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Abstract: The importance of quaternions in a variety of fields, such as physics, engineering and
computer science, renders the effective solution of the time-varying quaternion matrix linear equation
(TV-QLME) an equally important and interesting task. Zeroing neural networks (ZNN) have seen great
success in solving TV problems in the real and complex domains, while quaternions and matrices of
quaternions may be readily represented as either a complex or a real matrix, of magnified size. On that
account, three new ZNN models are developed and the TV-QLME is solved directly in the quaternion
domain as well as indirectly in the complex and real domains for matrices of arbitrary dimension. The
models perform admirably in four simulation experiments and two practical applications concerning
color restoration of images.

Keywords: quaternion; linear matrix equation; dynamical system; zeroing neural network; image

http://http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023733


14322

restoration
Mathematics Subject Classification: 65F20, 68T05

1. Introduction

Quaternions, introduced by Hamilton in 1843 [1, 2], are important in many fields including but not
limited to computer graphics [3–6], modeling human motions [7], kinematic modeling of manipulators
[8, 9], robotic controllers [10, 11], spacecraft maneuvering [12–14] and physics and mathematics,
namely quantum fields [15,16], quantum mechanics [17–19], electromagnetism [20,21], mathematical
physics [22, 23] and linear algebra [24, 25]. Quaternions consist of a skew-field or a division algebra
over the field of real numbers [26]. As such, the set of quaternions H is not commutative under
the operation of multiplication and thus, in practical applications, complexity quickly becomes an
issue [27]. On the other hand, a scalar quaternion may be readily represented by either a complex
2 × 2 or a real 4 × 4 matrix [26, 28, 29]. This property also extends to matrices of quaternions, with
the dimensions of the representation matrices scaling appropriately. Therefore, in solving problems
involving quaternions, it has become common practice to solve an equivalent problem in the real or
complex domain and then convert the solution back to quaternion form. This technique, arguably
powerful, even in a static environment, proves especially useful in problems of time-varying nature.

Time-varying (TV) problems involving quaternions and matrices of quaternions have recently
started to attract research attention. Inversion of TV matrices of quaternions has been studied
in [27], whereas the dynamic Sylvester quaternion matrix equation has been solved in [30] and
the TV inequality-constrained quaternion matrix least-squares problem has been dealt with in [31].
Furthermore, a practical application involving a problem in robotics has been studied in [32]. Last
but not least, the TV quaternion valued linear matrix equation (TV-QLME) for square matrices has
been solved in [33] through transformation of the quaternion valued equation to an equivalent real
representation. All these articles share a common theme, in that an online solution is derived through
use of zeroing neural networks (ZNNs).

ZNNs, originated by Zhang et al. in a series of papers, comprise a class of recurrent neural networks,
with strong parallel processing properties, that is dedicated to solving TV problems. Originally, ZNNs
were designed to deal with the problem of matrix inversion [34]. Nowadays, their application has
extended to solving problems of matrix and/or tensor inversion [35], as well as generalized inversion
[36], solving systems of linear equations and systems of matrix equations [37–39], solving linear and
quadratic optimization problems [40–42] and approximating miscellaneous matrix functions. Robot
control [43, 44], financial portfolio optimization [45, 46] and text classification [47] are other common
ZNNs practical applications.

In this paper, drawing motivation from [33], we shall also study the TV-QLME in view of
generalizing its solution to rectangular matrices and, more importantly, examining whether direct
solution of the problem in the quaternion domain or indirect solution through representation in the
complex domain is more effective than the already proposed solution in the real domain. To this end,
we shall develop three ZNNs in total, one for each domain, which we shall thoroughly test on four
simulation examples. Their effectiveness shall be further examined by application in two tasks of
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color restoration of contaminated images. This piece of research further contributes to the literature
by conducting theoretical analysis as well as analyzing the computational complexity of all discussed
models.

The rest of the paper is organized as follows. Preliminaries, notation and the TV-QLME problem
are presented in Section 2. The three ZNN models are developed in Section 3. Section 4 includes
theoretical analysis whereas computational complexity is discussed in Section 5. Simulation examples
and applications to color restoration of images are then presented in Section 6. Finally, concluding
comments and remarks are given in Section 7.

2. Preliminaries and problem formulation

This section lays out certain preliminaries regarding matrices of quaternions, the TV-QLME
problem, ZNNs and finally, the notation to be used throughout the rest of the paper as well as the
main results to be discussed.

Let H := {q = q1 + q2i + q3 j + q4k : q1, q2, q3, q4 ∈ R} denote the set of quaternions and let
Hm×n := {Q = Q1 + Q2i + Q3 j + Q4k : Q1,Q2,Q3,Q4 ∈ R

m×n} denote the set of all m × n quaternion
matrices with entries from R. Note that Q1,Q2,Q3,Q4, also called the coefficient matrices of the
quaternion matrix Q, are real matrices of the same dimension as Q. All things considered, let us now
turn our attention to the following general form of a TV-QLME:

Ã(t)X̃(t) = B̃(t), (2.1)

where Ã(t) ∈ Hm×n, X̃(t) ∈ Hn×r and B̃(t) ∈ Hm×r with m ≥ n ≥ r. The matrix X̃(t) is unknown
whereas Ã(t) = A1(t) + A2(t)ı + A3(t) ȷ+ A4(t)k and B̃(t) = B1(t) + B2(t)ı + B3(t) ȷ+ B4(t)k are smoothly
TV matrices whose coefficient matrices Ai(t) ∈ Rm×n and Bi(t) ∈ Rm×r, i = 1, 2, 3, 4, along with the
coefficient matrices of their derivatives, are either given or can be accurately estimated.

The product of the two TV quaternion matrices Ã(t) and X̃(t) is the following:

Ã(t)X̃(t) = C1(t) +C2(t)ı +C3(t) ȷ +C4(t)k (2.2)

where
C1(t)=A1(t)X1(t)−A2(t)X2(t)−A3(t)X3(t)−A4(t)X4(t),
C2(t)=A1(t)X2(t)+A2(t)X1(t)+A3(t)X4(t)−A4(t)X3(t),
C3(t)=A1(t)X3(t)+A3(t)X1(t)+A4(t)X2(t)−A2(t)X4(t),
C4(t)=A1(t)X4(t)+A4(t)X1(t)+A2(t)X3(t)−A3(t)X2(t),

(2.3)

with Ci(t) ∈ Rm×r for i = 1, · · · , 4.
One complex representation of the TV quaternion matrix Ã(t) ∈ Hm×n is the following:

Â(t) =
[
A1(t) − A4(t)ı −A3(t) − A2(t)ı
A3(t) − A2(t)ı A1(t) + A4(t)ı

]
∈ C2m×2n. (2.4)

With the process of multiplying two quaternion matrices and subsequently computing the complex
representation of the result being equal to the process of multiplying the respective complex
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representations of the matrices in the first place [30, Theorem 1], solving (2.1) is equivalent to solving
the complex matrix equation:

Â(t)X̂(t) = B̂(t), (2.5)

where X̂(t) ∈ C2n×2r and B̂(t) ∈ C2m×2r. Note that the construction of X̂(t) and B̂(t) follows the same
pattern as that of Â(t) in (2.4).

One real representation of the TV quaternion matrix Ã(t) ∈ Hm×n is the following:

A(t) =


A1(t) A4(t) −A3(t) A2(t)
−A4(t) A1(t) −A2(t) −A3(t)
A3(t) A2(t) A1(t) −A4(t)
−A2(t) A3(t) A4(t) A1(t)

 ∈ R4m×4n. (2.6)

With the process of multiplying two quaternion matrices and subsequently computing the real
representation of the result being equal to the process of multiplying the respective real representations
of the matrices in the first place, [33, Corollary 1], solving (2.1) is equivalent to solving the real matrix
equation:

A(t)X(t) = B(t), (2.7)

where X(t) ∈ R4n×4r and B(t) ∈ R4m×4r. Note that the construction of X(t) and B(t) follows the same
pattern as that of A(t) in (2.6).

For the rest of this paper, Ir will refer to the identity r×r matrix whereas 0r and 0m×n will refer to the
zero r × r and m × n matrices, respectively. Furthermore, vec(·) will denote the vectorization process
and ⊗ will denote the Kronecker product. Last but not least, ()T will refer to the transpose operator, (̇)
will be used to denote the time derivative of an expression and ∥·∥F will denote the matrix Frobenius
norm. Lastly, Table 1 includes a list of all the abbreviations used in this paper along with their full
names.

Table 1. Paper’s abbreviations list.

Abbreviation Full name

TV time-varying
TV-QLME TV quaternion valued linear matrix equation

ZNN zeroing neural network
EME error matrix equation

ZNNQ ZNN quaternion
ZNNQC ZNNQ by representation in the complex domain
ZNNQR ZNNQ by representation in the real domain

SE simulation examples

The development of a ZNN consists of two universal steps. First, one defines an error function E(t),
also called a Zhang function or error matrix equation (EME). Note that the expression for E(t) has to
involve the unknown TV matrix X(t). It is also worth mentioning that each unique Zhang function
defines a class of ZNNs. With E(t) determined, a ZNN must satisfy

Ė(t) = −λF (E(t)) , (2.8)
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with Ė(t) referring to the time derivative of E(t), λ > 0 being a positive real number through one
may adjust the convergence rate of the model and F denoting an increasing, odd activation function
that acts element-wise on E(t). Substituting in (2.8) the expressions for E(t) and Ė(t), one is then to
derive the Zhang dynamics model; an explicit or implicit expression for Ẋ(t), the time derivative of the
unknown TV matrix X(t). The Zhang function E(t), coupled with the choice of activation function F
and the Zhang dynamics model, are the three defining components of a ZNN.

Learning continuously from non-stationary data, coupled with concurrent transfer and preservation
of previous knowledge, is known as continual learning. It is a fact that the ZNN design revolves
around forcing every entry of the error function E(t) to 0, as time evolves. This is achieved through the
continuous-time learning rule, which results from the definition of the error function (2.8). As a result,
the error function may be perceived as a means of monitoring the ZNN models learning. In this paper
we shall discuss the linear ZNN dynamical system:

Ė(t) = −λE(t). (2.9)

Note that a higher value for the gain parameter λ will result in the model converging even faster.
The following are the key results of the paper.
(1) Three new ZNN models for solving TV-QLME problems are presented.
(2) The proposed models are applicable to matrices of arbitrary dimension.
(3) Supportive theoretical analysis is conducted.
(4) Simulation experiments with illustrations as well as applications to color restoration of images

are performed to support the theoretical research.

3. ZNN models in solving the TV-QLME

In this section we shall develop three ZNN models, each one operating on a different domain. We
assume that Ã(t) ∈ Hm×n and B̃(t) ∈ Hm×r are differentiable TV quaternion matrices, and X̃(t) ∈ Hn×r is
the unknown quaternion matrix to be found.

3.1. The ZNNQ model

According to (2.2), the following equation is satisfied in the case of the TV-QLME:

C1(t) − B1(t) + (C2(t) − B2(t))ı + (C3(t) − B3(t)) ȷ + (C4(t) − B4(t))k = 0m×r. (3.1)

Further, according to (2.3) and (3.1), the following are satisfied in the case of the TV-QLME:


A1(t)X1(t) − A2(t)X2(t) − A3(t)X3(t) − A4(t)X4(t) = B1(t),
A2(t)X1(t) + A1(t)X2(t) − A4(t)X3(t) + A3(t)X4(t) = B2(t),
A3(t)X1(t) + A4(t)X2(t) + A1(t)X3(t) − A2(t)X4(t) = B3(t),
A4(t)X1(t) − A3(t)X2(t) + A2(t)X3(t) + A1(t)X4(t) = B4(t).

(3.2)
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Then, setting

Z(t) =


A1(t) −A2(t) −A3(t) −A4(t)
A2(t) A1(t) −A4(t) A3(t)
A3(t) A4(t) A1(t) −A2(t)
A4(t) −A3(t) A2(t) A1(t)

 ∈ R4m×4n,

Y(t) =[XT
1 (t), XT

2 (t), XT
3 (t), XT

4 (t)]T ∈ R4n×r,

W(t) =[BT
1 (t), BT

2 (t), BT
3 (t), BT

4 (t)]T ∈ R4m×r,

(3.3)

we have the following EME:
EQ(t) = Z(t)Y(t) −W(t). (3.4)

where its first derivative is:
ĖQ(t) = Ż(t)Y(t) + Z(t)Ẏ(t) − Ẇ(t). (3.5)

When E(t) and Ė(t) from (2.9) are replaced with EQ(t) defined in (3.4) and ĖQ(t) defined in (3.5),
respectively, solving the equation in terms of Ẏ(t) yields the following result:

Z(t)Ẏ(t) = −λEQ(t) − Ż(t)Y(t) + Ẇ(t). (3.6)

Then, with the aid of the Kronecker product and the vectorization process, the dynamic model of (3.6)
may be simplified:

(Ir⊗Z(t))vec(Ẏ(t))=vec(−λEQ(t)−Ż(t)Y(t)+Ẇ(t)) (3.7)

Furthermore, after setting:

D1(t)=(Ir⊗Z(t))∈R4mr×4nr,

D2(t)=vec(−λEQ(t)−Ż(t)Y(t)+Ẇ(t))∈R4mr,

y(t)=vec(Y(t))∈R4nr, ẏ(t)=vec(Ẏ(t))∈R4nr,

(3.8)

we derive the following ZNN model:

DT
1 (t)D1(t)ẏ(t) = DT

1 (t)D2(t) (3.9)

where DT
1 (t)D1(t) ∈ R4nr×4nr is a, nonsingular, mass matrix and DT

1 (t)D2(t) ∈ R4nr. The dynamic model
of (3.9), termed ZNNQ, is the proposed ZNN model to be used in solving the TV-QLME of (2.1).

3.2. The ZNNQC model

According to (2.7), the following equation is satisfied in the case of the TV-QLME through complex
representation of the quaternion matrix:

Â(t)X̂(t) − B̂(t) = 02m×2r, (3.10)

where Â(t) ∈ C2m×2n, X̂(t) ∈ C2n×2r and B̂(t) ∈ C2m×2r. As a result, we can set the following EME:

EC(t) = Â(t)X̂(t) − B̂(t), (3.11)

where its first derivative is:
ĖC(t) = ˙̂A(t)X̂(t) + Â(t) ˙̂X(t) − ˙̂B(t). (3.12)
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When E(t) and Ė(t) from (2.9) are replaced with EC(t) defined in (3.11) and ĖC(t) defined in (3.12),
respectively, solving the equation in terms of ˙̂X(t) yields the following result:

Â(t) ˙̂X(t) = −λEC(t) − ˙̂A(t)X̂(t) + ˙̂B(t). (3.13)

Then, with the aid of the Kronecker product and the vectorization process, the dynamic model of (3.13)
may be simplified:

(I2r⊗Â(t))vec( ˙̂X(t))=vec(−λEC(t)− ˙̂A(t)X̂(t)+ ˙̂B(t)) (3.14)

Furthermore, after setting:

G1(t)=(I2r⊗A(t))∈C4mr×4nr, G2(t)=vec(−λEC(t)− ˙̂A(t)X̂(t)+ ˙̂B(t))∈C4mr,

h(t)=vec(X̂(t))∈C4nr, ḣ(t)=vec( ˙̂X(t))∈C4nr,
(3.15)

we derive the following ZNN model:

GT
1 (t)G1(t)ḣ(t) = GT

1 (t)G2(t), (3.16)

where GT
1 (t)G2(t) ∈ C4nr and GT

1 (t)G1(t) ∈ C4nr×4nr is a, nonsingular, mass matrix. The dynamic model
of (3.16), termed ZNNQC, is the proposed ZNN model to be used in solving the TV-QLME of (2.1)
through complex representation of the quaternion matrix.

3.3. The ZNNQR model

According to (2.7), the following equation is satisfied in the case of the TV-QLME through real
representation of the quaternion matrix:

A(t)X(t) − B(t) = 04m×4r, (3.17)

where A(t) ∈ R4m×4n, X(t) ∈ R4n×4r and B(t) ∈ R4m×4r. As a result, we can set the following EME:

ER(t) = A(t)X(t) − B(t), (3.18)

where its first derivative is:
ĖR(t) = Ȧ(t)X(t) + A(t)Ẋ(t) − Ḃ(t). (3.19)

When E(t) and Ė(t) from (2.9) are replaced with ER(t) defined in (3.18) and ĖR(t) defined in (3.19),
respectively, solving the equation in terms of Ẋ(t) yields the following result:

A(t)Ẋ(t) = −λER(t) − Ȧ(t)X(t) + Ḃ(t). (3.20)

Then, with the aid of the Kronecker product and the vectorization process, the dynamic model of (3.20)
may be simplified:

(Ir⊗A(t))vec(Ẋ(t))=vec(−λER(t)−Ȧ(t)X(t)+Ḃ(t)) (3.21)

Furthermore, after setting:

R1(t)=(I4r⊗A(t))∈R16mr×16nr, R2(t)=vec(−λER(t)−Ȧ(t)X(t)+Ḃ(t))∈R16mr,

x(t)=vec(X(t))∈R16nr, ẋ(t)=vec(Ẋ(t))∈R16nr,
(3.22)
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we derive the following ZNN model:

RT
1 (t)R1(t)ẋ(t) = RT

1 (t)R2(t), (3.23)

where RT
1 (t)R2(t) ∈ R16nr and RT

1 (t)R1(t) ∈ R16nr×16nr is a, nonsingular, mass matrix. The dynamic model
of (3.23), termed ZNNQR, is the proposed ZNN model to be used in solving the TV-QLME of (2.1)
through real representation of the quaternion matrix.

4. Theoretical analysis

The convergence and the stability analysis of the ZNNQ (3.9), ZNNQC (3.16) and ZNNQR (3.6)
models are presented in this section.

Theorem 4.1. Assuming that Z(t) ∈ R4m×4n and W(t) ∈ R4m×r are differentiable, the dynamical system
(3.6) converges to the theoretical solution (TSOL) Y∗(t) of the TV-QLME (2.1). The solution is then
stable, based on Lyapunov.

Proof. The substitution Ỹ(t) := Y∗(t) − Y(t) implies Y(t) = Y∗(t) − Ỹ(t), where Y∗(t) is a TSOL. The
time derivative of Y(t) is Ẏ(t) = Ẏ∗(t) − ˙̃Y(t). Notice that

Z(t)Y∗(t) −W(t) = 04m×r, (4.1)

and its first derivative
Ż(t)Y∗(t) + Z(t)Ẏ∗(t) − Ẇ(t) = 04m×r. (4.2)

As a result, following the substitution of Y(t) = Y∗(t) − Ỹ(t) into (3.4), one can verify

ẼQ(t) = EQ(Ỹ(t), t) = Z(t)Y∗(t) − Z(t)Ỹ(t) −W(t). (4.3)

Further, the implicit dynamics (2.9) imply
˙̃EQ(t) = ĖQ(Ỹ(t), t) = Z(t)Ẏ∗(t) − Z(t) ˙̃Y(t) + Ż(t)Y∗(t) − Ż(t)Ỹ(t) − Ẇ(t) = −λEQ(Ỹ(t), t). (4.4)

We then determine the candidate Lyapunov function so as to confirm convergence:

L(t) =
1
2

∥∥∥ẼQ(t)
∥∥∥2

F
=

1
2

Tr
(
ẼQ(t)

(
ẼQ(t)

)T)
. (4.5)

Then, the next identities can be verified:

L̇(t) =
2Tr
((

ẼQ(t)
)T ˙̃EQ(t)

)
2

= Tr
((

ẼQ(t)
)T ˙̃EQ(t)

)
= −λTr

((
ẼQ(t)

)T
ẼQ(t)

)
. (4.6)

Consequently, it hold that

dL(Ỹ(t), t)
dt

< 0, EQ(Ỹ(t), t) , 0

= 0, EQ(Ỹ(t), t) = 0,

⇔L̇(t)

< 0, Z(t)Y∗(t) − Z(t)Ỹ(t) −W(t) , 0

= 0, Z(t)Y∗(t) − Z(t)Ỹ(t) −W(t) = 0,

⇔L̇(t)

< 0, Ỹ(t) , 0

= 0, Ỹ(t) = 0,

(4.7)
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With Ỹ(t) being the equilibrium point of the system (4.4) and EQ(0) = 0, we have that:

dL(Ỹ(t), t)
dt

≤ 0, ∀ Ỹ(t) , 0. (4.8)

By the Lyapunov stability theory, we infer that the equilibrium state Ỹ(t) = Y∗(t) − Y(t) = 0 is stable.
Thus, Y(t)→ Y∗(t) as t → ∞.

Theorem 4.2. Let Z(t) ∈ R4m×4n and W(t) ∈ R4m×r be differentiable. For any initial value y(0) that
one may consider, the ZNNQ model (3.9) converges exponentially to the TSOL y∗(t) at each time
t ∈ [0, t f ) ⊆ [0,+∞).

Proof. The EME of (3.4) is declared so as to determine the TSOL of the TV-QLME. The model (3.6)
is developed utilizing the linear ZNN design (2.9) for zeroing (3.4). When t → ∞, Y(t)→ Y∗(t) for any
choice of initial value, according to Theorem 4.1. As a result, the ZNNQ model (3.9) also converges to
the TSOL y∗(t) for any choice of initial value y(0) when t → ∞, as it is simply an alternative version
of (3.6). Therefore, the proof is finished.

Theorem 4.3. Assuming that Â(t) ∈ R2m×2n and B̂(t) ∈ R2m×2r are differentiable, the dynamical system
(3.13) converges to the TSOL X̂∗(t) of the TV-QLME (2.1). The solution is then stable, based on
Lyapunov.

Proof. The proof is omitted, being that it resembles the proof of Theorem 4.1.

Theorem 4.4. Let Â(t) ∈ R2m×2n and B̂(t) ∈ R2m×2r be differentiable. For any initial value h(0) that
one may consider, the ZNNQ model (3.16) converges exponentially to the TSOL h∗(t) at each time
t ∈ [0, t f ) ⊆ [0,+∞).

Proof. The proof is omitted, being that it is identical to the proof of Theorem 4.2 once we replace
Theorem 4.1 with Theorem 4.3.

Theorem 4.5. Assuming that A(t) ∈ R4m×4n and B(t) ∈ R4m×4r are differentiable, the dynamical system
(3.20) converges to the TSOL X∗(t) of the TV-QLME (2.1). The solution is then stable, based on
Lyapunov.

Proof. The proof is omitted, being that it resembles the proof of Theorem 4.1.

Theorem 4.6. Let A(t) ∈ R4m×4n and B(t) ∈ R4m×4r be differentiable. For any initial value x(0) that
one may consider, the ZNNQ model (3.23) converges exponentially to the TSOL x∗(t) at each time
t ∈ [0, t f ) ⊆ [0,+∞).

Proof. The proof is omitted, being that it is identical to the proof of Theorem 4.2 once we replace
Theorem 4.1 with Theorem 4.3.
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5. Computational complexity of the ZNN models

The complexity of producing and solving (3.9), (3.16) and (3.23) contributes to the overall
computational complexity of the ZNNQ, ZNNQC and ZNNQR models, respectively. In particular,
the computational complexity of producing (3.9) is O((4nr)2) operations as in each iteration of the
equation we perform (4nr)2 multiplications and 4nr additions/subtractions. For the same reasons, the
computational complexity of computing (3.23) is O((16nr)2) operations. However, the ZNNQC model
deals with complex numbers. It is worth pointing out that if we multiply two complex numbers, the
calculation works out to (a+bı)(c+dı) = ac−bd+adı+bcı, which requires a total of four multiplications
and two addition/subtraction operations. As a result, the computational complexity of computing (3.16)
is O((8nr)2) as each iteration of the equation has 4(4nr)2 multiplication and 2(4nr) addition/subtraction
operations.

Additionally, the linear system of equations is, at each step, solved through use of the implicit
MATLAB solver ode15s. The complexity of solving (3.9) is O((4nr)3 as it involves a (4nr) × (4nr)
matrix. In the same manner, the complexity of solving (3.16) is O((8nr)3 and the complexity of solving
(3.23) is O((16nr)3. Therefore, the overall computational complexity of the ZNNQ model is O((4nr)3),
while that of the ZNNQC model is O((8nr)3) and that of the ZNNQR model is O((16nr)3). The overall
computational complexity of the ZNN models is also presented in Table 2.

Table 2. Computational complexity of the ZNN models.

Model

ZNNQ ZNNQC ZNNQR

Comput. Complexity O((4nr)3 O((8nr)3 O((16nr)3

6. Simulation experiments

In this section we shall present four simulation examples (SE) and two applications to color
restoration of images. Following are a few important clarifications. The ZNN design parameter λ
is used with value 10, while the initial values of the ZNNQ, ZNNQC and ZNNQR models have been
set to y(0) = 04nr, h(0) = 04nr and x(0) = 016nr, respectively. For convenience purposes, applying to
all SEs, we have set α(t) = sin(t) and β(t) = cos(t). Last but not least, a MATLAB ode solver, namely
ode15s, is used in the computations throughout all SEs and applications, with the time interval being
set to [0, 10].

6.1. Simulation examples

Example 6.1. The coefficients of the input matrix Ã(t) have been set to

A1(t) =

2α(t) + 0.5 7
1 β(t) + 2

 , A2(t) =

 2 2α(t) + 1
−2β(t) + 2 β(t) + 6

 ,
A3(t) =

3α(t) + 2 6
−β(t) + 2 3

 , A4(t) =

 3 2α(t) + 1
3β(t) + 2 5

 ,
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and the coefficients of the input matrix B̃(t) have been set to

B1(t) =
[

1 α(t) + 0.5
β(t) 2

]
, B2(t) =

[
2 2
β(t) α(t)

]
, B3(t) =

[
2α(t) + 2 6

3 α(t)

]
, B4(t) =

[
2α(t) + 4 α(t) + 0.5

8 4

]
.

Figures 1 and 2 depict certain aspects of the simulation experiments on the TV-QLME defined by these
matrices.

Example 6.2. This example considers the matrices A1(t), A2(t), A3(t) and A4(t) of NE 6.1. In view of
inverting A(t), the coefficients of B(t) have been set to Bi(t) = 02, i = 1, . . . , 4. The generated results
are presented in Figures 1b, 1f.

Example 6.3. The coefficients of the input matrix Ã(t) have been set to

A1(t) =

2α(t) + 1 7 3β(t) + 2 7
1 β(t) + 2 2β(t) + 4 7

 , A2(t) =

 2 2α(t) + 1 2α(t) − 3 7
−2β(t) + 4 β(t) + 6 7 2α(t) + 1

 ,
A3(t) =

3α(t) + 2 6 2α(t) + 1 7
−β(t) + 2 3 −β(t) + 5 7

 , A4(t) =

 3 2α(t) + 1 7 7
3β(t) + 2 5 7 2α(t) + 1

 ,
and the coefficients of the input matrix B̃(t) have been set to

B1(t) =

 1 α(t) + 1 7 α(t) + 1
β(t) 2 α(t) + 1 , 7

 , B2(t) =

β(t) + 2 2 β(t) , 7
β(t) + 7 α(t) 7 β(t)

 ,
B3(t) =

2α(t) + 2 6 7 8
3 α(t) 7 6

 , B4(t) =

2α(t) + 4 5 6 α(t) + 1
8 4 3 2


Generated results are presented in Figure 1c, 1g.
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Figure 1. EMEs and error of (2.1) in SEs 6.1–6.4.
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Example 6.4. The coefficients of the input matrix Ã(t) have been set to

A1(t) =

2α(t) + 1 7 7 3β(t) + 2 7 2
1 β(t) + 2 7 2β(t) + 4 7 α(t) + 3

 , A2(t) =

 2 2α(t) + 1 5 2α(t) − 3 3 7
−2β(t) + 4 β(t) + 6 7 7 2α(t) + 1 4

 ,
A3(t) =

3α(t) + 2 6 7 2α(t) + 1 7 6
−β(t) + 2 3 7 −β(t) + 5 7 β(t)

 , A4(t) =

 3 2α(t) + 1 6 5 7 β(t)
3β(t) + 2 5 7 7 2α(t) + 1 7

 ,
and the coefficients of the input matrix B̃(t) have been set to

B1(t) =

β(t) α(t) + 1 6 α(t) + 1
3 2 α(t) + 1 7

 , B2(t) =

β(t) + 2 2 β(t) 8
α(t) + 7 α(t) 7 β(t)

 ,
B3(t) =

3α(t) + 2 6 7 8
3 α(t) 7 6

 , B4(t) =

2α(t) + 3 5 β(t) α(t) + 1
8 4 3 β(t)

 .
The results are presented in Figures 1d, 1h.

6.2. Simulation examples discussion

The performance of the ZNNQ (3.9), ZNNQC (3.16) and ZNNQR (3.6) models for solving the
TV-QLME (2.1) is investigated throughout the SEs in Sections 6.1–6.4. To each section corresponds a
different TV-QLME problem, defined by an appropriate pair of matrices Ã(t), B̃(t).

For each such problem, Figure 1a–1d depict the corresponding error paths of the models; that is,
the value of the Frobenius norm of their EMEs in the time interval between t = 0 and t = 10. These
curves convey information about the convergence of each model. Notice that, with the value of the
parameter λ being set to 10, the error values in all SEs experience a steep decline which, by the time-
mark of t ≈ 1.5, brings them to the range [10−5, 10−3]. Generally, a larger value for λ will force the
ZNN models to converge even faster. It bears mentioning that, throughout all SEs, the corresponding
error curves of the ZNNQ model are positioned lower than those of the other two models. That is,
the ZNNQ model displays better convergence. The successful convergence of all models is further
stressed in Figure 2, where the theoretical trajectories of the real as well as the three imaginary parts
of the quaternion TV matrix X̃(t) are compared with the trajectories obtained by the three models.
Namely, Figure 2a–2d corresponds to the SE of section 6.1, Figure 2e–2h corresponds to the SE of
section 6.2, Figure 2i–2l corresponds to the SE of section 6.3 and, last but not least, Figure 2m–2p
corresponds to the SE of section 6.4. For all SEs, the generated trajectories of the three models match
the theoretical trajectories.

At this point, ZNNQ, ZNNQC and ZNNQR have generated, for each SE, the previously unknown
TV matrices X̃(t), X̂(t) and X(t), respectively, for t ∈ [0, 10]. In order to validate the models, we shall
evaluate ||Ã(t)X̃(t) − B̃(t)||F; that is, the error on the given TV-QLME, for each model and SE. In order
for this to be accomplished, X̂(t) and X(t), the complex and real representations of the TV solution
matrix, respectively, are converted back to quaternion form. Figure 1e–1h demonstrates the respective
paths for the SEs of sections 6.1–6.4, respectively. It is interesting to note that, as far as Figure 1e
and 1f are concerned, the corresponding curves of the ZNNQ and ZNNQR model are almost identical.
Overall, the ZNNQ seems to have a slight competitive edge as its respective ||Ã(t)X̃(t) − B̃(t)||F curves
are positioned, for the most part, lower than those of the other two models, for the remaining two SEs.

Last but not least, the results above can be put into better perspective once we take the complexity
of each model into account. Namely, in line with the analysis of Section 5, the ZNNQR has by far the
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highest complexity as the dimensions of the corresponding real valued matrices A(t), X(t) and B(t) are
two times bigger than those of the complex valued matrices Â(t), X̂(t) and B̂(t) and four times bigger
than those of the quaternion valued matrices Ã(t), X̃(t) and B̃(t). On that account, as the dimensions of
the matrices Ã(t) and B̃(t) grow, opting to solve the TV-QLME problem in the real domain comes with
a serious cost of memory, with RAM quickly becoming a limiting factor. Furthermore, the choice of
programming language (and in some cases, linear algebra libraries) also starts to become important.
All things considered, the ZNNQ seems to be the model with the highest potential.
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Figure 2. Real and imaginary parts of the trajectories of X̃(t) in SEs 6.1–6.4.
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6.3. Applications to color restoration of images

This section presents applications to color restoration of images. Using the the ZNNQ, ZNNQC
and ZNNQR models to restore the color of two contaminated images, their applicability can be further
stressed. The first image, shown in Figure 3a, is a thumbnail of Mona Lisa at 256× 256 pixels, and the
second image, shown in Figure 3d, is a thumbnail of Lena Soderberg at 256 × 256 pixels.

(a) Original. (b) Contaminated. (c) Restored.

(d) Original. (e) Contaminated. (f) Restored.

Figure 3. Original, contaminated and restored images.

Following is a description of the task of image restoration. Suppose that a pure quaternion matrix
S̃ = Reı + Gr ȷ + Blk is used to represent a colored image. Then the three imaginary parts of the
quaternion S̃ ∈ Q256×256 are pixel matrices of Re (red), Gr (green), and Bl (blue) channels of the
color image. Given the quaternion matrix Ã = 1.2I256ı + 0.8I256 ȷ + 0.2I256k, the quaternion matrix B̃
representing the contaminated image is produced by B̃ = ÃS̃ . To restore the image back to its original
state, we should solve (2.1) to get X̃ = S̃ . One should keep in mind that the coefficient matrices of S̃ , Ã
and B̃ are sparse matrices.

On a similar note to the analysis in Section 6.2, Figure 4a and 4b depict the paths of the EMEs of
each model, from which we can draw conclusions regarding the convergence of the models. With the
parameter λ being set to 10, the values of the EMEs of all three ZNNs steadily decrease as t increases
from 0 to 10. For both images, the ending values of the EMEs of the models are in the neighborhood of
10−10. Thus, all three ZNNs have converged. This is further stressed by Figure 5, where the theoretical
trajectories of the imaginary parts of X̃(t) are compared to the trajectories obtained by the three models.
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Namely, Figure 5a–5c corresponds to the imaginary parts of X̃(t), relative to the first image, whereas
Figure 5d–5f corresponds to the imaginary parts of X̃(t), relative to the second image. In both cases,
the generated trajectories match the theoretical trajectories.

0 2 4 6 8 10

10
-10

10
-5

10
0

10
5

(a) EME in first
image.

0 2 4 6 8 10

10
-10

10
-5

10
0

10
5

(b) EME in second
image.

0 2 4 6 8 10

Time

10
-10

10
-5

10
0

(c) Error of (2.1) in
first image.

0 2 4 6 8 10

Time

10
-10

10
-5

10
0

(d) Error of (2.1) in
second image.

Figure 4. EMEs and error of (2.1) in images.

(a) Traj. of X̃(t) in first image. (b) Traj. of X̃(t) in first image. (c) Traj. of X̃(t) in first image.

(d) Traj. of X̃(t) in second
image.

(e) Traj. of X̃(t) in second image. (f) Traj. of X̃(t) in second image.

Figure 5. Imaginary parts trajectories of X̃(t) in images.

On the other hand, the performance of each model on the task of color restoration of images can
be better evaluated by examining Figure 4c and 4d. Once again, we have transformed all involved
matrices back to quaternion form and have plotted, for each model and image, the corresponding
||Ã(t)X̃(t) − B̃(t)||F curves of the models. For both images, the respective curves of the ZNNQ and
ZNNQR models follow identical paths and are positioned lower than those of the ZNNQC.

Observing the original images (Figure 3a and 3d), the contaminated images (Figure 3b and 3e) and
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lastly the restored images (Figure 3c and 3f), it is evident that the color restoration process has been
successful. Thus, the developed models may be effectively used to restore contaminated images to
their original colors. In line with the analysis in Section 6.2, opting to work with the ZNNQ seems to
be a more efficient choice.

7. Conclusions

In view of handling the TV-QLME problem for matrices of arbitrary dimension, three models;
namely, ZNNQ, ZNNQC and ZNNQR, have been proposed. Along with simulation examples and
practical applications to color restoration of images, the development of those models has been
supported by theoretical analysis and analysis of their computational complexity. With the TV-QLME
problem having been effectively solved both directly in the quaternion domain as well as indirectly, by
representation in the complex and real domains and subsequent conversion of the solutions back to the
quaternion domain, the direct method, implemented by the ZNNQ model, has been proposed as the
most efficient and effective of the three. All things considered, the established results open the way for
more interesting research endeavors. A few considerations are the following:

• One may investigate application of nonlinear ZNNs to quaternion valued TV problems.
• One could also consider the task of pseudo-inversion of quaternion valued TV matrices.
• Using the predefined-time ZNN architecture to quaternion valued TV problems is something that

can be looked into.
• Utilizing carefully chosen design parameters specified in fuzzy environments to speed up the

convergence of ZNN models is another area of investigation.
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