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Abstract: In this paper, a derivative-free one-point iterative technique is proposed, with memory
for finding multiple roots of practical problems, such as van der Waals and continuous stirred tank
reactor problems, whose multiplicity is unknown in the literature. The new technique has an order of
convergence of 1.84 and requires two function evaluations. It can be used as a seed to produce higher-
order methods with similar properties, and it increases the efficiency of a similar procedure without
memory due to Schröder. After studying its order of convergence, its stability is checked by applying
it to the considered problems and comparing with the technique of the same nature for finding multiple
roots. The geometrical behavior of the numerical results of the techniques is also studied.
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1. Introduction

One of the fundamental one-point techniques, which has quadratic convergence and requires one
function and one derivative evaluation of every iteration, is Newton’s technique [1, 2] in literature,
which may diverge if the derivative is very small or zero. Researchers have also suggested a few
derivative-free one-point techniques to solve this issue, among which are the Secant technique [2],
the Jarratt and Nudds technique [3], the Muller technique [4, 5], the Sharma techniques [6, 7] and the
Traub technique [2]. Newton’s technique is a one-point technique without memory, whereas the other
techniques are classified as one-point techniques with memory. Except for Secant, which has an order
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of 1.62, all of the aforementioned one-point techniques with memory require one function evaluation
each iteration and have orders of convergence of 1.84.

In the literature, Behl et al. [8] presented an optimal derivative-free method with a two-step scheme,
Kumar et al. [9, 10] developed two-step optimal derivative-free methods, and in [10], the authors used
a weight function. Zafar et al. [11] developed optimal two-step methods that require a derivative of
the function and used a weight function, Sharma and Arora [12] developed non-optimal two step fifth
order methods that require a derivative of the functions and Akram et al. [13] developed three-step
eighth-order methods that require a derivative of the function. All methods were developed in order to
obtain the multiple roots of a nonlinear equation φ(z) = 0. However, they are known for the multiplicity
m of these roots.

The most common and simple technique, which is independent of knowledge of the multiplicity of
the roots of the functions is Schröder’s technique [14], given by

z j+1 = z j −
φ(z j)φ′(z j)

φ′(z j)2 − φ(z j)φ′′(z j)
, j = 0, 1, 2, . . . (1.1)

This scheme (1.1) has quadratic convergence and it requires three function evaluations per iteration.
The scheme (1.1) was originally developed from Newton’s scheme [1, 2] and applied to the quotient
χ(z) =

φ(z)
φ′(z) :

z j+1 = z j −
χ(z j)
χ′(z j)

, j = 0, 1, 2, . . . (1.2)

In the recent years in literature, Cordero et al. [15] presented a derivative-free technique with the
memory of order 1.84 for finding multiple roots. The scheme is given by

z j+1 = z j −
χ(z j)

χ[z j−2, z j] − χ[z j−2, z j−1] + χ[z j−1, z j]
, j = 2, 3, 4, . . . (1.3)

where χ(z) =
φ(z)
φ′(z) , χ[z j−1, z j] =

χ(z j−1)−χ(z j)
z j−1−z j

and χ[z j−1, z j] is also called the first-order divided difference.
Equation (1.3) will be denoted hereon by CM (from Cordero’s Method). This scheme requires only two
function evaluations per iteration. As the authors discussed in [15], that scheme is more efficient than
Schröder’s technique (1.1). The scheme developed in CM is the first known scheme in mathematics
literature, and was written in [15]. The aim of this study is to develop a derivative-free technique with
memory for solving nonlinear equations. Here, the study’s aim is double: first, this new approach
strives to be similar to the CM scheme; second, the goal is for this new scheme to be more stable than
the existing scheme given by CM.

To check the stability and applications of the new technique, van der Waals and continuous stirred
tank reactor (CSTR) problems were considered. Van der Waals and CSTR problems are classic
examples in the field of chemical engineering. They involve the simulation of multi roots, which are
challenging to solve due to their non-differentiable and multi-modal nature. To tackle these problems,
derivative-free iterative techniques have been developed, which rely on function evaluations instead of
derivatives in order to find the solution. Derivative-free methods have gained popularity in recent years
due to their ability to handle complex functions, where traditional gradient-based methods may fail.
These techniques have been successfully applied to various fields, including chemical engineering,
where they have been used to solve the van der Waals and CSTR problems with great success.
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The new technique was compared with the existing ones, and the techniques’ behavior when
applied to the considered problems (numerically and geometrically) was studied. The geometrical
representation of techniques is one kind of analysis named visual analysis, meaning that the behavior
of techniques can be seen at any point. The main advantage of the new technique over the existing one
is that the new technique will be more consistent and stable.

The proposed work is divided into four sections. Section 2 includes the construction of a new
technique and the study of convergence analysis. Some real-life problems are studied in Section 3, and
stability is also verified in this section, viz. numerically and geometrically. Lastly, the conclusion is
discussed in Section 4.

2. Design of technique

Please consider a derivative-free technique with memory, developed by Sharma et al. [7]:

z j+1 = z j −
φ[z j−2, z j−1]

φ[z j−1, z j]φ[z j−2, z j]
φ(z j), j = 2, 3, 4, . . . (2.1)

for the simple root of the function. The technique defined in (2.1) is also applicable for solving the
system of equations. To solve the system of Eq (2.1), one proceeds as such:

z j+1 = z j − Φ[z j−1, z j]−1Φ[z j−2, z j−1]Φ[z j−2, z j]−1Φ(z j), (2.2)

where z0, z1 and z2 are their initial approximations. The orders of convergence of (2.1) and (2.2)
are 1.84. In the [7] technique, (2.1) is not applied to find the multiple zeros of the function. In order
to find the multiple zeros of φ(z) = 0, one defines the function χ(z) =

φ(z)
φ′(z) , and then applies the

Sharma et al. method (2.1) with χ(z) = 0, obtaining

z j+1 = z j −
χ[z j−2, z j−1]

χ[z j−1, z j]χ[z j−2, z j]
χ(z j). (2.3)

In this situation, the technique (2.3) is not required for the derivative and multiplicity of the zeros
of the function φ. The technique (2.3) has been shown to converge the same order of convergence as
the one proven in [7] and requires two function evaluations per iteration.

The order of convergence of (2.3) shall be determined in the subsequent theorem. The concept of
Ortega and Rheinboldt [16] is to be used for the R-order of convergence. Assume that sequence z j is
an output of an iterative method and ε j = z j − α. Then, the sequence is written as such:

ε j+1 ∼ ε
r
j, (2.4)

if it converges to a zero α of φ with R-order ≥ r.
Theorem 1. Let φ : C → C represent an analytical function in the vicinity of a multiple zero (say, α)
with multiplicity m ≥ 2. Consider that initial guesses z0, z1 and z2 are sufficiently close to α; then, the
scheme defined by (2.3) has R-order of convergence, which is 1.84, with its error equation:

ε j+1 =
2a2 − a2

1

m
ε jε j−1ε j−2 + O(ε j, ε j−1, ε j−2),
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where an = m
(m+n)!

φ(m+n)(α)
φm(α) , n = 1, 2, 3, . . . and O(ε j, ε j−1, ε j−2) represents the higher power of ε j, ε j−1,

and ε j−2.

Proof. Using Taylor’s expansion of φ(z j) and φ′(z j) about α, the result is

φ(z j) =
φm(α)

m!
εm

j
(
1 + a1ε j + a2ε

2
j + a3ε

3
j + · · ·

)
, (2.5)

φ′(z j) =
φm(α)

m!
εm−1

j
(
1 + (m + 1)a1ε j + (m + 2)a2ε

2
j + · · ·

)
, (2.6)

where an = m
(m+n)!

φ(m+n)(α)
φm(α) , n = 1, 2, 3, . . .

Using Eqs (2.5) and (2.6), the result is

χ(z j) =
ε j

m
−

a1

m2ε
2
j +

(1 + m)a2
1 − 2ma2

m3 ε3
j + O(ε4

j). (2.7)

In similar way, it can be written as such

χ(z j−1) =
ε j−1

m
−

a1

m2ε
2
j−1 +

(1 + m)a2
1 − 2ma2

m3 ε3
j−1 + O(ε4

j−1). (2.8)

χ(z j−2) =
ε j−2

m
−

a1

m2ε
2
j−2 +

(1 + m)a2
1 − 2ma2

m3 ε3
j−2 + O(ε4

j−2). (2.9)

By inserting Eqs (2.7), (2.8) and (2.9) in (2.3), the result is

ε j+1 =
2a2 − a2

1

m
ε jε j−1ε j−2 + O(ε j, ε j−1, ε j−2), (2.10)

that is,
ε j+1 ∼ ε jε j−1ε j−2. (2.11)

From (2.4), the results are

ε j ∼ ε
1
r
j+1, (2.12)

ε j−1 ∼ ε
1
r
j (2.13)

and
ε j−2 ∼ ε

1
r
j−1 ∼ ε

1
r2

j . (2.14)

Combining (2.11), (2.13) and (2.14), it follows that

ε j+1 ∼ ε jε
1
r
j ε

1
r2

j = ε
1+ 1

r + 1
r2

j . (2.15)

Upon the comparison of (2.4) and (2.15), it follows that

r3 − r2 − r − 1 = 0;

it has a positive real root 1.84. This means that the technique (2.3) has a convergence order 1.84.
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3. Application of technique

In this section, the existing technique (CM) and new technique (2.3), denoted by NM, are compared.
Neither technique requires the multiplicity of the root, but they both require two function evaluations
per iteration. Here, van der Waals [17] and CSTR [17] problems have been considered. These problems
are defined as

Problem 1. First, van der Waals equation-of-state is considered:(
P +

b1n2

V2

)
(V − nb2) = nRT,

which explains the behavior of a real gas by adding two parameters, b1 and b2, that are unique to each
gas in the ideal gas equations. A nonlinear equation in volume must be solved in order to calculate the
volume of gas V in terms of the other parameters.

PV3 − (nb2P + nRT )V2 + b1n2V = b1b2n3.

One can find values for n, P and T such that this equation has three real zeros given the parameters
b1 and b2 of a certain gas. The following nonlinear equation is obtained by utilizing the specific
parameters (see [17] for details):

z3 − 5.22z2 + 9.0825z − 5.2675 = 0, (3.1)

where z = V . For numerical work, (3.1) is written as

φ1(z) = z3 − 5.22z2 + 9.0825z − 5.2675. (3.2)

Problem 2. Second, CSTR problems are assumed. Consider the components Q1 and Q2, which
represent the feed rates to reactors B1 and B2 − B1, respectively. The following reaction scheme is
therefore obtained in the reactor (for further information, see [17]):

Q1 + Q2 → B1

B1 + Q2 → C1

C1 + Q2 → D1

D1 + Q2 → E1

Douglas [18] analyzed the aforementioned model when he was developing a straightforward model for
feedback control systems. He derived the following mathematical expression from the aforementioned
model:

TC1

2.98(z + 2.25)
(z + 1.45)(z + 2.85)2(z + 4.35)

= −1,

where the proportional controller gain is TC1 . For values of TC1 which produce roots of the transfer
function with a negative real portion, the control system is stable. The roots of the nonlinear equation
are the poles of the open-loop transfer function if TC1 = 0 is selected:

φ2(z) = z4 + 11.50z3 + 47.49z2 + 83.06325z + 51.23266875.
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The multiplicity of the above considered two problems is computed by the following formula:

m =
z j+1 − z j

χ(z j+1) − χ(z j)
,

where χ(z) =
φ(z)
φ′(z) . This scheme was applied in this study’s technique (NM) and the existing technique

(CM), and, afterward, the multiplicity of the problems was calculated. The results are displayed in
Table 1. To find the particular roots of the considered problems which were discussed, two sets of
initial guesses and performance are displayed in Tables 2 and 3. Displayed also are graphs of the root
versus iterations and error versus iterations of the two techniques.

The numerical performance shown in Tables 2 and 3 show the required iterations j, estimated error
|z j − z j−1| of the techniques in the last five iterations, speed of convergence (SOC) of the techniques,
time consumed in the execution of the program denoted as CPU-time, and time calculated in seconds.
The SOC is calculated by using the formula [19]

SOC =
ln(|z j+1 − z j|/|z j − z j−1|)

ln(|z j − z j−1|/|z j−1 − z j−2|)
.

Table 1. Computed results of the techniques.

Problem Root Multiplicity Initial guess
Problem 1 (van der Waals, [17]) 1.75 2 2.4,1,1.7

1.75 2 0,3,1.5
Problem 2 (CSTR, [17, 18]) −2.85 2 −4,−2.6,−3.3

−2.85 2 −4.4,−3,−3.7

Table 2. Performance of techniques for Problem 1.

Methods j |z j−4 − z j−5| |z j−3 − z j−4| |z j−2 − z j−3| |z j−1 − z j−2| |z j − z j−1| SOC CPU-time
z0 = 2.4, z1 = 1,
z2 = 1.7
CM 16 5.57(−8) 1.11(−12) 1.45(−21) 7.50(−38) 1.01(−67) 1.83 0.1721
NM 15 6.98(−10) 1.58(−16) 1.85(−28) 1.13(−50) 1.83(−91) 1.86 0.1412
z0 = 0, z1 = 3,
z2 = 1.5
CM 11 2.78(−9) 2.95(−15) 3.71(−26) 2.54(−46) 2.31(−83) 1.85 0.1563
NM 11 2.46(−10) 2.05(−17) 4.74(−30) 1.32(−53) 7.14(−97) 1.86 0.1316
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Table 3. Performance of techniques for Problem 2.

Methods j |z j−4 − z j−5| |z j−3 − z j−4| |z j−2 − z j−3| |z j−1 − z j−2| |z j − z j−1| SOC CPU-time
z0 = −4, z1 = −2.6,
z2 = −3.3
CM 11 1.25(−8) 4.08(−15) 1.53(−27) 3.73(−50) 1.12(−91) 1.81 0.16981
NM 9 7.54(−6) 1.93(−10) 1.21(−18) 8.41(−34) 9.37(−62) 1.85 0.1399
z0 = −4.4, z1 = −3,
z2 = −3.7
CM D D D D D D D D
NM 11 9.22(−6) 5.09(−10) 6.36(−18) 1.42(−32) 2.20(−59) 1.85 0.1427

Figures 1 and 2 show the contour graph of the considered functions. The contour graph is a
representation of the functions in which the values of the functions are represented by contour lines or
isocurves. These lines connect points of equal value, creating a visual representation of the functions
that helps show the shape and structure of the functions. The necessary iterations ( j) in the above
Tables 2 and 3 are calculated so as to satisfy the criterion (|z j+1 − z j| + |χ(z j)|) < 10−100. Here, the first
two initial approximations, z0 and z1, are obtained by the intermediate value property of continuous
functions, and the third z2 is merely an average of z0 and z1. Now, based on the results shown in
Tables 2 and 3 and Figures 3–8, one can say that the accuracy and stability of the new technique (NM)
is better than the CM technique. In the van der Waals problem, NM has performed better in terms of
error and time. The error versus iteration graph of Problem 1 was also presented, and it is visible that
NM satisfies the stopping criterion in minimum time. Therefore, the new technique is more efficient.
In a CSTR problem, the CM technique is not consistent. In Table 3, D represents the divergence
behavior of the technique. For this particular set of initial values, the CM technique is not converging
to the desired root, as it can be seen in Figure 7. Whereas, the new technique proposed in this paper
converges to the root. So, in Problem 2 the new technique is more efficient and stable than CM. NM has
also been applied to many various problems, and the stability and consistency were checked. The new
method presented in the paper follows a scheme presented by Cordero et al. [15] and thus cannot be
of use for systems of equations as it is now, as it was designed (in Cordero et al. [15]) only for finding
multiple roots of a nonlinear equation. However, the desired development is to extend the method for
inclusion of other cases of interest, and possibly to extend it to systems of equations, such as for the
cases given in [20] (Tables 2 and 5 in [20]).
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Figure 1. Contour graph of problem φ1(z).
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Figure 2. Contour graph of problem φ2(z).
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Figure 3. Graph of root versus iteration of φ1(z) for z0 = 2.4, z1 = 1, z2 = 1.7.
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Figure 4. Graph of root versus iteration of φ1(z) for z0 = 0, z1 = 3, z2 = 1.5.
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Figure 5. Graph of error versus iteration of φ1(z).
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Figure 6. Graph of root versus iteration of φ2(z) for z0 = −4, z1 = −2.6, z2 = −3.3.
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Figure 8. Graph of error versus iteration of φ2(z).

The method proposed in this paper presents a significant contribution to the field of numerical
methods by providing a novel approach to finding multiple roots of nonlinear equations. The with-
memory method of order 1.84 presented in this paper is an innovative solution that improves upon
existing methods. It is worth noting that any advancement in numerical methods, regardless of how
small it may seem, is worth studying, as it contributes to the collective knowledge of the field and
may lead to further advancements in the future. Here, one can also agree that there are large amounts
of derivative-free methods for simple roots but not for multiple roots. Derivative-free methods for
multiple roots are very rare in the literature. Derivative-free methods are a highly demanding research
area in numerical methods at present.

4. Conclusions

A new derivative-free iterative technique with memory and the ability to find multiple roots without
knowing the multiplicity of the function has been developed. It is the second known technique in
mathematics with these properties. The new technique (NM) requires two function evaluations per
iteration. The first technique (CM) of the same nature is developed in the literature. The stability of
the new technique (NM), and also of the existing technique (CM), was studied in the last section. In
the last section, the CM and NM techniques were applied to van der Waals and CSTR problems and
their behavior was analyzed in both ways, i.e., numerically and geometrically. The analysis of the
new technique (NM), and of the existing technique (CM), concludes this study, demonstrating that the
performance of NM is better than that of CM in terms of time consumption and the error and stability
of the technique.
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14. E. Schröder, Über unendlich viele algorithmen zur auflösung der gleichungen, Math. Ann., 2
(1870), 317–365. http://doi.org/10.1007/BF01444024

AIMS Mathematics Volume 8, Issue 6, 14288–14299.

http://dx.doi.org/http://doi.org/10.1007/978-0-387-72743-1
http://dx.doi.org/http://doi.org/10.1093/comjnl/8.1.62
http://dx.doi.org/http://doi.org/10.1090/S0025-5718-1956-0083822-0
http://dx.doi.org/http://doi.org/10.1016/j.camwa.2004.05.004
http://dx.doi.org/http://doi.org/10.3390/math7070604
http://dx.doi.org/https://doi.org/10.1016/j.cam.2021.113773
http://dx.doi.org/http://doi.org/10.3390/sym12061038
http://dx.doi.org/http://doi.org/10.1515/ijnsns-2020-0161
http://dx.doi.org/http://doi.org/10.1002/mma.5384
http://dx.doi.org/http://doi.org/10.1134/S1995423921020075
http://dx.doi.org/http://doi.org/10.1155/2021/5597186
http://dx.doi.org/http://doi.org/10.1007/BF01444024


14299

15. A. Cordero, B. Neta, J. R. Torregrosa, Memorizing schröder’s method as an efficient
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