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1. Introduction

The fuzzy set (FS) [1] is a useful mathematical approach for dealing with uncertain situations. It
focuses on the membership grade of an individual in the sample space. The FS has several limitations,
as it cannot discuss the parametrization tool, which results in uncertainty when inquiring about
solutions to various problems. To conquer such types of issues, there is a need for the development of
some mathematical mechanisms. The soft set (SS) [2] was created to address such constraints. The
SS is a parameterized collection of subsets of U, the universal set. Ali et al. [3] discussed operations
for SSs. Fuzzy soft set (FSS) [4] is facilitated FS with the inclusion of a parameterization tool. Yang
et al. [5] intermingled SS with interval-valued fuzzy set (IVFS) [6] to form interval-valued fuzzy soft
set (IVFSS) for interval-type data. Many researchers used the concept of IVFSS to solve real-world
problems, particularly the work of Peng and Yang [7], Peng and Garg [8], Chetia and Das [9], Qin and
Ma [10], and Ma et al. [11, 12]. Sebastian and Ramakrishnan [13] initialized the multi-fuzzy set
(MFS) as an extension to FS. The novel concept of interval-valued multi-fuzzy soft set (IVMFSS)
was initiated by Zhou et al. [14] as the unification of multi-fuzzy soft set (MFSS) [15] and IVFSS.
Dey and Pal [16] generalizedMFSS. The contributions of the researchers like Gergin et al. [17], Riaz
& Farid [18], Ashraf et al. [19] and Das & Granados [20] are worth noting about the use of various
decision making techniques for discussing multidisciplinary applications in fuzzy hybrid structures.
In dealing with real-world scenarios, the DM is sometimes affected when the decision-makers ignore
sub-attributes and fully rely on attributes. This may distract decision-makers and lead to
misunderstandings. So to make the decision more consistent, parameters need to be sub-classified in
the form of sub-parametric-valued sets. The inclusion of approximate mapping with multi-argument
(MAAM) in the Hypersoft set (HSS) [21] model easily handles such situations. Abbas et al. [22]
discussed the basic operations of HSS and HS-point. Elementary notions of HSS were discussed by
Saeed et al. [23]. Rahman et al. [24–26] initiated the modification of the HSS for not only complex
structures but also convex and concave structures. Debnath [27] used weight operators in fuzzy
hypersoft sets (FHSS) DM. Yolcu & Öztürk [28] discussed various properties and operations of FHSS
and explained them with examples. They [29] also developed topological structures based on the
theory of FHSS and discussed the various properties of these structures. Rough hypersoft sets
(RHSSs) were developed by [30] along with their application in the selection of chemical materials.
The hybrid structure of HSS with rough set was initiated by Kamacı [31]. Yolcu et al. [32] developed
intuitionistic fuzzy hypersoft set by extending their own concept of FHSS. Similarity measures for
SS, FSS, and IVFSS were discussed by Majumdar, Samanta, and Peng et al. [33–35]. The entropy of
IVFSs on the basis of similarity measure and distance measure was initiated by authors [36, 37]. DM
with multi-argument for neutrosophic hypersoft sets based on aggregations and similarity measures
was instigated by Rahman et al. [38].

1.1. Relevant literature, research gap and motivations

It is a well-known fact that any evaluation or optimization problem based on parameterization-
like approximations cannot be solved by simply taking parameters into account. This problem thus
creates a different circumstance that necessitates careful parameter observation. Each parameter in
this scenario is further divided into a set of related sub-parametric values. This classification helps
decision-makers make reliable and consistent decisions by providing their approximate opinions with
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the right to multiple arguments at the same time. By substituting the single set of parameters in the
domain of soft sets with the cartesian product of sub-parametric valued disjoint sets, one can create
such a multi-argument domain. The absence of this particular setting, known as a “hypersoft setting”,
could result in a biased conclusion. It is important to note, after reading through the literature on
fuzzy soft sets, that the researchers [39–52] have previously examined a number of decision-making
applications and proposed methods based on IVFSS. The Table 1 presents a brief review of these
references with descriptions of their adopted applications. Although they make great contributions in
the case of a soft setting, their contributions are insufficient in the substantial decision-making scenario
indicated above, which is a hypersoft setting. Therefore, motivated by this shortcoming of the existing
literature, the purpose of this study is to characterize the novel model “IVFHSS” that is capable of
coping with this shortcoming. The wide scope and flexibility of this model can be estimated from
the fact that it generalizes most of the previous soft set-like models. This additional feature makes
this model more adaptable and comprehensive in dealing with hesitant data. Moreover, the notions of
similarity measures based on IVFHSS, are also introduced and then applied to the decision-making
problem of “recruitment process” through a pattern recognition-based robust algorithm.

1.2. Major contributions of the study

The main contributions of this research article are described below:

(1) The concept of similarity measures for IVFHSS is discussed, and one of its important results, is
generalized.

(2) A decision-support system is designed by using the formulations of similarity measures and
aggregation operations of IVFHSS with the proposal of a robust algorithm. The computational
steps are made easy for all kinds of multidisciplinary audiences.

(3) The suggested algorithm is tested using a decision-making application, or recruitment process that
helps decision-makers choose the best applicant for the open position in an institution by using
pattern recognition based on similarity measures of IVFHSS.

(4) By structurally comparing the proposed decision-support system and model to existing models and
taking into consideration appropriate evaluation indicators, the flexibility and reliability of both
are evaluated.

The outlines of the paper are as follows: In Section 2, some definitions of “fundamental nature”
are recalled from literature to make the paper understandable to the readers. In Section 3, similarity
measures based on IVFHSSs are formulated and their relevant theorems and results are proved. In
Section 4, the formulations of similarity measures between IVFHSSs are then applied in designing a
decision-support system for recruitment based pattern recognition. Moreover, the computed results are
compared with already developed models to judge the advantageous features of the proposed study.
Lastly, the paper is summarized in Section 5 with discussion on managerial implications and future
directions.

1.3. Abbreviation

Full names of the used abbreviations are presented in Table 3.
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Table 2. List of abbreviations used in this research article.

Full names Abbreviations
Fuzzy set FS

Soft set SS

Fuzzy soft set FSS

Interval-valued fuzzy set IVFS

Interval-valued fuzzy soft set IVFSS

Multi fuzzy set MFS

Multi fuzzy soft set MFSS

Interval-valued multi fuzzy soft set IVMFSS

Hypersoft set HSS

Fuzzy hypersoft set FHSS

Rough hypersoft set RHSS

Decision making DM

Interval-valued fuzzy hypersoft set IVFHSS

Powerset of Universal Set P(U)
Collection of all fuzzy sets of Universal Set C(U)
Multi Argument Approximate mapping MAAM

2. Preliminaries

Let U, P(U), C(U) represent the universe of discourse, the collection of all subsets of U and the
collection of all fuzzy sets of U respectively, andW be the set of attributes.

Definition 2.1. [1] A fuzzy set F over U is characterized by a membership function fF, where fF :
U → [0, 1] is given by

fF(z) = {(z, fF(z))|z ∈ U} ,

which assigns a real value within [0, 1] to each z ∈ U and fF(z) is the membership grade of z ∈ U.

Definition 2.2. [6] An interval-valued fuzzy set (IVFS) V over U is given by a function IV : U →
I([0, 1]), where I([0, 1]) denotes the set containing all sub-intervals of [0, 1], IV(z) for all z ∈ U is an
interval [σ, ν], 0 ≤ σ ≤ ν ≤ 1, σ and ν denote the lower and upper membership-grades of an element,
respectively.

For convenience, say a = [σ, ν] an interval-valued fuzzy number IVF-number and the set of all
IVFSs over U is represented by Γ(U).

Definition 2.3. [2] A soft set SS over U is stated as ΛSS :W′ → P(U), andW′ ⊆ W and is given by

SS =
{
(θ,ΛSS (θ)) : θ ∈ W′} .

The value ΛSS (θ) is called θ-approximate element of soft set SS .

Definition 2.4. [4] A fuzzy soft set (FSS) FSS over U is defined as ∆FSS :W′ → C(U) and is given by
FSS =

{
(θ,∆FSS (θ)) : θ ∈ W′

}
,∆FSS (θ) ∈ C(U) forW′ ⊆ W, ∆FSS (θ) = φ for θ <W′ and

∆FSW′
(θ) =

{
ζ∆FSW′

(θ)(ω)/ω : ω ∈ U, ζ∆FSW′
(θ)(ω) ∈ I

}
AIMS Mathematics Volume 8, Issue 5, 12321–12341.
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for all θ ∈ W′ is a FS over U, where ∆FSW′
is approximate function of FS , ∆FS (z) is a FS with condition

that if ∆FSW′
(θ) = φ, then (θ,∆FSW′

(θ)) < FSW′ .

Definition 2.5. [5] The pair (F̃S ,W) is called an “interval-valued fuzzy soft set (IVFSS) over U and
is given by F̃S : W → P(U). In other words, IVFSS is parameterized collection of IVF-subsets of U
and is defined as

F̃S (θ) =
{
< τ, ξF̃S (θ)(τ) >: τ ∈ U, θ ∈ W

}
,

where F̃S (θ) represent the IVF membership degree of τ ∈ U, θ ∈ W. F̃S (θ) will become fuzzy set if
ξ−
F̃S (θ)

(τ) = ξ+

F̃S (θ)
(τ) for all τ ∈ U, θ ∈ W.

Definition 2.6. [5] The compliment (F̃S ,W)c of IVFSS (F̃S ,W) is given by (F̃S ,W)c = (F̃ c
S ,W)

and is given by F̃ c
S (θ) = [1 − ξ+

F̃S (θ)
(τ), 1 − ξ−

F̃S (θ)
(τ)] for all τ ∈ U, θ ∈ W.

Definition 2.7. [7] Based on Definition 2.6, distance measure between interval-valued fuzzy numbers
(IVFN) ξF̃S (θ)(τ) and ξJ̃S (θ)(τ) is given by

%(ξF̃S (θ)(τ), ξJ̃S (θ)(τ)) =
1
2

{
|ξF̃ −S (θ)(τ) − ξJ̃−S (θ)(τ)| + |ξF̃ +

S (θ)(τ) − ξJ̃+
S (θ)(τ)|

}
.

Definition 2.8. [53] The score function s(ξF̃S (θ)(τ)) of IVFSS (F̃S ,W) for all τ ∈ U, θ ∈ W is defined
as

s(ξF̃S (θ)(τ)) = ξ−
F̃S (θ)

(τ) + ξ+

F̃S (θ)
(τ) − 1, (2.1)

where s(ξF̃S (θ)(τ)) ∈ [−1, 1].

Definition 2.9. [53] The accuracy function a(ξF̃S (θ)(τ)) of IVFSS (F̃S ,W) for all τ ∈ U, θ ∈ W is
defined as a(ξF̃S (θ)(τ)) = ξ−

F̃S (θ)
(τ) − ξ+

F̃S (θ)
(τ) + 1, where a(ξF̃S (θ)(τ)) ∈ [0, 1].

Peng et al. [35] developed comparative laws for IVFSSs on the basis of the score function and
accuracy function.

Definition 2.10. [35] The following laws hold for any two IVF-numbers ξF̃S (θ)(τ) and ξJ̃S (θ)(τ): If
s(ξJ̃S (θ)(τ)) , s(ξF̃S (θ)(τ)), then

(1) ξF̃S (θ)(τ) is superior to ξJ̃S (θ)(τ) if s(ξF̃S (θ)(τ)) > s(ξJ̃S (θ)(τ));

(2) ξJ̃S (θ)(τ) is superior to ξF̃S (θ)(τ) if s(ξJ̃S (θ)(τ)) > s(ξF̃S (θ)(τ)).

If s(ξJ̃S (θ)(τ)) = s(ξF̃S (θ)(τ)), then

(3) ξF̃S (θ)(τ) is superior to ξJ̃S (θ)(τ) if a(ξF̃S (θ)(τ)) > a(ξJ̃S (θ)(τ));

(4) ξJ̃S (θ)(τ) is superior to ξF̃S (θ)(τ) if a(ξJ̃S (θ)(τ)) > a(ξF̃S (θ)(τ));

(5) ξF̃S (θ)(τ) and ξJ̃S (θ)(τ) are equivalent if a(ξF̃S (θ)(τ)) = a(ξJ̃S (θ)(τ)).

Definition 2.11. [21] The pair (H̃S ,Q) defined by H̃S : Q → P(U) is called hypersoft set (HSS) over
U with ε1, ε2, . . . , εn are distinct attributes belonging to disjoint attribute valued sets Q1,Q2, . . . ,Qn,
respectively and Q = Q1 × Q2 × · · · × Qn be cartesian product of non-overlapping attribute valued sets.

AIMS Mathematics Volume 8, Issue 5, 12321–12341.
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Definition 2.12. [21] Let ε1, ε2, . . . , εn are distinct attributes belonging to disjoint attribute valued sets
Q1,Q2, . . . ,Qn such that for i, j = 1, 2, . . . , n, i , j,Qi ∩ Q j = φ, then (F̃H ,Q), the fuzzy hypersoft set
(FHSS) over U is given by ordered paired sets

(F̃H ,Q) =
{
(σ, F̃ (σ)) : σ ∈ Q, F̃ (σ) ∈ C(U)

}
,

where F̃ : Q → C(U) and C(U) be collection of all FSs over U with σ ∈ Q = Q1 × Q2 × · · · × Qn, then

F̃ (σ) =
{
ξF̃ (σ)(z)/z : z ∈ U, ξF̃ (σ) ∈ [0, 1]

}
is a FS over U.

Definition 2.13. [23] Let ε1, ε2, . . . , εn are distinct attributes belonging to disjoint attribute valued sets
Q1,Q2, . . . ,Qn such that for i, j = 1, 2, . . . , n, i , j,Qi∩Q j = φ, then (F̃′H,Q), the interval-valued fuzzy
hypersoft set (IVFHSS) over U is given by ordered paired sets

(iF̃′H,Q) =
{
(σ, F̃′(σ)) : σ ∈ Q, F̃′(σ) ∈ C(U)

}
,

where F̃′ : Q → C(U) and C(U) be collection of all IVFSs over U with σ ∈ Q = Q1 × Q2 × · · · × Qn,
then

F̃′(σ) =
{
ξF̃′(σ)(z)/z : z ∈ U, ξF̃′(σ) ∈ [0, 1]

}
is IVFS over U.

3. Formulations of similarity measure for IVFHSS

In this section, the similarity measure for IVFHSS is discussed.

Definition 3.1. Let F̃ , J̃ and H̃ be three IVFHSSs over U. A mapping Λ(F̃ , J̃) is the similarity
measure given by Λ : iv f s(U) × iv f s(U)→ IVFN if the following conditions hold:

(1) Λ(F̃ , J̃) is IVF-number;

(2) Λ(F̃ , J̃) = [1, 1] if and only if F̃ = J̃ ;

(3) Λ(F̃ , J̃) = Λ(J̃ , F̃ );

(4) If F̃ ⊆ J̃ ⊆ H̃, then Λ(F̃ , H̃) ⊆ Λ(F̃ , J̃) and Λ(F̃ , H̃) ⊆ Λ(J̃ , H̃).

Theorem 3.2. Let F̃ and J̃ are IVFHSSs over U, then Λ(F̃ , J̃) is a similarity measure given by

Λ(F̃ , J̃) =

1 − n∑
l=1

µl max
{∣∣∣σ−il − σ−jl∣∣∣ , ∣∣∣σ+

il − σ
+
jl

∣∣∣}, 1 − n∑
l=1

µl min
{∣∣∣σ−il − σ−jl∣∣∣ , ∣∣∣σ+

il − σ
+
jl

∣∣∣} , (3.1)

where
n∑

l=1
µl = 1 such that µl is weight of lth IVF-number.
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Proof. To show that Λ(F̃ , J̃) is a similarity measure for IVFHSSs, it must satisfy four conditions.
Condition I: As

0 ≤ 1 −
n∑

l=1

µl max
{∣∣∣σ−il − σ−jl∣∣∣ , ∣∣∣σ+

il − σ
+
jl

∣∣∣} ≤ 1 −
n∑

l=1

µl min
{∣∣∣σ−il − σ−jl∣∣∣ , ∣∣∣σ+

il − σ
+
jl

∣∣∣} ≤ 1,

so Λ(F̃ , J̃) is IVF-number.
Condition II: If Λ(F̃ , J̃) = [1, 1], then

n∑
l=1

µl max
{∣∣∣σ−il − σ−jl∣∣∣ , ∣∣∣σ+

il − σ
+
jl

∣∣∣} = 0

and
n∑

l=1

µl min
{∣∣∣σ−il − σ−jl∣∣∣ , ∣∣∣σ+

il − σ
+
jl

∣∣∣} = 0.

So
∣∣∣∣σ−il − σ−jl∣∣∣∣ ≥ 0 and

∣∣∣∣σ+
il − σ

+
jl

∣∣∣∣ ≥ 0 which means σ−il = σ−jl and σ+
il = σ+

jl and hence F̃ = J̃ .

Conversely, If F̃ = J̃ , then σ−il = σ−jl and σ+
il = σ+

jl, so
∣∣∣∣σ−il − σ−jl∣∣∣∣ ≥ 0 and

∣∣∣∣σ+
il − σ

+
jl

∣∣∣∣ ≥ 0, which
means

n∑
l=1

µl max
{∣∣∣σ−il − σ−jl∣∣∣ , ∣∣∣σ+

il − σ
+
jl

∣∣∣} = 0

and
n∑

l=1

µl min
{∣∣∣σ−il − σ−jl∣∣∣ , ∣∣∣σ+

il − σ
+
jl

∣∣∣} = 0

and hence Λ(F̃ , J̃) = [1, 1].
Condition III: It can be easily shown that Λ(F̃ , J̃) = Λ(J̃ , F̃ ).
Condition IV: If F̃ ⊆ J̃ ⊆ H̃, then σ−1l ≤ σ−2l ≤ σ−3l and σ+

1l ≤ σ+
2l ≤ σ+

3l. Also one can write∣∣∣σ−1l − σ
−
3l

∣∣∣ ≥ ∣∣∣σ−1l − σ
−
2l

∣∣∣ and
∣∣∣σ+

1l − σ
+
3l

∣∣∣ ≥ ∣∣∣σ+
1l − σ

+
2l

∣∣∣. Therefore,

1 −
n∑

l=1

µl max
{∣∣∣σ−1l − σ

−
2l

∣∣∣ , ∣∣∣σ+
1l − σ

+
2l

∣∣∣} ≥ 1 −
n∑

l=1

µl max
{∣∣∣σ−1l − σ

−
3l

∣∣∣ , ∣∣∣σ+
1l − σ

+
3l

∣∣∣}
and

1 −
n∑

l=1

µl min
{∣∣∣σ−1l − σ

−
2l

∣∣∣ , ∣∣∣σ+
1l − σ

+
2l

∣∣∣} ≥ 1 −
n∑

l=1

µl min
{∣∣∣σ−1l − σ

−
3l

∣∣∣ , ∣∣∣σ+
1l − σ

+
3l

∣∣∣}.
Hence, Λ(F̃ , H̃) ⊆ Λ(F̃ , J̃).
Similarly it can be shown that Λ(F̃ , H̃) ⊆ Λ(J̃ , H̃). �

4. Recruitment pattern recognition based decision-support system

It is easier to focus on parameters and sub-parameters in real-world scenarios. As a result,
parameters are sub-classified into disjoint attribute valued sets to investigate their impact on selecting
the best alternatives during the recruitment process. Another important factor that affects the DM
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process in real-world problems is that the data is not taken in the form of intervals, so when
interval-valued fuzzy values are assigned to parameters or sub-parameters, this makes the selection
process more competent and reliable as its results become more precise and accurate. The process of
DM based on similarity measures in IVFHS environments considers non-overlapping attribute-valued
sets instead of attributes, making this selection process more reliable and result-oriented. The model
of similarity pattern recognition for recruitment is displayed in Figure 1.

Figure 1. Flow chart of complete methodology for recruitment pattern recognition based
decision-support system.

4.1. Statement of the problem

In this section, the recruitment process is done based on similarity measures. An ideal case with
specific criteria forms the basis of the model. All the alternatives that fall within the minimum
eligibility criteria are taken into consideration. The similarity is measured among the other options
and ideal cases. The alternative with maximum similarity will be selected.

Example 4.1. The college’s administrative staff is looking for qualified candidates to fill the position
of principal. There is a set of four decision-makers from four different fields, each with more than
20 years of experience. The recruitment process for the post of principal of a college is done based
on a proposed algorithm. An advertisement is published in three famous newspapers, specifying the
basic qualifications and minimum experience of candidates. There were 18 applicants who applied
for the job. Only five candidates meet the specified criteria and are chosen for an interview. A team
of decision-makers consisting of four experts is given the task of recruiting the best candidate for
the post. This team specifies other criteria for the recruitment process that are not mentioned in the
advertisement. The chairman of the committee sets criteria for the decision-makers and fixes a model.
The interviewing committee assigns specific values in the form of intervals. The similarity measure is
performed using IVFHSSs.

AIMS Mathematics Volume 8, Issue 5, 12321–12341.



12330

4.2. Effective attributes with their attributive valued sets

In this section, effective attributes and their disjoint attribute-valued sets are discussed.

(1) Experience Type: The principal is the head of an educational institution. He must know all the
intricacies of the organization. Previous experience in an institution, especially an educational
institution, is very helpful in dealing with such complexities. Experience is mainly of three
types, depending on the level of the institution. 1. Teaching Experience: Experience in teaching
secondary and higher classes. 2. Office management experience: experience in office
management, including the account and data management branches. 3. Managerial experience:
experience in managing educational institutions. Managerial experience is preferred over the
other two types due to the nature of the job. Similarly, teaching experience weighs less compared
to office management experience. So while assigning values to sub-attributes and transforming
those values into fuzzy values, preference is taken into consideration. That is why teaching
experience, office management experience, and managerial experience have been assigned fuzzy
interval values of 0-0.33, 0.34-0.66, and 0.67-1, respectively, and displayed in Tables 3 and 4.

(2) Experience period: Five years of experience are required for eligibility for the post of principal,
so five years of experience will act as the baseline. Experience is more than what is categorized
into four levels. Level I= more than 5 years of experience, up to a maximum of 10 years. Level
II= more than 10 years of experience, up to a maximum of 15 years. Level III= more than 15
years of experience, up to a maximum of 20 years. Level IV= more than 20 years. Based on
preference, experience periods are arranged in ascending order and assigned fuzzy values in such
a way that a smaller fuzzy value corresponds to a less experienced period and a greater fuzzy
value corresponds to a more experienced period, as displayed in tables 3 and 4.

(3) Higher qualification: Sixteen years of education are the basic educational criteria for a candidate
to be eligible for the post of principal. Higher qualification is preferred, which is categorized into
three levels. Level I= MS (eighteen years of education). Level II= Ph.D. (21 years of education).
Level 3= Post-doctoral. Fuzzy values corresponding to higher qualifications are given in Table 3
and Table 4.

(4) Extra qualification: Besides academic qualifications, professional qualifications such as degrees
in educational planning and management, assessment, leadership learning, etc. enhance the
leadership competencies and the DM power of an individual. So candidates with professional
degrees have greater abilities to manage and control educational institutions. The candidates
with extra qualifications are given preference over the candidates with no qualifications.

(5) Communication skills: communication skills are the ability of an individual to share information
effectively. Being the head of an institution, the principal should be good at giving and taking
information from his subordinates and leaders of other institutions. There are mainly three types
of communication skills. 1. Verbal communication (VC): Verbal communication exploits spoken
words. VC is necessary for most interactions, but there are other nods that facilitate extra
circumstances beyond the expressions of their own. 2. Nonverbal communication (NVC):
Nonverbal communication offers some insight into a spokesperson’s word selection. NVC
includes derision, gratification, and legitimacy, which are communicated not only through
posture but also through body gestures, facial expressions, and physical appearance. A
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disheveled presenter with unironed clothes and a pitiable posture would depict low confidence or
proficiency. On the other hand, a well-suited speaker, who spoke clearly, came out to be more
serious and well-informed. 3. Visual communication (VIC): Visual communication consists of
signs, graphic designs, and drawings. Vi-aids help a spokesperson memorize important points
and facilitate the listener’s easy understanding of the message. Individuals with dominant
communication skills are preferred over others.

(6) IT skills: A principal must have basic IT knowledge. He must have a keen knowledge of his
surroundings. He must be aware of what is happening around the globe. A principal is a role
model for his institution, so he must have the latest knowledge and IT skills. An individual
having dominant IT skills is preferred over others lacking such qualities.

(7) Leadership skills: There are some specific qualities that the principal of an educational
institution must have. He is responsible for every aspect of the institution. He has to manage six
levels of people, including students, teachers, clerical staff, support staff, parents, and
community members. He should have the ability to deal with all levels. Creativity, flexibility,
motivation, and self-awareness are the qualities of Principle that dominate him over others.

Effective attributes with their disjoint attributive value sets are summarized in Table 3, where values
corresponding to attributes and transformed fuzzy values are displayed in Table 4.

4.3. Problem description

Let U =
{
z1, z2, . . . , zp

}
be the sample space and (F̃ ,Q) be IVFHSS over U where ε1, ε2, . . . , εq

are distinct attributes belonging to disjoint attribute valued sets Q1,Q2, . . . ,Qq such that for i, j =

1, 2, . . . , q, i , j,Qi ∩Q j = φ with weight of each θi ∈ W :W = Q1 ×Q2 × · · · ×Qq is µi and
q∑

l=1
µl = 1.

IVFHSS (F̃ ,Q) can be expressed in the form of Table 5.

Table 3. Values Corresponding to attributes.

Attributes Abbrev. Values corresponding to attributes
Experience type Exp Type 1. Teaching, 2. Office management , 3. Managerial
Experience period (years) Exp Period Level I. 5 < Exp ≤ 10, Level II. 10 < Exp ≤ 15,

Level III. 15 < Exp ≤ 20, Level IV Exp > 20
Higher qualification High Q Level I. MS, Level II. Ph.D, Level III. Post doc.
Extra qualification Ext. Q 1. No professional qualification, 2. Have acquired

professional qualification
Communication skills C. Skills 1. Less proficient, 2. Proficient
I.T. Skills IT S 1. Non-certified, 2. Certified
Leadership skills L. Skills 1. Amateur, 2. Expert
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Table 4. Fuzzy Values corresponding to attributes.

Attributes Values corresponding to
attributes

Prescribed
value

Transformed Fuzzy
Values

Exp Type 1. Teaching, 2. Office management
, 3. Managerial

1,2,3 0-0.33,0.34-0.66,0.67-1

Exp Period
(years)

Level I. 5 < Exp ≤ 10, Level II.
10 < Exp ≤ 15, Level III. 15 <

Exp ≤ 20, Level IV Exp > 20

1,2,3,4 0-0.25,0.26-0.5,0.51-
0.75,0.76-1

High Q Level I. MS, Level II. Ph.D, Level
III. Post doc.

1,2,3 0-0.33,0.34-0.66,0.67-1

Ext. Q 1. No professional qualification,
2. Have acquired professional
qualification

1,2 0,1

C. Skills 1. Less proficient, 2. Proficient 1,2 0,1
IT S 1. Non-certified, 2. Certified 1,2 0,1
L. Skills 1. Amateur, 2. Expert 1,2 0,1

Table 5. (F̃ ,Q).

U θ1 θ2 θ3 · · · θq

z1 F̃ (θ1)(z1) F̃ (θ2)(z1) F̃ (θ3)(z1) · · · F̃ (θq)(z1)
z2 F̃ (θ1)(z2) F̃ (θ2)(z2) F̃ (θ3)(z2) · · · F̃ (θq)(z2)
z3 F̃ (θ1)(z3) F̃ (θ2)(z3) F̃ (θ3)(z3) · · · F̃ (θq)(z3)
...

...
...

...
. . .

...

zp F̃ (θ1)(zp) F̃ (θ2)(zp) F̃ (θ3)(zp) · · · F̃ (θq)(zp)

4.4. Decision-support system based on similarity measures of IVFHSSs

There are a lot of applications of similarity measures in fields like coding theory, image processing,
pattern recognition, etc. The concept tells us whether two pictures are alike or how much they are
similar. The concept of a similarity measure for SSs, FSSs, and generalized FSSs was initiated by
Majumdar, and Samanta [33,34]. Similarity measures between two IVFHSSs adopted from Majumdar
& Samanta [33, 34] and Peng et al. [35] with slight variations. An easier and more accepted set-
theoretic approach has been utilized in computations. DM based on an extended form of the similarity
measure, is done with the proposed model under an IVFHSS environment. This section introduces
a new method for solving DM real-world problems based on a proposed similarity measure. The
“ideal point” concept is utilized to select the best option among the given alternatives. Even though
the existence of an ideal alternative is impossible in practical problems, it is possible to construct a
theoretical alternative to perfection. Therefore, let ρI be an ideal alternative as IVF-number ρI

j = [1, 1]
for all values of j. Therefore, by using Eq 3.1, the similarity measure Λ(F̃ , J̃) between alternative ρi

and ideal alternative ρI is represented by IVFHSS is given by

Λ(F̃ , J̃) =

1 − n∑
l=1

µl max
{∣∣∣σ−il − ρ?−l

∣∣∣ , ∣∣∣σ+
il − ρ

?+
l

∣∣∣}, 1 − n∑
l=1

µl min
{∣∣∣σ−il − ρ?−l

∣∣∣ , ∣∣∣σ+
il − ρ

?+
l

∣∣∣}
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=

 n∑
l=1

µlσ
−
il ,

n∑
l=1

µlσ
+
il

 . (4.1)

4.5. Proposed Algorithm and Implementation on Similarity measure method (SM-method)

In this section, the SM-method for IVFHSS is applied in DM. SM is calculated for IVFHSS after
developing the proposed algorithm.
====================================================================

Algorithm
====================================================================
. Start
. Input Stage:
———1. Consider U as sample space
———2. Consider Θ′ as subset of set of attributes
———3. Classify attributes into non-overlapping parametric valued sets Θ1,Θ2,Θ3

. Construction Stage:
———4. Construct Θ = Θ1 × Θ2 × Θ3

———5. Construct IVFHSS (F̃ ,Q)
. Computation Stage:
———6. Calculate similarity measure Λ(ρi, ρ

?) for i ∈ {1, 2, . . . , l} using Eq 4.1
———7. Compute score function for each alternative using Eq 2.1
———8. Rank the alternatives using score function s(ξF̃S (θ)(τ))
. Output Stage:
———9. Choose the best alternative after ranking alternatives in descending order on the bases of
score function s(ξF̃S (θ)(τ)).
.End

====================================================================

The flow chart of algorithm is displayed in Figure 2.

Figure 2. DM based on similarity measure.
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Example 4.2. Consider Example 4.1. The five candidates who fulfill the criteria for the job vacancy
are shortlisted for an interview.

(1) Input Stage(Step 1–Step 3): The five candidates (alternatives) form the universal set
U = {ρ1, ρ2, ρ3, ρ4, ρ5}. Let ‡ = {‡1, ‡2, ‡3, ‡4} be the set of four experts, including ‡1, the
chairman of the recruitment committee. The process of recruitment is done on the basis of the
proposed algorithm. The committee specifies other criteria for the recruitment process that are
not mentioned in the advertisement. The chairman of the committee sets criteria for the
decision-makers and fixes a model. The interviewing committee assigns specific values in the
form of intervals. The similarity measure is done on the basis of IVFHSSs. Let {Experience
type, Experience period, Higher qualification, Extra qualification, Communication skills, IT
skills, Leadership skills } be the set of attributes selected by the recruitment committee.
Mathematically, this set can be written as ∆′ = {∆1,∆2,∆3,∆4,∆5,∆6,∆7}. These attributes are
sub-categorized into non-overlapping attribute valued sets, which are described as follows:

∆1 =
{
Manageral experience, Office management experience, Teaching Experience

}
= {δ11, δ12, δ13} ,

∆2 =
{
More than 5 years up-to maximum of 10 years, More than 10 years up-to maximum

of 15 years, More than 15 years up-to a maximum of 20 years, More than 20 years
}

= {Level I, Level II, Level III, Level IV} = {δ21, δ22, δ23, δ24} ,

∆3 = {M.S., Ph.D., Post-doctorate} = {Level I, Level II, Level III} = {δ31, δ32, δ33} ,

∆4 =
{
No professional qualification, Have acquired professional qualification

}
= {δ41, δ42} ,

∆5 =
{
Less proficient, Proficient

}
= {δ51, δ52} ,

∆6 = {Non-certified, Certified} = {δ61, δ62} ,

∆7 =
{
Amateur, Expert

}
= {δ71, δ72} .

(2) Construction Stage (Step 4, Step 5): Now,

∆ = ∆1 × ∆2 × ∆3 × ∆4 × ∆5 × ∆6 × ∆7 =
{
d̂1, d̂2, d̂3, . . . , d̂t

}
,

where t = 3×4×3×2×2×2×2 = 576, and each d̂i is a seven-tuple element of ∆. Consultation with
education experts, δ11 and δ12 is preferred in ∆1, δ23 and δ24 are preferred in ∆2, δ31 and δ32 are
preferred in ∆3, δ42 is preferred in ∆4, δ52 is preferred in ∆5, δ62 is preferred in ∆6, δ72 is preferred
in ∆7. Therefore, the set

∧
⊂ ∆ has eight elements. So

∧
= {∧1,∧2,∧3,∧4,∧5,∧6,∧7,∧8}

where each ∧i is again a seven tuple element. (F̃ ,Q), the IVFHSS is constructed, and its matrix
formation is demonstrated in Table 6.

Table 6. IVFHSS (F̃ ,Q).

U ∧1 ∧2 ∧3 ∧4 ∧5 ∧6 ∧7 ∧8

ρ1 [0.4, 0.5] [0.3, 0.6] [0.6, 0.8] [0.4, 0.7] [0.6, 0.7] [0.5, 0.8] [0.4, 0.6] [0.6, 0.9]
ρ2 [0.3, 0.4] [0.4, 0.7] [0.3, 0.7] [0.8, 0.9] [0.4, 0.7] [0.2, 0.4] [0.7, 0.9] [0.6, 0.8]
ρ3 [0.4, 0.7] [0.4, 0.6] [0.6, 0.7] [0.6, 0.9] [0.2, 0.3] [0.3, 0.6] [0.5, 0.7] [0.6, 0.7]
ρ4 [0.3, 0.5] [0.5, 0.8] [0.5, 0.6] [0.4, 0.7] [0.5, 0.6] [0.6, 0.8] [0.2, 0.6] [0.7, 0.8]
ρ5 [0.4, 0.9] [0.4, 0.6] [0.5, 0.8] [0.3, 0.6] [0.3, 0.5] [0.5, 0.9] [0.3, 0.8] [0.5, 0.7]
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(3) Computation Stage(Step 6–Step 8): The weights as assigned to sub-parametric tuples by the
expert committee are (0.14, 0.09, 0.17, 0.06, 0.21, 0.10, 0.15, 0.08).

As ρI is an ideal alternative, utilizing Eq (4.1), similarity measure Λρ1(F,J) for ρ1 can be
calculated as follows:

Λρ1(F,J)

=


1 −



(0.14) ×max(1 − 0.4, 1 − 0.5)+
(0.09) ×max(1 − 0.3, 1 − 0.6)+
(0.17) ×max(1 − 0.6, 1 − 0.8)+
(0.06) ×max(1 − 0.4, 1 − 0.7)+
(0.21) ×max(1 − 0.6, 1 − 0.7)+
(0.10) ×max(1 − 0.5, 1 − 0.8)+
(0.15) ×max(1 − 0.4, 1 − 0.6)+
(0.08) ×max(1 − 0.6, 1 − 0.9)


, 1 −



(0.14) ×min(1 − 0.4, 1 − 0.5)+
(0.09) ×min(1 − 0.3, 1 − 0.6)+
(0.17) ×min(1 − 0.6, 1 − 0.8)+
(0.06) ×min(1 − 0.4, 1 − 0.7)+
(0.21) ×min(1 − 0.6, 1 − 0.7)+
(0.10) ×min(1 − 0.5, 1 − 0.8)+
(0.15) ×min(1 − 0.4, 1 − 0.6)+
(0.08) ×min(1 − 0.6, 1 − 0.9)




=

1 −


0.14 × 0.6 + 0.09 × 0.7+

0.17 × 0.4 + 0.06 × 0.6+

0.21 × 0.4 + 0.10 × 0.5+

0.15 × 0.6 + 0.08 × 0.4

 , 1 −


0.14 × 0.5 + 0.09 × 0.4+

0.17 × 0.2 + 0.06 × 0.3+

0.21 × 0.3 + 0.10 × 0.2+

0.15 × 0.4 + 0.08 × 0.1




=

[
1 − [0.084 + 0.063 + 0.068 + 0.036 + 0.084 + 0.050 + 0.090 + 0.032] ,
1 − [0.070 + 0.036 + 0.034 + 0.018 + 0.063 + 0.020 + 0.060 + 0.008]

]
= [1 − 0.507, 1 − 0.309] = [0.493, 0.691] .

So, Λρ1(F,J) = [0.493, 0.691] .

In the same way, similarity measures Λρ2(F,J), Λρ3(F,J), Λρ4(F,J), Λρ5(F,J) for
ρ2, ρ3, ρ4, ρ5 respectively can also be calculated as follows:

Λρ2(F,J) = [0.434, 0.678]
Λρ3(F,J) = [0.425, 0.609]
Λρ4(F,J) = [0.447, 0.646]
Λρ5(F,J) = [0.393, 0.723] .

The score function for the alternative, ρ1 can be calculated using Eq (2.1) as S ρ1 = 0.493 +

0.691− 1 = 1.184− 1 = 0.184. Similarly, the score function for the remaining alternatives can be
calculated as follows:

S ρ2 = 0.434 + 0.678 − 1 = 1.112 − 1 = 0.112
S ρ3 = 0.425 + 0.609 − 1 = 1.034 − 1 = 0.034
S ρ4 = 0.447 + 0.646 − 1 = 1.093 − 1 = 0.093
S ρ5 = 0.393 + 0.723 − 1 = 1.116 − 1 = 0.116.

As it is clear that S ρ1 > S ρ5 > S ρ2 > S ρ4 > S ρ3 , so on the basis of this score function, the
alternatives are ranked in the following way:

ρ1 > ρ5 > ρ2 > ρ4 > ρ3.
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(4) Output Stage(Step 9): The score function clearly shows that alternative rho1 is preferred over
other alternatives due to its highest ranking. As a result, candidate rho1 is chosen for the position
of principal. The pictorial form of ranking is shown in Figure 3.

Figure 3. DM based on similarity measure.

4.6. Discussion and comparison analysis

The recruitment process as a MADM problem has been studied in uncertain environments by many
researchers, but the most relevant work is the contributions of Tripathy et al. [40] who have discussed
the recruitment process as a MADM problem in IVFSS environment. We now compare our computed
results and ranking of the candidates with the computed results and ranking made by Tripathy et al.
[40]. Although they have computed scores in terms of discrete values like 17, 16, 12, 6, and 9 for
five candidates that are compatible with our structure, these scores are first converted to relevant fuzzy
values by dividing each scoring value by the highest score, i.e., 17, and we obtain 1.000, 0.941, 0.705,
0.352, and 0.529, respectively. This comparison is presented in Table 7. The table clearly states that
the score values computed through our proposed algorithm are more reliable and consistent because
it is an admitted fact of numerical mathematics that “the smaller the values, the more reliable and
precise the results are considered”. Next, we compare our proposed model with some relevant existing
models to assess its advantageous aspects by considering some important evaluating indicators like
interval-valued settings, fuzzy membership grades, SAAM= single-argument approximate mapping,
and MAAM= multi-argument approximate mapping. This comparison is usually known as structural
comparison and is meant to judge the flexibility of the model. From Table 8, it is clear that most of the
existing models are particular cases of our proposed model, which proves the flexibility of our model.
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Table 7. Computations based comparison of proposed study.

References Computed scores in terms of fuzzy values Ranking

Tripathy et al. [40] 1.000, 0.941, 0.705, 0.352, 0.529 ρ1 > ρ2 > ρ3 > ρ4 > ρ5.

Proposed model 0.184, 0.116, 0.112, 0.093, 0.034 ρ1 > ρ5 > ρ2 > ρ4 > ρ3

Table 8. Structural comparison of proposed model.

Author Structure Interval-valued
settings

Fuzzy
membership
grades

SAAM MAAM

Zadeh [1] FS × X × ×

Molodtsov [2] SS × × X ×

Maji [4] FSS × X X ×

Yang et al. [5] IVFSS X X X ×

Gorzałczany [6] IVFS X X × ×

Smarandache [21] HSS × × X X

Proposed model IVFHSS X X X X

5. Conclusions

In order to tackle the interval type of data and the partitioning of parameters into sub-parametric
disjoint sets, a generalized model IVFHSS is characterized first, and then the notions of similarity
measures between IVFHSSs are formulated. Some significant results and theorems are proved by using
the properties of IVFHSSs. Afterward, using the formulations of similarity measures of IVFHSSs, a
robust decision-support framework is designed which is accompanied by an intelligent algorithm that
helps the decision makers to evaluate the suitability of a candidate for an advertised post through
pattern recognition method. The computed results are then compared with the most relevant models to
understand the advantages of the proposed study by considering some significant evaluation features.
To cover the uncertain and vague nature of data, this model uses intervals with upper and lower bounds
and fuzzy values. Using the MAAM model, data can be stored in fuzzy-valued intervals. The main
benefit of this study is that it can handle a large amount of data in the form of intervals by taking into
account the disjoint partitioning of parameters in the form of the multi-argument domain of MAAM.
It is also helpful for handling ambiguity and information-based uncertainties while approximating the
alternatives using sub-parametric tuples. As far as the managerial implications and limitations of the
proposed study are concerned, there are some real-world scenarios in which some special settings are
required to be applied. Such scenarios may include:

(1) The periodic nature of data in a complex plane which demands the entitlement of phase and
amplitude terms,

(2) The rough types of data which demand the concepts of lower and upper approximations,

AIMS Mathematics Volume 8, Issue 5, 12321–12341.
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(3) The uncertain nature of parameters and their sub-parametric tuples demands the use of fuzzy
parameterization settings. In such settings, a particular fuzzy membership grade is attached to
each parameter or sub-parametric tuple to assess its vagueness.

The research covers almost the entire mainstream line of artificial intelligence, soft computing, and
pattern recognition. In future directions, many structures, like intuitionistic fuzzy sets, neutrosophic
sets, Pythagorean fuzzy sets, picture fuzzy sets, and refined fuzzy sets, can be hybridized with hypersoft
sets to form new structures with their application in DM. Similarly, other DM methods like TOPSIS,
VIKOR, and AHP can also be applied to extend this study for addressing various DM problems.
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