2m: i m .
Clearly, 2/ ~ n2nt (t > 5) <2/ ~ (L)z R (L)z *' Furthermore, one rewrites

Inn Inn

J J1
D+ D2 Y BB - Bl gy | = O + O (4.16)

J=Jx j:j/+1 kGAj

1
m For O,,. By Lemma 4.3 and 27~ ( n )szmH ’

Inn

Z 2/ Z E Bk — Biad Ly o2
J=Js keA;
< 1221'(5 = Z [lﬁ]k _ﬁ]k| (lnn) 22](2m+1)1’
J=x keA; J=Js
Inn\’ _, s (Inn\ (Inn)\”
< (7) 2J Cm+1)s (7) < (7) . (4.17)

m For Q5. Using Lemma 4.3, one has
J1

Oni= ), 2477 ) BB~ Biul o]

j=j+1 keA;

(lnn) Z 21(5——)p+pm121[|ﬁ )

J=j+1 keA;

When p > p > 1, by the Holder inequality, , = 2"/ vInn/n, 2/ (lnn)z”z"”' and Lemma 1.2, one can
obtain that

Inn : 1_1y545m 14l g
O < (7) Z 95— 5+ JZ(%)

j=j+1 keA; 2

J(*—*)P Z |ﬁjk|p — Z 2](*—*);1 “ﬁ k”P

keA; Jj=j+1

G=9p . 9i0=5) Hﬁﬂc”i

J1
< Z 021G
J=j+
Jj1
< Z 2
=T+
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Ji pra po
< Z DiBs < =B L (hl_n) < (ln_n) ) (4.18)

n n

When 1 < p < p, it follows from Lemma 1.2 that

171
1 i\
On < M Z 21(*—*)p+pm/ Z (Iﬁl(+”k|)
n Jj=j+1 keA; 2
Inn ER
<|— Z DI 5)B+i(P=pIm I8; ”
" 7
Bt
< ln_n Z 2~ Jsp+5-5-(p- pym). (4.19)
n j=j+1
Take
€:= sp——(2m+ D).
Then, (4.19) can be rewritten as
Inn\7 & ‘
On < (—) s (4.20)
" j=i+l

When e > 0 holds if and only if p > 220§ = 5 __ apd

2s5+2m+1° 2s5+2m+1
p=p ps 56
Inn\7Z __, Inn\=>*1  (Inn\"
On < (— 27~ | — =1—] . 4.21)
n n n
pOm+1) o s—1/p+1/p
When € < 0 holds if and only if p < 77="-4, 6 = o1/ ramii Define
o I T
2j” ~( n )s—l/p+1/p :( n )z(s-l/p)+zm+1 ,
Inn Inn

1 1
and obviously, 2/ ~ (L)Z”z’"“ <2/ ~ ( n ) =TT <20~ (ﬁ)”’”l. Furthermore, one rewrites

Inn Inn

0y = [ Z Z ]2/“ Z E ['Bj,k —ﬁj,k|ﬁ1[{w,~,k|z%}] (4.22)

j=y+1  j=j"+1 keA;
= 01 + O,
For O,,;. Note that % + H/‘;ﬁ/ﬁ = po in the case of € < 0. Then, by the same arguments of (4.20),
one gets

p=p i P=p ~

Inn\? < , Inn\2 __. Inn\”
On1 S (_n) Z 27 < (_n) 27 ~ (_n) . (4.23)

A s " "
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Nt
For 07,. The conditions 1 < p < p and s > 1/p imply B;’q([O, 1)) c Bb ”([0 1]). Similar
to (4.18), one obtains

ﬁ . ~

Inn\? & 1BxlY
](*‘*)P"’Pm] S
02 S( p ) g 274 g ( o

j=j"+1 keA; 2
2}(2 5P ”'3 k” 2](2—;)17 y=ils= L+bp
~5
< 2—1”<s—%+%>f’ ~ (m_n)P . (4.24)
n
Combining (4.18), (4.21), (4.23) and (4.24),
Inn\”
0O»n < (—) .
n
This with (4.16) and (4.17) shows that
Inn\”
0, < (ﬂ) . (4.25)
n

m For Q3. According to the definition of 27 one can write

J Jj1
il 1y ~
0; = [Z + Z sz(z PP Z 1Bxl" L ui<2c,) := Q31 + Q3o

J=e j=i+1 keA;

m For Qs;. It is easy to see that

s : Z 25N 1Bl g i< < Z 21PN 2kt

J=J« keA; J=Js keA;
p ps .
2 N Tst2m+ pé
< Inn pemeni g Inn < Inn .
n n n

m For Q3,. One rewrites Q3 = Z 21G=5)P Z IBJ P Lis, 1<26,y- When p > p > 1, using the Holder
j=j+1

inequality and Lemma 1.2,

_Ps ~
1 25+2m+1 1 po
O < Z 21(2—;)PZ|,3 (P <2778 ~ ( nn) < (_r;ln) :

Jj=j+1 keA;
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When 1 < p < p, one has

J 11y [ 2kt p=p
Oy < 2](5‘5)[’ |B_’ |P( ")
32 Z Z Jik Iﬁj’kl

Jj=i+1 keA;
pp
Inn)\? <
JE=Hp+j(-pm P
S D, 2% 1,
n R
j=i+l
e
2 <
< Inn Z 2=i(sp+5-5-(p-p)m)
n =
j=J+1
e
2
_ Inn Z - je'
SR =y
For the case of € > 0, one can easily obtain that § = —=— and
2
s+2m+1
e e p6
Inn\ 2 __ e In 7 | 25427+ Inn\’
On s|— 277~ — =|l—] .
n n n
—1 1/p .. 7 .
When € < 0, § = —=1U2UP__ Moreover, by the definition of 2/°, one rewrites

2(s—1/p)+2m+1

O = [ Z Z ]2,<_),, Z 1Bl Lig i<t = Q321 + O30

j=j+1  j=j"+1 keA;

Note that

O < Inn\? JZ} n-ie < Inn gz_j,,e Inn\”
S “\n n|)

On the other hand, similar to the arguments of (4.24), one has

Inn\?
O < Z 2i(3=3)b Z |,3]k|p = Z 0i(3=5)p ”,8 k” ( nn)

j=j’+1 keA; Jj=j"+1

Therefore, in all of the above cases,

n

Inn\”
0s < (ﬂ) . (4.26)
Finally, combining the above results (4.14), (4.15), (4.25) and (4.26), one gets
__ (Inn\” __ (Inn\”
0<Gi—j+ 1y (M) < (nny! (ﬂ)
n n
This with (4.11)—(4.13) shows

E|

po
e = ] < ann (22
n
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5. Conclusions

This paper considers wavelet estimations of the derivatives 7™ (x) of the variance function r(x) in
a heteroscedastic model. The upper bounds over LP(1 < p < o) risk of the wavelet estimators are
discussed under some mild assumptions. The results show that the linear wavelet estimator can obtain
the optimal convergence rate in the case of p > p > 1. When p < p, the nonlinear wavelet estimator
has a better convergence rate than the linear estimator. Moreover, the nonlinear wavelet estimator is
adaptive. Finally, some numerical experiments are presented to verify the good performances of the
wavelet estimators.
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