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Abstract: For high frequency noise, a new 2n-th order cascade extended state observer with dynamic
dead-zone structure is proposed in this paper. Dead zone dynamic consists of two parts. One is
to “trim” the effect of noise by cutting off the part that falls in the dead zone. The other part
pushes the dead zone amplitude to converge to 0 as soon as possible to ensure the convergence of
the estimation error. Moreover, in the cascade structure, the high-gain parameter grows only to a
second power, thus avoiding excessive amplification of the measurement noise and solving numerical
implementation problems. The design procedure ensures that the extended state observer is input-to-
state stable. Numerical simulations show the improvement in terms of total disturbance estimation and
noise attenuation. The frequency-domain analysis of the proposed ESO using the describing function
method investigates the effect of the dead zone nonlinear parameter on the performance of a closed-
loop system.
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1. Introduction

The extended state observer (ESO) proposed by Han Jingqing appeared in 1995. In active
disturbance rejection control (ADRC), simultaneous reconstruction of the states of a plant as well as
total disturbance using an ESO is one of the most important strategies. Since then, ESO has attracted
a lot of research attention because it requires minimal information about the plant and is simple to
implement. ESO based controls have been widely applied in various areas involving urban traffic [1],
motion [2], power [3], and so on. At first, the classic ESO was only proposed for uncertain systems in
series integrator form. The convergence of the classic ESO has been theoretically validated by using
various tools like singular perturbation [4] and Lyapunov techniques [5]. Recently, many studies have
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been done on ESO design methods for systems that cannot be transformed into series integrators, such
as mismatched uncertain systems [6], time-delay systems [7], multi-coupled subsystems [8] and non-
minimal phase (NMP) systems [9]. In addition, in recent years, some scholars began to pay attention
to finite time estimation in order to achieve safety and high steady state accuracy. [10] proposed
a continuous finite time ESO. The time-varying gain of the observer was designed by defining the
time-varying transformation so that the observation error approached zero in finite time. Furthermore,
Razmjooei, Palli, Shafiei et al. proposed an adaptive fast finite time ESO to ensure convergence within
a short time interval regardless of initial conditions ( [11, 12]).

In practical engineering, the measurement noise will be unavoidable. Measurement noise can be
amplified by the ESO and entered the outer loop system, which can have adverse effects such as
saturation of input actuators, vibration of mechanical systems, and even system instability. Therefore,
improving the robustness to measurement noise of the ESO is still an active research topic. In fact,
to a large extent, satisfactory system state reconstruction and total disturbance compensation usually
result in high gain forms of the ESO ( [5, 13]). When the system has a high dimension or a large high
gain parameter must be selected to achieve rapid estimation, this high gain leads to some limitations
in applications, such as peaking phenomenon, numerical problems and sensitivity to high frequency
measurement noise. Therefore, in order to suppress the noise, many strategies have been proposed,
mainly the error-based gain-regulation techniques ( [14–16]) and the use of cascade structures ( [17–
19]). On the other hand, combining the ESO with a Kalman filter [20] or adding integral terms to
the ESO [21] are other solutions to attenuate the effects of measurement noise. While the above
methods have shown effectiveness in certain control scenarios, they have some limitations, including
the introduction of additional system lags, the complexity of tuning methods, and additional design
knowledge requirements.

Inspired by Astolfi and Marconi [17], [18] proposed a new extended state observer with the low
power structure (LPESO), which consisted of n second order linear observers. When high frequency
noise is present, the LPESO improves the estimation performance by adopting a structure whose gain
grows only to the second power. Thus it relaxes the digital implementation requirements. However,
linear feedback is used in this low power structure. It can be seen from the numerical simulation
in [18] that LPESO can reduce the peaking more effectively compared with traditional LESO, but it is
still sensitive to persistent high-frequency noise. This is also verified in our numerical simulations.

In this paper, in order to suppress the persistent bounded measurement noise, a total of n observers of
second order are designed using dead-zone nonlinear feedback and connected into a cascade structure.
The dynamic dead-zone was originally applied to the high gain observer in [22], but in this paper, the
dead zone nonlinear feedback is designed in the cascade structure, which is a generalization of [22].
The dead zone dynamic is composed of two parts. One is to cut down the noise that falls in the zone
to improve noise attenuation. The other is to push the dead zone amplitude to converge to 0 as soon as
possible to ensure the convergence of errors. In addition, the cascade structure avoids excessive power
increase of the high gain parameter, inherits the good performance of non-amplifying noise, and solves
numerical implementation problems. Theoretical analysis shows that LPESO in [18] is a linear form
of the extended state observer proposed in this paper. By perturbation theory, the convergence of the
proposed ESO is proved. Numerical simulations reveal that the cascade ESO with the dynamic dead
zone can significantly improve the suppression of persistent bounded measurement noise. Description
function method is used to analyze the proposed ESO in the quasi-frequency domain, and the effect
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of the dead zone nonlinear parameter on the closed-loop system performance is studied. This analysis
provides a more intuitive view of its high-frequency noise suppression capability.

This paper is organized as follows. Section 2 formulates a problem for nth-order nonlinear system.
Section 3 shows input-to-state stability when there is measurement noise. Section 4 provides an
example of numerical validation and a quasi-frequency domain analysis is carried out based on Laplace
transform and description function. Section 5 offers the conclusion.

Notation. Diagn
>0 represents the set of n × n-dimensional diagonal positive definite matrices.

col(a1, · · ·, an) denotes a column vector. The Euclidean norm of the vector a is defined as ∥a∥ =
√

aT a.
∥X∥ = (λmax(XT X))

1
2 represents the l2 norm of the matrix X. Given a ∈ R, b ∈ R≥0, define

sata(b) := max{−a,min{b, a}} and dza(b) := b − sata(b). For a given vector c = [c1, · · · , cn]T , there
is satb(c) := [satb(c1), · · · , satb(cn)]T .

Definition. [19] The following system

ẋ(t) = f (x,u1,u2, t),

defined on x ∈ X ⊂ Rn,u1 ∈ U1 ⊂ R
m1 , u2 ∈ U2 ⊂ R

m2 , and t ∈ [0,+∞) is locally input-to-state stable
(ISS) on some bounded sets X,U1,U2 if there exist a function β of class KL, and functions γ1, γ2 of
class K , such that for any initial condition x(0) ∈ X and any bounded inputs u1(t),u2(t), solution x(t)
exists for all t, satisfying

∥x(t)∥ ≤ β(x(0), t) + γ1(sup
t≥0
∥u1(t)∥) + γ2(sup

t≥0
∥u2(t)∥).

2. Problem statement

Consider a nonlinear uncertain system of nth-order , which can be written in phase-variable form
after coordinate changes: 

ẋi(t) =xi+1(t), i = 1, · · · , n − 1,
ẋn(t) = f (t, x) + d∗(t) + u(t),
y(t) =x1(t) + v(t),

(2.1)

where x = (x1, x2, · · ·, xn)T ∈ Rn is the state vector, f (t, x) involves uncertain linear or nonlinear internal
dynamics, y ∈ R is the measured output, u ∈ R is a control signal, d∗ ∈ R is the unknown external
disturbance and v represents an unknown measurement noise. Define

d(t, x) = f (t, x) + d∗(t),

as the total disturbance. We are interested in designing the ESO to simultaneously estimate the state
vector as well as the total disturbance despite the measurement noise v(t).

Assumption 1. For all x ∈ D and t > 0, the total disturbance d(t, x) is bounded by |d(t, x)| ≤ md,

and the bound of its derivative is mḋ, i.e.,
∣∣∣∣∣ d
dt

d(t, x)
∣∣∣∣∣ ≤ mḋ.

Assumption 2. Measurement noise v(t) is bounded, that is |v(t)| ≤ mv.

In order to estimate the states and total disturbance of system (2.1), the order of the traditional ESO
is n + 1. Therefore, when the plant order is large, the high gain parameter of the ESO will grow to a
power of n + 1, resulting in the amplification of measurement noise and pollution of the estimates. To
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solve this problem, inspired by [17, 18, 22, 23], we design an observer with dynamic dead-zone in a
cascade structure for persistent bounded high frequency noise that affects the measurement output. This
is a structure consisting of a cascade of n second-order observers with dynamic dead zone feedback.
For i ≤ n − 1, if xi and xi+2 are known, design second-order dynamic dead zone observers for xi and
xi+1 as follows

˙̂xi = ηi + lki1dz√σi(xi − x̂i),
η̇i = xi+2 + l2ki2dz√σi(xi − x̂i),

(2.2)

where x̂i and ηi are the estimations of xi and xi+1, l is the high gain parameter, ki1 and ki2 are parameters
to be designed.

√
σi is the threshold, satisfying the following dynamic system

σ̇i = −lλσi + lw(xi − x̂i)2. (2.3)

In the above system, λ > 0 is a constant, w is the parameter to be designed. Similarly, second-order
dynamic dead zone observer of xn and d(t, x) takes the form as

˙̂xn = ηn + lkn1dz√σn(xn − x̂n),
η̇n = l2kn2dz√σn(xn − x̂n),
σ̇n = −lλσn + lw(xn − x̂n)2,

(2.4)

in which l, kn1, kn2, λ and w are defined as above. In fact, we take the total disturbance d(t, x) as an
extended state of system (2.1). If xn is known, (2.4) is an extended state observer for xn and d(t, x), x̂n

and ηn are estimations, respectively. However, only x1 is measurable, and x2, x3, · · · , xn are unknown
state variables in system (2.1). Thus, we replace xi and xi+2 with the second state ηi−1 and ηi+1 in the
(i − 1)the observer and the (i + 1)th observer, respectively. Meanwhile, xn is replaced by the second
state ηn−1 in the (n − 1)th observer. Then the above n second-order observers (2.2)–(2.4) are connected
into a dynamic dead zone observer with a cascaded structure (Figure 1).

Figure 1. n dynamic dead-zone observers in cascade structure.

As can be seen from Figure 1, a total of n dead-zone dynamics are needed for n output injection
channels. To simplify the design, we define the same dead-zone amplitude determined by the sum of
the squares of output injection terms. Thus, an extended state observer with dynamic “dead-zonated”
output injection (DZ-CESO) is introduced to deal with persistent bounded measurement noise affecting
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the measurement output, as shown below

ż1 =Az1 + Nz2 + D(l)K1dz√σ(y −Cz1),
żi =Azi + Nzi+1 + D(l)Kidz√σ(BT zi−1 −Czi), i = 2, · · ·, n − 2,
...

żn−1 =Azn−1 + Nzn + D(l)Kn−1dz√σ(BT zn−2 −Czn−1) + Bu(t),
żn =Azn + D(l)Kndz√σ(BT zn−1 −Czn) +CT u(t),

(2.5)

where zi = (x̂i, ηi)T ∈ R2, z = (z1, · · ·, zn)T denotes a state of the proposed DZ-CESO. In (2.5),

A =
(

0 1
0 0

)
,N =

(
0 0
0 1

)
,

B = (0, 1)T ,C = (1, 0), D(l) = diag(l, l2) ∈ Diag2
>0. The parameters Ki = (ki1, ki2)(i = 1, · · ·, n) are

designed later. Define two block diagonal matrices in Rn×2n,

L1 = blockdiag(C, · · ·,C), L2 = blockdiag(BT , · · ·, BT , (0, 0)).

From the above analysis we can see that x̂ = L1z can be seen as a correction for x̂′ = L2z. Then we
take x̂ = L1z and ηn = BT zn as the estimations of the state vector and total disturbance of system (2.1),
respectively, and x̂′ as the redundant estimation. σ ∈ R≥0 defines the dead-zone amplitude on the
output channel, whose adaptation law is

σ̇ = −lλσ + lw[(y −Cz1)2 + (BT z1 −Cz2)2 + · · · + (BT zn−1 −Czn)2]. (2.6)

Note that
√
σ is always well defined because σ is non-negative.

Observer (2.5) is obtained by “dead-zonating” the output errors using a dynamic dead-zone level
√
σ. Around y − Cz1 = 0 and BT zi−1 − Czi = 0, i = 2, · · ·, n, zero output correction terms provided

by the dead zone filter out high frequency noise. However, a fixed dead-zone amplitude will make the
tracking and tracked signals never synchronize. σ needs to approach 0 fast to ensure convergence to
zero. The adaptation law (2.6) weighs two adversarial effects: the first item is to push the dead-zone
amplitude σ to zero, and the second item is to filter out noise by appropriately increasing σ using
the output estimation error. Therefore, σ converges to 0 fast when λ is large. In particular, if there
is only the first term, the dead zone function deforms to a linear form in a very short time, and then
DZ-CESO deforms to LPESO in [18]. On the other hand, setting w large increases the amplitude of
the dead zone, thereby improving the ability of noise suppression. Note that the dead-zone amplitude
adaptive law (2.6) is different from that in [22]. We correct the amplitude using the quadratic sum of
the estimation errors of n output channels to have the same threshold. In this way, the estimation error
of each second-order observer is considered and the design of observer DZ-CESO is simplified.

Remark 1. The high gain parameter which is defined by D(l), can only grow up to the second
order. Thus, the peaking phenomenon and the numerical problems in the implementation which are
caused by ln can be solved. Furthermore, by cutting down the high frequency noise that falls in the
dead-zone, the dynamic dead-zone reduces the high sensitivity to measurement noise and improves the
noise attenuation. The numerical simulation and frequency domain analysis in Section 4 will show the
benefits of the dead-zone nonlinearity by comparing LPESO and DZ-CESO.
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3. Convergence of the DZ-CESO

We study the ISS property of the estimation error for the proposed observer (2.5), and give an upper
bound of the estimation error in this section.

Change variables as the following

z̃i =zi − col(xi, xi+1), i = 1, · · ·, n − 1,
z̃n =zn − col(xn, d).

By the definition of dz√σ(·), system (2.5) can be transformed as follows

˙̃z1 =(A − D(l)K1C)z̃1 + Nz̃2 + D(l)K1v − D(l)K1sat√σ(v −Cz̃1),
˙̃zi =D(l)KiBT z̃i−1 + (A − D(l)KiC)z̃i + Nz̃i+1 − D(l)Kisat√σ(BT z̃i−1 −Cz̃i),

i = 2, · · ·, n − 1,
...

˙̃zn =D(l)KnBT z̃n−1 + (A − D(l)KnC)z̃n − col(0, ḋ) − D(l)Knsat√σ(BT z̃n−1 −Cz̃n).

Rescale the variables as

ζi = l2−iD(l)−1z̃i, i = 1, · · ·, n, ζ = col(ζ1, · · ·, ζn) ∈ R2n, (3.1)

and rewrite the error dynamic system for (2.1) and (2.5) in a compact form:

ζ̇ =lMζ − ∆(l, t, x) − lK̂D−1
n (l)sat√σ(Dn(l)Gζ)

+ lK[sat√σ(Gζ) − sat√σ(Gζ + Bnv)] + lKBnv,
(3.2)

in which
∆(l, t, x) = col

(
02×1, · · ·, 02×1, l−ncol(0, ḋ)

)
∈ R2n,

Dn(l) = diag(1, l, · · ·, ln−1) ∈ Diagn
>0,

Bn = (1, 0, · · ·, 0) ∈ R2n×1,

K̂ = blockdiag(K1, · · ·,Kn) ∈ R2n×n,

K = blockdiag(K1, 02×1, · · ·, 02×1) ∈ R2n×n.

Define the matrices G and M:

G =



−C 0 0 · · · 0
BT −C 0 · · · 0
0 BT −C · · · 0
...

...
...
. . .

...

0 0 · · · BT −C


n×2n

,

M =



E1 N 0 0 · · · 0
Q2 E2 N 0 · · · 0
0 Q3 E3 N · · · 0
· · · · · · · · · · · · · · · · · ·

0 0 · · · Qn−1 En−1 N
0 0 · · · 0 Qn En


2n×2n

, (3.3)
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where 0 represents the zero matrix of the corresponding dimension, and

Ei = A − KiC =
(
−ki1 1
−ki2 0

)
,Qi = KiBT =

(
0 ki1

0 ki2

)
. (3.4)

Correspondingly, the adaptation law of σ is transformed into

σ̇ = −lλσ + lw[(v −Cζ1)2 + l2(BTζ1 −Cζ2)2 + · · · + l2(n−1)(BTζn−1 −Cζn)2]. (3.5)

Remark 2. The eigenvalues of M can be arbitrarily assigned by selecting Ki(i = 1, 2, · · · , n). The
constructive procedure was given in the appendix of [17]. Based on this algorithm, [18] gave a simple
selection rule.

Theorem 1. Selecting (ki1, ki2)(i = 1, · · · , n) in system (2.5) makes M defined in (3.3) a Hurwitz
matrix. Then there exist l∗ > 1, λ > 0,w∗ > 0, if l > l∗ and 0 < w < w∗, for any initial conditions
x(0) ∈ Rn, z(0) ∈ R2n, σ(0) ∈ R, and some positive constants µi(i = 3, 4, 5, 6), the following bounds
hold

|x̂i − xi| ≤µ6κlie−µ3lt + µ4l−n− 1
2+imḋ + µ5l

1
2+imv, i = 1, · · · , n,

|ηn − d| ≤µ6κlne−µ3lt + µ4l−
1
2 mḋ + µ5l

1
2+nmv,

(3.6)

where

κ =

n∑
i=1

|xi(0) − x̂i(0)| +
n−1∑
i=1

|xi+1(0) − ηi(0)| + |ηn(0)| +
√
σ(0) + md.

Proof. Using the time-rescaling
t 7→ τ := lt

on systems (3.2) and (3.5) leads to

ζ̇ =
dζ
dτ
= Mζ − l−1∆(l, t, x) − K̂D−1

n (l)sat√σ(Dn(l)Gζ)

+ K
[
sat√σ(Gζ) − sat√σ(Gζ + Bnv)

]
+ KBnv,

σ̇ =
dσ
dτ
= −λσ + w

(
ζTGT D2

n(l)Gζ
)
+ w(v2 − 2vCζ1).

(3.7)

Choose Ki(i = 1, 2, · · · , n) so that M is a Hurwitz matrix. Then solving the Lyapunov equation
PM + MT P = −I yields a positive definite matrix P ∈ R2n. Define Lyapunov function,

V(τ, ζ, σ) = ζT Pζ + ξσ,

in which ξ > 0 is a constant, whose value is determined later. It turns out that

λmin(P)∥ζ∥2 + ξσ ≤ V(τ, ζ, σ) ≤ λmax(P)∥ζ∥2 + ξσ. (3.8)

Along the solution of (3.7), take the derivative of V(τ, ζ, σ) and get that

V̇ =ζT (PM + MT P)ζ − 2l−1ζT P∆(l, t, x) − 2ζT PK̂D−1
n (l)sat√σ(Dn(l)Gζ)

+ 2ζT PK
[
sat√σ(Gζ) − sat√σ(Gζ + Bnv)

]
+ 2ζT PKBnv

− ξλσ + ξw
(
ζTGT D2

n(l)Gζ
)
+ ξw(v2 − 2vCζ1).

(3.9)
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According to Assumption 1 and Young’s inequality, the second term of (3.9) can be enlarged to

| − 2l−1ζT P∆(l, t, x)| ≤ 2l−1∥ζ∥ · ∥P∥ · ∥∆(l, t, x)∥

≤ 2∥ζ∥ · ∥P∥ ·
1

ln+1 mḋ

≤ 2
(
1
2
∥ζ∥

)
(2l−(n+1)∥P∥mḋ)

≤
1
4
∥ζ∥2 + 4l−2(n+1)∥P∥2m2

ḋ.

For the third term, since ∥D−1
n (l)∥ ≤ 1 and ∥sat√σ(Dn(l)Gζ)∥ ≤

√
nσ based on the definition of the norm

of the matrix and the vector, it can be written that

− 2ζT PK̂D−1
n (l)sat√σ(Dn(l)Gζ)

≤2|ζT PK̂D−1
n (l)sat√σ(Dn(l)Gζ)|

≤2∥ζ∥ · ∥PK̂∥ · ∥D−1
n (l)∥ · ∥sat√σ(Dn(l)Gζ)∥

≤2∥ζ∥ · ∥PK̂∥ ·
√

nσ

=2
(
1
2
∥ζ∥

)
·
(
2
√

nσ∥PK̂∥
)

≤
1
4
∥ζ∥2 + 4n∥PK̂∥2σ.

Note that
|sat√σ(Gζ) − sat√σ(Gζ + Bnv)| ≤ ∥Bnv∥ ≤ mv.

Thus, it is easy to get that

2ζT PK
[
sat√σ(Gζ) − sat√σ(Gζ + Bnv)

]
+ 2ζT PKBnv

≤4∥ζ∥ · ∥PK∥ · mv

=2
(
1
4
∥ζ∥

)
·
(
4∥PK∥ · 2mv

)
≤

1
16
∥ζ∥2 + 64∥PK∥2m2

v .

As for the seventh term, it is can be seen that

ξw
(
ζTGT D2

n(l)Gζ
)

≤ξw|(Cζ1)2 + l2(BTζ1 −Cζ2)2 + · · · + l2(n−1)(BTζn−1 −Cζn)2|

=ξw|ζ2
1,1 + l2(ζ2

1,2 + ζ
2
2,1 − 2ζ1,2ζ2,1) + · · · + l2(n−1)(ζ2

n−1,2 + ζ
2
n,1 − 2ζn−1,2ζn,1)|

≤ξwl2(n−1)
[
|ζ2

1,1 + ζ
2
1,2 + ζ

2
2,1 + · · · + ζ

2
n−1,2 + ζ

2
n,1| + |2ζ1,2ζ2,1 + · · · + 2ζn−1,2ζn,1|

]
≤ξwl2(n−1)

[
∥ζ∥2 +

(
ζ2

1,2 + ζ
2
2,1 + · · · + ζ

2
n−1,2 + ζ

2
n,1

)]
≤2ξwl2(n−1)∥ζ∥2.
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Now, we calculate the last term, that is

ξw(v2 − 2vCζ1)

≤ξwv2 + 2
(
1
4
∥ζ∥

)
· (4ξwmv)

≤
1

16
∥ζ∥2 + (ξw + 16ξ2w2)m2

v .

As a result, we have that

V̇ ≤
(
−

3
8
+ 2ξwl2(n−1)

)
∥ζ∥2 +

(
−ξλ + 4n∥PK̂∥2

)
σ

+ 4l−2(n+1)∥P∥2m2
ḋ +

(
64∥PK∥2 + ξw + 16ξ2w2

)
m2

v .

(3.10)

In order to make both the first and second expressions of (3.10) negative, let l ≥ l∗ > 1, and

ξ >
ρ + 4n∥PK̂∥2

λ
,w <

1
8ξl2(n−1) , (3.11)

in which ρ is a positive constant. Then (3.10) can be written as

V̇ ≤ −
1
8
∥ζ∥2 − ρσ + 4l−2(n+1)∥P∥2m2

ḋ +
(
64∥PK∥2 + ξw + 16ξ2w2

)
m2

v . (3.12)

Let

µ1 = min
{

1
8λmax(P)

,
ρ

ξ

}
. (3.13)

By using (3.8), (3.12) and (3.13), it leads to that

V̇ ≤ −µ1(λmax(P)∥ζ∥2 + ξσ) + 4l−2(n+1)∥P∥2m2
ḋ +

(
64∥PK∥2 + ξw + 16ξ2w2

)
m2

v

≤ −µ1V + 4l−2(n+1)∥P∥2m2
ḋ +

(
64∥PK∥2 + ξw + 16ξ2w2

)
m2

v .

Since τ = lt, we have that

dV
dt
=V̇

dτ
dt
= lV̇

≤ − µ1lV + 4l−2n−1∥P∥2m2
ḋ + l

(
64∥PK∥2 + ξw + 16ξ2w2

)
m2

v .

By the comparison theorem, it is obtained that

V(t, ζ(t), σ(t)) ≤V(0, ζ(0), σ(0))e−µ1lt

+
l
µ1

[
4l−2(n+1)∥P∥2m2

ḋ +
(
64∥PK∥2 + ξw + 16ξ2w2

)
m2

v

]
.

(3.14)

From (3.8) and (3.14), it is concluded that

∥ζ(t)∥ ≤ µ2e−µ3lt + µ4l−n− 1
2 mḋ + µ5l

1
2 mv,
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in which

µ2 =

√
λmax(P)∥ζ(0)∥2 + ξσ(0)

λmin(P)
, µ3 =

µ1

2
,

µ4 =
2∥P∥√
µ1λmin(P)

, µ5 =

√
64∥PK∥2 + ξw + 16ξ2w2

µ1λmin(P)
.

From (3.1), for l > 1, note that 1
li ∥z̃i∥ ≤ ∥ζi∥ ≤ ∥z̃i∥. Therefore, we have

|x̂i − xi| ≤µ2lie−µ3lt + µ4l−n− 1
2+imḋ + µ5l

1
2+imv, i = 1, · · · , n,

|ηn − d| ≤µ2lne−µ3lt + µ4l−
1
2 mḋ + µ5l

1
2+nmv.

(3.15)

Define

µ6 =

√
max{λmax(P), ξ}
λmin(P)

. (3.16)

Since

∥ζ(0)∥ ≤
n∑

i=1

|xi(0) − x̂i(0)| +
n−1∑
i=1

|xi+1(0) − ηi(0)| + |ηn(0)| + md, (3.17)

combining (3.15)–(3.17), we can obtain the inequalities in (3.6). The proof is complete.
Remark 3. Note that taking σ ≡ 0 in (2.5), DZ-CESO is reduced to LPESO in [18], which

indicates that LPESO is a linear form of DZ-CESO. From the proof of Theorem 1, if the matrix M is
Hurwitz, the convergence of LPESO can be obtained.

The parameters to be designed for DZ-CESO are Ki(i = 1, · · · , n) and w. To summarize the DZ-
CESO design methods discussed in Theorem 1, a parameter tuning procedure is given as follows:

step 1: According to Remark 3, select Ki such that eigenvalues of the matrix M are assigned to the
specified positions.

step 2: Based on (3.3) and (3.4), establish matrix M and solve the Lyapunov equation PM+MT P =
−I to obtain the matrix P.

step 3: Choose l∗ > 1, ρ > 0 and λ > 0.

step 4: Select ξ to satisfy ξ >
ρ + 4n∥PK̂∥2

λ
.

step 5: Finally choose w∗ =
1

8ξl2(n−1) .

4. Numerical simulations

This section first presents an example to evaluate the effectiveness of the cascade ESO with dead-
zone mechanism proposed in Section 2 in terms of total disturbance estimation and noise attenuation.
The parameter selection methods of the LESO, LPESO and DZ-CESO are given. Then simulation
results of three ESOs are presented to illustrate the advantage of DZ-CESO. At the end of this section,
DZ-CESO (4.2) is analyzed in the quasi-frequency domain based on Laplace transform and description
function, so as to show its ability of suppressing high-frequency noise more intuitively.
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4.1. Parameter selection of ESOs

The following second-order nonlinear uncertain system in form of (2.1) is considered:
ẋ1(t) =x2(t),
ẋ2(t) = f (x1(t), x2(t)) + d∗(t) + u(t),
y(t) =x1(t) + v(t),

(4.1)

with d∗(t) =
t

4π
+ sin(4t + 1) and f (x1(t), x2(t)) = 5(1 − x2

1(t))x2(t) − x1(t). The total disturbance is

d(t, x) = 5(1 − x2
1(t))x2(t) − x1(t) +

t
4π
+ sin(4t + 1).

The control objective is to estimate the total disturbance d(t, x), and the states x1(t), x2(t) despite the
measurement noise v(t). We selected x(0) = (0, 0) in the simulation. Define the same bounded control
action u(t) = 3 sin(2t) for all the tested cases. Measurement noise starts at ts = 10s, ends at te = 20s
during the simulation.

Due to total disturbance compensation is the essential purpose of ESO, parameter selection here
is based on providing similar reconstruction quality of d(t, x) at steady state in terms of minimizing
integral criterion

∫ T

t0
|e3(t)|dt, with e3(t) being the total disturbance observation error, t0 = 25s being the

integration start time and T = 30s being its finish time.
We implement the proposed DZ-CESO as specified in Section 2, and get that

˙̂x1(t) =η1(t) + lk11dz√σ(y(t) − x̂1(t)),
η̇1(t) =η2(t) + l2k12dz√σ(y(t) − x̂1(t)) + u(t),
˙̂x2(t) =η2(t) + lk21dz√σ(η1(t) − x̂2(t)) + u(t),
η̇2(t) =l2k22dz√σ(η1(t) − x̂2(t)),

(4.2)

with the adaption law

σ̇(t) = −lλσ(t) + lω[(x̂1(t) − y(t))2 + (x̂2(t) − η1(t))2]. (4.3)

According to the parameter tuning procedure given in Section 3, determine the coefficients and
parameters to be designed in (4.2) and (4.3). Firstly, the matrix M for (4.2) is

M =


−k11 1 0 0
−k12 0 0 1

0 k21 −k21 1
0 k22 −k22 0

 ,
with characteristic polynomial

fM(λ) = λ4 + (k11 + k21)λ3 + (k12 + k11k21)λ2 + k12k21λ + k12k22.

Place all four of the poles of matrix M at −1, and then the coefficients Ki can be set as k11 = 2, k12 =

2, k21 = 2, k22 = 0.5. Secondly, the matrix P is obtained in the following by solving Lyapunov equation

P =


1.6250 −1.3750 0.3750 −2.6250
−1.3750 1.9062 −0.0937 2.1250
0.3750 −0.0937 0.9062 −2.6250
−2.6250 2.1250 −2.6250 12.1250

 .
AIMS Mathematics Volume 8, Issue 6, 14300–14320.
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We obtained ∥PK̂∥2 = 2.7143. Let l = 10, λ = 10, ρ = 0.01. According to steps 4 and 5, there is
w = 0.001. Choose initial conditions as x̂1(0) = 0, η1(0) = 5, x̂2(0) = −5, η2(0) = −5, and σ(0) = 5.

Remark 4. Considering the initial value of x̂1(t) is generally taken from sensors, so the error
(x1(0) − x̂1(0)) is small. While for the DZ-CESO, there exist other initial errors besides the first term
(x1(0) − x̂1(0)). Therefore, we set the initial value of first state for all ESOs equal to x1(0) in system
(4.1) and keep the other initial states unequal to compare the peaking phenomenon in simulations.

For convenience, we keep the notations concise, and treat the LPESO in [18] as case dz√σ(y(t) −
x̂1(t)) = y(t) − x̂1(t), dz√σ(η1(t) − x̂2(t)) = η1(t) − x̂2(t), and no adaption law (4.3). The coefficients Ki

and l are the same as the values in (4.2). The initial state is also placed at (0, 5,−5,−5).
Based on (4.1), the LESO can be designed accordingly from [13]:

ż1(t) =z2(t) + lβ1(y − z1),
ż2(t) =z3 + l2β2(y − z1) + u(t),
ż3(t) =l3β3(y − z1).

(4.4)

Since the LESO is different from the DZ-CESO and LPESO in structure and number of tuning
parameters, we first set β1 = 3, β2 = 3, β3 = 1 to place the poles of the following matrix at −1


−β1 1 0
−β2 0 1
−β3 0 0

 .
The initial state is (z1(0), z2(0), z3(0)) = (0, 5,−5). It is found in simulations that gain parameter l = 10
provides a similar total disturbance reconstruction quality, as confirmed by Table 1.

Table 1. The total disturbance reconstruction quality of ESOs based on
∫ T

t0
|e3(t)|dt.

LESO LPESO DZ-CESO
l = 10(x̂1(0) = 0) 5.5644 5.3976 5.4053

l = 20(x̂1(0) = 0.5) 2.9436 2.9332 2.9679
l = 30(x̂1(0) = 0.5) 1.9972 1.9936 2.0053

4.2. Performance analysis of ESOs

We perform the following comparison simulations. In the first case, the output y(t) is polluted by
“Band-Limited White Noise” with power 1e−3. Figure 2 shows the comparison of the estimated state
and total disturbance of the three observers. As can be seen from Figure 2 that, although the estimations
are affected by the measurement noise, the DZ-CESO outperforms the LESO and LPESO in terms of
noise attenuation. In particular, for x2 and the total disturbance, estimations of the DZ-CESO are
significantly better than the other two methods when high frequency noise is present, despite some lag
in tracking speed.
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Figure 2. Estimated results of the three observers.

Tables 2–4 show the peakings of estimation errors of x1(t), x2(t) and d(t, x) for three ESOs under
noiseless conditions, respectively. It is can be seen that when l = 10, there is no significant difference
in the error peakings of the three ESOs, although the initial error of the DZ-CESO is larger. In
order to characterize the peaking phenomenon, we set x̂1(0) = 0.5 for three ESOs, leaving the other
initial values unchanged. Simulations are performed under criteria with similar total disturbance
reconstruction qualities, as shown in Table 1. As can be seen from Tables 2–4, with the increase
of l, the peakings of e2(t) and e3(t) provided by the LESO obviously increase, while those provided by
LPESO and DZ-CESO barely change. Note that the largest coefficient that needs to be implemented
in LPESO and DZ-CESO is k12l2 = 1800, while in the LESO, l3 = 27000. This implies DZ-CESO can
solve the peaking phenomenon and the numerical problems in the implementation which are caused
by ln.

Table 2. Peaking phenomenon of the LESO when v(t) = 0.

l = 10(x̂1(0) = 0) l = 20(x̂1(0) = 0.5) l = 30(x̂1(0) = 0.5)
∥e1(t)∥∞ 0.1172 0.5000 0.5000
∥e2(t)∥∞ 5 5.7394 9.5657
∥e3(t)∥∞ 46.8049 63.3846 127.9371
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Table 3. Peaking phenomenon of the LPESO when v(t) = 0.

l = 10(x̂1(0) = 0) l = 20(x̂1(0) = 0.5) l = 30(x̂1(0) = 0.5)
∥e1(t)∥∞ 0.2022 0.5000 0.5000
∥e2(t)∥∞ 5.6699 5 5.7548
∥e3(t)∥∞ 46.5124 48.2156 42.9333

Table 4. Peaking phenomenon of the DZ-CESO when v(t) = 0.

l = 10(x̂1(0) = 0) l = 20(x̂1(0) = 0.5) l = 30(x̂1(0) = 0.5)
∥e1(t)∥∞ 0.1891 0.5446 0.5296
∥e2(t)∥∞ 5 5 5
∥e3(t)∥∞ 39.3851 42.5383 48.6312

In order to compare the attenuation effect of the observer on noise with different frequencies, we did
a lot of simulations in three different scenarios. All the parameters and initial conditions of ESOs are
the same as in Section 4.1. In the scenario (a), the noise is generated by “Band-Limited White Noise”
with power 1e−3. In the scenarios (b) and (c), the measurement noise v(t) is generated by a sinusoidal
signal v(t) = 5 sin(ωt). In the scenario (b), ω = 1000 represents high-frequencies, while in the scenario
(c), ω = 100 represents medium frequencies. Tables 5–7 show the effect of the measurement noise
on the steady-state behaviour of the three observers, respectively. ∥ei∥∞(i = 1, 2, 3) represent the
maximum estimated errors of states and the total disturbance under measurement noise (from t = 10s
to t = 20s). We use the error noise ratio (ENR) to measure the extent to which the error is polluted
by noise. The ENR is defined as ENR:= ∥e∥2

∥v∥2
. It can be seen from Tables 5–7 that in the scenario

(a), e2 and e3 are more seriously polluted by noise than that of e1 for all three ESOs. Compared to
LESO and LPESO, the DZ-CESO greatly decreases the error noise ratio of e2 and e3. In the scenario
(b), for the observers LPESO and DZ-CESO, the high frequency noise is attenuated on all estimation
errors ei(t)(i = 1, 2, 3). In the scenario (c), the DZ-CESO is superior to LPESO in suppressing medium
frequency noise. Through these simulations, the benefits of the dynamic dead-zone mechanism with
the low power structure can be recognized.

Table 5. Effect of the measurement noise in the steady-state of the LESO.

(a) (b) (c)
∥v(t)∥∞ 9.6790 5 5
∥e1(t)∥∞ 4.3875 0.2762 1.8548
∥e2(t)∥∞ 38.9742 5.4794 18.7378
∥e3(t)∥∞ 125.9236 55.1586 98.4120

ENR of e1 0.4331 0.0301 0.2961
ENR of e2 3.9908 0.3005 2.9569
ENR of e3 13.0557 1.0016 9.8504
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Table 6. Effect of the measurement noise in the steady-state of the LPESO.

(a) (b) (c)
∥v(t)∥∞ 9.6790 5 5
∥e1(t)∥∞ 3.5098 0.3120 1.3656
∥e2(t)∥∞ 20.6755 5.9730 7.8698
∥e3(t)∥∞ 46.9397 49.7482 52.8344

ENR of e1 0.3779 0.0201 0.2010
ENR of e2 2.3023 0.0123 0.3972
ENR of e3 5.5629 0.0295 0.9919

Table 7. Effect of the measurement noise on the steady-state of the DZ-CESO.

(a) (b) (c)
∥v(t)∥∞ 9.6790 5 5
∥e1(t)∥∞ 3.0672 0.2867 1.2620
∥e2(t)∥∞ 4.2285 5 5
∥e3(t)∥∞ 41.6543 41.8767 43.1932

ENR of e1 0.3156 0.0199 0.1955
ENR of e2 0.6097 0.0106 0.1748
ENR of e3 2.3798 0.0258 0.4233

4.3. Quasi-frequency domain analysis

The error dynamics system of (4.1) and (4.2) is
ė1(t) =e2(t) + lk11dz√σ(v(t) − e1(t)),
ė2(t) =e4(t) + l2k12dz√σ(v(t) − e1(t)),
ė3(t) =e4(t) + lk21dz√σ(e2(t) − e3(t)),
ė4(t) =l2k22dz√σ(e2(t) − e3(t)) − ḋ(t, x),

(4.5)

where e1(t) = x̂1(t) − x1(t), e2(t) = η1(t) − x2(t), e3(t) = x̂2(t) − x2(t), e4(t) = η2(t) − d(t, x). Substituting
ḋ(t, x) = 0 into (4.5), Laplace transform and description function are used to transform the error
system (4.5) into quasi-frequency domain as follows,

Ea(s) =V(s) − E1(s),
Eb(s) =E2(s) − E3(s),

E1(s)s =E2(s) + lk11N(Ea),
E2(s)s =E4(s) + l2k12N(Ea),
E3(s)s =E4(s) + lk21N(Eb),
E4(s)s =l2k22N(Eb),

(4.6)
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in which s is the Laplace variable; E1(s), E2(s), E3(s) and E4(s) are the outputs of (4.6); V(s) is the
measurement noise. All of above are in the frequency domain. N(Ea) and N(Eb) are the describing
functions of the dead zone nonlinearity with amplitudes of Ea(s) and Eb(s) as the input, respectively.
The describing function of the dead zone nonlinearity in (4.2) is denoted as

N(E) =
2
π

π2 − arcsin
√
σ

E
−

√
σ

E

√
1 −

( √
σ

E

)2
 , E ⩾

√
σ. (4.7)

The block diagram description of system (4.6) is shown in Figure 3.

Figure 3. Block diagram of system (4.6) in the forms of the transfer function and describing
function.

Notice that if
√
σ = 0 in (4.7), we have N(Ea) = 1,N(Eb) = 1 in Figure 3, then the system is

reduced to be linear. The transfer functions from v(t) to ei(t)(i = 1, 2, 3, 4) can be directly derived from
Figure 3

G1linear (s) =
lk11s3 + l2(k11k21 + k12)s2 + l3k12k21s + l4k12k22

s4 + l(k11 + k21)s3 + l2(k11k21 + k12)s2 + l3k12k21s + l4k12k22
,

G2linear (s) =
l2k12s3 + l3k12k21s2 + l4k12k22s

s4 + l(k11 + k21)s3 + l2(k11k21 + k12)s2 + l3k12k21s + l4k12k22
,

G3linear (s) =
l3k12k21s2 + l4k12k22s

s4 + l(k11 + k21)s3 + l2(k11k21 + k12)s2 + l3k12k21s + l4k12k22
,

G4linear (s) =
l4k12k22s2

s4 + l(k11 + k21)s3 + l2(k11k21 + k12)s2 + l3k12k21s + l4k12k22
.

(4.8)

The frequency response of the linear system can be easily obtained. If we are mainly concerned with
high frequency, only the highest order of numerator and denominator is important. Then it is can be
seen from (4.8) that the DZ-CESO in linear form can be approximated as a high order low-pass filter,
so it has better noise attenuation ability than LESO. Furthermore, the dead zone nonlinearity on the
improvement of noise suppression will be studied in the following.
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However, for a nonlinear system, it is not straightforward because the outputs of nonlinear blocks
N(Ea) and N(Eb) are related to the amplitudes Ea and Eb of their inputs. Therefore, we use a numerical
method which was proposed in [24] to calculate the frequency response.

For simplicity of computation, assume that

ea(t) = v(t) − e1(t) = Ea sin(ωt) (4.9)

is known. The following derivation is to obtain the input signal v(t), denoted as v0 sin(ωt + θv). When
the signal ea(t) goes through different channels of the block diagram, we can get that

d11(t) =A11Ea sin(ωt + θG),
d12(t) =A12Ea sin(ωt + 2θG),
d21(t) =A21Ea sin(ωt + θG),

(4.10)

where
A11 =N(Ea)lk11|G(s)|,
A12 =N(Ea)l2k12|G(s)|2,
A21 =N(Ea)l2k12|G(s)|,

(4.11)

in which |G(s)| and θG are the magnitude and phase angle of 1/s, respectively. Denote

eb(t) = e2(t) − e3(t) = Eb sin(ωt + θEb), (4.12)

where Eb and θEb will be determined later. Let the signal eb(t) go through different channels of the
block diagram to obtain that

e4(t) =A4Eb sin(ωt + θEb + θG),
d13(t) =A13Eb sin(ωt + θEb + 3θG),
d22(t) =A22Eb sin(ωt + θEb + 2θG),
d31(t) =A31Eb sin(ωt + θEb + θG),

(4.13)

where
A4 =N(Eb)l2k22|G(s)|,

A13 =N(Eb)l2k22|G(s)|3,
A22 =N(Eb)l2k22|G(s)|2,
A31 =N(Eb)lk21|G(s)|.

(4.14)

From Figure 3 we can see that

e1(t) =e10 sin(ωt + θe1) = d11(t) + d12(t) + d13(t),
e2(t) =e20 sin(ωt + θe2) = d21(t) + d22(t),
e3(t) =e30 sin(ωt + θe3) = d31(t) + d22(t).

(4.15)

Using the Eqs (4.12) and (4.15), it is easy to get that

eb(t) = d21(t) − d31(t). (4.16)
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Thus, the phase angle and the amplitude of the signal eb(t) can be obtained after deduction and
simplification and are described by

θEb = −
π

4
, N(Eb)Eb =

N(Ea)Ealk12 sin θG
k21 sin(θEb + θG)

. (4.17)

Next, from (4.9) and (4.15), the input signal can be denoted as

v0 sin(ωt + θv) = ea(t) + d11(t) + d12(t) + d13(t). (4.18)

Therefore, after deduction and simplification, the phase angle and the amplitude of the signal v(t) are
as following

θv = arctan
(

Ea(1 + A11 sin θG + A12 sin 2θG) + A13Eb sin(θEb + 3θG)
Ea(1 + A11 cos θG + A12 cos 2θG) + A13Eb cos(θEb + 3θG)

)
,

v0 =
(
Ea(1 + A11 sin θG + A12 sin 2θG) + A13Eb sin(θEb + 3θG)

)
/ sin θv.

(4.19)

Furthermore, using the aforementioned numerical method and (4.10), (4.13) and (4.15), the phase
angles and the amplitudes of outputs of the nonlinear system can be denoted as

θe1 = arctan
(

Ea(A11 sin θG + A12 sin 2θG) + A13Eb sin(θEb + 3θG)
Ea(A11 cos θG + A12 cos 2θG) + A13Eb cos(θEb + 3θG)

)
,

e10 =
(
Ea(A11 sin θG + A12 sin 2θG) + A13Eb sin(θEb + 3θG)

)
/ sin θe1 ,

θe2 = arctan
(

A21Ea sin θG + A22Eb sin(θEb + 2θG)
A21Ea cos θG + A22Eb cos(θEb + 2θG)

)
,

e20 =
(
A21Ea sin θG + A22Eb sin(θEb + 2θG)

)
/ sin θe2 ,

θe3 = arctan
(

A31Eb sin(θEb + θG) + A22Eb sin(θEb + 2θG)
A31Eb cos(θEb + θG) + A22Eb cos(θEb + 2θG)

)
,

e30 =
(
A31Eb sin(θEb + θG) + A22Eb sin(θEb + 2θG)

)
/ sin θe3 .

(4.20)

At this moment, the magnitude frequency response for the nonlinear system can be described as

G1nonlinear =
e10

v0
, G2nonlinear =

e20

v0
,

G3nonlinear =
e30

v0
, G4nonlinear =

A4Eb

v0
,

(4.21)

which change for various values of the frequency ω and the dead zone nonlinearity parameter
√
σ.

Using the transfer functions for the linear system in (4.8) and the numerical solution for the
nonlinear system, the frequency responses of both |Glinear| and |Gnonlinear| can be achieved. Figure 4
shows the adaptation of the dead zone parameter (left) and the magnitude bode-plots of |G4nonlinear | with
different σ (right). In this figure, we set Ea = 1, and other parameters are the same as in Section 4.1.
Note that the curve for the the nonlinear system with σ = 0 is the numerical solution for the linear
system. As can be seen from Figure 4 that with an increase in σ, the magnitude in the frequency
response decreases gradually. Thus, increasing σ results in the increase of the high frequency noise

AIMS Mathematics Volume 8, Issue 6, 14300–14320.
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suppression ability. From this point of view, the DZ-CESO is superior to LPESO in noise suppression
ability due to the advantage of the dynamic dead-zone mechanism.
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Figure 4. The adaptation of the dead zone parameter (left) and magnitude frequency
responses for |G4nonlinear | (right).

5. Conclusions

We proposed a cascade dead-zone ESO for nth-order nonlinear uncertain systems with measurement
noise in this paper. For simplicity, we considered the plant in the phase-variable form. In fact, design
method of DZ-CESO can be generalized to address more general forms of observability. Although
there is a tradeoff between tracking speed and noise amplification, the low power structure and dynamic
dead-zone mechanism improve the estimation effect when there exists high frequency noise. Therefore,
a bigger high gain parameter l can be selected to better reject the disturbance. The proposed observer
can be used for various settings, such as output regulation, output feedback stabilization and fault
detection.

In this paper, an ESO algorithm is designed for continuous compound disturbance and bounded
measurement noise. The assumption of bounded derivative of the total disturbance is conservative. In
the following work, we will relax this assumption to further improve the DZ-CESO, then design the
controller and investigate the stability of the whole closed loop system.
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