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1. Introduction

Among the most significant generalizations of convex feasibility problems, the split feasibility
problem (in short, SFP) was developed by Censor and Elfving [10]. Inverse problems related to
phase retrievals and medical image reconstruction, signal recovery, computer tomography and radiation
therapy treatment planning can be modeled as SFP. For more details, see [9, 11, 12, 17] and references
therein.
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Byrne [9] studied the CQ method along with many iterative algorithms and their convergence to
approximate the solution of the SFP. Further, various feasible sets have been considered in the study
of the SFP. Consequently, Moudafi [24] brought into existence the concept of the split monotone
variational inclusion problem (SMVIP), stated below:

Find x* € H, such that 0 € F;(x") + M;(x*) and O € F,(Bx") + M,(Bx"), (1.1)

where H,, H, are Hilbert spaces; B* is the adjoint operator of B : H, — H,; M, : H, — 2,
M, : H, — 22 are set-valued maximal monotone mappings; F; : H; — H, and F, : H, — H, are
two single-valued mappings. Following the CQ method due to Byrne, Moudafi proposed the following
scheme: For arbitrary zp € H; and p > 0, compute

Zur1 = Ulz, + yB*(V = DBz,], (1.2)

where y € (0, 1/R), R is the spectral radius of B*B, U = Ry' (I —puF;p),and V = Rﬁh(l —ng);Ry' ,Rl’fh
are resolvents of M, and M,, respectively.

Currently, we intend to inspect the split variational inclusion problems (SVIP), which can be
obtained by putting F; = F, = 0 in the SMVIP:

Find x* € H; such that 0 € M;(x") and 0 € M,(Bx"). (1.3)
Byrne et al. [8], investigated the SVIP by employing the scheme:
Zue1 = Rz, + yB'(R)* — DBz, ], Yn> 1 > 0, (1.4)

and showed that the weak limit leads to the solution of the SVIP. Later, Kazmi and Rizvi [21] looked
into the common solution of the SVIP and FPP of a non-expansive mapping using the following
method:

(1.5)
Zn+l = ,an(un) + (1 _ﬁn)Tun,

where T : H, — H,; is a nonexpansive mapping, f is a contraction mapping with constant a €

{un = R [z, + yB*(RY> = I)Bz,],

O,1), u > 0,y € (0, W), B € (0,1) is a real sequence satisfying lim g3, = 0, }, 5, = oo, and
n—oo n=1

> |Bn — Bu-1] < oo. Sitthithakerngkiet et al. [32], proposed a hybrid viscosity algorithm to estimate the
n=1

common solution of an SVIP and a countable family of non-expansive mappings:

{un = R [z, + yB"(RY — I)Bz,], 06

Zn+l = ﬁn‘ff(un) + (1 _ﬁnD)Tnun’

where T, : H; — H, is a sequence nonexpansive mapping, f is a contraction mapping with constant

a € (0,1), D is a strongly bounded linear operator with constant ¥, such that 0 < & < L, u > 0,

a,’

v € (0, W), and B3, € (0, 1) is a real sequence satisfying lim 3, =0, >, 8, = oo and ) |8, — B.-1] < oo.
n—oo n=1 n=1
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Very recently, Akram et al. [2] modified the Algorithm 1.5 and investigated the common solution
of the SVIP and FPP:

ty = 2o = Y[(I = Ry)zw + B = Ry2)Bz], 7
Xn+1 = ﬁnf(zn) + (1 _ﬁn)T(un)’ .
where f is an a-contraction mapping, y = W’ Bn € (0,1) satistfying lim g, = 0, . 5, = oo and
n— o0 n=1

Zl |Bn _:Bn—ll < ©0.

’ Investigating solutions of split problems and FPP and their applications in Banach and Hilbert
spaces is interesting, and have been studied by many authors [6,13,16,19,20,27,30,34] and references
therein.

In all the abovementioned methods, step size depends on the operator norm ||B||, which is
computationally expensive. This drawback was resolved by employing a new iterative scheme
involving self-adaptive step size. Lopez et al. [22] proposed the iterative method to explore the SFP
such that step size is not determined by the matrix norm as follows:

Zn1 = Pcll =y, B"(I - Pg)Bz,], Yn > 1, (1.8)

where y, = ”g;{;jgﬁz with f(x) = (I - PoBx|?,Vf(x) = B*I - Pg)Bx, n > 0and 0 < o, <
4,inf 0,(4 — 0,) > 0, and P¢ and P, are the orthogonal projections on the closed convex sets C and
0, respectively. Moudafi [26] solved the SFP without prior calculation of operator norm. Dilshad et
al. studied the SVIP [15] and SMVIP [14] without prior estimation of the norm of bounded linear
operator.

It is notable that set-valued monotone operators can be regularized into single-valued monotone
operators by the Yosida approximation, which is a useful tool for investigating variational inclusions
and their systems in linear as well as nonlinear spaces. For a given monotone mapping M with
parameter u > 0, the Yosida approximation operator is defined as Jlfl” = /%(I - Rﬂl ), where Rﬂl
is the resolvent of M. Several authors have utilized Yosida approximation of monotone mappings
to approximate the solution of variational inclusions, systems of variational inclusions, and split
variational inclusions. For more details, see [1, 3,4, 14].

To accelerate the convergence of iterative methods, Polyak [29] introduced an inertial iterative
scheme known as the heavy ball method and applied it to investigate smooth convex optimization
problems. Due to its convergence properties in smooth optimization, many scholars have been used
this method widely by adding an inertial term to their algorithms to accelerate the convergence rate.
Alvarez and Attouch [5] composed an inertial algorithm to solve the null point problem of monotone
operator M and obtained the weak convergence. They combined the inertial term with their algorithm
for arbitrary zy,z; and 6, € [0, 1) defined as follows:

In+l = Jﬁf[zn + Hn(zn - Zn—l)]’ nz 17 (19)

where J, /11” is the resolvent of monotone operator M, and w,, > 0. More related work can seen in [25,31,
33] and references therein.

Motivated by the abovementioned discussion and following the work reported in [2], we propose a
new iterative algorithm for SVIP by adding an inertial term to accelerate the convergence, using Yosida
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approximation of M, and M, instead of their resolvents and a new stepsize 1, (defined in Section 3)
in place of y so that the implementation of the algorithm does not require the pre-calculated norm of
bounded linear operator ||B||. Further, we extend the proposed algorithm for solving SVIP and FPP
of a nonexpansive mapping. We analyze the weak and strong convergences of the proposed inertial
methods in Hilbert spaces. Finally, an illustrative example is constructed to show the convergence of
the considered iterative procedures and a comparison with other well known results.

2. Preliminaries

From now onward, H refers to a real Hilbert space with inner product (-,-) and induced norm
| - ||. Strong and weak convergences will be denoted by — and —, respectively. For all u,v € H, an
operator T : H — H is called a contraction if ||[Tu — Tv|| < «|lu — V||, « € [0, 1); firmly nonexpansive
if |Tu — Tv|*> < {u — v, Tu — Tv); and 7-inverse strongly monotone if there exists 7 > 0 such that

(Tu—Tv,u—v) > 7||Tu— Tv|>. If k = 1, then T is nonexpansive. For all u,v,w € H,&,{,¢ € [0,1]
with € + { + ¢ = 1, the following characteristic inequality and equality hold:

1+ v+ owl® = Zllull® + EWVIP + glwll = Z€llu = I = &gllv = il = ¢llu = wiP, (2.1)
and
v+ wi* < VI + 2¢w, v + w). (2.2)
Definition 2.1. [21] Let u € H, the projection of u onto K C H, be defined by
|l — Pxull < |lu—v||, Vv € K.
Pxu also satisfies the following inequality:

[|Pru — PKV||2 <{u-v,Pxu— Pxv),Yu,v e H,

and Pru=we {u-w,v—-w)>0,vek. 2.3)

Definition 2.2. [7] A mapping M : H — 2" is monotone if (u—v, x—y) > 0,Yu € M(x) and v € M(y).
The resolvent associated with M is defined by Rﬁ” = [I + uM]~", which is single-valued as well as
firmly nonexpansive, and the Yosida approximation of M is defined by J fl” = ,11[1 - R/]J” ].

Lemma 2.1. [35] If {w,} is a nonnegative real sequence satisfying
Whil < (1 - ll’n)wn + @y 2 0,

where {,,} is a sequence in (0, 1), and {¢,} is a sequence in R such that

(i) Xty Y = oo,
(ii) lim sup 5* < 0 or lim sup i,| < oo,
n—oo n—oeo

then lim w, = 0.

n—oo
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Lemma 2.2. [I8] If I is an identity mapping, and T > 0, then T : H — H is t-inverse strongly
monotone if and only if [ — tT is firmly nonexpansive.

Lemma 2.3. [28] Let K(# 0) c H and {u,} be a bounded sequence in H such that

(i) lim,_, ||lu, — pl| exists for every p € K,
(ii) w,(u,) C K.

Then, there exists s* € K such that u, — s* as n — oo.

Lemma 2.4. [23] Let {(,} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {,, } of {Y,} such that Y, < Yy 11 for all k > 0. Also, consider
the sequence of integers {y(n)},s,, defined by

’y(l’l) = max{k <n: Tk < Tk_,.]}.
Then, {y(n)},sn, is a nondecreasing sequence verifying lim,_,., y(n) = oo, and for all n > ny,
max{lyq), Tn} < Lymyet-

Lemma 2.5. [23] Let {i,,} be a nonnegative real sequence such that

(l) '{Qﬂl - '7[/11 < ¢n(wn - l/’n—l) + Eny
(ii) 2 & < o0;
n=1
(iii) ¢, € [0,«], where k € [0, 1).

Then, {,} is convergent, and i (Wp1 — Yn) < oo, where [t], = max{t,0} for any t € R.

n=1

3. Main results

Next, we propose two inertial self-adaptive iterative methods based on the Yosida approximation
operators.

Assumption 3.1. (A;) Let ® denotes the solution set of Problem (1.3) such that ® # () and J% :
and J,ﬂ‘fz be Yosida approximation operators associated with set-valued maximal monotone mappings
M, : Hy — 2" and M, : H, — 2", respectively.

(Ay) Let T : Hy — H,; be a nonexpansive mapping such that Fix(T)N®= 0.

Algorithm 3.1. Step 0: Choose ¢ € [0, 1), u > %, u = min{u;, u,}, and {6, } is a positive sequence such
that § 0, < oo,

n=1

Step 1: Given arbitrary zo and z;, for n > 1, choose 0 < ¢, < ¢,, where

(3.1)

: [ .
B, = min {2y, oh if 2 # 2,
¢, otherwise.

Compute
U, = Zp+ ¢n(Zn - Zn—l)’ (32)
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inyl = Uy — nn[J/iVlIl (un) + B*Jﬁ;h(Bun)]’ (33)
where N N
I, P+ 2 Bu)lP . oy « TM>
T =14 e ) +B Ih2 Bu|? 1" ) + B, (Bun)| # 0, (3.4)
0, otherwise.

Stopping Criteria: Stop if z,,; = z, = u,; otherwise, go to step 1.
Algorithm 3.2. Step 0: Choose ¢ € [0, 1), i > % u = minf{u;, 4o}, a positive sequence {d,,} such that
>, 0, < oo. Let {¢,}, {,} are real sequences in (0, 1) satisfying

n=1

o

lim g, =0, >, =00, lim(I =@, = ), > 0. (3.5)

n=0

Step 1: Given arbitrary zo and z;, for n > 1, choose 0 < ¢, < ¢, where

. Sn .
B, = min {2 oh iz #E e, (3.6)
o, otherwise.
Compute
U, = Zy+ ¢n(zn - Zn—l)a (37)
Vp = Uy — nn[-]l/lvlll (un) + B*JIIZZ(BMVL)]’ (38)
Inyl = (1 —@n — (//n)vn + (pnT(Vn)a (39)
where v X
Vo P+ Bl e o B (B
n =1 s om0 W W)+ B (Bun)ll # 0, (3.10)
0, otherwise.

Stopping Criteria: Stop if z,,; = z, = v, = u,; otherwise, go to step 1.

Remark 3.1. From the selection of ¢, € [0, 1) in Algorithm 3.2, it can be easily observed that
lim ¢n”zn - Zn—l” =0.

o )P+ (Buy)IP)? . M . Iy
Lemma 3.1. /f lim —£ - =0, then lim ||J,"'(u,)|| = lim ||J,*(Bu,)|| = 0.
fnﬁw 9 B B }lel ! ()| }lel o (Buy,)||

Proof. We have

)
I ) + BT (Bu I 20 )P + 11B* T (Bu,)| ]
(I @I + 1142 (Buy) )
20157 @) + | BP0 (Buy) 1]
(M @I + 112 (Buy)|I»)>
2 max{1, B2} ()P + 10 (Bu,)I ]

_ (U @I+ W BueIPY (Wr )I + 1, (Bun)IP)
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I )P + 1222 (Buy, )|
2 max{1, ||B*|]?}

> 0.

Taking the limit n — oo on both sides, we get the desired result. O

Remark 3.2. It is known to us that Rﬁ” and [/ - Rﬁl ] are firmly nonexpansive (1-inverse strongly
monotone) if M is maximal monotone (Corollary 23.10, [7]). Therefore, by (Lemma 1(v), [4]), the
Yosida approximation operator Jfl” = ;11[1 - Rﬁl ] is p-inverse strongly monotone.

The following essential lemma can be proved by employing the definitions of resolvents and Yosida
approximation operators of monotone mappings.

Lemma 3.2. If R% "and Jljfl] " are the resolvent and Yosida approximation operator of monotone mapping
M,, the following assertions are equivalent.

(i) s* € H, is the solution of (M;)~1(0),

(ii) Ry)'(s") = 5,
(iii) Jy'(s*) = 0.
Proposition 3.1. Suppose that Assumptions 3.1(A;) holds. If z,.1 = z, = u, in Algorithm 3.1, then the
sequence 7, € ©.

Proof. Let 2,41 = 2, = u,. If |[J31 (u,) + B*J o2 (Bu,)|| = 0, then
— M * M 2 M 2 « M 2
0 =/, @) + B2 (Bz)ll” = 201/, @Il + 211B°J . (Bz)ll™ 2 0,

which yield [/} (z,)ll = 0 and ||B*J;>(Bz,)ll = 0. Boundedness of the operator B, implies
||J,’Z2(an)|| = (; consequently, z, € ©. If ||J;Z‘ (z,) + B*J/’ZZ(BZH)II # 0, then using (3.3), we have

I I + 02 (Bz,) P
I3 (z,) + B* T2 (Bz,)|I*

M x 7M. _
[JM(z,) + B'TY(Bz,)] = 0.

Taking the norm on both sides, we obtain

nmmWHﬂwmmﬂ
I (za) + B*J i (Bz,)|
From Lemma 3.1, we deduce IIJZZ‘ )l = ||J%2(an)|| = 0, and Lemma 2.3 implies that z, € ©. O

Theorem 3.1. Suppose the (A,) holds of Assumptions 3.1. Then, the sequence {z,} obtained from
Algorithm 3.1 converges weakly to s* € ©.

Proof. Let s* € O, and using (3.3) and (2.2), we get
Izner = ' = Nty = 7l Jy ) + BT (Bu)] = 7117

< llu, = s*IP + 2T () + B* T3 (Buy,)|?
= 2,00 () + B2 (Bu,),  u, — s%). (3.11)

1
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For s* € ©®, by Lemma 3.2, we have J%'(s*) = 0 and J%Z(Bs*) = (. Since J%' 1s pp-inverse strongly

monotone (Remark 3.2), we have

M) + BBy, w, - 5)

= M),y — )+ (BT (Buy), u, — 57)

= (L) = I(s"), oy — 8*)y + (BT (Buy) — Jy2(Bs™), uy — 5°)

= M) = TS, — 5+ (I (Bu,) — I (BsY), Bu,) — B(s"))
> (W @I + ol (Buy I

> min{uy, o {IY" ()| + 1732 (Buy)I)

> ,u{IIJf,Vf‘ (u)II* + IIJZ,VZIZ(Bun)IP},
and

21 M « M 2 M « M *
mallJy )+ BT (Bug)|I” = 2n,(J,, ' () + B°J, 2 (Buy), = 57)

1 1

U I + W BuIPY: (' @I + (15" (Bu)IP)?

M
I3 (u,) + B* T (Buy)|I? [

1
3 )P + 1T (Bun)|?)?

2

I3 () + B* 5 (Buy)|I?

1

I () + BT (Buy)|I?

1

= (1-2w

From (3.11)—(3.13), we achieve

N2 )l + 102 (Bu)IP)?
I3 () + B* Ty (Buy)|I?

zner = s* I <l = 571 + (1 = 200)

From (2.2), (3.2) and using the Cauchy-Schwarz inequality, we observe that

112
n — = n nn_n—]_*”2
llet, — 57l lzn = $n(zn = Zp-1) — s
2 2
= llzw ="+ (20 — za-Dl
2 2 2 2
= n *” + ¢n”zn - Zn—l” + 2¢n<zn —Zn-1-%n — S*>
lzn — s
2 2 2 2
< llzw = 8717 + @llzn = zacill” + 28,120 — za-illllze — 711

Since
2 2 2
20lzn = zn=1llllze = $°Il = 1z = 2ot I + Nz = S™117 = 1120 = 20=1) = (@0 = 57|

and ¢? < ¢,, therefore

%112 2 2 2
”Zn - ” + ¢n”zn - Zn—l” + ¢n{”zn - Zn—l” + ”Zn - S*”

_”(Zn - Zn—l) - (Zn - S*)Hz}

*112 2 2 2
= lzn = 5"I° + 26ullzn = zo-1lI” + Gulllzn = s°I1° = llzu-s = 5717}

2
[l = 571l

IA

Thus, taking (3.14) and (3.15) into account, we acquire

* %112 2 2 2
lzner = "I < llzw = S°I7 + 26ullzn = 2a-all” + Gulllzn = s7I° = Nzt — 711}

(3.12)

(3.13)

(3.14)

(3.15)
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WA P + 1752 (Buy)I?)?

1

I () + BN (Buy)I?

+(1 = 2u) (3.16)

Since u > 1, we get
zae1 = $°I < llzn = SIP + 26ullzn = Zuct P + bulllzn — s°IP = llzaet — s°IP- (3.17)
Consequently, by Lemma 2.5 {||z,, — s*||} is convergent, and )’ (||z,+1 — s*|| — ||z, — s¥||) < co. From (3.16),
n=1
we infer

(” 1 2
1m =

oo ||J () + BT (Buy,)|2

T @)IP + a2 (Bun)IP)? 0

From Lemma 3.1, we obtain
lim IIJZ,Vfl(un)II = lim IIJsz(Bun)II =0. (3.13)

Convergence of {||z, — s*||} implies that {z,} is bounded. Let x* € w,(z,) and {x,,} be a subsequence of
{z,} such that x,, — x*. From (3.2), and Remark 3.1, we have

||un - Zn” = ¢n”Zn - Zn—l” =0 as n— oo.
Therefore, there will exists a subsequence {u,, } of {u,} such that u,, — x*. Hence, from (3.18), we get

1 GOl = lim L1 @ )| = 0 and (12 (Bx)| = Lim (1% (Bu,,, )| = 0.

1

This implies that x* € M;'(0) and Bx* € M;'(0). O

Theorem 3.2. Suppose that Assumption 3.1 holds. Then, the sequence {z,} produced by Algorithm 3.2
converges strongly to s* = Prixryne(0).

Proof. Let s* € Fix(T) N ©. From (3.7) and (3.8), following the steps of Theorem 3.1, we achieve

W2 @I + 2 (Bu)I?)?

1

o= 5" 1P = lluy = 5" + (1 = 2u) :
27 () + BT (Bu,)|I*

(3.19)
Since u > %, we get
Ve = 71l < llet — 5711 (3.20)

Assumption ), ¢,||z, — z,_1]| < co implies that there exists a number K; such that ¢,||z, — z,-1|| < K.

n=1
By combining (3.7), (3.8) and using (3.20), we achieve

||Zn+1 - S*” = ”(1 —®n— wn)vn + QOnT(Vn) - S*”
< (=@ =)lve = 51 + @allT(va) = 571 + Yall sl
< (1 —@n — wn)”un - S*” + Qpn”Vn - S*” + wn”S*”
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(I = )l = s7Il + alls”ll

< (L=ylllzn = 5"l + ullzn — zuotll] + @alls”]l
< (A =yllz = 57l + v Ky + |7l
< max{llz, = 5"[L, [llls"ll + K1},

implying that {||z, — s*||} is bounded, and hence {z,}, {u,}, {v,} are also bounded. Furthermore,
using (3.9), (3.15), (2.1) and nonexpansive property of 7', we have

Iz = s I = (1= @u = Y)ve + @ T () — 5|
= (1 = @u = )V + @u(T () = 87 + (=5
< (L=@u = )lve = S*IP + @ullT () = I + all = s
—0u(1 = 00 = YT (,) = vill?

< (=@ = Yllva = S°IP + @allve = 5" + yall = I
~@(1 = @0 = YT () = vl

< A=yl = S + gl = s"I
~@a(1 = @ = YIIT () = v,

< d—uli — 5P+ (1 - zﬂ)au,’:]f;(un)nz + ||J,’£2(Bun>||2>2

13" () + BT (Buy )|

+ll = "I = @u(l = @u = YT @) = vl

< llzw = 81 + 2¢llzs = za-a P + Gufllzn = 7P = llza-1 = 571}

Yl = S*IF = @u(1 = @ = YT (v,) = vl
U2 uall? + 11732 (Bu)|I?)?

2

WM, + BT (Bu)IP

+(1 —2p) (3.21)

Since u > 1, then (3.21) can be written as

AT uall? + 1702 (Buy)II?)?
12w, + B* Ty (Bu,)|I*

~Nznt = S* 1P} + llznsr = $*1F = llzw = $* 17 + 20120 = zacit [P + Walls™II%. (3.22)

2
< ¢n{”zn - S*”

@1 = @n = YIT W) = val P + Qu = 1)

Now, we discuss two possibilities:

Case L. If the sequence ||z, — s7|| is non-increasing, then there exists m > 0 so that ||z,+1 — s*|| < ||z, — 57|
for each n > m. Hence, lim ||z,,1 — s7|| exists, and
n—oo

lim{l|z,e1 = 5711 = llz, = 57} = 0. (3.23)

Since u > 3, inf @,(1 — ¢, — ¢,,) > 0 and ¢, — 0. It follows from (3.22) that

Tal )P + 1 (Bu)IP)?
lim |T(v,) = v,ll = 0, lim ( ";41( il ";42( )”2) = 0. (3.24)
e 2 ! ) + B, (Buy)|

AIMS Mathematics Volume 8, Issue 6, 12922-12942.



12932

We deduce from Lemma 3.1 that
r}i_{gllf,ff' W)l = 322 (Buy)|| = 0.
Thus, from (3.8), we obtain
,}Lrgo Vi — unll = 0.
Since ||[v, — u,|| = O0,||T(v,,)) — vl = O, ||lu,, — z,/| = 0 and ¢,, = 0 as n — oo, we have

lzner = zall = (L = @ = )V + @2 T (Vi) = zll

(1 =) n = ) + @u(T (V) = vi) + (1 = ) (U — 2) + ¥u(20)
(I =ylve = uall + @ulIT (Vi) = vall + (1 = )l — Zall + Wallzall
(I = lvi = ull + @allT (Vi) = will

+(1 = ¥)@ullzn = zu-1ll + Wallzall — 0.

IA I

IA

By setting x,, = (1 — @,)v, + ¢, T (v,), estimate

”xn - S*” < ”(1 - ‘Pn)vn + ‘PnT(Vn) - S*”
= (1 =e)lvy = sl + @ullT(vy) = 57|
< v =57l

Let K5 = sup{2||z, — zu-1ll + llzx — ™|l + l|zo=1 — s7||}, and using (3.9), (3.18) and (3.20), we get

n>1

||Zn+1 - S*Hz ”(1 - wn)xn + ‘Pnl/’n(TVn - Vn) - S*Hz

< A = ) (x = ) + @ua(T v = vi) = U (HIP

< (= ylxa = 517 + 26 @uthn(Tvi) = Vi = Yu(s"),  Zue1 — 5%)

< (L=ylve = S* 1P + 20@u((TV,) = vi) = 8*,  Zy1 — 57)

< (U= g)lly = $°IP + 20 @u(T Ve = Vi) = 8, Zus1 = )

< (L=y|llzn = S IP + 2¢ullze = zoc1 I + Bufllze — I = llzar — 571}
20 0n(TVv) = Vi), Zpe1 — ) + 20(=5",  Zy1 — 87)

< (=yllze = 517 + Gullzn — 2actll{2llz0 = zacill + llzs = 571 + llzuet — 711}
20, @n((TVy) = Vi)y  Zn1 = 87) + 20(=5",  Zpr1 = 87)

< (L= glize = 517 + Ksdullzn — zactll + 20(@n((Tv) = vi)s  Zus1 — 87

+2wn<_S*» Zn+l — S*>'

Since
lim ¢,||z, — 2,1l =0, lim(Tv,—v,) =0, limy, =0,

using property (2.3), we have

lim sup(—s*, Z;41 —8") = max (-s", p-s)<O0.
n—oco peFix(T)N®

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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Hence, by applying Lemma 2.1, ||z, — s*|| converges to O, that is, {z,} converges strongly to s* =
Prixmne(0). Further, using the property of metric projection, we have

(s", p—5")=20, Yp e Fix(T)N 6,
which implies that (s*, p) > ||z*||%, that is, ||z*]| < ||pll, which means that z* is the minimum norm

element of Fix(T) N ©.

Case IL. If the sequence ||z, — s7|| is not nonincreasing, then there exists a subsequence {z,, } of {z,} such
that ||z, — 5*|I* < ||zu+1 — 5*I[>. Without loss of generality, we can define a subsequence y(n) = max{m <
1 zm = pll < llzmsr — pll}, and y(n) — oo as n — oo, It follows from (3.21), that

”Zy(n) - S*”2 < ”Zy(n+1) - S*Hz
< ”Zy(n) - S*||2 + 2¢y(n)||Zy(n) - Zy(n—l)||2 + ¢y(n){||Zy(n) - S*||2 - ||Zy(n)—1 - S*||2}
+ ISP = @y (1 = @y = W) TVymy =ty
(1" g + 12> (Bity o)) )
~(2u = D)1 = @y = Yym) = e . (3.30)
1) (tyy) + B* Jy* (Bityip)II?
That is,
w112 2 ®112 %112
Uyl II° + 20,mllzym = Zyo-nlI™ + dyillzyem = S°I1° = lzye-1 = 57117}
> Oy (1 = Oy = Yy Vym) = vy I®
()" g + ||JM2(Buy<n>)||2)2
+Q2u = DA = ©yn) = Yym) (3.31)
7 ’ ”JM1 (uy(n)) + B* JMZ(Buy(n))”
or
l/’y(n)||5*||2 +  Sywllzym = 2=l 2Nzym = Zym-1ll + 1z = S°IT + 1Zy)-1 = 711}
= Oy (1 = @y = YyaIT vy — V*y(n)”2
(1" g + 1> (Bu I
+2p = D = @y = Yyi) 57 N : (3.32)
”J (uy(n)) + B*J 73 (Buy(n))”
Yy — 0 and ¢yollzym) — Zym-1lI> = 0 as y(,) — co. Therefore,
T (gDl + 12 (Buty )P
i gy — v = 0, i O G P + 12 B IR 633
e n—ee ” p]](uy(n)) + B* J 2(Buy(n))”
and using the proof in Case I, we also have
lim sup(—s*, Z,pm+1 —$) = max (-s’, p—s)<O0. (3.34)

n—oo ﬁeww(zy(n))

Also, using (3.29), we have

w112 %112 2 ®12

lzym+1 = S°I° < (1 = ¥yam)lizym = S7II° + 20ymlIzym) — Zym-1lI° + dyonillzym — 71l
%112 * %

—llzyom-1 = 8"} = 2850 <Ly (T Vo) = Vo) = S™5 Zyys1 — S7)
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+(5", Zyme1 — SO} (3.35)
Hence,

Ky(1 = ¥ym)

112
lzyo — s°II° < Pyomllzym = Zye-1ll
Wy
=20,y (TVyen = Vyw) = 8°, Zyys1 = 87)
(8", Zymer — S (3.36)
where Ku = sup {2[lzym) — Zym-1ll + 12y = 8™l + lIZym-1 — s°[I}. Combining (3.34)—(3.36), we obtain
y(n)=1

lim sup ||z, — s*|*> =0, and hence lim ||z, — s*|I* = 0. (3.37)
n—o00 n—oo

Making use of (3.35), we obtain
lim sup (21 = 5°IF = 0, lim sup lyer) = s'II° = 0. (3.38)
Thus, r}l_)l’l; IZ,(+1 — s*II* = 0. Applying Lemma 2.4, we have
0 < Iz = s*IP < max{llzym) — 5°1% lza = "1} < llzyayer — 8°IF — 0.

Consequently, z, — s = Prixne(0), which is the minimum norm element of Fix(T) N ©. m|

Corollary 3.1. Let H,, H,, M, M,, T, B, B*, u,ita, ¢, and n, be the same as considered in
Theorem 3.2. If {¢,} is a sequence in (0, 1) such that

lim(1 — ¢,)¢, > 0, (3.39)
then, the sequence {z,} generated by
U, = Zy+ ¢n(Zn — Zn— 1)
Vp = nalJ3 (u,) + B* T2 (Buy)),
Inyl = (1 - Qon)vn + QOnT(vn)a

converges strongly to z € Fix(T) N ©.
If T = [, the identity mapping, and ¢ = 0, then we acquire the following corollary for SVIP.

Corollary 3.2. Let H,, H,, M\, M;, B, B*, uy, o, ¢,, and n,, be the same as considered in Theorem 3.2.
If {p,} is a sequence in (0, 1) such that

lim (1 = ¢,)¢@, > 0, (3.40)

then, the sequence {z,} generated by

U, = Zp+ ¢n(zn — Zn— l)
Ve =ty — LT ) + BT (Buy),
n+vl = ( (pn)vn + ‘pn(vn)’ (341)

converges strongly to z € ©.
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4. Numerical example

Let H, = H, = R. Define the monotone operators M, and M, as M;(x) = %‘ +3and Mr(x) = x+1
and a nonexpansive mapping 7' : H; — H, by T(x) = %6. The bounded linear operator B : H; — H,
is defined as B(x) = . It can be easily seen that FixT N © = {-6}.

Since

1
(Mi(x) = My (y), x—y) = <§ +3 - )5; -3, x-y= Ellx—yll2 = 2|M(x) = My)IP,

and
(My(x) = Mr(y), x=yy =(x+ 1=y — 1, x—y) =[x = yII* = [Ma(x) - Mu()IP,

imply that M, is 2-inverse strongly monotone and M, is 1-inverse strongly monotone. The resolvents
of M, and M, for p; > 0, u > 0 are calculated as

_ 2x — 6u
R%l(x) = [ +mM] (%) = T,ull’
and
M. _ Sl _ X TH2
R (x) =1+ pM>] ™ (x) = T+ m
Hence, the Yosida approximations of M; and M, are
1 x+6
Tl (x) = —[I = Ry (x) = ;
H Hi H 24
and
x+1
T (x) = —[1 R21(x) =
1+
For Algorithm 3.2, we choose ¢, = 2 +1 and yy = — satisfying the condition (3.5). We use the

maximum number of iterations 50 as stopping criterion. Parameter ¢, is generated randomly in (0, ¢,,),
where ¢, is calculated by (3.6). The behaviours of the sequences {z,}, {v,} and {u,} are recorded in
Figures 1-4, using three different cases of parameters, as listed below:

C&S@(I)ZZOZO,Zl 0/11—1/.12—2¢ 016_
Case (II): zo = 5,21 = =541 = 5,4, = 10; ¢ = 0.2; 9,
Case (IIl): zo = 4,21 = 8; 1 = 10,4y = 20;¢ = 0.9; 06, =

(1+n>2

Observations:

e In Figures 1-3, it can be observed that the behaviours of {z,}, {v,,} and {u,} is consistent irrespective
of the choice of parameters using all three cases.

e From Figure 4, we can see that the Algorithm 3.2 converges to the same solution with appropriate
choice of parameters.
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Furthermore, we compare our Algorithm 3.2, with some known iterative schemes, which are (1.5)
introduced by Kazmi and Rizvi [21], (1.6) by Sitthithakerngkiet et al. [32] (in short, Sitthi) and (1.7)
by Akram et al. [2]. The parameters are selected as follows:

We choose f(x) = 3, T(x) = 5%,y = 05,8, = m for 1.5)(1.7); 6 =1, D=1,T, =T, for
all n € N for (1.6); ¢, = 5322, Vo= ,;—2, Op = m, v = 0.9 and ¢ = 0.8 for Algorithm 3.2. We define
D, = ||z, — s*|| to measure the error of n™ iteration step for all algorithms.

th

Case (I)
Case (Il)
Case ()

1 i I i I
20 E 40 50
Number of iterations

Figure 1. Numerical behavior of ||z, — v,|| with different parameters.

Case (I)
Case (Il)
Case (Ill)

[[0n = ual|

S ——

40 50

20 . 30 .
Number of iterations
Figure 2. Numerical behavior of ||v, — u,|| with different parameters.
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Case (I)
Case (Il)
s : Case (IIh

1 L I i I
20 N 40 50
Number of iterations

Figure 3. Numerical behavior of ||z, — u,|| with different parameters.

Case ()
Case (Il)
8 Case (]|

[EA
-
L

1 I I I I
20 30 40 50
Number of iterations

Figure 4. Numerical behavior of ||z,|| with different parameters.

Observations:

e The importance of our Algorithm 3.2 is that its implementation does not require the calculation
of the norm of ||B|| or the spectral radius of B*B. In other schemes (1.5)—(1.7), it is mandatory to
estimate ||B]| to know the stepsize vy, which is expensive to calculate in general. In Algorithm 3.2,
v is chosen by itself without knowing the value of ||B||.

e From Tables 1 and 2, and Figures 5 and 6, we observed that the value of the error D, is less than
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other algorithms with some fixed parameters or fixed initial values.

e In Table 3, we observed that by fixing D, the sequence obtained in Algorithm 3.2 converges to
the solution in fewer steps in comparison to other algorithms. These results are independent of
the size of initial values and other parameters.

5 T

Algorithm 3.2
Kazmi and Rizvi
Sitthi. et al.
Akram et al.

1 1 i i i

20 . 30 . 40 50
Number of iterations

Figure 5. Numerical behavior of all algorithms with fixed z; = =10,y = o = 1 = u =
I,y=0.5,¢ =0.9 and m = 100.

5 T

T
Algorithm 3.2
Kazmi and Rizvi

Sitthi. et al.
al Akram et al.

i I i i i
50 60 70 80 90 100

40
Number of iterations

A I i i i
0 10 20 30

Figure 6. Numerical behavior of all algorithms for fixed z; = =10,y =, = u =1,y =0.5,
¢ = 0.9 and stopping criteria m = 100.
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Table 1. Numerical results of algorithms with different parameters and fixed z; = 1 and

¢ =009.
Iter. Algorithms Algorithm 3.2 Kazmi and Rizvi [21]  Sitthi. et al. [32] Akram et al. [2]
m Parameters D, CPU(s) D, CPU(s) D, CPU(s) D, CPU(s)

10 w=up=p=077y=075 870E-1 3.90E-6 1.24E+0 1.50E-6 1.67E+0 1.40E-6 1.26E+0 1.20E-6
20 wm=mw=p=1y=15 504E-1 390E-6 7.61E-1 1.10E-6 1.07E+0 1.10E-6 7.80E-1 1.10E-6
30 w=3,mw=u=3,y=4 417E-1 8.80E-6 495E-1 2.50E-6 7.13e-1 2.10E-6 5.18E-1 2.50E-6
40 wm=lLmw=u=4y=5 336E-1 4.10E-6 3.98E-1 1.20E-6  5.78E-1 1.20E-6 4.18E-1 1.10E-6
100w =1u=u=8,y=10 1.57E-1 490E-6 2.10E-1 1.20E-6 3.09E-1 1.20E-6 222E-1 1.10E-6
500 py =1,up =p=20,y=30 3.59E-2 5.00E-6 7.35E-2 1.80E-6 1.10E-1 1.70E-6 7.90E-2 1.30E-6

Table 2. Numerical results of algorithms with different initial values by fixing uy = p, = u =
I,y =0.5and ¢ =0.9.

Iter. Algorithms Algorithm 3.2 Kazmi and Rizvi [21] Sitthi. et al. [32] Akram et al. [2]

m InitialValues D, CPU(s) D, CPU(s) D, CPU(s) D, CPU(s)
m=25 720 =0.0 4.11E-01 4.10E-06 6.68E-01 1.10E-06 9.47E-01 1.10E-06 6.80E-01 1.10E-06
m =50 z0=2.5 2.14E-01 4.30E-06 4.37E-01 1.20E-06 6.32E-01 1.10E-06 4.45E-01 1.10E-06
m="175 z20=35.0 1.45E-01 1.08E-05 3.41E-01 1.20E-06 4.98E-01 1.10E-06 3.48E-01 1.10E-06
m = 100 z0 =—10 1.09E-01 4.40E-06 2.87E-01 1.10E-06 4.20E-01 1.10E-06 2.92E-01 1.10E-06
m = 200 z0 = 15.0 5.52E-02 4.90E-06 1.88E-01 1.30E-06 2.78E-01 1.30E-06 1.92E-01 1.30E-06

Table 3. Comparison table of all algorithms by fixing D, and z; = 1,y = o = u =3,¢ =

0.9.

D, Algorithm 3.2 Kazmi and Rizvi [21] Sitthi. et al. [32] Akram et al. [2]

103 Iteration 105 175 179 143
Time/Sec 1.18E-005 8.60E-006 2.80E-006 1.87e-004

104 Iteration 335 795 755 645
Time/Sec 5.90E-006 3.20E-006 1.60E-006 1.12e-003

109 Iteration 1061 3658 3186 2956
Time/Sec 8.10E-006 7.80E-006 2.60E-006 8.02E-003

5. Conclusions

We have presented inertial self-adaptive iterative techniques involving Yosida approximation
operators. Weak and strong convergences of the proposed schemes are analyzed to investigate
the solution of SVIP and common solution of SVIP and FPP, respectively, with some appropriate
assumptions in which calculation of step size does not require any pre-calculation of the norm of
bounded linear operator B. Our results refine and enhance many well-known results studied in the field.
We have given a numerical example showing the usefulness of the proposed methods and comparison
with some known results.
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