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Abstract: In a recent paper Tunçer [14] described and examined the moment vectors (T -dual, N-
dual, B-dual curve) of the curve with respect to the origin of the vector by using T(s), N(s), B(s)
and the position vector of the curve. With the inspiration this paper provided, we define some new
associated curves called dual-direction curves as integral curves of a vector field in this study. They are
generated with the help of vectorial moments of a space curve in three-dimensional Euclidean space.
We attain some connections between the Frenet apparatus of dual-direction curves and main curves.
With the help of these dual-direction curves, certain ways to construct helices are determined. Finally,
we exemplify these curves with their figures.
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1. Introduction

In differential geometry, one of the primary study areas is the curve theory in 3-dimensional
Euclidean space. The geometric properties of a curve are described by the Frenet-Serret frame and
it plays an important role to do this description. An effective way to classify curves is by giving the
relation between Frenet apparatus of curves. For example; a curve that is a helixin E3 is defined via
the property that its tangent vector field constitutes a constant angle with a fixed direction. Lancret’s
theorem proves a helix as the proportion of its torsion and curvature is constant [10]. Helix was
generalized by Hayden in [7]. Then with the help of the Killing vector field through a curve, the general
helix was defined in real space form of three dimensions and in this space form Lancret Theorem was
given again for general helices by Barros [1]. Camcı et al. gave characterizations for a curve that
is non-degenerate to be a general helix by using its harmonic curvature in [3]. Also, general helices
were studied in different spaces. Ciftci defined general helices in three dimensional Lie group via
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a bi-variant metric, proved Lancret Theorem and gave the generalization of helices [4]. Barros et
al. presented Lancret-type theorems for general helices in three-dimensional Lorentzian space forms
which showed remarkable differences with regard to the same question in Riemannian space forms [2].

In addition to the studies mentioned above, there are helix applications in many different fields.The
helix is the primary structural pattern found in biological macromolecules like DNA and proteins. It is
also the most common structure seen in all of nature, from the microscopic to the macroscopic scales.
Yashima et al. noted that helical architectures in synthetic polymers inspired by biological helices
and functions will lead to emerging opportunities for applications for chiral materials with specific
functions [16]. Moreover, in [8] authors mentioned that linear chained polymers have a good chance
to stabilize as a helix. A series of linear polymers were included into this study.

Another example of the classification of curves is associated curve (direction curve, adjoint curve or
conjugate mate) which is defined by taking integral of a vector field created by one of a given curve’s
Frenet vectors. A particular solution to a differential equation or system of equations describes a curve
that is parametrized. This curve is called an integral curve. In the case of X is a vector field and α(t)
is a parametric curve, the solution of the differential equation α′(t) = X(α(t)) imputes an integral curve
of X. Despite being investigated for long years, one of the most attractive study field in curve theory is
been still the title of associated curves. Several kinds of research can be found in the literature about
this subject and some of them are in [5, 6, 9, 11, 15].

On the other hand in physics, momentum is the product of the mass and velocity of an object and it
is a vector quantity that is fully described by both magnitude and direction. Torque affecting any object
at point P is defined as

−→
L o =

−−→
OP ×

−→
F

concerning the reference point O. By using this definition, in a recent paper, Tunçer took the points
P at any time-dependent trajectory and while points P are drawing regular trajectory under affect of
any force

−→
F , torque draws a new time-dependent trajectory with respect to a reference point. He

described vectorial moments of any space curve and called them T -dual, N-dual, B-dual curve. By
doing so, some physical and geometric properties were connected. Frenet apparatus of these curves
were obtained and curve pairs of constant breadth were investigated [14].

Immediately after that, Şenyurt et al. introduced the curve plotted by the vectorial moment of unit
Darboux vector and they showed that the new curve does not form a constant width curve pairs with
the main curve [13].

In light of the above literature, we construct some integral curves of a vector field created by
vectorial moments of a curve which are new associated curves. We call these new curves dual
direction curves. We establish some connections between a Frenet curve and its dual direction curves.
Additionally, we obtain necessary and sufficient conditions for these curves to be a general helix.

2. Basic concepts

In this part, some basic terms are recollected in relation to differential geometry of space curves in
Euclidean space E3.

Let α : I −→ E3 be a regular curve and the Frenet frame of α be {T,N, B}. ‖α′(s)‖ = 1 if and only
if the curve α is a unit speed curve (or has arc-length parametrization s). For a unit speed curve α;
T (s) = α′(s) is called the unit tangent vector of α. κ(s) = ‖α′′(s)‖ denotes the curvature of α which
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measures the amount by which the curve deviates from being a straight line. The unit principal normal
vector N(s) of α is given by α′′(s) = κ(s)N(s). The unit binormal vector of α is defined by the unit
vector B(s) = T (s) × N(s). Then, the famous Frenet formula is given as [12]:

T ′(s) = κ(s)N(s),
N′(s) = −κ(s)T (s) + τ(s)B(s),
B′(s) = −τ(s)N(s),

where τ(s) is the torsion of α and it measures the amount by which the curve deviates from a plane.
The Frenet vectors of an arc-length parameterized curve α can be calculated as:

T (s) = α′(s),

N(s) =
α′′(s)
‖α′′(s)‖

, (2.1)

B(s) = T (s) × N(s).

The curvature and torsion of α are calculated respectively by

κ(s) =
‖α′(s) × α′′(s)‖
‖α′(s)‖3

, (2.2)

τ(s) =
det

(
α′(s), α

′′

(s), α
′′′

(s)
)

‖α′(s) × α′′(s)‖2
.

A curve is given the name general helix where the angle between its tangent lines and a fixed
direction is constant. This fixed direction is called the axis of the general helix. Lancret expressed the
characterization of helix in 1802, that a curve is a general helix, if and only if, the harmonic curvature
or the ratio

τ

κ
is constant, with τ , 0. The general helix is called circular helix if both κ , 0 and τ , 0

are constants [12].
In [14], author mentioned:
As a linear combination of Frenet vectors, we can express the position vector of any curve α (s) in

the following way:
α (s) = f (s) T (s) + g (s) N (s) + h (s) B (s) , (2.3)

where f , g and h are at least C3-functions. By differentiating both sides of Eq (2.3) and using Frenet
formulas, the following differential equations are obtained:

f
′

(s) = 1 + g (s) κ (s) , (2.4)
g
′

(s) = h (s) τ (s) − f (s) κ (s) , (2.5)
h
′

(s) = −g (s) τ (s) , (2.6)

with nonzero torsion and curvature. Given a unit speed Frenet curve α (s) with its Frenet vectors
{T (s) ,N (s) , B (s)}, the curve

β (s∗) = α (s) × X (s)

has been defined as vectorial momentum or X-dual curve of α (s), where s∗ denotes the arc-length
parameter of β and X (s) ∈ {T (s) ,N (s) , B (s)}.
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3. Dual direction curves of vectorial moments in E3

In this section, based on the above dual curves, we will introduce T -dual direction curve, N-dual
direction curve and B-dual direction curve in E3 and give some characterizations with the terms f , g
and h given in Eq (2.3).

Note that we will use parameter-free demonstrations for some long equations.

Definition 1. Let α be s arc-length parameterized regular curve with nonvanishing curvature and
torsion. If the Frenet frame of α is {T,N, B} , then T-dual direction curve of αwith arc-length parameter
s∗ is defined as

γ (s∗) =

s∗∫
s∗0

(α (s) × T (s)) ds∗.

Theorem 1. Let γ be T-dual direction curve of α . The Frenet vector fields, curvature and torsion of γ
are given by

Tγ =
1√

g2 + h2
(hN − gB) ,

Nγ =
1√(

f 2 + g2 + h2) (g2 + h2) (
−

(
g2 + h2

)
T + f gN + f hB

)
,

Bγ =
1√(

f 2 + g2 + h2) ( f T + gN + hB) ,

κγ =
h
√(

f 2 + g2 + h2)√
f 2 + h2

( √
g2 + h2

)3 ,

τγ = −

ρ
((

h
f

)′
f 2 + κgh + τ f g

)
h
(
f 2 + g2 + h2) ,

where ρ =
1

κ
√

f 2 + h2
and κ , 0.

Proof. Let α be s arc-length parameterized curve and γ be s∗ arc-length parameterized curve. Also the
Frenet apparatus of α is {T,N, B, κ, τ} and γ is {Tγ,Nγ, Bγ, κγ, τγ}.

By the definition of T -dual direction curve we know that

γ (s∗) =

s∗∫
s∗0

(α (s) × T (s)) ds∗.

If we take the derivatives of this equation with respect to s∗ and use the relationship between α and
T -dual curve of α in [14], we get

γ
′

(s∗) =
dγ (s)

ds∗
= α (s) × T (s) ,
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γ
′′

(s∗) = −ρκ (hT − f B) ,

γ
′′′

(s∗) = −ρ


(
ρ
′

κh + ρκ
′

h + ρκh
′
)

T +
(
ρκ2h + ρκ f τ

)
N

−
(
ρ
′

κ f + ρκ
′

f + ρκ f
′
)

B

 ,
where ρ =

ds
ds∗

=
1

κ
√

f 2 + h2
.

Then by making some calculations, we have the following quantities:∥∥∥γ′ (s∗)
∥∥∥ =

√
g2 + h2,∥∥∥∥γ′ (s∗) × γ

′′

(s∗)
∥∥∥∥ = ρhκ

√
f 2 + g2 + h2,

det
(
γ
′

, γ
′′

, γ
′′′
)

= −ρ3hκ

(h
f

)′
f 2 + κgh + τ f g

 .
Using the above quantities and Eqs (2.1) and (2.2), the expressions mentioned in the theorem can be
reached easily. �

Theorem 2. Let α (s) be a regular unit speed curve with κ , 0 and τ , 0. The coefficients of the
vectors T, N and B of tangent vector of its T -dual direction curve are constant, then T-dual direction
curve is general helix if and only if α is general helix with the position vector

α (s) =

(
(c1 + c3) s + c1c4

c1

)
T +

(
c3 (−c3s + c5)

c2

)
N + (−c3s + c5) B.

Also in this case,curvature and torsion of α are

κ (s) =
c1

(
c2

2 + c2
3

)
c2 ((c1 + c3) s + c1c4)

and

τ (s) =
c2

1

(
c2

2 + c2
3

)
c2 ((c1 + c3) s + c1c4)

,

where c1, c2 ∈ R\ {0} and c3–c5 ∈ R.

Proof. Let us suppose that α is a general helix and the coefficients of the vectors T, N and B of tangent
vector of its T -dual direction curve are constant. So, we have from the Theorem 1 and definition of
general helix that τ (s) = c1κ (s), h (s) τ (s) = c2 and g (s) τ (s) = c3 where c1, c2 and c3 are nonzero
constants. From Eqs (2.4) and (2.6), we obtain

f (s) =
(c1 + c3) s + c1c4

c1
, (3.1)

h (s) = −c3s + c5,

and from Eq (2.5), we get

f (s) κ (s) =

(
c2

2 + c2
3

)
c2

. (3.2)
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By comparing Eqs (3.1) and (3.2), we find the curvature and torsion of α as:

κ (s) =
c1

(
c2

2 + c2
3

)
c2 ((c1 + c3) s + c1c4)

,

τ (s) =
c2

1

(
c2

2 + c2
3

)
c2 ((c1 + c3) s + c1c4)

.

By substituting κ and τ in Eq (2.5) and solving it for g, we have

g (s) = −
c2

3

c2
s + c6.

Using equations
c2

h (s)
=

c3

g (s)

and
c3c5 = c2c6,

which come from h (s) τ (s) = c2 and g (s) τ (s) = c3, final results in theorem are obtained. �

Theorem 3. Let α (s) be a regular unit speed curve with κ , 0 and τ , 0. There is no any general
helix where the coefficients of the vectors T, N and B of tangent vector of its T -dual direction curve (as
a general helix) are nonconstant.

Proof. Suppose that the coefficients of T, N and B of Tγ are nonconstant. If α (s) is a general helix,
then τ (s) = c1κ (s) and the angle θ , 0 is constant which is formed between T and constant direction
U indicated as

U = cos θT + sin θB. (3.3)

Hence, we get cot θ = c1 and cos θ = c1 sin θ. From Theorem 1 and Eq (3.3), we obtain

〈
U,Tγ

〉
=

〈
cos θT + sin θB,

1√
g2 + h2

(hN − gB)
〉

= −
g (s)√
g2 + h2

sin θ = const.

If the above expression is arranged as

1√
1 +

(
h
g

)2
sin θ = const,

it will be seen that
h
g

must be constant to make this equation constant. The fact that
h
g

is constant

contradicts with the fact that the coefficients of T, N and B of Tγ are nonconstant. So the result is
appear. �
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Definition 2. Let α be s arc-length parameterized regular curve with nonvanishing curvature and
torsion. If the Frenet frame of α is {T,N, B} , then N-dual direction curve of αwith arc-length parameter
s∗, is defined as

φ (s∗) =

s∗∫
s∗0

(α (s) × N (s)) ds∗.

Theorem 4. Let φ be N-dual direction curve of α. Then Frenet vector fields, curvature and torsion
of φ are given by

Tφ =
1√

f 2 + h2
(−hT + f B) ,

Nφ =

(
h f + g f hκ + f 2gτ

)
T −

(
f 2hκ + f 3τ + h3κ + f h2τ

)
N +

(
h2 + gh2κ + f ghτ

)
B√

f 2 (κh + τ f )2 + (h + κhg + f gτ)2 +
(
κh2 + τh f

)2 √
f 2 + h2

,

Bφ =
f (κh + τ f ) T + (h + κgh + f gτ) N +

(
κh2 + τ f h

)
B√

f 2 (κh + τ f )2 + (h + κhg + f gτ)2 +
(
κh2 + τh f

)2
,

κφ =
ρ

√
f 2 (κh + τ f )2 + (h + κhg + f gτ)2 +

(
κh2 + τh f

)2(
f 2 + g2) 3

2

,

τφ = −

ρ


f h2κ3 − f 2hτ3 +

(
2 f 2h − h3

)
κ2τ +

(
f 3 − 2 f h2

)
κτ2

+
(
h2g

′

− ghh
′
)
κ2 +

(
f 2g′ − f g f

′

− f g
)
τ2+(

2 f hg
′

− gh f
′

− gh − f gh
′
)
κτ

−
(
hh

′

+ h f
′

+ h
)
κ − h2κ

′

− f hτ
′


f 2 (κh + τ f )2 + (h + κhg + f gτ)2 +

(
κh2 + τh f

)2 ,

where ρ =
1√

(1 + κg)2 + (κh + τ f )2 + τ2g2

and κ , 0.

Proof. The proof can be made in the same way as Theorem 1. �

Theorem 5. Let α (s) be a regular unit speed curve with κ , 0 and τ , 0. Let the coefficients of the
vectors T, N and B of tangent vector of its N-dual direction curve are constant, then N-dual direction
curve is general helix if and only if α is general helix with the position vector

α (s) = ((c1c2 − c3) s + c4)
{(
−c3 (c2 + c1c3)

c2

)
T + N + (c2 + c1c3) B

}
.

Also in this case, curvature and torsion of α are

κ (s) =
−c2

(c2 + c1c3) ((c1c2 − c3) s + c4)
and

τ (s) =
−c1c2

(c2 + c1c3) ((c1c2 − c3) s + c4)
,

where c2 ∈ R\ {0}, c1, c3, c4 ∈ R and c1c2 , c3.
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Proof. Let’s consider that the main curve α is a general helix and the coefficients of the vectors T, N
and B of tangent vector of its N-dual direction curve are constant. So, we have from Theorem 4 and
definition of general helix that τ (s) = c1κ (s), h (s) κ (s) = c2 and f (s) κ (s) = c3 where c1, c2 and c3 are
nonzero constants. From Eq (2.5), we obtain

g (s) = (c1c2 − c3) s + c4. (3.4)

Since h (s) κ (s) = c2 and f (s) κ (s) = c3, we have h
f = c2

c3
and also c3h′ = c2 f ′. In the last equation if

we use Eqs (2.4) and (2.6), then we find

g (s) κ (s) = −
c2

c2 + c1c3
. (3.5)

By rewriting Eq (3.4) in (3.5) and using τ (s) = c1κ (s) , we get the curvature and torsion of α as

κ (s) =
−c2

(c2 + c1c3) ((c1c2 − c3) s + c4)
,

τ (s) =
−c1c2

(c2 + c1c3) ((c1c2 − c3) s + c4)
.

By substituting κ in h (s) κ (s) = c2 and f (s) κ (s) = c3, we have

h (s) = − (c2 + c1c3) ((c1c2 − c3) s + c4) ,

f (s) = −
c3 (c2 + c1c3) ((c1c2 − c3) s + c4)

c2
.

�

Theorem 6. Let α (s) be a regular unit speed curve with κ , 0 and τ , 0. Let all the coefficients of
the vectors T, N and B of tangent vector of its N-dual direction curve are nonconstant, then N-dual
direction curve is general helix if and only if α is general helix with the curvature and torsion

κ (s) =
−ω (s)∫ ω (s)

(
h2 (s) + f 2 (s)

)
g (s)

ds − c2

and
τ (s) =

−c1ω (s)∫ ω (s)
(
h2 (s) + f 2 (s)

)
g (s)

ds − c2

,

where ω (s) = e

∫ h2 (s)
g2 (s)

ds

, c1 ∈ R\ {0} and c2 ∈ R.

Proof. Assume that all the coefficients of the vectors T, N and B of Tφ are nonconstant. If α (s) is
a general helix, then τ (s) = c1κ (s) and the angle θ , 0 is constant which is formed between T and
constant direction U indicated as

U = cos θT + sin θB. (3.6)
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Therefore, we get cot θ = c1 and cos θ = c1 sin θ. From Theorem 4 and Eq (3.6), we can obtain〈
U,Tφ

〉
=

〈
cos θT + sin θB,

1√
f 2 + h2

(−hT + f B)
〉

=
( f (s) − c1h (s))√

f 2 + h2
sin θ = const.

Differentiating this equation according to s and by using Eqs (2.4)–(2.6), we have

(c1 f (s) + h (s)) {h (s) + κ (s) (h (s) + c1 f (s)) g (s)} = 0.

There is no any solution for c1 f (s) + h (s) = 0. Because if c1 f (s) + h (s) = 0, then the coefficients
of T, N and B of Tφ are constant. This is a contradiction. So the right term of equation must be zero.
Namely

{h (s) + κ (s) (h (s) + c1 f (s)) g (s)} = 0.

Solving last equation for c1, we have

c1 = −
h (s) (g (s) κ (s) + 1)
κ (s) f (s) g (s)

. (3.7)

Since c1 is constant, then by differentiating Eq (3.7) and by using Eqs (2.4)–(2.6); we have

g (s) κ2 (s)
(
h2 (s) + f 2 (s)

)
+ h2 (s) κ (s) − g2 (s) κ

′

= 0.

When we solve this differential equation we find that

κ (s) =
−ω (s)∫ ω (s)

(
h2 (s) + f 2 (s)

)
g (s)

ds − c2

,

whereω (s) = e

∫ h2 (s)
g2 (s)

ds

. It is easy to see that if
τφ

κφ
is constant, by using Theorem 4 and Eqs (2.4)–(2.6),

then α is a general helix. �

Definition 3. Let α be s arc-length parameterized regular curve with nonvanishing curvature and
torsion. If the Frenet frame of α is {T,N, B} , then B-dual direction curve of αwith arc-length parameter
s∗, is defined as

σ (s∗) =

s∗∫
s∗0

(α (s) × B (s)) ds∗.

Theorem 7. Let σ be B-dual direction curve of α. Then Frenet vector fields, curvature and torsion of
σ are given by

Tσ =
1√

f 2 + g2
(gT − f N) ,

AIMS Mathematics Volume 8, Issue 6, 12857–12871.
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Nσ =
f ( f hτ − g) T + g ( f hτ − g) N − f τ

(
f 2 + g2

)
B√

f 2 + g2
√

f 2τ2 (
g2 + f 2) + ( f hτ − g)2

,

Bσ =
f 2τT + g f τN + ( f hτ − g) B√

f τ2 (
g2 + f 2) + ( f hτ − g)2

,

κσ =
ρ

√
f 2τ2 (

f 2 + g2) + ( f hτ − g)2(
f 2 + g2) 3

2

,

τσ = −

ρ
((

h
f

)′
f 3τ2 + f 2τκ + g f hτ2κ + g f 2τ3 − f hτ2 + gτ + g ( f τ)

′
)

f τ2 (
g2 + f 2) + ( f hτ − g)2 ,

where ρ =
1√(

f 2 + h2) τ2 + 1
and κ , 0.

Proof. The proof can be made in the same way as the Theorem 1. �

Theorem 8. Let α (s) be a regular unit speed curve with κ , 0 and τ , 0. Let the coefficients of the
vectors T, N and B of tangent vector of its B-dual direction curve be constant, then B-dual direction
curve is general helix if and only if α is general helix with the position vector

α (s) = ((1 + c2) s + c5) T +

(
c2 (1 + c2) s + c3c6

c3

)
N + (−c1c2s + c4) B.

Also in this case, curvature and torsion of α are

κ (s) =
c2 (1 + c2) + c2

3

c1c3 (−c1c2s + c4)

and

τ (s) =
c2 (1 + c2) + c2

3

c3 (−c1c2s + c4)
,

where c1, c3 ∈ R\ {0} , c1–c6 ∈ R.

Proof. Let us suppose that, α is a general helix and the coefficients of T, N and B vectors of tangent
vector of its B-dual direction curve are constant. So we have from the Theorem 7 and definition of
general helix τ (s) = c1κ (s), g (s) κ (s) = c2 and f (s) κ (s) = c3 where c1–c3 are nonzero constants.
From Eqs (2.4) and (2.6), we obtain

f (s) = (1 + c2) s + c5, (3.8)
h (s) = −c1c2s + c4,

and from Eq (2.5), we get

h (s) τ (s) =
c2 (1 + c2)

c3
+ c3. (3.9)
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By comparing Eqs (3.8) and (3.9), we obtain the curvature and torsion of α as

τ (s) =
c2 (1 + c2) + c2

3

c3 (−c1c2s + c4)
,

κ (s) =
c2 (1 + c2) + c2

3

c1c3 (−c1c2s + c4)
.

By substituting hτ and f κ in Eq (2.5), we have

g (s) =
c2 (1 + c2)

c3
s + c6.

Using equations
c2

g (s)
=

c3

f (s)

and
c3c6 = c2c5,

which come from g (s) κ (s) = c2 and f (s) κ (s) = c3, we complete the proof. �

Theorem 9. Let α (s) be a regular unit speed curve with κ , 0 and τ , 0. There is no any general
helix where the coefficients of the vectors T, N and B of tangent vector of its B-dual direction curve (as
a general helix) are nonconstant.

Proof. Assume that the coefficients of T, N and B of Tσ are nonconstant. If α (s) is a general helix,
then τ (s) = c1κ (s) and the angle θ , 0 is constant which is formed between T and constant direction
U indicated as

U = cos θT + sin θB. (3.10)

Hence, we get cot θ = c1 and cos θ = c1 sin θ. From Theorem 7 and Eq (3.10), we obtain

〈
U,Tφ

〉
=

〈
cos θT + sin θB,

1√
f 2 + g2

(gT − f N)
〉

=
g (s) c1√

f 2 + g2
sin θ = const.

If the above expression is arranged as

c1√
1 +

(
f
g

)2
sin θ = const,

it will be seen that
f
g

must be constant to make this equation constant. The fact that
f
g

is constant

contradicts with the fact that the coefficients of T, N and B of Tσ are nonconstant. So the proof is
completed. �
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Example 1. A circular helix is considered as α : (−π, π)→ E3 given by

α (s) =

(
4
√

5
sin

(√
5s

)
,−

4
√

5
cos

(√
5s

)
,

s
√

5

)
.

One can calculate its T-dual, N-dual, B-dual direction curves as the following:

γ (s) =

 1
45

(
−4
√

5s cos
(√

5s
)

+ 8 sin
(√

5s
))
,

− 4
45

(
2 cos

(√
5s

)
+
√

5s sin
(√

5s
))
,−16

9 s

 + (c1, c2, c3),

φ (s) =

 1
25

(√
5 cos

(√
5s

)
+ 5s sin

(√
5s

))
,

1
25

(
−5s cos

(√
5s

)
+
√

5 sin
(√

5s
))
, 0

 + (c1, c2, c3),

σ (s) =

 1
45

(
s cos

(√
5s

)
+ 79
√

5
sin

(√
5s

))
,

1
45

(
− 79
√

5
cos

(√
5s

)
+ s sin

(√
5s

))
, 4

9
√

5
s

 + (c1, c2, c3),

where c1–c3 are constants. The main curve α and its T -dual, N-dual ,B-dual direction curves are shown
in the following computer generated graphs. In Figure 2, red curve is α and yellow, green, blue curves
are indicated γ, φ and σ respectively.

(a) (b) (c)

Figure 1. (a) T-dual direction curve of circular helix; (b) N-dual direction curve of circular
helix; (c) B-dual direction curve of circular helix.

Example 2. A general helix is considered as α : (−π, π)→ E3 given by

α (s) =

(
1
3

sin (4s) +
2
3

sin (2s) ,−
1
3

cos (4s) +
2
3

cos (2s) ,−
8
√

3
sin (s)

)
.

T-dual, N-dual, B-dual direction curves of general helix can be calculated and represented by the
following figures. In Figure 2, red curve is the main curve.
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(a) (b) (c)

Figure 2. (a) T-dual direction curve of general helix; (b) N-dual direction curve of general
helix; (c) B-dual direction curve of general helix.

Example 3. A slant helix is considered as α : (−π, π)→ E3 given by

α (s) =

(
−

1
3

cos (4s) −
1

12
cos (2s) ,−

1
3

sin (2s) −
1

12
sin (4s) ,

8
√

3
cos (s)

)
.

T -dual, N-dual, B-dual direction curves of slant helix can be calculated and represented by the
following figures. In Figure 3,the red curve is the main curve.

(a) (b) (c)

Figure 3. (a) T-dual direction curve of slant helix; (b) N-dual direction curve of slant helix;
(c) B-dual direction curve of slant helix.
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4. Conclusions

The main point of the study was that generate some new associated curves by constructing some
integral curves of a vector field created by vectorial moments of a curve. These new curves are known
as dual-direction curves. We establish some links between a Frenet curve and its dual-direction curves.

Further research and applications of dual-direction curves invariably lead to research on different
areas. The ways of obtaining helix with the help of dual-direction curves are discussed, and the
helix pairs determined by the method here may be helix samples that stabilize linear chain polymers.
Research can be made in this direction.

Moreover, for the interest of the readers of our paper, the results presented here have the potential
to motivate further researchers of the subject of special ruled surface that can be created using dual-
direction curves. This is something that should be looked into further.
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