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Abstract: In the present manuscript, the BVP problem of a semipostone multipoint Ψ-Caputo
fractional pantograph problem is addressed.

Dν;ψ
r κ(ς) + F (ς, κ(ς), κ(r + λς)) = 0, ς in (r,=),

κ(r) = ϑ1, κ(=) =

m−2∑
i=1

ζiκ(ηi) + ϑ2, ϑi ∈ R, i ∈ {1, 2},

and λ in
(
0, =−r

=

)
. The seriousness of this research is to prove the existence of the solution of this

problem by using Schauder’s fixed point theorem (SFPT). We have developed our results in our
research compared to some recent research in this field. We end our work by listing an example to
demonstrate the result reached.

Keywords: Ψ-Caputo derivative; BVP; pantograph problem; changing sign nonlinearity; Schauder
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1. Introduction

Recently, fractional calculus methods became of great interest, because it is a powerful tool for
calculating the derivation of multiples systems. These methods study real world phenomena in many
areas of natural sciences including biomedical, radiography, biology, chemistry, and physics [1–7].
Abundant publications focus on the Caputo fractional derivative (CFD) and the Caputo-Hadamard
derivative. Additionally, other generalization of the previous derivatives, such as Ψ-Caputo, study the
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existence of solutions to some FDEs (see [8–14]).
In general, an m-point fractional boundary problem involves a fractional differential equation with

fractional boundary conditions that are specified at m different points on the boundary of a domain.
The fractional derivative is defined using the Riemann-Liouville fractional derivative or the Caputo
fractional derivative. Solving these types of problems can be challenging due to the non-local nature
of fractional derivatives. However, there are various numerical and analytical methods available for
solving such problems, including the spectral method, the finite difference method, the finite element
method, and the homotopy analysis method. The applications of m-point fractional boundary problems
can be found in various fields, including physics, engineering, finance, and biology. These problems
are useful in modeling and analyzing phenomena that exhibit non-local behavior or involve memory
effects (see [15–18]).

Pantograph equations are a set of differential equations that describe the motion of a pantograph,
which is a mechanism used for copying and scaling drawings or diagrams. The equations are based on
the assumption that the pantograph arms are rigid and do not deform during operation, we can simply
say that see [19]. One important application of the pantograph equations is in the field of drafting and
technical drawing. Before the advent of computer-aided design (CAD) software, pantographs were
commonly used to produce scaled copies of drawings and diagrams. By adjusting the lengths of the
arms and the position of the stylus, a pantograph can produce copies that are larger or smaller than the
original [20], electrodynamics [21] and electrical pantograph of locomotive [22].

Many authors studied a huge number of positive solutions for nonlinear fractional BVP using fixed
point theorems (FPTs) such as SFPT, Leggett-Williams and Guo-Krasnosel’skii (see [23, 24]). Some
studies addressed the sign-changing of solution of BVPs [25–29].

In this work, we use Schauder’s fixed point theorem (SFPT) to solve the semipostone multipoint
Ψ-Caputo fractional pantograph problem

Dν;ψ
r κ(ς) + F (ς, κ(ς), κ(r + λς)) = 0, ς in (r,=) (1.1)

κ(r) = ϑ1, κ(=) =

m−2∑
i=1

ζiκ(ηi) + ϑ2, ϑi ∈ R, i ∈ {1, 2}, (1.2)

where λ ∈
(
0, =−r

=

)
,D

ν;ψ
r is Ψ-Caputo fractional derivative (Ψ-CFD) of order ν, 1 < ν ≤ 2, ζi ∈

R+ (1 ≤ i ≤ m − 2) such that 0 < Σm−2
i=1 ζi < 1, ηi ∈ (r,=), and F : [r,=] × R × R→ R.

The most important aspect of this research is to prove the existence of a positive solution of the
above m-point FBVP. Note that in [30], the author considered a two-point BVP using Liouville-Caputo
derivative.

The article is organized as follows. In the next section, we provide some basic definitions and
arguments pertinent to fractional calculus (FC). Section 3 is devoted to proving the the main result and
an illustrative example is given in Section 4.

2. Preliminaries

In the sequel, Ψ denotes an increasing map Ψ : [r1, r2] → R via Ψ′(ς) , 0, ∀ ς, and [α] indicates
the integer part of the real number α.
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Definition 2.1. [4, 5] Suppose the continuous function κ : (0,∞) → R. We define (RLFD) the
Riemann-Liouville fractional derivative of order α > 0, n = [α] + 1 by

RLDα
0+κ(ς) =

1
Γ(n − α)

(
d

dς

)n ∫ ς

0
(ς − τ)n−α−1κ(τ)dτ,

where n − 1 < α < n.

Definition 2.2. [4, 5] The Ψ-Riemann-Liouville fractional integral (Ψ-RLFI) of order α > 0 of a
continuous function κ :

[
r,=

]
→ R is defined by

Iα;Ψ
r κ(ς) =

∫ ς

r

(Ψ (ς) − Ψ (τ))α−1

Γ(α)
Ψ′ (τ) κ(τ)dτ.

Definition 2.3. [4, 5] The CFD of order α > 0 of a function κ : [0,+∞)→ R is defined by

Dακ (ς) =
1

Γ(n − α)

∫ ς

0
(ς − τ)n−α−1 κ(n) (τ) dτ, α ∈ (n − 1, n) , n ∈ N.

Definition 2.4. [4, 5] We define the Ψ-CFD of order α > 0 of a continuous function κ :
[
r,=

]
→ R by

Dα;Ψ
r κ(ς) =

∫ ς

r

(Ψ (ς) − Ψ (τ))n−α−1

Γ(n − α)
Ψ′ (τ) ∂n

Ψκ(τ)dτ, ς > r, α ∈ (n − 1, n) ,

where ∂n
Ψ

=
(

1
Ψ′(ς)

d
dς

)n
, n ∈ N.

Lemma 2.1. [4,5] Suppose q, ` > 0, and κ in C([r,=],R). Then ∀ς ∈ [r,=] and by assuming Fr(ς) =

Ψ(ς) − Ψ(r), we have

1) Iq;Ψ
r I

`;Ψ
r κ(ς) = I

q+`;Ψ
r κ(ς),

2) Dq;Ψ
r I

q;Ψ
r κ(ς) = κ(ς),

3) Iq;Ψ
r (Fr(ς))`−1 =

Γ(`)
Γ(` + q)

(Fr(ς))`+q−1,

4) Dq;Ψ
r (Fr(ς))`−1 =

Γ(`)
Γ(` − q)

(Fr(ς))`−q−1,

5) Dq;Ψ
r (Fr(ς))k = 0, k = 0, . . . , n − 1, n ∈ N, q in (n − 1, n].

Lemma 2.2. [4, 5] Let n − 1 < α1 ≤ n, α2 > 0, r > 0, κ ∈ L(r,=), Dα1;Ψ
r κ ∈ L(r,=). Then the

differential equation
Dα1;Ψ

r κ = 0

has the unique solution

κ(ς) =W0 +W1 (Ψ (ς) − Ψ (r)) +W2 (Ψ (ς) − Ψ (r))2 + · · · +Wn−1 (Ψ (ς) − Ψ (r))n−1 ,

and

Iα1;Ψ
r Dα1;Ψ

r κ (ς) = κ (ς) +W0 +W1 (Ψ (ς) − Ψ (r)) +W2 (Ψ (ς) − Ψ (r))2

+ · · · +Wn−1 (Ψ (ς) − Ψ (r))n−1 ,
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withW` ∈ R, ` ∈ {0, 1, . . . , n − 1}.
Furthermore,

Dα1;Ψ
r Iα1;Ψ

r κ(ς) = κ(ς),

and
Iα1;Ψ

r Iα2;Ψ
r κ(ς) = Iα2;Ψ

r Iα1;Ψ
r κ(ς) = Iα1+α2;Ψ

r κ(ς).

Here we will deal with the FDE solution of (1.1) and (1.2), by considering the solution of

−Dν;ψ
r κ(ς) = h(ς), (2.1)

bounded by the condition (1.2). We set

∆ := Ψ
(
=
)
− Ψ (r) − Σm−2

i=1 ζi (Ψ (ηi) − Ψ (r)) .

Lemma 2.3. Let ν ∈ (1, 2] and ς ∈ [r,=]. Then, the FBVP (2.1) and (1.2) have a solution κ of the form

κ(ς) =

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

Ψ (ς) − Ψ (r)
∆

ϑ2 +

∫ =

r
$(ς, τ)h(τ)Ψ′ (τ) dτ,

where

$(ς, τ) =
1

Γ(ν)



[
(Ψ

(
=
)
− Ψ (r))ν−1 − Σm−2

j=i ζ j(Ψ
(
η j

)
− Ψ (τ))ν−1

]
Ψ(ς)−Ψ(r)

∆

−(Ψ (ς) − Ψ (τ))ν−1, τ ≤ ς, ηi−1 < τ ≤ ηi,[
(Ψ

(
=
)
− Ψ (τ))ν−1 − Σm−2

j=i ζ j(Ψ
(
η j

)
− Ψ (τ))ν−1

]
Ψ(=)−Ψ(r)

∆
,

ς ≤ τ, ηi−1 < τ ≤ ηi,

(2.2)

i = 1, 2, ...,m − 2.

Proof. According to the Lemma 2.2 the solution ofDν;ψ
r κ(ς) = −h(ς) is given by

κ(ς) = −
1

Γ(ν)

∫ ς

r
(Ψ (ς) − Ψ (τ))ν−1h(τ)Ψ′ (τ) dτ + c0 + c1 (Ψ (ς) − Ψ (r)) , (2.3)

where c0, c1 ∈ R. Since κ(r) = ϑ1 and κ(=) =
∑m−2

i=1 ζiκ(ηi) + ϑ2, we get c0 = ϑ1 and

c1 =
1
∆

− 1
Γ(ν)

m−2∑
i=1

ζi

∫ η j

r
(Ψ (ηi) − Ψ (τ))ν−1h(τ)Ψ′ (τ) dτ

+
1

Γ(ν)

∫ =

r
(Ψ

(
=
)
− Ψ (τ))ν−1h(τ)Ψ′ (τ) dτ + ϑ1

m−2∑
i=1

ζi − 1

 + ϑ2

 .
By substituting c0, c1 into Eq (2.3) we find,

κ(ς) =

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

(Ψ (ς) − Ψ (r))
∆

ϑ2

−
1

Γ(ν)

(∫ ς

r
(Ψ (ς) − Ψ (τ))ν−1h(τ)Ψ′ (τ) dτ
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+
(Ψ (ς) − Ψ (r))

∆

m−2∑
i=1

ζi

∫ η j

r
(Ψ (ηi) − Ψ (τ))ν−1h(τ)Ψ′ (τ) dτ

−
Ψ (ς) − Ψ (r)

∆

∫ =

r
(Ψ

(
=
)
− Ψ (τ))ν−1h(τ)Ψ′ (τ) dτ

)
=

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

(Ψ (ς) − Ψ (r))
∆

ϑ2 +

∫ =

r
$(ς, τ)h(τ)Ψ′ (τ) dτ,

where $(ς, τ) is given by (2.2). Hence the required result. �

Lemma 2.4. If 0 <
∑m−2

i=1 ζi < 1, then
i) ∆ > 0,
ii) (Ψ

(
=
)
− Ψ (τ))ν−1 −

∑m−2
j=i ζ j(Ψ

(
η j

)
− Ψ (τ))ν−1 > 0.

Proof. i) Since ηi < =, we have

ζi (Ψ (ηi) − Ψ (r)) < ζi
(
Ψ

(
=
)
− Ψ (r)

)
,

−

m−2∑
i=1

ζi(Ψ (ηi) − Ψ (r)) > −
m−2∑
i=1

ζi
(
Ψ

(
=
)
− Ψ (r)

)
,

Ψ
(
=
)
− Ψ (r) −

m−2∑
i=1

ζi(Ψ (ηi) − Ψ (r)) > Ψ
(
=
)
− Ψ (r) −

m−2∑
i=1

ζi
(
Ψ

(
=
)
− Ψ (r)

)
=

(
Ψ

(
=
)
− Ψ (r)

)
[1 −

m−2∑
i=1

ζi].

If 1 − Σm−2
i=1 ζi > 0, then

(
Ψ

(
=
)
− Ψ (r)

)
− Σm−2

i=1 ζi(Ψ (ηi) − Ψ (r)) > 0. So we have ∆ > 0.
ii) Since 0 < ν − 1 ≤ 1, we have (Ψ (ηi) − Ψ (τ))ν−1 < (Ψ

(
=
)
− Ψ (τ))ν−1. Then we obtain

m−2∑
j=i

ζ j(Ψ
(
η j

)
− Ψ (τ))ν−1 <

m−2∑
j=i

ζ j(Ψ
(
=
)
− Ψ (τ))ν−1 ≤ (Ψ

(
=
)
− Ψ (τ))ν−1

m−2∑
i=1

ζi

< (Ψ
(
=
)
− Ψ (τ))ν−1,

and so

(Ψ
(
=
)
− Ψ (τ))ν−1 −

m−2∑
j=i

ζ j(Ψ
(
η j

)
− Ψ (τ))ν−1 > 0.

�

Remark 2.1. Note that
∫ =

r
$(ς, τ)Ψ′ (τ) dτ is bounded ∀ς ∈ [r,=]. Indeed∫ =

r
|$(ς, τ)|Ψ′ (τ) dτ

≤
1

Γ(ν)

∫ ς

r
(Ψ (ς) − Ψ (τ))ν−1Ψ′ (τ) dτ +

Ψ (ς) − Ψ (r)
Γ(ν)∆

m−2∑
i=1

ζi

∫ ηi

r
(Ψ

(
η j

)
− Ψ (τ))ν−1Ψ′ (τ) dτ
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+
Ψ (ς) − Ψ (r)

∆Γ(ν)

∫ =

r
(Ψ

(
=
)
− Ψ (τ))ν−1Ψ′ (τ) dτ

=
(Ψ (ς) − Ψ (r))ν

Γ(ν + 1)
+

Ψ (ς) − Ψ (r)
∆Γ(ν + 1)

m−2∑
i=1

ζi(Ψ (ηi) − Ψ (r))ν +
Ψ (ς) − Ψ (r)

∆Γ(ν + 1)
(Ψ

(
=
)
− Ψ (r))ν

≤
(Ψ

(
=
)
− Ψ (r))ν

Γ(ν + 1)
+

Ψ
(
=
)
− Ψ (r)

∆Γ(ν + 1)

m−2∑
i=1

ζi(Ψ (ηi) − Ψ (r))ν +
(Ψ

(
=
)
− Ψ (r))ν+1

∆Γ(ν + 1)
= M. (2.4)

Remark 2.2. Suppose Υ(ς) ∈ L1[r,=], and w(ς) verify{
D

ν;ψ
r w(ς) + Υ(ς) = 0,

w(r) = 0, w(=) = Σm−2
i=1 ζiw(ηi),

(2.5)

then w(ς) =
∫ =

r
$(ς, τ)Υ(τ)Ψ′ (τ) dτ.

Next we recall the Schauder fixed point theorem.

Theorem 2.1. [23] [SFPT] Consider the Banach space Ω. Assume ℵ bounded, convex, closed subset
in Ω. If z : ℵ → ℵ is compact, then it has a fixed point in ℵ.

3. Existence result

We start this section by listing two conditions which will be used in the sequel.

• (Σ1) There exists a nonnegative function Υ ∈ L1[r,=] such that
∫ =

r
Υ(ς)dς > 0 and F (ς, κ, v) ≥

−Υ(ς) for all (ς, κ, v) ∈ [r,=] × R × R.
• (Σ2) G(ς, κ, v) , 0, for (ς, κ, v) ∈ [r,=] × R × R.

Let ℵ = C([r,=],R) the Banach space of CFs (continuous functions) with the following norm

‖κ‖ = sup{|κ(ς)| : ς ∈ [r,=]}.

First of all, it seems that the FDE below is valid

Dν;ψ
r κ(ς) + G (ς, κ∗ (ς) , κ∗ (r + λς)) = 0, ς ∈ [r,=]. (3.1)

Here the existence of solution satisfying the condition (1.2), such that G : [r,=] × R × R→ R

G(ς, z1, z2) =

{
F (ς, z1, z2) + Υ(ς), z1, z2 ≥ 0,
F (ς, 0, 0) + Υ(ς), z1 ≤ 0 or z2 ≤ 0,

(3.2)

and κ∗(ς) = max{(κ − w)(ς), 0}, hence the problem (2.5) has w as unique solution. The mapping
Q : ℵ → ℵ accompanied with the (3.1) and (1.2) defined as

(Qκ)(ς) =

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

Ψ (ς) − Ψ (r)
∆

ϑ2

AIMS Mathematics Volume 8, Issue 6, 12830–12840.
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+

∫ =

r
$(ς, τ)G(ς, κ∗(τ), κ∗(r + λτ))Ψ′ (τ) dτ, (3.3)

where the relation (2.2) define $(ς, τ). The existence of solution of the problems (3.1) and (1.2) give
the existence of a fixed point for Q.

Theorem 3.1. Suppose the conditions (Σ1) and (Σ2) hold. If there exists ρ > 0 such that[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ

(
=
)
− Ψ (r))

]
ϑ1 +

Ψ
(
=
)
− Ψ (r)
∆

ϑ2 + LM ≤ ρ,

where L ≥ max{|G(ς, κ, v)| : ς ∈ [r,=], |κ|, |v| ≤ ρ} and M is defined in (2.4), then, the problems (3.1)
and (3.2) have a solution κ(ς).

Proof. Since P := {κ ∈ ℵ : ‖κ‖ ≤ ρ} is a convex, closed and bounded subset of B described in the
Eq (3.3), the SFPT is applicable to P. Define Q : P → ℵ by (3.3). Clearly Q is continuous mapping.
We claim that range of Q is subset of P. Suppose κ ∈ P and let κ∗(ς) ≤ κ(ς) ≤ ρ, ∀ς ∈ [r,=]. So

|Qκ(ς)| =

∣∣∣∣∣∣
[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

Ψ (ς) − Ψ (r)
∆

ϑ2

+

∫ =

r
$(ς, τ)G(τ, κ∗(τ), κ∗(r + λτ))Ψ′ (τ) dτ

∣∣∣∣∣∣
≤

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ

(
=
)
− Ψ (r))

]
ϑ1 +

Ψ
(
=
)
− Ψ (r)
∆

ϑ2 + LM ≤ ρ,

for all ς ∈ [r,=]. This indicates that ‖Qκ‖ ≤ ρ, which proves our claim. Thus, by using the Arzela-
Ascoli theorem, Q : ℵ → ℵ is compact. As a result of SFPT, Q has a fixed point κ in P. Hence, the
problems (3.1) and (1.2) has κ as solution. �

Lemma 3.1. κ∗(ς) is a solution of the FBVP (1.1), (1.2) and κ(ς) > w(ς) for every ς ∈ [r,=] iff the
positive solution of FBVP (3.1) and (1.2) is κ = κ∗ + w.

Proof. Let κ(ς) be a solution of FBVP (3.1) and (1.2). Then

κ(ς) =

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

(Ψ (ς) − Ψ (r))
∆

ϑ2

+
1

Γ(ν)

∫ =

r
$(ς, τ)G(τ, κ∗(τ), κ∗(r + λτ))Ψ′ (τ) dτ

=

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

Ψ (ς) − Ψ (r)
∆

ϑ2

+
1

Γ(ν)

∫ =

r
$(ς, τ) (F (τ, κ∗(τ), κ∗(r + λτ)) + p(τ)) Ψ′ (τ) dτ

=

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

Ψ (ς) − Ψ (r)
∆

ϑ2

+
1

Γ(ν)

∫ =

r
$(ς, τ)F (τ, (κ − w)(τ), (κ − w)(r + λτ))Ψ′ (τ) dτ

AIMS Mathematics Volume 8, Issue 6, 12830–12840.
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+
1

Γ(ν)

∫ =

r
$(ς, τ)p(τ)Ψ′ (τ) dτ

=

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

Ψ (ς) − Ψ (r)
∆

ϑ2

+
1

Γ(ν)

∫ =

r
$(ς, τ)G(τ, (κ − w)(τ), (κ − w)(r + λτ))Ψ′ (τ) dτ + w(ς).

So,

κ(ς) − w(ς) =

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

Ψ (ς) − Ψ (r)
∆

ϑ2

+
1

Γ(ν)

∫ =

r
$(ς, τ)F (τ, (κ − w)(τ), (κ − w)(r + λτ))Ψ′ (τ) dτ.

Then we get the existence of the solution with the condition

κ∗(ς) =

[
1 +

Σm−2
i=1 ζi − 1

∆
(Ψ (ς) − Ψ (r))

]
ϑ1 +

Ψ (ς) − Ψ (r)
∆

ϑ2

+
1

Γ(ν)

∫ =

r
$(ς, τ)F (τ, κ∗(τ), κ∗(r + λτ))Ψ′ (τ) dτ.

For the converse, if κ∗ is a solution of the FBVP (1.1) and (1.2), we get

Dν;ψ
r (κ∗(ς) + w(ς)) = Dν;ψ

r κ
∗(ς) +Dν;ψ

r w(ς) = −F (ς, κ∗(ς), κ∗(r + λς)) − p(ς)
= −

[
F (ς, κ∗(ς), κ∗(r + λς)) + p(ς)

]
= −G(ς, κ∗(ς), κ∗(r + λς)),

which leads to
Dν;ψ

r κ(ς) = −G(ς, κ∗(ς), κ∗(r + λς)).

We easily see that
κ∗(r) = κ(r) − w(r) = κ(r) − 0 = ϑ1,

i.e., κ(r) = ϑ1 and

κ∗(=) =

m−2∑
i=1

ζiκ
∗(ηi) + ϑ2,

κ(=) − w(=) =

m−2∑
i=1

ζiκ(ηi) −
m−2∑
i=1

ζ jw(ηi) + ϑ2 =

m−2∑
i=1

ζi(κ(ηi) − w(ηi)) + ϑ2.

So,

κ(=) =

m−2∑
i=1

ζiκ(ηi) + ϑ2.

Thus κ(ς) is solution of the problem FBVP (3.1) and (3.2). �
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4. Example

We propose the given FBVP as follows

D
7
5κ(ς) + F (ς, κ(ς), κ(1 + 0.5ς)) = 0, ς ∈ (1, e), (4.1)

κ(1) = 1, κ(e) =
1
7
κ(

5
2

) +
1
5
κ(

7
4

) +
1
9
κ(

11
5

) − 1. (4.2)

Let Ψ (ς) = log ς, where F (ς, κ(ς), κ(1 + 1
2ς)) =

ς
1+ς

arctan(κ(ς) + κ(1 + 1
2ς)).

Taking Υ(ς) = ς we get
∫ e

1
ςdς = e2−1

2 > 0, then the hypotheses (Σ1) and (Σ2) hold. Evaluate
∆ � 0.366, M � 3.25 we also get |G(ς, κ, v)| < π + e = L such that |κ| ≤ ρ, ρ = 17, we could just
confirm that [

1 +
Σm−2

i=1 ζi − 1
∆

(
Ψ

(
=
)
− Ψ (r)

)]
ϑ1 +

Ψ
(
=
)
− Ψ (r)
∆

ϑ2 + LM � 16.35 ≤ 17. (4.3)

By applying the Theorem 3.1 there exit a solution κ(ς) of the problem (4.1) and (4.2).

5. Conclusions

In this paper, we have provided the proof of BVP solutions to a nonlinear Ψ-Caputo fractional
pantograph problem or for a semi-positone multi-point of (1.1) and(1.2). What’s new here is that even
using the generalized Ψ-Caputo fractional derivative, we were able to explicitly prove that there is one
solution to this problem, and that in our findings, we utilize the SFPT. The results obtained in our work
are significantly generalized and the exclusive result concern the semi-positone multi-point Ψ-Caputo
fractional differential pantograph problem (1.1) and (1.2).
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