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Abstract: Linear discriminant analysis (LDA) is one of the most widely used methods in discriminant
classification and pattern recognition. However, with the rapid development of information science and
technology, the dimensionality of collected data is high or ultrahigh, which causes the failure of LDA.
To address this issue, a feature screening procedure based on the Fisher’s linear projection and the
marginal score test is proposed to deal with the ultrahigh-dimensional binary classification problem.
The sure screening property is established to ensure that the important features could be retained and
the irrelevant predictors could be eliminated. The finite sample properties of the proposed procedure
are assessed by Monte Carlo simulation studies and a real-life data example.
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1. Introduction

More and more attention has been paid to the analysis of ultrahigh-dimensional data with the
rapid development of information science and technology. The requirement of dealing with high-
dimensional data efficiently should be well satisfied. Ultrahigh-dimensional data often appear in the
area of biomedical imaging, gene expression and proteomics studies and so on. The dimensionality
p of the collected data is allowed to diverge at a nonpolynomial rate with the sample size n, which
is log p = O(nξ) for some ξ > 0. Hence dimension reduction seems imperative for the efficient
manipulation and analysis of ultrahigh-dimensional data.
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Feature reduction techniques such as principal component analysis and linear discriminant analysis
(LDA) have been proposed and applied successfully in practice to reduce the dimensionality of the
original features without losing too much information. LDA is one of the most popular approaches in
discriminant classification and pattern recognition, and it aims to find a proper linear transformation
so that each sample vector with a high dimension is projected into a low-dimension vector while
preserving the original cluster structure as much as possible. However, when the dimension is
ultrahigh, the classical classification methods are no longer applicable, such as LDA [1], because of
too many redundant variables. For example, the ovarian cancer data which were studied by Sorace
and Zhan [2] consisted of serum samples of 162 ovarian cancer patients and 91 control subjects. For
each sample, 15154 distinct mass-to-charge ratios (M/Z) were available for analysis. It is interesting
to identify proteomic patterns (corresponding to the M/Z value) that can distinguish ovarian cancer
subjects from control subjects. The small number of samples and many redundant variables make
discriminant classification unable to work effectively.

To deal with the ultrahigh-dimensional discriminant classification difficulty, many marginal
feature screening procedures are proposed by statisticians to reduce the dimension rapidly, and then
some classical discriminant analysis methods could be processed. Mai and Zou [3] proposed a
feature screening procedure named Kolmogorov filter (KF) for binary classification based on the
Kolmogorov-Smirnov statistic, which enjoyed the sure screening property under much-weakened
model assumptions. Mai and Zou [4] proposed the fused Kolmogorov filter, which generalized the
KF procedure to the multi-classification case. Lai et al. [5] proposed the feature screening procedure
based on the expected conditional Kolmogorov filter for the ultrahigh-dimensional binary classification
problem with a dependent variable. Cui et al. [6] proposed a model-free feature screening index named
MV for ultrahigh-dimensional discriminant analysis based on the difference between conditional and
unconditional distribution functions. Pan et al. [7] developed a pairwise sure independence screening
procedure (PSIS) for LDA, but this procedure depended on the parametric modeling assumptions and
may perform poorly for heavy-tailed data. Cheng et al. [8] proposed a robust ranking screening
procedure based on the conditional expectation of the rank of predictor samples for the ultrahigh-
dimensional discriminant analysis, which was robust against the heavy-tailed distributions, potential
outliers and the sample shortage for some categories. He et al. [9] generalized the MV procedure by
modifying MV with a weight function. The proposed Anderson-Darling sure independence screening
procedure (AD-SIS) could be more robust against the heavy-tailed distributions. Song et al. [10]
proposed a robust composite weighted quantile screening procedure based on the difference between
the conditional and the unconditional quantiles of the feature. Different from the existing methods,
which used the differences of means or the differences of conditional cumulative distribution functions
between classes as the screening indexes. Sheng and Wang [11] proposed a new feature screening
method to rank the importance of predictors based on the classification accuracy of marginal classifiers.

Although many feature screening procedures for the ultrahigh-dimensional discriminant analysis
problems have been proposed, some of them are even model-free; the study for the LDA problem,
one of the most popular approaches in discriminant classification and pattern recognition, is still very
attractive. In order to solve the linear discrimination problem with ultrahigh-dimensional features, the
dimension reduction method based on the linear projection may bring a better performance than the
model-free methods. In this paper, we propose a feature screening procedure based on the Fisher’s
linear discriminant framework. By minimizing the linear projection of the sum of squares in the
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original cluster structures and maximizing the linear projection of the sum of squares between groups,
the marginal score test is constructed and combined with the linear projection optimal problem. First,
the proposed method can screen out the irrelevant predictors in the linear discriminant function through
the use of estimating equations. Second, the proposed procedure processes the sure screening property.
Third, the simple structure of the screening index makes the calculation fast.

The rest of this paper is organized as follows. In Section 2, we construct the feature screening
estimating equations, propose the feature screening procedure and further study its theoretical
properties. In Section 3, we present Monte Carlo simulation studies to examine the finite sample
performance of the proposed procedure. We also use the proposed procedure in a real data example.
All technical details are presented in the Appendix.

2. Linear projection feature screening

Consider the class data samples (Xi,Yi), i = 1, . . . , n, where Yi is the binary class index variable that
equals one of {1, 2}, and Xi ∈ R

p. Suppose that G = {G1,G2} ⊂ R
p×n, where each G j ⊂ R

p×n j for j = 1, 2
represents an independent class data set {Xi j} = {Xi when Yi = j}, n j denotes the number of the samples
of the class G j; and, n1 + n2 = n. When the dimensionality p is large, the discriminant analysis based
on the data would be rather complex and inefficient. LDA aims to find a linear projection β ∈ Rp, so it
maps each sample vector Xi to a new low-dimension sample β⊤Xi, i = 1, . . . , n. It seeks to project the
observations into a lower space such that the intergroup variance of the projected samples is large and
the intragroup variance is small. A classification rule is obtained by assigning the sample to its nearest
centroid in the transformed space. To find the projection direction and delete the irrelevant predictors
simultaneously, we construct the linear projection feature screening procedure in the following.

2.1. Screening method

Based on the linear projection, a random sample Xi is projected to β⊤Xi. Define

S S E =
2∑

j=1

n j∑
i=1

(β⊤Xi j − β
⊤X̄ j)2 = β⊤

2∑
j=1

n j∑
i=1

(Xi j − X̄ j)(Xi j − X̄ j)⊤β := β⊤Eβ,

S S (TR) =
2∑

j=1

n j(β⊤X̄ j − β
⊤X̄)2 = β⊤

2∑
j=1

n j(X̄ j − X̄)(X̄ j − X̄)⊤β := β⊤Bβ, (2.1)

where X̄ j =
1
n j

∑n j

i=1 Xi j and X̄ = 1
n

∑n
i=1 Xi. Thus, the linear projection procedure aims to obtain β by

max
β

β⊤Bβ
β⊤Eβ

, s.t. β , 0 and ∥β∥ = 1. (2.2)

When the dimensionality p is ultrahigh, the traditional solutions for (2.2) fail. For example,
the related eigenvectors of the eigenvalues solved from |B − λE| = 0 are hard to obtain. For
ultrahigh-dimensional problems, sparsity is often present, meaning that only a small number of
predictors contribute significantly to the LDA process. We denote the active set and the inactive set
as A = {k : βk , 0, 1 ≤ k ≤ p} and Ac = {k : βk = 0, 1 ≤ k ≤ p}, respectively. Note that
(2.2) is a constrained optimization problem. To avoid the constraint, without loss of generality, we
assume β = (β1, β2 . . . , βp)⊤ = (β1,β

⊤
(−1))

⊤, where β(−1) = (β2, . . . , βp)⊤, β1 > 0 and β1 =
√

1 − ∥β(−1)∥
2.
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β1 > 0 means X1 is important for the linear discriminant classification. The active predictor X1 can be
identified by comparing each marginal correlation of Xk and Y for k = 1, . . . , p. We propose a feature
screening procedure to identify potential active predictors as follows. Assume E(Xk) = 0, Var(Xk) = 1,
and redefine Xk = Xk − E(Xk|X1) for k = 2, . . . , p. The transformation of Xk can clear out the linear
correlation between Xk and the active predictor X1.

By introducing β(−1), we estimate β(β(−1)) by maximizing

max
β(−1)

L̂(β(−1)) = max
β(−1)

β⊤Bβ
β⊤Eβ

, (2.3)

or solving

∂L̂(β(−1))
∂β(−1)

=
1

(β⊤Eβ)2

[
2J⊤β(−1)

Bβ · β⊤Eβ − 2β⊤Eβ · J⊤β(−1)
Eβ

]
= 0, (2.4)

where Jβ(−1) =
∂β
∂β(−1)

= (b1, . . . , bp)⊤ is a p × (p − 1) matrix, b1 = −(1 − ∥β(−1)∥
2)−1/2β(−1) and bs =

(0, . . . , 0, 1, 0, . . . , 0)⊤ with sth element equals to 1, s = 2, . . . , p. Let L̂′k(β) be the kth component

of ∂L̂(β(−1))
∂β(−1)

. Therefore, (L̂′2(β), . . . , L̂′p(β))⊤ = 0 are estimating equations of β(−1). Since the sparsity
property is satisfied, motivated by the score test screening procedure proposed by Zhao and Li [12],
for each k(k , 1), we consider a marginal estimating equation of βk(k = 2 . . . , p) and assume that
all the other covariates are unrelated to the linear discriminant classification except X1. Denote this
marginal estimating equation by L′k(β), and ω̂k(βk) = L̂′k(β1, 0, . . . , 0, βk, 0, . . . , 0) = 0. From this
marginal estimating equation, if |ω̂k(0)| is bigger than 0, it means that βk = 0 is not the solution of
this estimating equation. Thus Xk is a possible active predictor. Otherwise, the coefficient βk = 0
denotes that Xk is not important in the linear discriminant analysis. Therefore, similar to Zhao and
Li [12] and Ma et al. [13], each |ω̂k(0)| = L̂′k(1, 0, . . . , 0) is the numerator of the score statistic for a
hypothesis: βk = 0(k ≥ 2) under the kth marginal model and therefore can be a sensible screening
statistic. Here β1 = 1 is from ∥β∥ = 1. Let ω̂k = ω̂k(0). It follows

ω̂k = ω̂k(0) =
2

E2
11

[E11Bk1 − B11Ek1] , k = 2, . . . , p, (2.5)

where E11 =
∑2

j=1
∑n

i=1[Xi1 − X̄ j1]2I(Yi = j), Ek1 =
∑2

j=1
∑n

i=1[Xik − X̄ jk][Xi1 − X̄ j1]I(Yi = j), B11 =∑2
j=1

∑n
i=1[X̄ j1 − X̄1]2I(Yi = j) and Bk1 =

∑2
j=1

∑n
i=1[X̄ jk − X̄k][X̄ j1 − X̄1]I(Yi = j). To simplify the

calculation and theoretical derivation, define

ω̂∗k = ω̂
∗
k(0) =

1
n2 [E11Bk1 − B11Ek1] , k = 2, . . . , p. (2.6)

Note that ω̂∗k is a scaled version of ω̂k. They lead to the same result of feature ranking and screening.
Define ω∗k = ω

∗
k(0) = T11T12 − T21T22, where

T11 =

2∑
j=1

E


[
X1 −

E(X1I j)
E(I j)

]2

I j

 , T21 =

2∑
j=1

E


[
E(X1I j)

E(I j)
− E(X1)

]2

I j

 ,
T12 =

2∑
j=1

E
{[

E(XkI j)
E(I j)

− E(Xk)
] [

E(X1I j)
E(I j)

− E(X1)
]

I j

}
,
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T22 =

2∑
j=1

E
{[

Xk −
E(XkI j)
E(I j)

] [
X1 −

E(X1I j)
E(I j)

]
I j

}
, (2.7)

where I j = I(Y = j), and I(·) is the indicator function. From (2.6), if Xk and Y are independent, then it
follows

ω̂∗k
P
−→ ω∗k = −

2∑
j=1

E
{

I j
E2(X1I j)

E2(I j)

}
·

2∑
j=1

E
{
X1XkI j

}
= 0, n→ ∞.

Therefore, ω̂k could be used as the feature screening index.
For a given threshold value cn, the active set is estimated as

Âcn = {2 ≤ k ≤ p : |ω̂∗k| ≥ cn}. (2.8)

Usually, the predefined cn is not easy to be identified. Another way is to select the top dn predictors
and estimate the active set as

Âdn = {2 ≤ k ≤ p : |ω̂∗k| ranks among the top dn}. (2.9)

The submodel size dn is a predefined threshold value, e.g., dn = v[n/ log(n)], v is some positive integer,
see Fan and Lv [14]. In practice, v is chosen to be bigger than 1 to enhance the probability of selecting
all the relevant predictors.

2.2. Sure screening property

Next, we establish the theoretical property of the proposed feature screening method. To study the
sure screening property, the following regularity conditions are assumed.

• C1. X satisfies the sub-exponential tail probability uniformly in p. That is, there exists a positive
constant s0 such that for all 0 < s ≤ 2s0,

sup
p

max
1≤k≤p

E
{
exp

(
sX2

k

)}
< ∞.

• C2. There exist some constants c > 0 and 0 ≤ κ < 1
2 such that min

k∈A
ω∗k ≥ 2cn−κ.

Theorem 1. (Sure Screening Property) Under Condition C1, for any 0 < γ < 1
2 − κ, there exist positive

constants c1 > 0 and c2 > 0 such that

P
(
max
1≤k≤p

∣∣∣ω̂∗k − ω∗k∣∣∣ ≥ cn−κ
)
≤ O

{
2p exp

(
−c1n1−2γ−2κ

)
+ 2np exp (−c2nγ)

}
. (2.10)

Further, if both conditions C1 and C2 hold, by taking cn = cn−κ in (2.8), we have

P(A ⊂ Âcn) ≥ 1 − O
{
2sn exp

(
−c1n1−2γ−2κ

)
+ 2nsn exp (−c2nγ)

}
, (2.11)

where sn is the cardinality ofA, which is sparse and may vary with n.
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Theorem 2. (Minimum Model Size) Under conditions in Theorem 1, for any cn = c3n−κ, c3 > 0, there
exist positive constants c4 and c5, such that

P

∥∥∥Âcn

∥∥∥
0
≤ O(nκ

p∑
k=1

|ω∗k|)

 ≥ 1 − O
{
2p exp

(
−c4n1−2γ−2κ

)
+ 2np exp (−c5nγ)

}
. (2.12)

Here ∥ · ∥0 denotes the cardinality of a set.

Remark 1. Theorem 1 shows that the sure screening property holds for the proposed linear projection
feature screening procedure. The dimensionality p is allowed to increase at an exponential rate of
the sample size n, i.e., p = o(exp(nα)). From (2.10) of Theorem 1, the left term of (2.10) tends to 0
if 0 < α < 1 − 2γ − 2κ. Furthermore, it shows that the feature screening procedure could retain all
the important classification predictors with probability tending to 1, which means P(A ⊂ Âcn) → 1.
The screened features could be utilized in the linear discriminant analysis. If the dimensionality is still
high, some penalized methods could be processed. Theorem 2 shows that as long as

∑p
k=1 |ω

∗
k| is of a

polynomial order of sample size, then the number of selected variables is also of polynomial order of
sample size.

3. Numerical examples

In this section, we present two simulation studies of the popular discriminant analysis models, the
logistic model and the probit model, and one real data analysis to assess the finite sample performances
of the proposed method (LDA-SIS). Furthermore, we compare the effectiveness of our proposed
method with other existing competitive screening methods, including the T-test (Fan and Fan [1]),
DC (Li et al. [15]), KF (Mai and Zou [3]), MV (Cui et al. [6]), PSIS (Pan et al. [7]) and RRS (Cheng
et al. [8]).

3.1. Monte Carlo Simulations

For each simulation, we set the dimensionality p to 1000 and 2000, and the sample size n to 100
and 200, respectively. All the simulation results are based on 1000 replications. Similar to Fan and
Lv [14] and Li et al. [15], the screening threshold number is set to be dn = [n/ log(n)]. The following
criteria are considered to evaluate the performances of all screening methods.

• MMS: The minimum model size of the submodel contains all active predictors. The five quantiles
of MMS over 1000 replications are presented.
• Pk: The proportion of the kth active predictor is selected into the model with size dn.
• Pa: The proportion that all active predictors are selected into the model.

Example 1 (Logistic Model): Consider the logistic regression model

logit(py) = X⊤β, py = P(Y = 1|X).

The covariate X = (X1,X(−1))⊤,X(−1) = (X2, . . . , Xp)⊤ is generated from X1 ∼ N(0, 1) and X(−1) ∼

Np−1(0,Σ), where Σ is a (p−1)× (p−1) covariance matrix with elements σi j = ρ
|i− j|, i, j = 1, . . . , p−1.

We consider ρ = 0.2, 0.5 and 0.8, respectively. Set β = (1.4, 1.2, 1.0, 0.8, 0.6, 0p−5)⊤ and the random
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error εwhich is added to X⊤β follows N(0, 1). The simulation results of Example 1 are shown in Tables
1 and 2.

Table 1. The selecting rates Pa and P′ks in Example 1.
n = 100 n = 200

Method P1 P2 P3 P4 P5 Pa P1 P2 P3 P4 P5 Pa

ρ = 0.2 LDA-SIS 1 0.94 0.944 0.789 0.372 0.276 1 1 1 0.997 0.83 0.827
p = 1000 DC 1 0.887 0.887 0.678 0.293 0.17 1 0.996 1 0.98 0.737 0.721

T-test 1 0.914 0.904 0.725 0.316 0.202 1 0.999 1 0.988 0.779 0.771
RRS 1 0.896 0.899 0.688 0.318 0.187 1 0.998 1 0.985 0.751 0.74
KF 1 0.805 0.803 0.555 0.231 0.087 1 0.99 0.994 0.934 0.631 0.577
MV 1 0.881 0.879 0.662 0.286 0.159 1 0.996 0.999 0.976 0.722 0.702
PSIS 1 0.914 0.904 0.725 0.316 0.202 1 0.999 1 0.988 0.779 0.771

p = 2000 LDA-SIS 1 0.898 0.907 0.676 0.283 0.158 1 0.998 0.999 0.989 0.75 0.74
DC 1 0.809 0.819 0.556 0.213 0.083 1 0.997 0.999 0.96 0.643 0.621

T-test 1 0.836 0.841 0.6 0.235 0.1 1 0.998 0.998 0.966 0.678 0.657
RRS 1 0.812 0.82 0.572 0.223 0.092 1 0.998 0.999 0.961 0.657 0.633
KF 1 0.679 0.699 0.465 0.164 0.035 1 0.988 0.985 0.877 0.532 0.463
MV 1 0.787 0.796 0.546 0.203 0.075 1 0.995 0.998 0.946 0.631 0.599
PSIS 1 0.836 0.841 0.6 0.235 0.1 1 0.998 0.998 0.966 0.678 0.657

ρ = 0.5 LDA-SIS 1 0.996 0.998 0.993 0.828 0.821 1 1 1 1 0.998 0.998
p = 1000 DC 1 0.99 0.997 0.979 0.759 0.739 1 1 1 1 0.994 0.994

T-test 1 0.993 0.999 0.989 0.787 0.774 1 1 1 1 0.995 0.995
RRS 1 0.991 0.995 0.982 0.764 0.743 1 1 1 1 0.994 0.994
KF 1 0.963 0.992 0.944 0.644 0.593 1 1 1 1 0.977 0.977
MV 1 0.986 0.997 0.972 0.737 0.715 1 1 1 1 0.992 0.992
PSIS 1 0.993 0.999 0.989 0.787 0.774 1 1 1 1 0.995 0.995

p = 2000 LDA-SIS 1 0.996 0.998 0.985 0.771 0.761 1 1 1 1 0.993 0.993
DC 1 0.982 0.99 0.971 0.681 0.65 1 1 1 1 0.972 0.972

T-test 1 0.985 0.993 0.978 0.724 0.702 1 1 1 1 0.984 0.984
RRS 1 0.978 0.991 0.974 0.684 0.652 1 1 1 1 0.976 0.976
KF 1 0.927 0.97 0.913 0.55 0.464 1 1 1 0.999 0.941 0.941
MV 1 0.969 0.988 0.963 0.653 0.612 1 1 1 1 0.964 0.964
PSIS 1 0.985 0.993 0.978 0.724 0.702 1 1 1 1 0.984 0.984

ρ = 0.8 LDA-SIS 1 1 1 1 0.999 0.999 1 1 1 1 1 1
p = 1000 DC 1 1 1 1 0.999 0.999 1 1 1 1 1 1

T-test 1 1 1 1 0.999 0.999 1 1 1 1 1 1
RRS 1 1 1 1 0.999 0.999 1 1 1 1 1 1
KF 1 1 1 0.999 0.994 0.994 1 1 1 1 1 1
MV 1 1 1 1 0.998 0.998 1 1 1 1 1 1
PSIS 1 1 1 1 0.999 0.999 1 1 1 1 1 1

p = 2000 LDA-SIS 1 1 1 1 1 1 1 1 1 1 1 1
DC 1 1 1 1 1 1 1 1 1 1 1 1

T-test 1 1 1 1 1 1 1 1 1 1 1 1
RRS 1 1 1 1 0.999 0.999 1 1 1 1 1 1
KF 1 1 0.999 0.999 0.981 0.979 1 1 1 1 1 1
MV 1 1 1 1 0.999 0.999 1 1 1 1 1 1
PSIS 1 1 1 1 1 1 1 1 1 1 1 1
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Table 2. The different quantiles of MMS in Example 1.
n = 100 n = 200

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

ρ = 0.2 LDA-SIS 7 19 56 173.25 575 5 5 8 22 153.05
p = 1000 DC 9 34 106 279.25 736.55 5 6 12 43 275.1

T-test 8 27 80 233.25 651.2 5 6 11 35 212.1
RRS 9 31 95 251 726.25 5 6 12 41 236
KF 15 56 167.5 343 770.3 5 9 25 90.25 361.4
MV 10 38.75 115.5 288.25 764.3 5 6 14 49 293.05
PSIS 8 27 80 233.25 651.2 5 6 11 35 212.1

p = 2000 LDA-SIS 10 38 124 394.5 1345.05 5 5 11 42.25 320.55
DC 14 73 220.5 605.75 1461.05 5 7 19 95.25 689

T-test 13 59 185.5 488.75 1404 5 6 16 72 482.3
RRS 13 66.75 200.5 567.5 1406.1 5 7 18 84.25 540.2
KF 29.95 113.5 338.5 741.75 1536.35 5 12 45 175 810.05
MV 15 74 246 640.5 1455.3 5 7 22 107 695.05
PSIS 13 59 185.5 488.75 1404 5 6 16 72 482.3

ρ = 0.5 LDA-SIS 5 5 6 14 89 5 5 5 5 7
p = 1000 DC 5 5 8 23 155 5 5 5 5 9

T-test 5 5 7 18 123.05 5 5 5 5 7
RRS 5 5 8 22 136.1 5 5 5 5 8.05
KF 5 7 15 51 238.1 5 5 5 7 20
MV 5 5 9 27.25 174.05 5 5 5 5 10
PSIS 5 5 7 18 123.05 5 5 5 5 7

p = 2000 LDA-SIS 5 5 7 20 175.15 5 5 5 5 8
DC 5 5 11 39 303 5 5 5 5 19

T-test 5 5 10 31 241.45 5 5 5 5 16
RRS 5 6 11 38 270.05 5 5 5 5 18.05
KF 5 9 24 91 486 5 5 5 8.25 46
MV 5 6 13 49 298.5 5 5 5 6 22
PSIS 5 5 10 31 241.45 5 5 5 5 16

ρ = 0.8 LDA-SIS 5 5 5 5 6 5 5 5 5 5
p = 1000 DC 5 5 5 5 6 5 5 5 5 5

T-test 5 5 5 5 6 5 5 5 5 5
RRS 5 5 5 5 6 5 5 5 5 5
KF 5 5 5 6 8 5 5 5 5 6
MV 5 5 5 5 6 5 5 5 5 5
PSIS 5 5 5 5 6 5 5 5 5 5

p = 2000 LDA-SIS 5 5 5 5 6 5 5 5 5 5
DC 5 5 5 5 6 5 5 5 5 5

T-test 5 5 5 5 6 5 5 5 5 5
RRS 5 5 5 5 6 5 5 5 5 5
KF 5 5 5 6 11 5 5 5 5 6
MV 5 5 5 5 7 5 5 5 5 5
PSIS 5 5 5 5 6 5 5 5 5 5

Example 2 (Probit Model): Consider the probit regression model

py = Φ(X⊤β), py = P(Y = 1|X),

whereΦ(·) is the cumulative distribution function of standard normal distribution. Assume that the true
active setA = {1, 5, 20, 21, 100}, and β is the p dimensional parametric vector with βA = (1, 1, 1, 1, 1)⊤
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and 0 otherwise. The other settings are the same to Example 1. The simulation results of Example 2
are shown in Tables 3 and 4.

Table 3. The selecting rates Pa and P′ks in Example 2.
n = 100 n = 200

Method P1 P2 P3 P4 P5 Pa P1 P2 P3 P4 P5 Pa

ρ = 0.2 LDA-SIS 1 0.779 0.933 0.934 0.76 0.499 1 0.991 0.999 1 0.992 0.982
p = 1000 DC 1 0.703 0.882 0.893 0.689 0.362 1 0.976 0.998 0.998 0.984 0.956

T-test 1 0.727 0.9 0.907 0.713 0.401 1 0.983 1 0.999 0.987 0.969
RRS 1 0.713 0.889 0.895 0.697 0.376 1 0.976 0.998 0.997 0.986 0.957
KF 1 0.595 0.808 0.785 0.581 0.2 1 0.946 0.993 0.991 0.945 0.88
MV 1 0.684 0.873 0.871 0.661 0.324 1 0.971 0.998 0.997 0.977 0.943
PSIS 1 0.727 0.9 0.907 0.713 0.401 1 0.983 1 0.999 0.987 0.969

p = 2000 LDA-SIS 1 0.697 0.88 0.884 0.721 0.359 1 0.985 1 0.998 0.975 0.958
DC 1 0.616 0.822 0.818 0.644 0.226 1 0.962 0.998 0.996 0.96 0.916

T-test 1 0.649 0.852 0.848 0.673 0.275 1 0.976 1 0.998 0.967 0.941
RRS 1 0.621 0.825 0.82 0.648 0.229 1 0.968 0.998 0.996 0.96 0.922
KF 1 0.466 0.703 0.696 0.497 0.084 1 0.903 0.983 0.99 0.896 0.783
MV 1 0.583 0.803 0.793 0.62 0.184 1 0.958 0.998 0.995 0.949 0.9
PSIS 1 0.649 0.852 0.848 0.673 0.275 1 0.976 1 0.998 0.967 0.941

ρ = 0.5 LDA-SIS 1 0.725 0.99 0.995 0.705 0.486 1 0.985 1 1 0.982 0.968
p = 1000 DC 1 0.655 0.975 0.982 0.644 0.373 1 0.965 1 1 0.958 0.926

T-test 1 0.691 0.983 0.986 0.681 0.429 1 0.972 1 1 0.97 0.944
RRS 1 0.665 0.976 0.984 0.656 0.397 1 0.967 1 1 0.968 0.937
KF 1 0.535 0.926 0.938 0.526 0.219 1 0.922 0.999 1 0.897 0.824
MV 1 0.63 0.969 0.977 0.624 0.349 1 0.958 1 1 0.948 0.908
PSIS 1 0.691 0.983 0.986 0.681 0.429 1 0.972 1 1 0.97 0.944

p = 2000 LDA-SIS 1 0.636 0.979 0.977 0.645 0.369 1 0.959 1 1 0.96 0.919
DC 1 0.556 0.962 0.957 0.566 0.274 1 0.945 1 1 0.939 0.884

T-test 1 0.589 0.975 0.969 0.617 0.326 1 0.951 1 1 0.952 0.903
RRS 1 0.567 0.962 0.956 0.57 0.274 1 0.948 1 1 0.942 0.891
KF 1 0.428 0.896 0.892 0.443 0.125 1 0.877 0.998 1 0.867 0.76
MV 1 0.534 0.941 0.95 0.539 0.245 1 0.935 1 1 0.929 0.868
PSIS 1 0.589 0.975 0.969 0.617 0.326 1 0.951 1 1 0.952 0.903

ρ = 0.8 LDA-SIS 1 0.641 0.999 0.999 0.57 0.343 1 0.966 1 1 0.953 0.922
p = 1000 DC 1 0.592 0.997 0.999 0.519 0.283 1 0.95 1 1 0.91 0.863

T-test 1 0.625 0.999 1 0.532 0.301 1 0.962 1 1 0.932 0.895
RRS 1 0.598 0.997 0.998 0.525 0.287 1 0.954 1 1 0.926 0.881
KF 1 0.47 0.983 0.982 0.42 0.178 1 0.898 1 1 0.857 0.769
MV 1 0.561 0.996 0.995 0.506 0.259 1 0.95 1 1 0.907 0.86
PSIS 1 0.625 0.999 1 0.532 0.301 1 0.962 1 1 0.932 0.895

p = 2000 LDA-SIS 1 0.588 1 0.999 0.496 0.265 1 0.96 1 1 0.922 0.883
DC 1 0.519 0.998 0.996 0.434 0.199 1 0.931 1 1 0.877 0.812

T-test 1 0.562 0.998 0.997 0.459 0.229 1 0.951 1 1 0.895 0.847
RRS 1 0.522 0.995 0.997 0.432 0.202 1 0.933 1 1 0.882 0.819
KF 1 0.414 0.982 0.974 0.34 0.127 1 0.834 1 1 0.784 0.641
MV 1 0.496 0.995 0.994 0.411 0.176 1 0.913 1 1 0.86 0.782
PSIS 1 0.562 0.998 0.997 0.459 0.229 1 0.951 1 1 0.895 0.847
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Table 4. The different quantiles of MMS in Example 2.
n = 100 n = 200

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

ρ = 0.2 LDA-SIS 5 10 22 55 252 5 5 5 6 17.05
p = 1000 DC 6 15 38 92 394.25 5 5 6 8 36

T-test 6 12 30 77 288.05 5 5 5 7 23.05
RRS 6 14 34 89 316.2 5 5 5 8 31.05
KF 10 26.75 64.5 151 453.05 5 6 8 18 99
MV 6 16 40 105 410.05 5 5 6 10 42.05
PSIS 6 12 30 77 288.05 5 5 5 7 23.05

p = 2000 LDA-SIS 6 15 36 101.5 490.1 5 5 5 7 29
DC 8 24 63 181 720.4 5 5 6 11 55.05

T-test 7 19.75 49 135 561.55 5 5 6 9 42
RRS 8 23 56 164.25 634 5 5 6 10 58
KF 14 52 124 298.25 957.2 5 6 11 30 157.05
MV 8 28 69 197.25 784.55 5 5 7 12 76.05
PSIS 7 19.75 49 135 561.55 5 5 6 9 42

ρ = 0.5 LDA-SIS 5 9 22 71 295.05 5 5 6 9 28
p = 1000 DC 6 13 35 113 444.1 5 5 7 12 49

T-test 6 11 29 86 351.05 5 5 6 10 41.05
RRS 6 13 33.5 95.25 399.3 5 5 7 12 46
KF 8 24 65 165 516.7 5 6 10 24 106.1
MV 6 14 41 118 490.75 5 5 7 13.25 55
PSIS 6 11 29 86 351.05 5 5 6 10 41.05

p = 2000 LDA-SIS 6 13 37 114 556.95 5 5 6 10 58.05
DC 7 20 56 191.25 813.25 5 5 7 15 98.1

T-test 6 16 45 155 616.7 5 5 7 12.25 74
RRS 7 19 52.5 180.75 679 5 5 7 14.25 89.05
KF 10.95 40 118 320.25 978.35 5 7 13 36 228.15
MV 7 22.75 64 219.25 801.65 5 6 8 17 121.05
PSIS 6 16 45 155 616.7 5 5 7 12.25 74

ρ = 0.8 LDA-SIS 8 16 31 86.25 334.25 7.95 11 14 19 51.05
p = 1000 DC 9 20 45 125.25 508.15 8 11 15 23 78.05

T-test 9 18 37.5 105 399 8 11 15 21 65.05
RRS 9 19 41 114 444.1 8 11 15 22 68
KF 10 31 74.5 188.25 564.25 8 12 19 34 136.05
MV 10 21 48 135.25 523.3 8 12 16 24 81.05
PSIS 9 18 37.5 105 399 8 11 15 21 65.05

p = 2000 LDA-SIS 9 21 48 151 619.1 8 11 14 22 66.05
DC 10 28 73 228.5 897.3 8 11 17 29 106.05

T-test 9.95 23 60.5 172 676.45 8 11 15 26 81
RRS 10 28 70 201.25 746.25 8 11 17 29 101
KF 13 49 136 334.25 1113.7 8 13 24 61 211.15
MV 10 33 82 241.25 957 8 11 18 33 121.2
PSIS 9.95 23 60.5 172 676.45 8 11 15 26 81

From Tables 1–4, we can find that the proposed LDA-SIS procedure has better feature screening
performances than the other procedures. The proportion of all active predictors selected into the
screened submodel (Pa) is larger for the LDA-SIS procedure, and the minimum model size of the
submodel which contains all active predictors (MMS) of the LDA-SIS procedure is smaller. From
Tables 1 and 2, with the correlation parameter ρ increasing, the performances of the feature screening
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procedures become better. This phenomenon shows that when the active predictors have strong
relationships with each other, the proposed feature screening procedure could select the important
predictors more correctly. On the other hand, from Tables 3 and 4, with the correlation parameter ρ
increasing, the performances of the feature screening procedures become worse. It shows that when the
active predictors have strong relationships with the inactive predictors, the feature screening accuracy
would be compromised. Furthermore, with the sample size increasing, better results would be obtained.

3.2. Real data analysis

We applied the LDA-SIS feature screening procedure to ovarian cancer data previously
studied by Sorace and Zhan [2], Fushiki et al. [16], Zhang et al. [17], and Zhang et
al. [18]. This dataset was generated using surface-enhanced laser desorption time-of-flight
mass spectrometry and comprises serum samples from 162 ovarian cancer patients and 91
control subjects. The data are available on the Clinical Proteomics Program Databank website
(http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp). For each ovarian cancer sample, we
analyzed 15,154 distinct mass-to-charge ratios (M/Z). As reported by Sorace and Zhan [2], the region
with M/Z values below 500 was often discarded as noise, resulting in a reduction of the dimensionality
of the biomarker features from 15,154 to 12,757. Our goal in this study was to identify proteomic
patterns corresponding to specific M/Z values that could distinguish ovarian cancer subjects from
control subjects.

We randomly split the 253 samples into the training data set and the testing data set. In particular,
we sampled approximately 100γ% of the ovarian cancer patients and 100γ% of the control subjects as
the training data set, and the rest as the testing data set. We standardized the data to zero mean and unit
variance before the discriminant classification.

Different feature screening procedures are utilized to identify the important potential biomarkers
in the standardized training data. In our LDA-SIS procedure, we select the variable with the largest
value of the Kolmogorov-Smirnov statistics (Mai and Zou [3]) as X1. Let dn = [c0ntr/ log(ntr)], c0 =

0.25, 0.5, 1, and ntr is the sample size of the training data. In this case, dn = 8, 17, and 35, respectively.
After the first feature screening step, the kernel support vector machine (KSVM) method with Gaussian
kernel function, and the penalized logistic model (PLM) with LASSO method (Tibshirani, R. [19]) are
applied in the modeling step based on the screened dn potential biomarkers, respectively. And their
performances are evaluated by the testing data. The packages e1071 and glmnet are used here.

The procedure is repeated 200 times with γ = 0.7 and 0.8, respectively. Three assessment criteria
are introduced to investigate the classification performance of the different methods.

• Testing error: The number of errors identified on the testing set.
• TPR (sensitivity or true positive rate): The proportion of ovarian cancer patients diagnosed

correctly.
• PPV (positive predictive value): The proportion of samples diagnosed with ovarian cancer who

did have the disease.

Table 5 summarizes the median and robust standard deviation (RSD) in the parentheses of testing
error, TPR, and PPV. The results show that our proposed LDA-SIS method outperforms the other
methods based on these evaluation criteria. Furthermore, we observe that increasing the proportion of
training data selected (γ = 0.8 ) leads to better performance across all model sizes dn(8, 17, 35).
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Table 5. Classification performance of ovarian cancer data.

dn Assessment Criteria LDA-SIS DC T-test RRS KF MV PSIS

8 KSVM-Testing error 3(1.49) 8(2.43) 8(2.24) 8(2.43) 8(2.24) 8(2.24) 8(2.24)
KSVM-TPR 0.97(0.06) 0.83(0.07) 0.83(0.07) 0.85(0.08) 0.84(0.07) 0.85(0.07) 0.83(0.07)
KSVM-PPV 0.97(0.04) 0.96(0.04) 0.96(0.04) 0.95(0.04) 0.96(0.04) 0.95(0.04) 0.96(0.04)
PLM-Testing error 3(2.24) 5(2.24) 5(2.24) 5(2.24) 6(2.99) 5(2.24) 5(2.24)
PLM-TPR 0.97(0.05) 0.94(0.05) 0.93(0.05) 0.94(0.04) 0.93(0.06) 0.94(0.05) 0.93(0.05)
PLM-PPV 0.97(0.04) 0.92(0.05) 0.92(0.05) 0.93(0.07) 0.91(0.07) 0.93(0.06) 0.92(0.06)

0.8 17 KSVM-Testing error 3(2.24) 8(2.99) 8(2.99) 7(3.73) 8(2.99) 7(2.99) 8(2.99)
KSVM-TPR 0.94(0.04) 0.83(0.06) 0.83(0.06) 0.87(0.08) 0.85(0.07) 0.87(0.08) 0.83(0.06)
KSVM- PPV 0.97(0.04) 0.96(0.04) 0.95(0.04) 0.94(0.04) 0.94(0.04) 0.94(0.04) 0.95(0.04)
PLM-Testing error 2(1.49) 4(2.24) 5(2.24) 3(2.24) 4(2.24) 3(2.24) 5(2.24)
PLM-TPR 0.97(0.04) 0.94(0.05) 0.94(0.07) 0.95(0.04) 0.93(0.05) 0.95(0.04) 0.94(0.06)
PLM-PPV 0.97(0.04) 0.95(0.04) 0.94(0.05) 0.96(0.06) 0.95(0.07) 0.96(0.06) 0.94(0.05)

35 KSVM-Testing error 3(2.24) 8(3.73) 8(3.73) 6(2.99) 7(3.73) 6(2.99) 8(3.73)
KSVM-TPR 0.97(0.07) 0.84(0.07) 0.85(0.07) 0.88(0.08) 0.85(0.08) 0.88(0.08) 0.85(0.07)
KSVM- PPV 0.97(0.04) 0.95(0.04) 0.95(0.04) 0.94(0.04) 0.94(0.04) 0.94(0.04) 0.95(0.04)
PLM-Testing error 2(1.49) 3(2.24) 3(2.24) 3(2.24) 3(2.24) 3(2.24) 3(2.24)
PLM-TPR 0.97(0.04) 0.96(0.03) 0.96(0.04) 0.96(0.05) 0.96(0.04) 0.96(0.04) 0.96(0.04)
PLM-PPV 0.97(0.04) 0.95(0.05) 0.96(0.06) 0.97(0.06) 0.95(0.04) 0.96(0.04) 0.96(0.06)

8 KSVM-Testing error 4(2.24) 11(3.17) 12(3.17) 11(3.92) 11(2.99) 11(3.73) 12(3.17)
KSVM-TPR 0.96(0.04) 0.83(0.06) 0.83(0.06) 0.85(0.07) 0.84(0.07) 0.85(0.07) 0.83(0.06)
KSVM-PPV 0.97(0.03) 0.96(0.04) 0.96(0.04) 0.95(0.04) 0.96(0.04) 0.95(0.04) 0.96(0.04)
PLM-Testing error 4(2.24) 9(2.99) 9(2.99) 8(2.99) 9(2.99) 8(2.99) 6(2.99)
PLM-TPR 0.96(0.03) 0.94(0.05) 0.94(0.05) 0.95(0.05) 0.94(0.06) 0.95(0.05) 0.94(0.04)
PLM-PPV 0.96(0.04) 0.89(0.05) 0.90(0.05) 0.91(0.05) 0.89(0.05) 0.90(0.04) 0.90(0.05)

0.7 17 KSVM-Testing error 5(2.24) 12(2.99) 12(3.73) 10(4.48) 11(4.48) 11(4.48) 12(3.73)
KSVM-TPR 0.94(0.06) 0.84(0.07) 0.84(0.06) 0.87(0.08) 0.85(0.07) 0.87(0.07) 0.84(0.06)
KSVM-PPV 0.98(0.04) 0.96(0.04) 0.95(0.04) 0.95(0.04) 0.95(0.04) 0.95(0.04) 0.95(0.04)
PLM-Testing error 4(2.24) 7(2.99) 7(3.73) 6(2.99) 7(2.99) 6(2.99) 7(3.73)
PLM-TPR 0.97(0.02) 0.95(0.04) 0.95(0.04) 0.96(0.04) 0.96(0.04) 0.96(0.04) 0.95(0.04)
PLM-PPV 0.96(0.04) 0.92(0.05) 0.92(0.05) 0.93(0.04) 0.92(0.05) 0.93(0.04) 0.92(0.06)

35 KSVM-Testing error 5(2.99) 12(3.73) 11(4.48) 9(4.66) 11(4.48) 10(4.48) 11(4.48)
KSVM-TPR 0.94(0.07) 0.84(0.07) 0.85(0.07) 0.89(0.07) 0.87(0.08) 0.88(0.08) 0.85(0.07)
KSVM-PPV 0.98(0.04) 0.95(0.04) 0.95(0.04) 0.95(0.04) 0.94(0.04) 0.94(0.04) 0.95(0.04)
PLM-Testing error 3(1.49) 6(2.99) 6(2.24) 5(2.99) 6(2.99) 5(2.99) 5(2.24)
PLM-TPR 0.98(0.02) 0.96(0.04) 0.96(0.03) 0.96(0.03) 0.96(0.04) 0.96(0.03) 0.96(0.03)
PLM-PPV 0.98(0.02) 0.94(0.04) 0.94(0.04) 0.95(0.04) 0.94(0.04) 0.94(0.04) 0.94(0.04)

4. Conclusions

In this article, we employed Fisher’s linear projection and the marginal score test to study the feature
screening procedure for the ultrahigh-dimensional binary classification problem. Although many
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feature screening procedures for the ultrahigh-dimensional discriminant analysis problems have been
proposed, some of them are even model-free, the study for the LDA problem, one of the most popular
approaches in discriminant classification and pattern recognition, is still very attractive. By minimizing
the linear projection of the sum of squares in the original cluster structures and maximizing the linear
projection of the sum of squares between groups, we constructed the marginal score test and combined
it with the linear projection optimal problem to build the feature screening index. The sure screening
property and the minimum model size of the procedure are studied. The sure screening property
ensures that the feature screening procedure can retain all the important classification predictors with
the probability tending to 1. And the minimum model size of the procedure proposed by Theorem 2
shows that as long as

∑p
k=1 |ω

∗
k| is of a polynomial order of the sample size, the number of the selected

variables is also a polynomial order of the sample size. The finite sample performance of the proposed
procedure was illustrated by Monte Carlo studies and a real-data example. The simulation studies
demonstrate that the proposed feature screening method performs well, and the simple structure of the
screening index makes the calculation fast.
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Appendix: Technical proofs

The proofs of Theorem 1 and Theorem 2 in this paper are similar to the proofs of Theorem 1 in Li
et al. [15] and Theorems 1–2 in Liu et al. [20]. Similar lemmas are used here to facilitate proving the
proposed theorems, these lemmas are listed in the following and the proofs of these lemmas can be
found in the Appendices of Li et al. [15] and Liu et al. [20].

Lemma 1. Let µ = E(X). If P(a1 ≤ X ≤ b1) = 1, then

E
[
exp {s(X − µ)}

]
≤ exp

{
s2(b1 − a1)2/8

}
, for any s > 0.

Lemma 2. Let h(X1, . . . , Xm) be a kernel of the U statistics Un, and θ = E{h(X1, . . . , Xm)}. If a ≤
h(X1, . . . , Xm) ≤ b , then, for any ϵ > 0 and n > m, we have

P(Un − θ ≥ ϵ) ≤ exp
(
−

2[n/m]ϵ2

(b − a)2

)
,

where [n/m] denotes the integer part of n/m.
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Furthermore, due to the symmetry of U statistic, we also have

P(|Un − θ| ≥ ϵ) ≤ 2 exp
(
−

2[n/m]ϵ2

(b − a)2

)
.

In the following, we give the proofs of Theorem 1 and Theorem 2. For convenience, we denote M,
Mi, and ci, i = 1, 2, . . ., as the generic constants depending on the context. Define I j = I(Y = j) and
I(Yi = j) = Ii j.

Proof of Theorem 1. For ω̂∗k − ω
∗
k, we have

ω̂∗k − ω
∗
k =

[
T̂11T̂12 − T̂21T̂22

]
− [T11T12 − T21T22] , (1)

where T̂11 =
1
n E11, T̂12 =

1
n Bk1, T̂21 =

1
n B11 and T̂22 =

1
n Ek1. We first consider T̂11 − T11.

Define T̃11 =
1
n

∑2
j=1

∑n
i=1[Xi1 −

E(X1I j)
E(I j)

]2Ii j. We have

P(|T̂11 − T11| ≥ ε) ≤ P(|T̂11 − T̃11| + |T̃11 − T11| ≥ ε) ≤ P(|T̃11 − T11| ≥ ε/2), (2)

with n sufficiently large, i.e., n ≥ M1. It follows

P(|T̃11 − T11| ≥ ε/2) ≤
2∑

j=1

P
(∣∣∣T̂ ∗11 − T ∗11

∣∣∣ ≥ ε
4

)
,

where

T̂ ∗11 =
1
n

n∑
i=1

[
Xi1 −

E(X1I j)
E(I j)

]2

Ii j and T ∗11 = E


[
X1 −

E(X1I j)
E(I j)

]2

I j

 .
Obviously, T̂ ∗11 is the U-statistic, and T ∗11 is the kernel of the U-statistic of T̂ ∗11. Define h1(Xi1,Yi) =[
Xi1 −

E(X1I j)
E(I j)

]2
Ii j. Thus, we have

T̂ ∗11 =
1
n

n∑
i=1

[
Xi1 −

E(X1I j)
E(I j)

]2

Ii jI (h1(Xi1,Yi) ≤ M)

+
1
n

n∑
i=1

[
Xi1 −

E(X1I j)
E(I j)

]2

Ii jI (h1(Xi1,Yi) > M)

:= T̂ ∗111 + T̂ ∗112. (3)

Accordingly, we decompose T ∗11 into two parts

T ∗11 = E


[
X1 −

E(X1I j)
E(I j)

]2

I jI (h1(X1,Y) ≤ M)


+E


[
X1 −

E(X1I j)
E(I j)

]2

I jI (h1(X1,Y) > M)


:= T ∗111 + T ∗112. (4)
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Clearly, T̂ ∗111 and T̂ ∗112 are unbiased estimators of T ∗111 and T ∗112.
Similar to the proof of Theorem 2 in Zhu et al.[21], with the Markov’s inequality and the properties

of U-statistic, for any t > 0, we can obtain that

P
(
T̂ ∗111 − T ∗111 ≥ ε

)
≤ exp(−tε) exp

(
−tT ∗111

)
E

{
exp

(
tT̂ ∗111

)}
≤ exp(−tε)En

{
exp

( t
n

[
h1(Xi1,Yi)I(h1(Xi1,Yi) ≤ M) − T ∗111

])}
≤ exp

(
−tε +

M2t2

8n

)
,

where the last inequality is concluded from Lemma 1. By choosing t = 4εn/M2, we have

P
(
T̂ ∗111 − T ∗111 ≥ ε

)
≤ exp

(
−

2ε2n
M2

)
.

Therefore, by the symmetry of U-statistic, we can get

P
(
|T̂ ∗111 − T ∗111| ≥ ε

)
≤ 2 exp

(
−

2ε2n
M2

)
. (5)

Next, we show the consistency of T̂ ∗112.
With the Cauchy-Schwartz and Markov’s inequalities, for any s′ > 0,

(T ∗112)2 ≤ E
{
h2

1(X1,Y)
}

E
{
exp(s′h1(X1,Y))

}
/ exp(s′M).

Note that

h1(X1,Y) ≤ 2X2
1 + 2

E2(X1I j)
E2(I j)

,

which yields

E
{
exp(s′h1(X1,Y))

}
≤ exp

(
2s′E2(X1I j)

E2(I j)

)
E

{
exp(2s′X2

1)
}
.

By condition C1, if we choose M = cnγ, for 0 < γ < 1
2 − κ, then T ∗112 ≤

ε
2 when n is sufficiently large.

Consequently, similar to the proof of (B.4) in Li et al.[15], there exist some constant c1 and some s > 0
such that

P
(∣∣∣T̂ ∗112 − T ∗112

∣∣∣ ≥ ε) ≤ P
(∣∣∣T ∗112

∣∣∣ ≥ ε
2

)
≤ c1n exp

(
−

sM
4

)
. (6)

Recall that M = cnγ. Combining (3)–(6), we have

P
(∣∣∣T̂ ∗11 − T ∗11

∣∣∣ ≥ ε) ≤ P
(∣∣∣T̂ ∗111 − T ∗111

∣∣∣ ≥ ε
2

)
+ P

(∣∣∣T̂ ∗112 − T ∗112

∣∣∣ ≥ ε
2

)
≤ 2 exp

(
−2c2ε

2n1−2γ
)
+ c1n exp (−c3nγ) ,

where c2 and c3 are some positive constants.
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Similarly, for u, v = 1, 2, we can prove

P
(∣∣∣T̂ ∗uv − T ∗uv

∣∣∣ ≥ ε) ≤ 2 exp
(
−2c2uvε

2n1−2γ
)
+ c1uvn exp (−c3uvnγ) ,

where c1uv, c2uv and c3uv are some positive constants. Therefore, it follows

P
(∣∣∣T̂uv − Tuv

∣∣∣ ≥ ε) ≤ 2∑
j=1

P
(∣∣∣T̂ ∗uv − T ∗uv

∣∣∣ ≥ ε
2m

)
≤ 4 exp

(
−

c2uvε
2

8
n1−2γ

)
+ 2c1uvn exp (−c3uvnγ) , (7)

for u, v = 1, 2.
Therefore, similar to the proof of Lemma 4 and Lemma 5 in Liu et al.[20], by (1), (2) and (7), we

get

P
(∣∣∣ω̂∗k − ω∗k∣∣∣ ≥ ε) ≤ P

(∣∣∣T̂11T̂12 − T11T12

∣∣∣ ≥ ε
2

)
+ P

(∣∣∣T̂21T̂22 − T21T22

∣∣∣ ≥ ε
2

)
≤ 8 exp

(
−

c4ε
2

4
n1−2γ

)
+ 2c5n exp (−c6nγ) ,

where c4 − c6 are some positive constants. Thus,

P
(
max
1≤k≤p

∣∣∣ω̂∗k − ω∗k∣∣∣ ≥ cn−κ
)
≤ O

{
2p exp

(
−

c7

4
n1−2γ−2κ

)
+ 2np exp (−c8nγ)

}
. (8)

Next, we prove the second part of Theorem 1 using the similar method of the proof of Theorem 1 in
Li et al. [15]. IfA ⊈ Âcn , then there must exist some k ∈ A such that ω̂∗k ≤ cn−κ. Since min

k∈A
ω∗k ≥ 2cn−κ,

it indicates that {
A ⊈ Âcn

}
⊆

{∣∣∣ω̂∗k − ω∗k∣∣∣ > cn−κ, for some k ∈ A
}
.

Therefore,

P(A ⊆ Âcn) ≥ 1 − P
(
min
k∈A

∣∣∣ω̂∗k − ω∗k∣∣∣ ≥ cn−κ
)
≥ 1 − snP

(∣∣∣ω̂∗k − ω∗k∣∣∣ ≥ cn−κ
)

≥ 1 − O
{
2sn exp

(
−

c7

4
n1−2γ−2κ

)
+ 2nsn exp (−c8nγ)

}
.

This complete the proof of the second part.
Proof of Theorem 2. Note that for any c9 > 0, the number of {k : |ω∗k| >

c9
2 n−κ} is bounded by

O(nκ
∑p

k=1 |ω
∗
k|). Then on the set

B = {max
1≤k≤p

|ω̂∗k − ω
∗
k| ≤

c9

2
n−κ},

the number of {k : |ω̂∗k| > c9n−κ} can’t exceed the number of {k : |ω∗k| >
c9
2 n−κ}. Therefore, we have

P

∥∥∥Âcn

∥∥∥
0
≤ O(nκ

p∑
k=1

|ω∗k|)

 ≥ P(B).

Then, by (8), the proof is completed.
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