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Abstract: Many real-world decision-making issues frequently involve competing sets of criteria,
uncertainty, and inaccurate information. Some of these require the involvement of a group of
decision-makers, where it is necessary to reduce the various available individual preferences to a
single collective preference. To enhance the effectiveness of multi-criteria decisions, multi-criteria
decision-making is a popular decision-making technique that makes the procedure more precise,
reasonable, and efficient. The “Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS)” and “Elimination and Choice Transforming Reality (ELECTRE)” are prominent ranking
methods and widely used in the multi-criteria decision-making to solve complicated decision-making
problems. In this study, two m-polar fuzzy set-based ranking methods are proposed by extending the
ELECTRE-I and TOPSIS approaches equipped with cubic m-polar fuzzy (CmPF) sets, where the
experts provide assessment results on feasible alternatives through a CmPF decision matrix. The first
proposed method, CmPF-TOPSIS, focuses on the alternative that is closest to a CmPF positive ideal
solution and farthest away from the CmPF negative ideal solution. The Euclidean and normalized
Euclidean distances are used to determine the proximity of an alternative to ideal solutions. In
contrast, the second developed method is CmPF-ELECTRE-I which uses an outranking directed
decision graph to determine the optimal alternative, which entirely depends on the CmPF concordance
and discordance sets. Furthermore, a practical case study is carried out in the diagnosis of impulse
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control disorders to illustrate the feasibility and applicability of the proposed methods. Finally, a
comparative analysis is performed to demonstrate the veracity, superiority, and effectiveness of the
proposed methods.

Keywords: CmPF set; multi-criteria decision-making; CmPF-ELECTRE-I approach; CmPF-TOPSIS
approach; comparative analysis
Mathematics Subject Classification 03E72, 62C86, 92C50

1. Introduction

Today, when decision-makers (DMs) deal with daily-life problems caused by indefinite and vague
information without the proper tools, they lead to imprecise reasoning and inexact solutions.
Consequently, it is extremely difficult for DMs to make sensible and rational decisions when dealing
with such problems. As a result, addressing vagueness and uncertainties has become especially
important for these problems and difficulties. Zadeh [1] proposed a novel fuzzy set model as an
extension of the crisp set theory. It was a significant accomplishment and a watershed moment in the
evolution of uncertainty theories. To address the different daily-life decision problems having vague
and uncertain information, several extensions of fuzzy sets have been introduced by researchers
worldwide, including intuitionistic fuzzy sets (IFSs) [2], and Pythagorean fuzzy sets (PFSs) [3].
However, a new extension of the fuzzy set that is based on ‘m’ membership degrees for each
alternative of the universe was suggested by Chen et al. [4] and named m-polar fuzzy sets (mPFSs).
An mPFS on a set S is a mapping from S to ‘m’ times the cross product of closed unit intervals. The
motivation behind the invention of mPFS is the fact that multi-polar information occurs in almost
every domain because data sets of different real-world problems sometimes contain multiple
characters and agents.

With another perspective, Jun et al. [5] generalized Atanassov’s IFS and introduced a new model
called the cubic set (CS), which deals with two parts of information, one of which is an interval-valued
fuzzy (IVF) set represents membership grades and the other is a non-membership function. However,
CS theory fails to deal with m-polar fuzzy information in CS formats. To overcome this shortcoming
and complexity in CS theory, Riaz and Hashmi [6] introduced the concept of a cubic m-polar fuzzy set
(or CmPFS). This innovative idea of the CmPF set is a generalized structure of CS and mPFS, and it
has the ability to explore both m-polar data and cubic information accumulatively. Therefore, one can
easily observe that CS and mPFS are special cases of CmPFS.

Decision-making is a technique for making choices involving the identification of decisions,
gathering information, and resolving problems to select the best alternative. Additionally,
multi-criteria decision-making (MCDM) is a general term for methods that provides a quantitative
and systematic approach to support decision-making problems involving multiple criteria and
alternatives [7]. MCDM is a widely used decision methodology that aims to help the decision-makers
in performing the decision process more explicitly, logically, and efficiently. To efficiently address
multiple-criteria decision-making (MCDM) problems, the TOPSIS is a widely adapted and prominent
ranking technique in MCDM. The TOPSIS approach works on a fundamental principle: select the
best alternative that is closest to a positive ideal solution (PIS) and farthest away from the negative
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ideal solution (NIS). In 1981, Hwang and Yoon [8] were the first researchers who introduced a crisp
version of the TOPSIS approach to cope with real-life MCDM issues. However, it is very rare in
real-life decision-making to deals with crisp and precise data, most of the time, the data is imprecise
and vague. To tackle the complexities and uncertainty of real-life MCDM problems containing
uncertainties, Chen [9] merged the theories of TOPSIS and fuzzy sets and proposed the fuzzy version
of the TOPSIS approach. Later, Amir [10] used the fuzzy TOPSIS method for project selection for oil
field development. Chakraborty [11] provided a comparative analysis between existing TOPSIS and
modified TOPSIS methods. In addition, Boran et al. [12] introduced the generalized version of the
TOPSIS approach based on IFSs. Bilgili et al. [13] used intuitionistic fuzzy TOPSIS method for the
evaluation of renewable energy alternatives for sustainable development in Turkey. Zhang and
Xu [14] extended the TOPSIS method under the Pythagorean fuzzy environment. Further, Akram
et al. [15] implemented the Pythagorean fuzzy TOPSIS method for the evaluation of risk in failure
modes and effect analysis. Adeel et al. [16] proposed the m-polar fuzzy linguistic TOPSIS approach
for MCGDM problems involving multi-polar information. Chen et al. [17] introduced a proportional
interval type-2 hesitant fuzzy TOPSIS approach based on Hamacher aggregation operators and
optimization models. Arora and Naithani [18] used the TOPSIS approach to compute exponential
divergence measures for Pythagorean fuzzy sets. Farrokhizadeh et al. [19] proposed interval-valued
spherical fuzzy TOPSIS method based on similarity measure and also introduced spherical fuzzy
maximum deviation methodology for finding unknown criteria weights. Recently, Ali et al. [20] used
m-polar fuzzy aggregation operators for multi-criteria decision-making problems. Bairagi [21] used
the extended TOPSIS method under subjective and objective factors for the selection of robotic
systems. For other related notations, terminologies, and applications, the readers are referred
to [22–28].

Outranking is an MCDM technique in which alternatives are systematically compared to one
another on each criterion. The comparison between the alternatives leads to numerical results that
show the concordance and/or the discordance between them. In 1966, Benayoun [29] was the first
who suggested the crisp version of an outranking approach called ELECTRE. Roy [30] proposed the
generalized version of ELECTRE called the ELECTRE-I approach. Since then, several other versions
of ELECTRE method are developed by the researchers (i.e., ELECTRE-II [31], ELECTRE-III [32],
et cetera). Nowadays, in the group of outranking approaches, the ELECTRE method and its variants
such as ELECTRE I, II, III, and IV play a key role in different real-world disciplines. The primary
goal of ELECTRE is to make the best use of the outranking relationships. For more details and
further members of the ELECTRE family, see [33]. To address fuzzy outranking issues,
Hatami-Marbini and Tavana [34] created the extension of the ELECTRE-I method under a fuzzy
context. Later, Rouyendegh and Erkan [35] applied the fuzzy ELECTRE technique for academic staff

selection. Wu and Chen [36] introduced the extended ELECTRE-I method based on IFSs for dealing
with MCDM problems, which requires both membership and nonmembership information. Kirisci
et al. [37] introduced Fermatean fuzzy ELECTRE approach and employed it for the selection of most
suitable biomedical material. Akram et al. [38] proposed m-polar fuzzy ELECTRE-I approach to deal
with MCDM scenarios. Jagtap et al. [39] developed m-polar fuzzy ELECTRE-I algorithm for the rank
assessment of robots. Further, Adeel et al. [40] presented the m-polar fuzzy linguistic ELECTRE-I
method for linguistic group decision-making problems. For other related notions of ELECTRE
methods and cubical fuzzy systems, the readers may refer to [41–45].
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1.1. Motivations

Our inspiration to extend the TOPSIS and ELECTRE-I methods under CmPF information is based
on the following reasons.

• The CmPF set offers a wide range of applications as it combines the benefits of CS and m-polar
fuzzy sets. However, cubic methods, especially the CmPF MCDM method, remain a challenge
for us in the multi-polar fuzzy case, which we have addressed in this paper.

• Existing strategies to solve the MCDM problem are confined to deal with m-polar ambiguous
information. These techniques are incapable to account for the cubic nature of m-polar fuzzy
data. As a result, information may be lost, leading to undesirable outcomes. However, the newly
proposed methods can overcome current technological restrictions.

• The limited literature on CmPFS is a major incentive for our research as there are no preexisting
decision techniques, based on TOPSIS or ELECTRE-I methods based on CmPF data. Therefore,
CmPF-TOPSIS and CmPF- ELECTRE-I models are developed to address this research gap.

1.2. Study contributions

The major contributions of this article are:

• The most important contribution of this work is the development of two novel hybrid MCDM
techniques for effectively and precisely manipulating CmPF information, which are
CmPF-TOPSIS and CmPF ELECTRE-I.

• Two flowcharts are presented to better understand the developed approaches, which completely
demonstrate the step-by-step methodology of both developed algorithms under CmPF-TOPSIS
and CmPF ELECTRE-I.

• A practical case study was carried out in the diagnosis of psychiatric disorders to illustrate the
feasibility and applicability of the initiated MCDM approaches.

• Finally, a comparative analysis is performed to demonstrate the veracity, superiority, and
effectiveness of the developed methods.

The remaining contents of this article are provided as follows: In Section 2, we review some basic
terminologies and fundamental properties of the hybrid CmPF model along with examples. In
Section 3, we propose the CmPF-TOPSIS approach and provide a numerical application in
medical-diagnosis of the impulse control disorders supported by a developed algorithm. In Section 4,
we develop an algorithm for the initiated ELECTRE-I method under the CmPF environment and
apply it to a similar MCDM problem as provided in Section 3 (that is, psychiatric diagnosis of
impulse control disorders). In Section 5, we provide a comparative study between proposed and
existing techniques. In the end, Section 6 gives the concluding remarks and future directions.

2. Preliminaries

In this section, we review some basic definitions and operations of the hybrid model, namely,
CmPFSs. Throughout the paper, we use S as a universal set.
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Definition 2.1. [4] An m-polar fuzzy set (or mPFS) MP on a universe S is a mapping, from S
to [0, 1]m, that assigns m-independent fuzzy membership values to each element of S, mathematically,
we can write it as:

MP = {〈τ, {η1(τ), η2(τ), η3(τ), . . . ηm(τ)}〉 | τ ∈ S,m ∈ N},
= {〈τ, (ηα(τ))m

α=1〉 | τ ∈ S,m ∈ N},

where (ηα(τ))m
α=1 denotes the ‘m’ membership degrees of an element.

Definition 2.2. [5] A cubic set (or CS) C on S is an object which is given by

C =
{
〈τ,Q(τ), η(τ)〉 | τ ∈ S

}
,

where Q = [Ql,Qu] is an IVF set which serves as membership, and η represents the non-membership
function.

Definition 2.3. [6] A cubic m-polar fuzzy set (or CmPFS) CmP on S is an object which is given as:

CmP =
{
〈τ, {Q1(τ),Q2(τ), . . . ,Qm(τ)}, {η1(τ), η2(τ), . . . , ηm(τ)}〉 | τ ∈ S

}
,

=
{
〈τ,Qα(τ), ηα(τ)〉mα=1 | τ ∈ S

}
,

where Qα = [Qαl ,Q
α
u ] are IVF sets serves as membership, and ηα are non-membership functions. For

convenience, we can write cubic m-polar fuzzy number (CmPFN) as 〈Qα(τ), ηα(τ)〉mα=1.

Example 2.1. Let S = {τ1, τ2, τ3, τ4} ba a universe. Then the C3PFS C3P over S is given below:

C3P =
{
〈τ1, {[0.32, 0.56], [0.55, 0.70], [0.35, 0.45]}, {0.66, 0.75, 0.45}〉,
〈τ2, {[0.22, 0.46], [0.30, 0.35], [0.45, 0.60]}, {0.45, 0.70, 0.25}〉,
〈τ3, {[0.45, 0.55], [0.45, 0.65], [0.75, 0.80]}, {0.70, 0.43, 0.40}〉,
〈τ4, {[0.30, 0.60], [0.55, 0.74], [0.66, 0.79]}, {0.78, 0.55, 0.65}〉

}
.

Definition 2.4. [6] A CmPFS CmP =
{
〈τ,Qα(τ), ηα(τ)〉mα=1 | τ ∈ S

}
on S is said to be internal cubic

m-polar fuzzy set (or ICmPFS) if ηα(τ) ∈ [Qαl (τ),Qαu (τ)]. Similarly, a CmPFS CmP on S is said to be
an external cubic m-polar fuzzy set (or ECmPFS) if ηα(τ) < [Qαl (τ),Qαu (τ)].

2.1. Operations on CmPFSs

In this sub-section, we discuss the operations of CmPFSs along with numerical examples.

Definition 2.5. [6] Let C1
mP =

{
〈τ,Qα(τ), ηα(τ)〉mα=1 | τ ∈ S

}
and C2

mP =
{
〈τ,Rα(τ), ζα(τ)〉mα=1 | τ ∈ S

}
be

the CmPFSs, and κ > 0 be any real number. Then, the operations on these sets under P-ordering are
defined as follows:

(1) Equality: C1
mP = C2

mP if and only if Qα(τ) = Rα(τ) and ηα(τ) = ζα(τ), ∀ α = 1, 2, 3, . . . ,m and
τ ∈ S.

(2) Complement: (C1
mP)c =

{
〈τ, [1 −Qαu (τ), 1 −Qαl (τ)], 1 − ηα(τ)〉mα=1 | τ ∈ S

}
.
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(3) Subset: C1
mP ⊆P C2

mP if and only if Qα(τ) ⊆ Rα(τ) and ηα(τ) ≤ ζα(τ), ∀ α = 1, 2, . . . ,m and
τ ∈ S.

(4) Union: C1
mP

⋃
P C

2
mP =

{
〈τ,Qα(τ) ∨ Rα(τ), ηα(τ) ∨ ζα(τ)〉mα=1 | τ ∈ S

}
, where

Qα(τ)∨Rα(τ) = [max{Qαl (τ),Rαl (τ)},max{Qαu (τ),Rαu (τ), }] and ηα(τ)∨ ζα(τ) = max{ηα(τ), ζα(τ)},
∀ α = 1, 2, . . . ,m.

(5) Intersection: C1
mP

⋂
P C

2
mP =

{
〈τ,Qα(τ) ∧ Rα(τ), ηα(τ) ∧ ζα(τ)〉mα=1 | τ ∈ S

}
, where

Qα(τ) ∧ Rα(τ) = [min{Qαl (τ),Rαl (τ)},min{Qαu (τ),Rαu (τ), }] and ηα(τ) ∧ ζα(τ) = min{ηα(τ), ζα(τ)},
∀ α = 1, 2, . . . ,m.

(6) Ring sum: C1
mP

⊕
P
C2

mP =
{
〈τ, [Qαl (τ)+Rαl (τ)−Qαl (τ)·Rαl (τ),Qαu (τ)+Rαu (τ)−Qαu (τ)·Rαu (τ)], ηα(τ)+

ζα(τ) − ηα(τ) · ζα(τ)〉mα=1 | τ ∈ S
}
.

(7) Ring product: C1
mP

⊗
P
C2

mP =
{
〈τ, [Qαl (τ) · Rαl (τ),Qαu (τ) · Rαu (τ)], ηα(τ) · ζα(τ)〉mα=1 | τ ∈ S

}
.

(8) κ-scalar power: (C1
mP)κ =

{
〈τ, [(Qαl (τ))κ, (Qαu (τ))κ], (ηα(τ))κ〉mα=1 | τ ∈ S

}
.

(9) κ-scalar product: κ · (C1
mP) =

{
〈τ, [1− (1−Qαl (τ))κ, 1− (1−Qαu (τ))κ], 1− (1− ηα(τ))κ〉mα=1 | τ ∈ S

}
.

Example 2.2. Consider C1
3P and C2

3P be two C3PFSs over the universe S = {τ1, τ2, τ3}, which are
given below:

C1
3P =

{
〈τ1, {[0.32, 0.56], [0.55, 0.70], [0.35, 0.45]}, {0.66, 0.75, 0.45}〉,
〈τ2, {[0.22, 0.46], [0.30, 0.35], [0.45, 0.60]}, {0.45, 0.70, 0.25}〉,
〈τ3, {[0.45, 0.55], [0.45, 0.65], [0.75, 0.80]}, {0.70, 0.43, 0.40}〉

}
,

C2
3P =

{
〈τ1, {[0.45, 0.55], [0.32, 0.60], [0.55, 0.70]}, {0.77, 0.70, 0.55}〉,
〈τ2, {[0.20, 0.35], [0.40, 0.55], [0.40, 0.65]}, {0.35, 0.50, 0.45}〉,
〈τ3, {[0.25, 0.65], [0.55, 0.60], [0.65, 0.85]}, {0.30, 0.55, 0.60}〉

}
.

Then, P-Ordering operations on these C3PFSs are evaluated as:

(C1
3P)c =

{
〈τ1, {[0.44, 0.68], [0.30, 0.45], [0.55, 0.65]}, {0.34, 0.25, 0.55}〉,
〈τ2, {[0.54, 0.78], [0.65, 0.70], [0.40, 0.55]}, {0.55, 0.30, 0.75}〉,
〈τ3, {[0.45, 0.55], [0.35, 0.55], [0.20, 0.25]}, {0.30, 0.57, 0.60}〉

}
.

C1
3P

⋃
P

C2
3P =

{
〈τ1, {[0.45, 0.56], [0.55, 0.70], [0.55, 0.70]}, {0.77, 0.75, 0.55}〉,

〈τ2, {[0.22, 0.46], [0.40, 0.55], [0.45, 0.65]}, {0.45, 0.70, 0.45}〉,
〈τ3, {[0.45, 0.65], [0.55, 0.65], [0.75, 0.85]}, {0.70, 0.55, 0.60}〉

}
.

C1
3P

⋂
P

C2
3P =

{
〈τ1, {[0.32, 0.55], [0.32, 0.60], [0.35, 0.45]}, {0.66, 0.70, 0.45}〉,

〈τ2, {[0.20, 0.35], [0.30, 0.35], [0.40, 0.60]}, {0.35, 0.50, 0.25}〉,
〈τ3, {[0.25, 0.55], [0.45, 0.60], [0.65, 0.80]}, {0.30, 0.43, 0.40}〉

}
.

C1
3P

⊕
P

C2
3P =

{
〈τ1, {[0.63, 0.80], [0.69, 0.88], [0.71, 0.84]}, {0.92, 0.93, 0.75}〉,
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〈τ2, {[0.38, 0.65], [0.58, 0.71], [0.67, 0.86]}, {0.64, 0.85, 0.59}〉,
〈τ3, {[0.59, 0.84], [0.75, 0.86], [0.91, 0.97]}, {0.79, 0.74, 0.76}〉

}
.

C1
3P

⊗
P

C2
3P =

{
〈τ1, {[0.14, 0.31], [0.18, 0.42], [0.19, 0.32]}, {0.51, 0.53, 0.25}〉,

〈τ2, {[0.04, 0.16], [0.12, 0.19], [0.18, 0.39]}, {0.16, 0.35, 0.11}〉,
〈τ3, {[0.11, 0.36], [0.25, 0.39], [0.49, 0.68]}, {0.21, 0.24, 0.24}〉

}
.

For κ = 0.3, we have:

(C1
3P)0.3 =

{
〈τ1, {[0.71, 0.84], [0.84, 0.90], [0.73, 0.79]}, {0.88, 0.92, 0.79}〉,
〈τ2, {[0.63, 0.79], [0.70, 0.73], [0.79, 0.86]}, {0.79, 0.90, 0.66}〉,
〈τ3, {[0.79, 0.84], [0.79, 0.88], [0.92, 0.94]}, {0.90, 0.78, 0.76}〉

}
.

0.3 · C1
3P =

{
〈τ1, {[0.54, 0.81], [0.80, 0.91], [0.58, 0.70]}, {0.88, 0.94, 0.70}〉,
〈τ2, {[0.39, 0.71], [0.51, 0.58], [0.70, 0.84]}, {0.70, 0.91, 0.44}〉,
〈τ3, {[0.70, 0.80], [0.70, 0.88], [0.94, 0.96]}, {0.91, 0.68, 0.64}〉

}
.

Definition 2.6. [6] Let C1
mP =

{
〈τ,Qα(τ), ηα(τ)〉mα=1 | τ ∈ S

}
and C2

mP =
{
〈τ,Rα(τ), ζα(τ)〉mα=1 | τ ∈ S

}
be

the CmPFSs and κ > 0 be any real number. Then, the operations on these sets under R-ordering are
defined as follows:

(1) Equality: C1
mP = C2

mP if and only if Qα(τ) = Rα(τ) and ηα(τ) = ζα(τ), ∀ α = 1, 2, 3, . . . ,m and
τ ∈ S.

(2) Complement: (C1
mP)c =

{
〈τ, [1 −Qαu (τ), 1 −Qαl (τ)], 1 − ηα(τ)〉mα=1 | τ ∈ S

}
.

(3) Subset: C1
mP ⊆P C2

mP if and only if Qα(τ) ⊆ Rα(τ) and ηα(τ) ≥ ζα(τ), ∀ α = 1, 2, . . . ,m and
τ ∈ S.

(4) Union: C1
mP

⋃
R C

2
mP =

{
〈τ,Qα(τ) ∨ Rα(τ), ηα(τ) ∧ ζα(τ)〉mα=1 | τ ∈ S

}
, where

Qα(τ) ∨ Rα(τ) = [max{Qαl (τ),Rαl (τ)},max{Qαu (τ),Rαu (τ), }] and ηα(τ) ∧ ζα(τ) = min{ηα(τ), ζα(τ)},
∀ α = 1, 2, . . . ,m.

(5) Intersection: C1
mP

⋂
R C

2
mP =

{
〈τ,Qα(τ) ∧ Rα(τ), ηα(τ) ∨ ζα(τ)〉mα=1 | τ ∈ S

}
, where

Qα(τ) ∧ Rα(τ) = [min{Qαl (τ),Rαl (τ)},min{Qαu (τ),Rαu (τ), }] and ηα(τ) ∨ ζα(τ) = max{ηα(τ), ζα(τ)},
∀ α = 1, 2, . . . ,m.

(6) Ring sum: C1
mP

⊕
R
C2

mP =
{
〈τ, [Qαl (τ)+Rαl (τ)−Qαl (τ)·Rαl (τ),Qαu (τ)+Rαu (τ)−Qαu (τ)·Rαu (τ)], ηα(τ)·

ζα(τ)〉mα=1 | τ ∈ S
}
.

(7) Ring product C1
mP

⊗
R
C2

mP =
{
〈τ, [Qαl (τ)·Rαl (τ),Qαu (τ)·Rαu (τ)], ηα(τ)+ζα(τ)−ηα(τ)·ζα(τ)〉mα=1 | τ ∈

S
}
.

(8) κ-scalar power: (C1
mP)κ =

{
〈τ, [(Qαl (τ))κ, (Qαu (τ))κ], 1 − (1 − ηα(τ))κ〉mα=1 | τ ∈ S

}
.

(9) κ-scalar product: κ · (C1
mP) =

{
〈τ, [1 − (1 −Qαl (τ))κ, 1 − (1 −Qαu (τ))κ], (ηα(τ))κ〉mα=1 | τ ∈ S

}
.
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Example 2.3. Reconsider C3PFSs C1
3P and C2

3P as provided in Example 2.2. Then, R-ordering
operations on these C3PFSs are evaluated as below:

C1
mP

⋃
R

C2
mP =

{
〈τ1, {[0.45, 0.56], [0.55, 0.70], [0.55, 0.70]}, {0.66, 0.70, 0.45}〉,

〈τ2, {[0.22, 0.46], [0.40, 0.55], [0.45, 0.65]}, {0.35, 0.50, 0.25}〉,
〈τ3, {[0.45, 0.65], [0.55, 0.65], [0.75, 0.85]}, {0.30, 0.43, 0.40}〉

}
.

C1
mP

⋂
R

C2
mP =

{
〈τ1, {[0.32, 0.55], [0.32, 0.60], [0.35, 0.45]}, {0.66, 0.75, 0.55}〉,

〈τ2, {[0.20, 0.35], [0.30, 0.35], [0.40, 0.60]}, {0.45, 0.70, 0.45}〉,
〈τ3, {[0.25, 0.55], [0.45, 0.60], [0.65, 0.80]}, {0.70, 0.55, 0.60}〉

}
.

C1
mP

⊕
R

C2
mP =

{
〈τ1, {[0.63, 0.80], [0.69, 0.88], [0.71, 0.84]}, {0.51, 0.53, 0.25}〉,

〈τ2, {[0.38, 0.65], [0.58, 0.71], [0.67, 0.86]}, {0.16, 0.35, 0.11}〉,
〈τ3, {[0.59, 0.84], [0.75, 0.86], [0.91, 0.97]}, {0.21, 0.24, 0.24}〉

}
.

C1
mP

⊗
R

C2
mP =

{
〈τ1, {[0.14, 0.31], [0.18, 0.42], [0.19, 0.32]}, {0.92, 0.93, 0.75}〉,

〈τ2, {[0.04, 0.16], [0.12, 0.19], [0.18, 0.39]}, {0.64, 0.85, 0.59}〉,
〈τ3, {[0.11, 0.36], [0.25, 0.39], [0.49, 0.68]}, {0.79, 0.74, 0.76}〉

}
.

For κ = 0.3, we have:

(C1
mP)0.3 =

{
〈τ1, {[0.71, 0.84], [0.84, 0.90], [0.73, 0.79]}, {0.88, 0.94, 0.70}〉,
〈τ2, {[0.63, 0.79], [0.70, 0.73], [0.79, 0.86]}, {0.70, 0.91, 0.44}〉,
〈τ3, {[0.79, 0.84], [0.79, 0.88], [0.92, 0.94]}, {0.91, 0.68, 0.64}〉

}
.

0.3 · C1
mP =

{
〈τ1, {[0.54, 0.81], [0.80, 0.91], [0.58, 0.70]}, {0.88, 0.92, 0.79}〉,
〈τ2, {[0.39, 0.71], [0.51, 0.58], [0.70, 0.84]}, {0.79, 0.90, 0.66}〉,
〈τ3, {[0.70, 0.80], [0.70, 0.88], [0.94, 0.96]}, {0.90, 0.78, 0.76}〉

}
.

Definition 2.7. Let Ψ(S) denotes the set of all CmPFSs. For CmPFSs C1
mP and C2

mP, the distance
measure is a real-valued function d from Ψ(S)×Ψ(S)→ [0, 1], that satisfying the following conditions:

C1: 0 ≤ d(C1
mP,C

2
mP) ≤ 1;

C2: d(C1
mP,C

2
mP) = 0 if and only if C1

mP = C2
mP;

C3: d(C1
mP,C

2
mP) = d(C2

mP,C
1
mP);

C4: For C3
mP ∈ Ψ(S), if C1

mP ⊆ C2
mP ⊆ C3

mP, then d(C1
mP,C

2
mP) ≤ d(C1

mP,C
3
mP) and d(C1

mP,C
2
mP) ≤

d(C2
mP,C

3
mP)

For CmPFSs C1
mP =

{
〈τ,Qα(τ), ηα(τ)〉mα=1 | τ ∈ S

}
and C2

mP =
{
〈τ,Rα(τ), ζα(τ)〉mα=1 | τ ∈ S

}
over the

universe S = {τ1, τ2, · · · , τn}, we define some distances between these CmPFSs as follows:
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(1) Hamming distance:

dH (C1
mP,C

2
mP) =

1
3m

[ n∑
β=1

m∑
α=1

(
|Qαl (τβ) − Rαl (τβ)| + |Qαu (τβ) − Rαu (τβ)| + |ηα(τβ) − ζα(τβ)|

)]
.

(2) Normalized Hamming distance:

dNH (C1
mP,C

2
mP) =

1
3mn

[ n∑
β=1

m∑
α=1

(
|Qαl (τβ) − Rαl (τβ)| + |Qαu (τβ) − Rαu (τβ)| + |ηα(τβ) − ζα(τβ)|

)]
.

(3) Euclidean distance:

dE(C1
mP,C

2
mP) =

√√
1

3m

[ n∑
β=1

m∑
α=1

(
(Qαl (τβ) − Rαl (τβ))2 + (Qαu (τβ) − Rαu (τβ))2 + (ηα(τβ) − ζα(τβ))2

)]
.

(4) Normalized Euclidean distance:

dNE(C1
mP,C

2
mP) =

√√
1

3mn

[ n∑
β=1

m∑
α=1

(
(Qαl (τβ) − Rαl (τβ))2 + (Qαu (τβ) − Rαu (τβ))2 + (ηα(τβ) − ζα(τβ))2)].

From the above distance measures, we obtained the following results.

Theorem 2.1. The distances dH and dNH between CmPFSs C1
mP and C2

mP satisfy the conditions C1–C4,
as provided in Definition 2.7.

Proof. From CmPFSs C1
mP and C2

mP, we have

C1: Since 0 ≤ Q1
l (τβ), · · · ,Qm

l (τβ) ≤ 1, 0 ≤ Q1
u(τβ), · · · ,Qm

u (τβ) ≤ 1, and 0 ≤ η1(τβ), · · · , ηm(τβ) ≤ 1
also 0 ≤ R1

l (τβ), · · · ,Rm
l (τβ) ≤ 1, 0 ≤ R1

u(τβ), · · · ,Rm
u (τβ) ≤ 1, and 0 ≤ ζ1(τβ), · · · , ζm(τβ) ≤ 1.

This implies that 0 ≤ |Q1
l (τβ) − R1

l (τβ)| ≤ 1, · · · , 0 ≤ |Qm
l (τβ) − Rm

l (τβ)| ≤ 1, 0 ≤ |Q1
u(τβ) −

R1
u(τβ)| ≤1, · · · , 0 ≤ |Qm

u (τβ) − Rm
u (τβ)| ≤ 1 and 0 ≤ |η1(τβ) − ζ1(τβ)| ≤ 1, · · · , 0 ≤ |ηm(τβ) −

ζm(τβ)| ≤1. Therefore, we get

0 ≤
[
|Q1

l (τβ) − R1
l (τβ)| + · · · + |Qm

l (τβ) − Rm
l (τβ)| + |Q1

u(τβ) − R1
u(τβ)| + · · ·

+|Qm
u (τβ) − Rm

u (τβ)| + |η1(τβ) − ζ1(τβ)| + · · · + |ηm(τβ) − ζm(τβ)|

]
≤ m + m + m

0 ≤
[ m∑
α=1

|Qαl (τβ) − Rαl (τβ)| + |Qαu (τβ) − Rαu (τβ)| + |ηα(τβ) − ζα(τβ)|
]
≤ 3m.

This implies that 0 ≤ dH (C1
mP,C

2
mP) ≤ 1.

C2: Assume that dH (C1
mP,C

2
mP) = 0, which implies that

1
3m

[ n∑
β=1

m∑
α=1

|Qαl (τβ) − Rαl (τβ)| + |Qαu (τβ) − Rαu (τβ)| + |ηα(τβ) − ζα(τβ)|
]

= 0,
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n∑
β=1

[
|Q1

l (τβ) − R1
l (τβ)| + · · · + |Qm

l (τβ) − Rm
l (τβ)| + |Q1

u(τβ) − R1
u(τβ)| + · · ·

+|Qm
u (τβ) − Rm

u (τβ)| + |η1(τβ) − ζ1(τβ)| + · · · + |ηm(τβ) − ζm(τβ)|

]
= 0,

if and only for all β |Q1
l (τβ) − R1

l (τβ)| = 0, · · · , |Qm
l (τβ) − Rm

l (τβ)| = 0,
|Q1

u(τβ) − R1
u(τβ)| = 0, · · · , |Qm

u (τβ) − Rm
u (τβ)| = 0, |η1(τβ) − ζ1(τβ)| = 0, · · · , |ηm(τβ) − ζm(τβ)| = 0,

which is equivalent to
Q1

l (τβ) = R1
l (τβ), · · · ,Qm

l (τβ) = Rm
l (τβ),Q1

u(τβ) = R1
u(τβ), · · · ,Qm

u (τβ) = Rm
u (τβ), η1(τβ) =

ζ1(τβ), · · · , ηm(τβ) = ζm(τβ).
Thus, dH (C1

mP,C
2
mP) = 0, implies that C1

mP = C2
mP.

C3: We know that

dH (C1
mP,C

2
mP) =

1
3m

[ n∑
β=1

m∑
α=1

(
|Qαl (τβ) − Rαl (τβ)| + |Qαu (τβ) − Rαu (τβ)| + |ηα(τβ) − ζα(τβ)|

)]

=
1

3m

[ n∑
β=1

m∑
α=1

(
|Rαl (τβ) −Qαl (τβ)| + |Rαu (τβ) −Qαu (τβ)| + |ζα(τβ) − ηα(τβ)|

)]
= dH (C2

mP,C
1
mP).

Thus, dH (C1
mP,C

2
mP) = dH (C2

mP,C
1
mP).

C4: For C3
mP =

{
〈τ,Lα(τ), µα(τ)〉mα=1 | τ ∈ S

}
, if C1

mP ⊆ C2
mP ⊆ C3

mP then [Qαl (τβ),Qαu (τβ)] ⊆ [Rαl (τβ),
Rαu (τβ)] ⊆ [Lαl (τβ),Lαu (τβ)] and ηα(τβ) ≤ ζα(τβ) ≤ µα(τβ). Therefore, |Q1

l (τβ) −R1
l (τβ)| ≤ |Q1

l (τβ) −
L1

l (τβ)|, |Q1
u(τβ)−R1

u(τβ)| ≤ |Q1
u(τβ)−L1

u(τβ)| and |ηα(τβ)− ζα(τβ)| ≤ |ηα(τβ)−µα(τβ)|, then we have

dH (C1
mP,C

3
mP) =

1
3m

[ n∑
β=1

m∑
α=1

(
|Qαl (τβ) − Lαl (τβ)| + |Qαu (τβ) − Lαu (τβ)| + |ηα(τβ) − µα(τβ)|

)]

≥
1

3m

[ n∑
β=1

m∑
α=1

(
|Qαl (τβ) − Rαl (τβ)| + |Qαu (τβ) − Rαu (τβ)| + |ηα(τβ) − ζα(τβ)|

)]
dH (C1

mP,C
3
mP) ≥ dH (C1

mP,C
2
mP).

Similarly, dH (C1
mP,C

3
mP) ≥ dH (C2

mP,C
3
mP).

All the conditions are satisfied. Hence, dH is an accurate distance measure between C1
mP and C2

mP.
Similarly, the proof of dNH is straightforward on the same lines. �

Theorem 2.2. The distances dE and dNE between CmPFSs C1
mP and C2

mP satisfies the conditions C1–
C4, as described in Definition 2.7.

Proof. From CmPFSs C1
mP and C2

mP, we have

C1: Since 0 ≤ Q1
l (τβ), · · · ,Qm

l (τβ) ≤ 1, 0 ≤ Q1
u(τβ), · · · ,Qm

u (τβ) ≤ 1, and 0 ≤ η1(τβ), · · · , ηm(τβ) ≤ 1
also 0 ≤ R1

l (τβ), · · · ,Rm
l (τβ) ≤ 1, 0 ≤ R1

u(τβ), · · · ,Rm
u (τβ) ≤ 1, and 0 ≤ ζ1(τβ), · · · , ζm(τβ) ≤ 1.

This implies that 0 ≤
(
Q1

l (τβ) − R1
l (τβ)

)2
≤ 1, · · · , 0 ≤

(
Qm

l (τβ) − Rm
l (τβ)

)2
≤ 1, 0 ≤

(
Q1

u(τβ) −
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R1
u(τβ)

)2
≤ 1, · · · , 0 ≤

(
Qm

u (τβ) − Rm
u (τβ

)2
≤ 1 and 0 ≤

(
η1(τβ) − ζ1(τβ)

)2
≤ 1, · · · , 0 ≤

(
ηm(τβ) −

ζm(τβ)
)2
≤ 1. Therefore, we get

0 ≤
[(
Q1

l (τβ) − R1
l (τβ)

)2
+ · · · +

(
Qm

l (τβ) − Rm
l (τβ|

)2
+

(
Q1

u(τβ) − R1
u(τβ)

)2
+ · · ·

+
(
Qm

u (τβ) − Rm
u (τβ)

)2
+

(
η1(τβ) − ζ1(τβ)

)2
+ · · · +

(
ηm(τβ) − ζm(τβ)

)2

]
≤ m + m + m

0 ≤
[ m∑
α=1

(
Q
α
l (τβ) − Rαl (τβ)

)2
+

(
Q
α
u (τβ) − Rαu (τβ)

)2
+

(
ηα(τβ) − ζα(τβ)

)2
]
≤ 3m.

This implies that 0 ≤ dE(C1
mP,C

2
mP) ≤ 1.

C2: Assume that dE(C1
mP,C

2
mP) = 0, which implies that

 1
3m

[ n∑
β=1

m∑
α=1

(
Q
α
l (τβ) − Rαl (τβ)

)2
+

(
Q
α
u (τβ) − Rαu (τβ)

)2
+

(
ηα(τβ) − ζα(τβ)

)2
]

1
2

= 0,

n∑
β=1

[(
Q1

l (τβ) − R1
l (τβ)

)2
+ · · · +

(
Qm

l (τβ) − Rm
l (τβ)

)2
+

(
Q1

u(τβ) − R1
u(τβ)

)2
+ · · ·

+
(
Qm

u (τβ) − Rm
u (τβ)| +

(
η1(τβ) − ζ1(τβ)

)2
+ · · · +

(
ηm(τβ) − ζm(τβ)

)2

]
= 0,

if and only for all β(
Q1

l (τβ) − R1
l (τβ)

)2
= 0, · · · ,

(
Qm

l (τβ) − Rm
l (τβ)

)2
= 0,

(
Q1

u(τβ) − R1
u(τβ)

)2
= 0, · · · ,(

Qm
u (τβ) −Rm

u (τβ)
)2

= 0,
(
η1(τβ) − ζ1(τβ)

)2
= 0, · · · ,

(
ηm(τβ) − ζm(τβ)

)2
= 0, which is equivalent to

Q1
l (τβ) = R1

l (τβ), · · · ,Qm
l (τβ) = Rm

l (τβ),Q1
u(τβ) = R1

u(τβ), · · · ,Qm
u (τβ) = Rm

u (τβ), η1(τβ) =

ζ1(τβ), · · · , ηm(τβ) = ζm(τβ).
Thus, dE(C1

mP,C
2
mP) = 0, implies that C1

mP = C2
mP.

C3: We know that

dE(C1
mP,C

2
mP) =

 1
3m

[ n∑
β=1

m∑
α=1

((
Q
α
l (τβ) − Rαl (τβ)

)2
+

(
Q
α
u (τβ) − Rαu (τβ)

)2
+

(
ηα(τβ) − ζα(τβ)

)2
)]

1
2

=

 1
3m

[ n∑
β=1

m∑
α=1

((
R
α
l (τβ) −Qαl (τβ)

)2
+

(
R
α
u (τβ) −Qαu (τβ)

)2
+

(
ζα(τβ) − ηα(τβ)

)2
)]

1
2

= dE(C2
mP,C

1
mP).

Thus, dE(C1
mP,C

2
mP) = dE(C2

mP,C
1
mP).

C4: For C3
mP =

{
〈τ,Lα(τ), µα(τ)〉mα=1 | τ ∈ S

}
, if C1

mP ⊆ C2
mP ⊆ C3

mP then [Qαl (τβ),Qαu (τβ)] ⊆ [Rαl (τβ),
Rαu (τβ)] ⊆ [Lαl (τβ),Lαu (τβ)] and ηα(τβ) ≤ ζα(τβ) ≤ µα(τβ). Therefore,(
Q1

l (τβ) − R1
l (τβ)

)2
≤

(
Q1

l (τβ) − L1
l (τβ)

)2,
(
Q1

u(τβ) − R1
u(τβ)

)2
≤

(
Q1

u(τβ) − L1
u(τβ)

)2 and(
ηα(τβ) − ζα(τβ)

)2
≤

(
ηα(τβ) − µα(τβ)

)2, then we have

dE(C1
mP,C

3
mP) =

 1
3m

[ n∑
β=1

m∑
α=1

((
Q
α
l (τβ) − Lαl (τβ)

)2
+

(
Q
α
u (τβ) − Lαu (τβ)

)2
+

(
ηα(τβ) − µα(τβ)

)2
)]

1
2
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≥

 1
3m

[ n∑
β=1

m∑
α=1

((
Q
α
l (τβ) − Rαl (τβ)

)2
+

(
Q
α
u (τβ) − Rαu (τβ)

)2
+

(
ηα(τβ) − ζα(τβ)

)2
)]

1
2

dE(C1
mP,C

3
mP) ≥ dE(C1

mP,C
2
mP).

Similarly, dE(C1
mP,C

3
mP) ≥ dE(C2

mP,C
3
mP).

All the conditions are satisfied. Hence, dE is an accurate distance measure between C1
mP and C2

mP.
Similarly, the proof of dNE is trivial on the same lines and also a valid distance measure. �

3. Cubic m-polar fuzzy TOPSIS method

In this section, we merge the hybrid CmPFS model with the TOPSIS method, and propose a new
algorithm for the initiated CmPF-TOPSIS approach. Then, we implement it to solve a challenging real-
life decision-making problem. Let us assume that a decision-maker has to choose one of ‘s’ possible
alternatives with respect to ‘t’ criteria. According to the decision-maker, the rating of each alternative
ℵi(i = 1, 2, 3, · · · , s) with respect to each criterionA j( j = 1, 2, 3, · · · , t) is a CmPF value that is denoted
by τi j. Also, letW = [w1,w2, · · · ,wt] be the vector of criteria weights which describe the positiveness
of each criterion according to the given information. The algorithm for CmPF-TOPSIS approach is
provided as below:
Algorithm 1: (Technique for preference ranking order between alternatives)

1). Input:

(i) Each alternative is evaluated with respect to t-criteria. So, all the values which are precise to
the alternatives regarding each criterion form a decision matrix as:

S = [τi j]s×t =



τ11 τ12 · · · τ1(t−1) τ1t

τ21 τ22 · · · τ2(t−1) τ2t
...

...
. . .

...
...

τ(s−1)1 τ(s−1)2 · · · τ(s−1)(t−1) τ(s−1)t

τs1 τs2 · · · τs(t−1) τst


. (3.1)

In this matrix each entry τi j = 〈 Qαi j, η
α
i j〉

m
α=1, where Qαi j = [Qαli j,Q

α
ui j], i = 1, 2, · · · , s and

j = 1, 2, · · · , t.

(ii) The weights W = [w1,w2, · · · ,wt]T are adopted for each criterion by the decision-maker,
which satisfy the normalized condition, that is,

∑t
j=1 w j = 1 where w j is the weight of j-th

criterion where j = 1, 2, · · · , t.

2). The CmPF weighted decision matrix V is constructed by multiplying the columns of CmPF
decision matrix S with the associated weights w j ∈ [0, 1].

V = [κi j]s×t =


κ11 κ12 · · · κ1t

κ21 κ22 · · · κ2t
...

...
. . .

...

κs1 κs2 · · · κst

 , (3.2)
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where each entry κi j = 〈Rαi j, ζ
α
i j〉

m
α=1 is calculated as:

κi j = w j · τi j

= 〈[1 − (1 −Qαli j)
w j , 1 − (1 −Qαui j)

w j], (ηαi j)
w j〉mα=1

= 〈[Rαli j,R
α
ui j], ζ

α
i j〉

m
α=1 = 〈Rαi j, ζ

α
i j〉

m
α=1

3). This step determines the CmPF positive ideal solution (CmPFPIS) F+ and CmPF negative ideal
solution (CmPFNIS) F− as follows:

F+ =
{
〈{[Q1+

l1 ,Q
1+
u1 ], [Q2+

l1 ,Q
2+
u1 ], . . . , [Qm+

l1 ,Q
m+
u1 ]}, {η1+

1 , η
2+
1 , . . . , η

m+
1 }〉,

〈{[Q1+
l2 ,Q

1+
u2 ], [Q2+

l2 ,Q
2+
u2 ], . . . , [Qm+

l2 ,Q
m+
u2 ]}, {η1+

2 , η
2+
2 , . . . , η

m+
2 }〉,

· · · , 〈{[Q1+
l j ,Q

1+
u j ], [Q2+

l j ,Q
2+
u j ], . . . , [Qm+

l j ,Q
m+
u j ]}, {η1+

j , η
2+
j , . . . , η

m+
j }〉

}
,

F+ =
{
〈{[Qα+

l j ,Q
α+
u j ], ηα+

j 〉
m
α=1,

t
j=1

}
. (3.3)

where [Qα+
l j ,Q

α+
u j ] = [maxiR

α
li j,maxiR

α
ui j], η

α+
j = maxiζ

α
i j.

F− =
{
〈{[Q1−

l1 ,Q
1−
u1 ], [Q2−

l1 ,Q
2−
u1 ], . . . , [Qm−

l1 ,Q
m−
u1 ]}, {η1−

1 , η
2−
1 , . . . , η

m−
1 〉},

〈{[Q1−
l2 ,Q

1−
u2 ], [Q2−

l2 ,Q
2−
u2 ], . . . , [Qm−

l2 ,Q
m−
u2 ]}, {η1−

2 , η
2−
2 , . . . , η

m−
2 }〉,

· · · , 〈{[Q1−
l j ,Q

1−
u j ], [Q2−

l j ,Q
2−
u j ], . . . , [Qm−

l j ,Q
m−
u j ]}, {η1−

j , η
2−
j , . . . , η

m−
j }〉

}
,

F− =
{
〈{[Qα−l j ,Q

α−
u j ], ηα−j 〉

m
α=1,

t
j=1

}
. (3.4)

where [Qα−l j ,Q
α−
u j ] = [miniR

α
li j,miniR

α
ui j], η

α−
j = miniζ

α
i j and (i = 1, 2, · · · , s).

4). Euclidean distance dE of each alternative ℵi from F+ and F− is determined by the following
formulas:

dE(ℵiF
+) =

√√√
1

3m

t∑
j=1

m∑
α=1

(
(Rαli j −Q

α+
l j )2 + (Rαui j −Q

α+
u j )2 + (ζαi j − η

α+
j )2) (3.5)

and

dE(ℵi,F
−) =

√√√
1

3m

t∑
j=1

m∑
α=1

(
(Rαli j −Q

α−
l j )2 + (Rαui j −Q

α−
u j )2 + (ζαi j − η

α−
j )2). (3.6)

5). The relative closeness of each alternative to CmPFPIS F+ is calculated as follows:

%(ℵi) =
dE(ℵi,F

−)
dE(ℵi,F+) + dE(ℵi,F−)

, i = 1, 2, · · · , s. (3.7)

6). Output:
The alternative with highest closeness degree is the best one.
For better understanding, the Algorithm 1 is summarized in Figure 1.
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Identification
of alternatives
and criterion

Input

Construct a CmPF
decision matrix

Criteria weights
assessment by the

decision-maker

Construct the weighted
CmPF decision matrix

Determine
CmPFPIS (F+)

Determine
CmPFNIS (F−)

Compute the
Euclidean distance
of each alternative
from F+ and F−

Compute the
normalized

Euclidean distance
of each alternative
from F+ and F−

Evaluate the relative
closeness of each

alternative to CmPFPIS
Evaluate the revised

closeness of each
alternative to CmPFPIS

The alternative having
maximum closness

value to CmPFPIS will
be the best decision

Output

Algorithm 1 Improved algorithm 1

Figure 1. Graphical structure of Algorithm 1 and improved Algorithm 1.

Remark 3.1. In practical life decision-making problems, some times the Euclidean distance of each
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alternative from positive ideal solution (PIS) and negative ideal solution (NIS) gives inaccurate
numeric values.

Remark 3.2. The relative closeness index %(ℵi) may be used to determine the preference ranking of
alternatives as well as the ideal option. However, HadiVencheh and Mirjaberi [28] suggested that in
some cases, it may be impossible to find an ideal alternative, that is, closest to the PIS and farthest
from the NIS. To compensate for this deficiency, they devised the updated closeness index.

So, to overcome these shortcomings in Algorithm 1, we provided improved Algorithm 1 that
focuses on normalized Euclidean distance and updated closeness index.
Improved Algorithm 1:
In this algorithm, steps 1–3 is similar as Algorithm 1. So, we start from step 4.

4). The normalized Euclidean distance dNE of each alternative αi from F+ and F− is computed by the
following formulas:

dNE(ℵi,F
+) =

√√√
1

3mt

t∑
j=1

m∑
α=1

(
(Rαli j −Q

α+
l j )2 + (Rαui j −Q

α+
u j )2 + (ζαi j − η

α+
j )2), (3.8)

and

dNE(ℵi,F
−) =

√√√
1

3mt

t∑
j=1

m∑
α=1

(
(Rαli j −Q

α−
l j )2 + (Rαui j −Q

α−
u j )2 + (ζαi j − η

α−
j )2). (3.9)

5). The updated closeness index for our developed model is calculated using the following formula:

℘(ℵi) =
dNE(ℵi,F

−)
maxi dNE(ℵi,F−)

−
dNE(ℵi,F

+)
mini dNE(ℵi,F+)

, i = 1, 2, · · · , s. (3.10)

6). After the calculation of revised closeness index ℘(ℵi), rank the alternatives in descending order
and the alternative with maximum revised closeness degree will be the suitable optimal
alternative.
For better understanding, the improved Algorithm 1 is displayed in Figure 1.

3.1. Numerical application for CmPF-TOPSIS approach

3.1.1. Diagnosis of impulse control disorders

Impulse control disorders (ICDs) are the types of behavioral disorders that cause someone to fall
into impulsive thinking. These disorders are often linked to chemical imbalances or structural changes
in a region of the brain called the prefrontal cortex. The prefrontal cortex plays an important role in

decision-making processes. These ICDs as a group of mental health disorders involve problems
with self-control. People suffering from ICDs may find it difficult to resist the temptation to perform
a certain action. In many cases, these urges are related to acting out in some way, through aggressive,
dishonest, rule-breaking, or unsafe behavior.

The American Psychiatric Association (APA) rearranged and regrouped a variety of mental health
conditions in its most recent revision of the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5) [46]. From the several types of ICDs, DSM-5 [46] listed six major types of
ICDs, which are given as
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• Oppositional defiant disorder (ODD),

• Intermittent explosive disorder (IED),

• Conduct disorder (CD),

• Antisocial personality disorder (ASPD),

• Kleptomania,

• Pyromania.

All these ICDs involve problems with self-control in terms of behavior and emotions. People may not
realize how common ICDs are in children and adults, but this group of conditions affects many people
every year. According to DSM-5 [46], the current annual prevalence rate of these ICDs is estimated
about 3.3% of the United States (US) population meets the criteria for ODD, and up to 4% of people
meet the criteria for CD. IED is the most common impulse disorder, as around 7% of the US population
meet the diagnostic criteria for IED at some point during their lifetime. Antisocial personality disorder
(ASPD) rates are different in males and females, according to DSM-5 [46], up to 3.5% of Americans
have symptoms of ASPD. Pyromania and kleptomania are rarer, with prevalence estimates hovering
at around 1% of the population. These estimates are approximate, and also the rates of these ICDs
are different in children, males, and females. The summary of the statistics of these ICDs is shown in
Figure 2.

Figure 2. Annual rate of ICDs symptoms in the US population.

Assume that two patients {P1,P2} have a mental problem and go to a Psychiatrist (decision maker)
for a checkup. The patients have several common symptoms like irritability, criminal behavior,
argumentativeness, vindictiveness, mistreating children or animals, etc. After a complete checkup of
the mental condition of the patients, the Psychiatrist ensures that the patients may have one of the
aforementioned ICDs.

So, let ℵ = {ℵi : i = 1, 2, . . . , 6} be the set of ICDs (alternatives) where ℵ1 = ODD, ℵ2 = IED, ℵ3 =

CD, ℵ4 = ASPD, ℵ5 = kleptomania, and ℵ6 = pyromania. Let S = {S j : j = 1, 2, . . . , 8} be the set of
major common symptoms (criteria) in patients which are organized by Psychiatrist after examination.
The detail description of symptoms in patients is explained in Figure 3.
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Figure 3. Detailed description of symptoms.

The appropriate rating of each ICD is given by the Psychiatrist with respect to the corresponding
symptoms in the form of C3PF value. Now we have to assess the accurate disease, by using Algorithm 1
(CmPF-TOPSIS method) as follows:

1). Input:

(i) The C3PF decision matrix according to the explored problem is provided as:

S =

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8



ℵ1 τ11 τ12 τ13 τ14 τ15 τ16 τ17 τ18

ℵ2 τ21 τ22 τ23 τ24 τ25 τ26 τ27 τ28

ℵ3 τ31 τ32 τ33 τ34 τ35 τ36 τ37 τ38

ℵ4 τ41 τ42 τ43 τ44 τ45 τ46 τ37 τ38

ℵ5 τ51 τ52 τ53 τ54 τ55 τ56 τ57 τ58

ℵ6 τ61 τ62 τ63 τ64 τ65 τ66 τ67 τ68

,

where the entries τi j according to the judgments of decision-maker for P1 and P2 are
expressed in Tables 1 and 2, respectively.

(ii) Weights assessments by the decision-maker that satisfying the normalized condition∑8
j=1 w j = 1 are given as:

W =
[
w1 w2 w3 w4 w5 w6 w7 w8

]T
=

[
0.1 0.2 0.15 0.1 0.15 0.1 0.1 0.1

]T
.
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Table 1. C3PF decision matrix for ‘P1’.

S 1 S 2

ℵ1 〈{[0.7, 0.9], [0.4, 0.5], [0.2, 0.3]}, {0.7, 0.6, 0.3}〉 〈{[0.3, 0.4], [0.5, 0.6], [0.5, 0.7]}, {0.6, 0.2, 0.8}〉
ℵ2 〈{[0.1, 0.3], [0.2, 0.5], [0.4, 0.5]}, {0.3, 0.4, 0.6}〉 〈{[0.1, 0.2], [0.4, 0.5], [0.1, 0.3]}, {0.3, 0.4, 0.5}〉
ℵ3 〈{[0.2, 0.5], [0.1, 0.3], [0.5, 0.6]}, {0.2, 0.3, 0.5}〉 〈{[0.2, 0.3], [0.0, 0.1], [0.8, 0.9]}, {0.4, 0.1, 0.3}〉
ℵ4 〈{[0.3, 0.4], [0.4, 0.6], [0.1, 0.2]}, {0.1, 0.5, 0.2}〉 〈{[0.3, 0.7], [0.5, 0.7], [0.3, 0.4]}, {0.2, 0.5, 0.4}〉
ℵ5 〈{[0.1, 0.4], [0.2, 0.5], [0.1, 0.3]}, {0.7, 0.3, 0.4}〉 〈{[0.4, 0.5], [0.3, 0.5], [0.0, 0.2]}, {0.5, 0.4, 0.3}〉
ℵ6 〈{[0.6, 0.7], [0.3, 0.4], [0.4, 0.5]}, {0.1, 0.8, 0.6}〉 〈{[0.5, 0.6], [0.2, 0.3], [0.2, 0.3]}, {0.2, 0.7, 0.6}〉

S 3 S 4

ℵ1 〈{[0.4, 0.6], [0.2, 0.3], [0.1, 0.3]}, {0.3, 0.5, 0.6}〉 〈{[0.2, 0.3], [0.2, 0.5], [0.2, 0.4]}, {0.2, 0.3, 0.7}〉
ℵ2 〈{[0.1, 0.4], [0.5, 0.6], [0.7, 0.8]}, {0.7, 0.3, 0.2}〉 〈{[0.1, 0.2], [0.3, 0.4], [0.1, 0.3]}, {0.1, 0.4, 0.5}〉
ℵ3 〈{[0.3, 0.5], [0.2, 0.4], [0.5, 0.6]}, {0.6, 0.4, 0.1}〉 〈{[0.3, 0.4], [0.1, 0.3], [0.3, 0.5]}, {0.3, 0.5, 0.6}〉
ℵ4 〈{[0.5, 0.7], [0.1, 0.4], [0.3, 0.4]}, {0.1, 0.2, 0.4}〉 〈{[0.4, 0.6], [0.0, 0.2], [0.0, 0.1]}, {0.6, 0.3, 0.2}〉
ℵ5 〈{[0.2, 0.3], [0.4, 0.7], [0.2, 0.3]}, {0.5, 0.3, 0.4}〉 〈{[0.5, 0.7], [0.2, 0.4], [0.7, 0.8]}, {0.2, 0.2, 0.0}〉
ℵ6 〈{[0.0, 0.1], [0.1, 0.3], [0.4, 0.5]}, {0.0, 0.4, 0.3}〉 〈{[0.3, 0.5], [0.0, 0.2], [0.3, 0.4]}, {0.1, 0.3, 0.2}〉

S 5 S 6

ℵ1 〈{[0.2, 0.3], [0.2, 0.4], [0.2, 0.3]}, {0.3, 0.6, 0.5}〉 〈{[0.7, 0.9], [0.4, 0.5], [0.2, 0.3]}, {0.7, 0.6, 0.3}〉
ℵ2 〈{[0.4, 0.5], [0.5, 0.6], [0.1, 0.2]}, {0.3, 0.5, 0.8}〉 〈{[0.4, 0.6], [0.3, 0.6], [0.3, 0.4]}, {0.4, 0.1, 0.2}〉
ℵ3 〈{[0.1, 0.2], [0.3, 0.5], [0.2, 0.3]}, {0.5, 0.4, 0.7}〉 〈{[0.5, 0.7], [0.2, 0.4], [0.1, 0.2]}, {0.1, 0.3, 0.4}〉
ℵ4 〈{[0.5, 0.6], [0.2, 0.3], [0.5, 0.6]}, {0.2, 0.7, 0.6}〉 〈{[0.0, 0.1], [0.1, 0.3], [0.4, 0.5]}, {0.0, 0.4, 0.3}〉
ℵ5 〈{[0.3, 0.5], [0.0, 0.2], [0.3, 0.4]}, {0.1, 0.3, 0.3}〉 〈{[0.2, 0.5], [0.1, 0.2], [0.5, 0.6]}, {0.2, 0.1, 0.5}〉
ℵ6 〈{[0.5, 0.7], [0.1, 0.4], [0.4, 0.5]}, {0.4, 0.2, 0.4}〉 〈{[0.4, 0.6], [0.2, 0.3], [0.1, 0.3]}, {0.3, 0.5, 0.4}〉

S 7 S 8

ℵ1 〈{[0.1, 0.3], [0.2, 0.4], [0.3, 0.5]}, {0.2, 0.3, 0.1}〉 〈{[0.2, 0.5], [0.1, 0.3], [0.3, 0.4]}, {0.1, 0.4, 0.6}〉
ℵ2 〈{[0.3, 0.4], [0.5, 0.6], [0.1, 0.3]}, {0.0, 0.2, 0.1}〉 〈{[0.1, 0.2], [0.3, 0.5], [0.4, 0.6]}, {0.0, 0.2, 0.3}〉
ℵ3 〈{[0.2, 0.5], [0.3, 0.5], [0.2, 0.4]}, {0.1, 0.4, 0.3}〉 〈{[0.0, 0.3], [0.2, 0.4], [0.1, 0.3]}, {0.5, 0.3, 0.4}〉
ℵ4 〈{[0.6, 0.7], [0.1, 0.3], [0.4, 0.6]}, {0.3, 0.5, 0.2}〉 〈{[0.2, 0.4], [0.1, 0.2], [0.0, 0.2]}, {0.2, 0.0, 0.1}〉
ℵ5 〈{[0.4, 0.6], [0.0, 0.2], [0.5, 0.7]}, {0.4, 0.4, 0.2}〉 〈{[0.3, 0.6], [0.0, 0.1], [0.2, 0.5]}, {0.3, 0.1, 0.2}〉
ℵ6 〈{[0.1, 0.4], [0.2, 0.5], [0.1, 0.2]}, {0.6, 0.3, 0.4}〉 〈{[0.5, 0.7], [0.2, 0.3], [0.0, 0.1]}, {0.4, 0.2, 0.5}〉
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Table 2. C3PF decision matrix for patient ‘P2’.

S 1 S 2

ℵ1 〈{[0.5, 0.7], [0.5, 0.6], [0.2, 0.4]}, {0.6, 0.4, 0.1}〉 〈{[0.1, 0.3], [0.5, 0.8], [0.3, 0.4]}, {0.7, 0.3, 0.2}〉
ℵ2 〈{[0.1, 0.4], [0.2, 0.3], [0.6, 0.7]}, {0.3, 0.5, 0.2}〉 〈{[0.3, 0.6], [0.2, 0.5], [0.0, 0.1]}, {0.4, 0.2, 0.4}〉
ℵ3 〈{[0.2, 0.3], [0.4, 0.7], [0.5, 0.6]}, {0.5, 0.3, 0.4}〉 〈{[0.2, 0.5], [0.4, 0.6], [0.8, 0.9]}, {0.3, 0.1, 0.5}〉
ℵ4 〈{[0.3, 0.5], [0.2, 0.4], [0.1, 0.2]}, {0.4, 0.6, 0.5}〉 〈{[0.3, 0.6], [0.3, 0.7], [0.1, 0.3]}, {0.5, 0.4, 0.0}〉
ℵ5 〈{[0.4, 0.6], [0.1, 0.3], [0.4, 0.5]}, {0.2, 0.5, 0.6}〉 〈{[0.4, 0.7], [0.2, 0.4], [0.2, 0.5]}, {0.4, 0.5, 0.3}〉
ℵ6 〈{[0.6, 0.8], [0.4, 0.5], [0.3, 0.7]}, {0.8, 0.7, 0.1}〉 〈{[0.2, 0.4], [0.1, 0.3], [0.0, 0.2]}, {0.2, 0.4, 0.6}〉

S 3 S 4

ℵ1 〈{[0.3, 0.4], [0.4, 0.6], [0.1, 0.2]}, {0.1, 0.5, 0.2}〉 〈{[0.0, 0.3], [0.3, 0.7], [0.2, 0.4]}, {0.2, 0.3, 0.1}〉
ℵ2 〈{[0.2, 0.3], [0.3, 0.5], [0.2, 0.4]}, {0.4, 0.8, 0.6}〉 〈{[0.1, 0.4], [0.2, 0.5], [0.1, 0.2]}, {0.5, 0.4, 0.6}〉
ℵ3 〈{[0.7, 0.9], [0.2, 0.3], [0.4, 0.5]}, {0.7, 0.6, 0.3}〉 〈{[0.6, 0.7], [0.1, 0.3], [0.4, 0.6]}, {0.6, 0.5, 0.7}〉
ℵ4 〈{[0.2, 0.5], [0.1, 0.4], [0.5, 0.6]}, {0.1, 0.3, 0.5}〉 〈{[0.2, 0.5], [0.2, 0.4], [0.3, 0.5]}, {0.3, 0.6, 0.4}〉
ℵ5 〈{[0.6, 0.7], [0.4, 0.7], [0.1, 0.3]}, {0.7, 0.5, 0.4}〉 〈{[0.4, 0.6], [0.0, 0.2], [0.5, 0.7]}, {0.4, 0.3, 0.2}〉
ℵ6 〈{[0.1, 0.3], [0.4, 0.5], [0.3, 0.7]}, {0.3, 0.4, 0.6}〉 〈{[0.3, 0.4], [0.4, 0.6], [0.6, 0.8]}, {0.0, 0.2, 0.1}〉

S 5 S 6

ℵ1 〈{[0.1, 0.2], [0.1, 0.3], [0.4, 0.6]}, {0.3, 0.5, 0.2}〉 〈{[0.2, 0.4], [0.1, 0.2], [0.3, 0.5]}, {0.2, 0.4, 0.6}〉
ℵ2 〈{[0.4, 0.5], [0.2, 0.3], [0.1, 0.2]}, {0.1, 0.4, 0.5}〉 〈{[0.3, 0.5], [0.2, 0.4], [0.1, 0.4]}, {0.1, 0.0, 0.2}〉
ℵ3 〈{[0.2, 0.3], [0.5, 0.6], [0.2, 0.3]}, {0.5, 0.6, 0.7}〉 〈{[0.4, 0.7], [0.3, 0.5], [0.2, 0.6]}, {0.7, 0.5, 0.3}〉
ℵ4 〈{[0.3, 0.4], [0.2, 0.4], [0.3, 0.5]}, {0.2, 0.3, 0.6}〉 〈{[0.6, 0.8], [0.4, 0.6], [0.0, 0.3]}, {0.5, 0.3, 0.4}〉
ℵ5 〈{[0.0, 0.1], [0.4, 0.5], [0.0, 0.4]}, {0.4, 0.2, 0.4}〉 〈{[0.5, 0.6], [0.1, 0.3], [0.1, 0.2]}, {0.3, 0.2, 0.6}〉
ℵ6 〈{[0.5, 0.7], [0.1, 0.4], [0.4, 0.5]}, {0.0, 0.1, 0.3}〉 〈{[0.1, 0.5], [0.0, 0.1], [0.1, 0.3]}, {0.4, 0.1, 0.3}〉

S 7 S 8

ℵ1 〈{[0.3, 0.5], [0.4, 0.6], [0.2, 0.4]}, {0.2, 0.4, 0.5}〉 〈{[0.1, 0.3], [0.2, 0.4], [0.1, 0.4]}, {0.2, 0.4, 0.5}〉
ℵ2 〈{[0.1, 0.4], [0.2, 0.4], [0.0, 0.3]}, {0.2, 0.3, 0.1}〉 〈{[0.0, 0.2], [0.4, 0.6], [0.4, 0.5]}, {0.3, 0.1, 0.3}〉
ℵ3 〈{[0.2, 0.6], [0.1, 0.5], [0.3, 0.5]}, {0.4, 0.2, 0.3}〉 〈{[0.2, 0.4], [0.4, 0.5], [0.3, 0.7]}, {0.5, 0.7, 0.4}〉
ℵ4 〈{[0.0, 0.2], [0.3, 0.7], [0.4, 0.6]}, {0.2, 0.5, 0.4}〉 〈{[0.3, 0.5], [0.2, 0.3], [0.0, 0.2]}, {0.4, 0.3, 0.1}〉
ℵ5 〈{[0.4, 0.5], [0.0, 0.2], [0.5, 0.7]}, {0.3, 0.7, 0.0}〉 〈{[0.4, 0.6], [0.1, 0.2], [0.2, 0.3]}, {0.6, 0.1, 0.2}〉
ℵ6 〈{[0.5, 0.7], [0.2, 0.3], [0.1, 0.3]}, {0.1, 0.3, 0.6}〉 〈{[0.6, 0.7], [0.0, 0.1], [0.5, 0.6]}, {0.6, 0.2, 0.0}〉

2). The weighted C3PF decision-matrix V is constructed as:

V = [κi j]5×6 =


κ11 κ12 · · · κ16

κ21 κ22 · · · κ26
...

...
. . .

...

κ51 κ52 · · · κ56

 ,

where the entries κi j = w j ·τi j for both patients is calculated by using Definition 2.6 and expressed
in Tables 3 and 4.

3). The C3PFPIS (F+) and C3PFNIS (F−) are computed and displayed in Table 5.
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Table 3. Weighted C3PF decision matrix for patient ‘P1’.
S 1 S 2

ℵ1 〈{[0.11, 0.21], [0.05, 0.07], [0.02, 0.04]}, {0.96, 0.95, 0.89}〉 〈{[0.07, 0.10], [0.13, 0.17], [0.13, 0.21]}, {0.90, 0.72, 0.96}〉
ℵ2 〈{[0.01, 0.04], [0.02, 0.07], [0.05, 0.07]}, {0.89, 0.91, 0.95}〉 〈{[0.02, 0.04], [0.10, 0.13], [0.02, 0.07]}, {0.79, 0.83, 0.87}〉
ℵ3 〈{[0.02, 0.07], [0.01, 0.04], [0.07, 0.09]}, {0.85, 0.89, 0.93}〉 〈{[0.04, 0.07], [0.00, 0.02], [0.28, 0.37]}, {0.83, 0.63, 0.79}〉
ℵ4 〈{[0.04, 0.05], [0.05, 0.09], [0.01, 0.02]}, {0.79, 0.93, 0.85}〉 〈{[0.07, 0.21], [0.13, 0.21], [0.07, 0.10]}, {0.72, 0.87, 0.83}〉
ℵ5 〈{[0.01, 0.05], [0.02, 0.07], [0.01, 0.04]}, {0.96, 0.89, 0.91}〉 〈{[0.10, 0.13], [0.07, 0.13], [0.00, 0.04]}, {0.87, 0.83, 0.79}〉
ℵ6 〈{[0.09, 0.11], [0.04, 0.05], [0.05, 0.07]}, {0.79, 0.98, 0.95}〉 〈{[0.13, 0.17], [0.04, 0.07], [0.04, 0.07]}, {0.72, 0.93, 0.90}〉

S 3 S 4

ℵ1 〈{[0.07, 0.13], [0.03, 0.05], [0.02, 0.05]}, {0.83, 0.90, 0.93}〉 〈{[0.02, 0.04], [0.02, 0.07], [0.02, 0.05]}, {0.85, 0.89, 0.96}〉
ℵ2 〈{[0.02, 0.07], [0.10, 0.13], [0.17, 0.21]}, {0.95, 0.83, 0.79}〉 〈{[0.01, 0.02], [0.04, 0.05], [0.01, 0.04]}, {0.79, 0.91, 0.93}〉
ℵ3 〈{[0.05, 0.10], [0.03, 0.07], [0.10, 0.13]}, {0.93, 0.87, 0.71}〉 〈{[0.04, 0.05], [0.01, 0.04], [0.04, 0.07]}, {0.89, 0.93, 0.95}〉
ℵ4 〈{[0.10, 0.17], [0.02, 0.07], [0.05, 0.07]}, {0.71, 0.79, 0.87}〉 〈{[0.05, 0.09], [0.00, 0.02], [0.00, 0.01]}, {0.95, 0.89, 0.85}〉
ℵ5 〈{[0.03, 0.05], [0.07, 0.17], [0.03, 0.05]}, {0.90, 0.83, 0.79}〉 〈{[0.07, 0.11], [0.02, 0.05], [0.11, 0.15]}, {0.85, 0.85, 0.00}〉
ℵ6 〈{[0.00, 0.02], [0.02, 0.05], [0.07, 0.10]}, {0.00, 0.87, 0.83}〉 〈{[0.04, 0.07], [0.00, 0.02], [0.04, 0.05]}, {0.79, 0.89, 0.85}〉

S 5 S 6

ℵ1 〈{[0.03, 0.05], [0.03, 0.07], [0.03, 0.05]}, {0.83, 0.93, 0.90}〉 〈{[0.11, 0.21], [0.05, 0.07], [0.02, 0.04]}, {0.96, 0.95, 0.89}〉
ℵ2 〈{[0.07, 0.10], [0.10, 0.13], [0.02, 0.03]}, {0.83, 0.90, 0.97}〉 〈{[0.05, 0.09], [0.04, 0.09], [0.04, 0.05]}, {0.91, 0.79, 0.85}〉
ℵ3 〈{[0.02, 0.03], [0.05, 0.10], [0.03, 0.05]}, {0.90, 0.87, 0.95}〉 〈{[0.07, 0.11], [0.02, 0.05], [0.01, 0.02]}, {0.79, 0.89, 0.91}〉
ℵ4 〈{[0.10, 0.13], [0.03, 0.05], [0.10, 0.13]}, {0.79, 0.95, 0.93}〉 〈{[0.00, 0.01], [0.01, 0.04], [0.05, 0.07]}, {0.00, 0.91, 0.89}〉
ℵ5 〈{[0.05, 0.10], [0.00, 0.03], [0.05, 0.07]}, {0.71, 0.83, 0.83}〉 〈{[0.02, 0.07], [0.01, 0.02], [0.07, 0.09]}, {0.85, 0.79, 0.93}〉
ℵ6 〈{[0.10, 0.17], [0.02, 0.07], [0.07, 0.10]}, {0.87, 0.79, 0.87}〉 〈{[0.05, 0.09], [0.02, 0.04], [0.01, 0.04]}, {0.89, 0.93, 0.91}〉

S 7 S 8

ℵ1 〈{[0.01, 0.04], [0.02, 0.05], [0.04, 0.07]}, {0.85, 0.89, 0.79}〉 〈{[0.02, 0.07], [0.01, 0.04], [0.04, 0.05]}, {0.79, 0.91, 0.95}〉
ℵ2 〈{[0.04, 0.05], [0.07, 0.09], [0.01, 0.04]}, {0.00, 0.85, 0.79}〉 〈{[0.01, 0.02], [0.04, 0.07], [0.05, 0.09]}, {0.00, 0.85, 0.89}〉
ℵ3 〈{[0.02, 0.07], [0.04, 0.07], [0.02, 0.05]}, {0.71, 0.91, 0.89}〉 〈{[0.00, 0.04], [0.02, 0.05], [0.01, 0.04]}, {0.93, 0.89, 0.91}〉
ℵ4 〈{[0.09, 0.11], [0.01, 0.04], [0.05, 0.09]}, {0.89, 0.93, 0.85}〉 〈{[0.02, 0.05], [0.01, 0.02], [0.00, 0.02]}, {0.85, 0.00, 0.79}〉
ℵ5 〈{[0.05, 0.09], [0.00, 0.02], [0.07, 0.11]}, {0.91, 0.91, 0.85}〉 〈{[0.04, 0.09], [0.00, 0.01], [0.02, 0.07]}, {0.89, 0.79, 0.85}〉
ℵ6 〈{[0.01, 0.05], [0.02, 0.07], [0.01, 0.02]}, {0.95, 0.89, 0.91}〉 〈{[0.07, 0.11], [0.02, 0.04], [0.00, 0.01]}, {0.91, 0.85, 0.93}〉
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Table 4. Weighted C3PF decision matrix for patient ‘P2’.
S 1 S 2

ℵ1 〈{[0.07, 0.11], [0.07, 0.09], [0.02, 0.05]}, {0.95, 0.91, 0.79}〉 〈{[0.02, 0.07], [0.13, 0.28], [0.07, 0.10]}, {0.93, 0.79, 0.72}〉
ℵ2 〈{[0.01, 0.05], [0.02, 0.04], [0.09, 0.11]}, {0.89, 0.93, 0.85}〉 〈{[0.07, 0.17], [0.04, 0.13], [0.00, 0.02]}, {0.83, 0.72, 0.83}〉
ℵ3 〈{[0.02, 0.04], [0.05, 0.11], [0.07, 0.09]}, {0.93, 0.89, 0.91}〉 〈{[0.04, 0.13], [0.10, 0.17], [0.28, 0.37]}, {0.79, 0.63, 0.87}〉
ℵ4 〈{[0.04, 0.07], [0.02, 0.05], [0.01, 0.02]}, {0.91, 0.95, 0.93}〉 〈{[0.07, 0.17], [0.07, 0.21], [0.02, 0.07]}, {0.87, 0.83, 0.00}〉
ℵ5 〈{[0.05, 0.09], [0.01, 0.04], [0.05, 0.07]}, {0.85, 0.93, 0.95}〉 〈{[0.10, 0.21], [0.04, 0.10], [0.04, 0.13]}, {0.83, 0.87, 0.79}〉
ℵ6 〈{[0.09, 0.15], [0.05, 0.07], [0.04, 0.11]}, {0.98, 0.96, 0.79}〉 〈{[0.04, 0.10], [0.02, 0.07], [0.00, 0.04]}, {0.72, 0.83, 0.90}〉

S 3 S 4

ℵ1 〈{[0.05, 0.07], [0.07, 0.13], [0.02, 0.03]}, {0.71, 0.93, 0.79}〉 〈{[0.00, 0.04], [0.04, 0.11], [0.02, 0.05]}, {0.85, 0.89, 0.79}〉
ℵ2 〈{[0.03, 0.05], [0.05, 0.10], [0.03, 0.07]}, {0.87, 0.97, 0.93}〉 〈{[0.01, 0.05], [0.02, 0.07], [0.01, 0.02]}, {0.93, 0.91, 0.95}〉
ℵ3 〈{[0.17, 0.29], [0.03, 0.05], [0.07, 0.10]}, {0.95, 0.93, 0.83}〉 〈{[0.09, 0.11], [0.01, 0.04], [0.05, 0.09]}, {0.95, 0.93, 0.96}〉
ℵ4 〈{[0.03, 0.10], [0.02, 0.07], [0.10, 0.13]}, {0.71, 0.83, 0.90}〉 〈{[0.02, 0.07], [0.02, 0.05], [0.04, 0.07]}, {0.89, 0.95, 0.91}〉
ℵ5 〈{[0.13, 0.17], [0.07, 0.17], [0.02, 0.05]}, {0.95, 0.90, 0.87}〉 〈{[0.05, 0.09], [0.00, 0.02], [0.07, 0.11]}, {0.91, 0.89, 0.85}〉
ℵ6 〈{[0.02, 0.05], [0.07, 0.10], [0.05, 0.17]}, {0.83, 0.87, 0.93}〉 〈{[0.04, 0.05], [0.05, 0.09], [0.09, 0.15]}, {0.00, 0.85, 0.79}〉

S 5 S 6

ℵ1 〈{[0.02, 0.03], [0.02, 0.05], [0.07, 0.13]}, {0.83, 0.90, 0.79}〉 〈{[0.02, 0.05], [0.01, 0.02], [0.04, 0.07]}, {0.85, 0.91, 0.95}〉
ℵ2 〈{[0.07, 0.10], [0.03, 0.05], [0.02, 0.03]}, {0.71, 0.87, 0.90}〉 〈{[0.04, 0.07], [0.02, 0.05], [0.01, 0.05]}, {0.79, 0.00, 0.85}〉
ℵ3 〈{[0.03, 0.05], [0.10, 0.13], [0.03, 0.05]}, {0.90, 0.93, 0.95}〉 〈{[0.05, 0.11], [0.04, 0.07], [0.02, 0.09]}, {0.96, 0.93, 0.89}〉
ℵ4 〈{[0.05, 0.07], [0.03, 0.07], [0.05, 0.10]}, {0.79, 0.83, 0.93}〉 〈{[0.09, 0.15], [0.05, 0.09], [0.00, 0.04]}, {0.93, 0.89, 0.91}〉
ℵ5 〈{[0.00, 0.02], [0.07, 0.10], [0.00, 0.07]}, {0.87, 0.79, 0.87}〉 〈{[0.07, 0.09], [0.01, 0.04], [0.01, 0.02]}, {0.89, 0.85, 0.95}〉
ℵ6 〈{[0.10, 0.17], [0.02, 0.07], [0.07, 0.10]}, {0.00, 0.71, 0.83}〉 〈{[0.01, 0.07], [0.00, 0.01], [0.01, 0.04]}, {0.91, 0.79, 0.81}〉

S 7 S 8

ℵ1 〈{[0.04, 0.07], [0.05, 0.09], [0.02, 0.05]}, {0.85, 0.91, 0.93}〉 〈{[0.01, 0.04], [0.02, 0.05], [0.01, 0.05]}, {0.85, 0.91, 0.93}〉
ℵ2 〈{[0.01, 0.05], [0.02, 0.05], [0.00, 0.04]}, {0.85, 0.89, 0.79}〉 〈{[0.00, 0.02], [0.05, 0.09], [0.05, 0.07]}, {0.89, 0.79, 0.89}〉
ℵ3 〈{[0.02, 0.09], [0.01, 0.07], [0.04, 0.07]}, {0.91, 0.85, 0.89}〉 〈{[0.02, 0.05], [0.05, 0.07], [0.04, 0.11]}, {0.93, 0.96, 0.91}〉
ℵ4 〈{[0.00, 0.02], [0.04, 0.11], [0.05, 0.09]}, {0.85, 0.93, 0.91}〉 〈{[0.04, 0.07], [0.02, 0.04], [0.00, 0.02]}, {0.91, 0.89, 0.79}〉
ℵ5 〈{[0.05, 0.07], [0.00, 0.02], [0.07, 0.11]}, {0.89, 0.96, 0.00}〉 〈{[0.05, 0.09], [0.01, 0.02], [0.02, 0.04]}, {0.95, 0.79, 0.85}〉
ℵ6 〈{[0.07, 0.11], [0.02, 0.04], [0.01, 0.04]}, {0.79, 0.89, 0.95}〉 〈{[0.09, 0.11], [0.00, 0.01], [0.07, 0.09]}, {0.95, 0.85, 0.00}〉

Table 5. C3PFPIS and C3PFNIS.
For P1 For P2

F+ F+

S 1 〈{[0.11, 0.21], [0.05, 0.09], [0.07, 0.09]}, {0.96, 0.98, 0.95}〉 〈{[0.09, 0.15], [0.07, 0.11], [0.09, 0.11]}, {0.98, 0.96, 0.95}〉
S 2 〈{[0.13, 0.21], [0.13, 0.21], [0.28, 0.37]}, {0.90, 0.93, 0.96}〉 〈{[0.10, 0.21], [0.13, 0.28], [0.28, 0.37]}, {0.93, 0.87, 0.90}〉
S 3 〈{[0.10, 0.17], [0.10, 0.17], [0.17, 0.21]}, {0.95, 0.90, 0.93}〉 〈{[0.17, 0.29], [0.07, 0.17], [0.10, 0.17]}, {0.95, 0.97, 0.93}〉
S 4 〈{[0.07, 0.11], [0.04, 0.07], [0.11, 0.15]}, {0.95, 0.93, 0.96}〉 〈{[0.09, 0.11], [0.05, 0.11], [0.09, 0.15]}, {0.95, 0.95, 0.96}〉
S 5 〈{[0.10, 0.17], [0.10, 0.13], [0.10, 0.13]}, {0.90, 0.95, 0.97}〉 〈{[0.10, 0.17], [0.10, 0.13], [0.07, 0.13]}, {0.90, 0.93, 0.95}〉
S 6 〈{[0.11, 0.21], [0.05, 0.09], [0.07, 0.09]}, {0.96, 0.95, 0.93}〉 〈{[0.09, 0.15], [0.05, 0.09], [0.04, 0.09]}, {0.96, 0.93, 0.95}〉
S 7 〈{[0.09, 0.11], [0.07, 0.09], [0.07, 0.11]}, {0.95, 0.93, 0.91}〉 〈{[0.07, 0.11], [0.05, 0.11], [0.07, 0.11]}, {0.91, 0.96, 0.95}〉
S 8 〈{[0.07, 0.11], [0.04, 0.07], [0.05, 0.09]}, {0.93, 0.91, 0.95}〉 〈{[0.09, 0.11], [0.05, 0.09], [0.07, 0.11]}, {0.95, 0.96, 0.93}〉

F− F−

S 1 〈{[0.01, 0.04], [0.01, 0.04], [0.01, 0.02]}, {0.79, 0.89, 0.85}〉 〈{[0.01, 0.04], [0.01, 0.04], [0.01, 0.02]}, {0.85, 0.89, 0.79}〉
S 2 〈{[0.02, 0.04], [0.00, 0.02], [0.00, 0.04]}, {0.72, 0.63, 0.79}〉 〈{[0.02, 0.07], [0.02, 0.07], [0.00, 0.02]}, {0.72, 0.63, 0.00}〉
S 3 〈{[0.00, 0.02], [0.02, 0.05], [0.02, 0.05]}, {0.00, 0.79, 0.71}〉 〈{[0.02, 0.05], [0.02, 0.05], [0.02, 0.03]}, {0.71, 0.83, 0.79}〉
S 4 〈{[0.01, 0.02], [0.00, 0.02], [0.00, 0.01]}, {0.79, 0.85, 0.00}〉 〈{[0.00, 0.04], [0.00, 0.02], [0.01, 0.02]}, {0.00, 0.85, 0.79}〉
S 5 〈{[0.02, 0.03], [0.00, 0.03], [0.02, 0.03]}, {0.71, 0.79, 0.83}〉 〈{[0.00, 0.02], [0.02, 0.05], [0.00, 0.03]}, {0.00, 0.71, 0.79}〉
S 6 〈{[0.00, 0.01], [0.01, 0.02], [0.01, 0.02]}, {0.00, 0.79, 0.85}〉 〈{[0.01, 0.05], [0.00, 0.01], [0.00, 0.02]}, {0.79, 0.00, 0.81}〉
S 7 〈{[0.01, 0.04], [0.00, 0.02], [0.01, 0.02]}, {0.00, 0.85, 0.79}〉 〈{[0.00, 0.02], [0.00, 0.02], [0.00, 0.04]}, {0.79, 0.85, 0.00}〉
S 8 〈{[0.00, 0.02], [0.00, 0.01], [0.00, 0.01]}, {0.00, 0.00, 0.79}〉 〈{[0.00, 0.02], [0.00, 0.01], [0.00, 0.02]}, {0.85, 0.79, 0.00}〉

AIMS Mathematics Volume 8, Issue 5, 11875–11915.



11896

4). The Euclidean distance of each alternative from F+ and F− are calculated using Eqs (3.5) and
(3.6), and provided in Table 6.

Table 6. Distance from F+ and F−.

For P1 For P2

dE(ℵ1,F
+) 0.2024 0.2614

dE(ℵ2,F
+) 0.5050 0.4154

dE(ℵ3,F
+) 0.2480 0.1646

dE(ℵ4,F
+) 0.5085 0.3813

dE(ℵ5,F
+) 0.4153 0.3875

dE(ℵ6,F
+) 0.3981 0.6023

dE(ℵ1,F
−) 0.7599 0.7303

dE(ℵ2,F
−) 0.6344 0.6423

dE(ℵ3,F
−) 0.7422 0.7921

dE(ℵ4,F
−) 0.5888 0.6664

dE(ℵ5,F
−) 0.6705 0.6702

dE(ℵ6,F
−) 0.6930 0.5414

5). The relative closeness of each disorder to F+ is calculated using Eq (3.7) and is given in Table 7.

Table 7. Relative closeness to F+.

For P1 For P2

%(ℵ1) 0.7897 0.7364
%(ℵ2) 0.5568 0.6073
%(ℵ3) 0.7495 0.8280
%(ℵ4) 0.5366 0.6361
%(ℵ5) 0.6175 0.6336
%(ℵ6) 0.6351 0.4734

6). Output:
Finally, for patientsP1 andP2 the ordering of ICDs in descending order according to their relative
closeness to C3PFPIS is obtain as:

ℵ1 > ℵ3 > ℵ6 > ℵ5 > ℵ2 > ℵ4 (for patient P1),

and
ℵ3 > ℵ1 > ℵ4 > ℵ5 > ℵ2 > ℵ6 (for patient P2).

Thus, according to the symptoms in patients Psychiatrist ensure that the patient P1 have
oppositional defiant disorder (ODD) and patient P2 have conduct disorder (CD).

We now apply the improved Algorithm 1 of CmPF-TOPSIS approach to find the appropriate disease.
We see that steps 1–3 in improved Algorithm 1 are similar as Algorithm 1. So, we start from step 4 as
below:
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4). Using Eqs (3.8) and (3.9), the normalized Euclidean distance of each alternative from F+ and F−

are computed below in Table 8.

Table 8. Normalized Euclidean distance from F+ and F−.

For P1 For P1

dNE(ℵ1,F
+) 0.0716 0.0924

dNE(ℵ2,F
+) 0.1786 0.1469

dNE(ℵ3,F
+) 0.0877 0.0582

dNE(ℵ4,F
+) 0.1798 0.1350

dNE(ℵ5,F
+) 0.1470 0.1370

dNE(ℵ6,F
+) 0.1408 0.2130

dNE(ℵ1,F
−) 0.2687 0.2582

dNE(ℵ2,F
−) 0.2243 0.2271

dNE(ℵ3,F
−) 0.2624 0.2800

dNE(ℵ4,F
−) 0.2082 0.2356

dNE(ℵ5,F
−) 0.2370 0.2369

dNE(ℵ6,F
−) 0.2450 0.1914

5). The revised closeness of each ICD to F+ are calculated in Table 9 using Eq (3.10).

Table 9. Revised closeness to F+.

For P1 For P1

℘(ℵ1) 0.00 −0.6655
℘(ℵ2) −1.6597 −1.7130
℘(ℵ3) −0.2483 0.00
℘(ℵ4) −1.7363 −1.4782
℘(ℵ5) −1.1710 −1.5079
℘(ℵ6) −1.0547 −2.9762

6). Output:
By ordering the ICDs according to the revised closeness, we have

ℵ1 > ℵ3 > ℵ6 > ℵ5 > ℵ2 > ℵ4 (for patient P1),

and
ℵ3 > ℵ1 > ℵ4 > ℵ5 > ℵ2 > ℵ6 (for patient P2).

So, the patient P1 is suffering from oppositional defiant disorder (ODD) and the patient P2 have
conduct disorder (CD).

We see that the ordering relation between mental disorders by applying both Algorithm 1 and improved
Algorithm 1 are same but the values are quite different. The comparison of these two algorithms of
CmPF-TOPSIS approach by applying on the explored application with m = 3 are shown in Figure 4.
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Figure 4. Comparison of Algorithm 1 and improved Algorithm 1 under the CmPF-TOPSIS
approach.

4. Cubic m-polar fuzzy ELECTRE-I method

In this section, we develop an algorithm for hybrid model namely, CmPF-ELECTRE-I method and
implemented it to solve the explored problem in the preceding section, to make a comparison with
CmPF-TOPSIS method. Consider a MCDM problem where ℵi(i = 1, 2, 3, · · · , s) is the set of ‘s’
alternatives evaluated under each attribute, A j( j = 1, 2, 3, · · · , t). Assume that the decision-maker
has to select one from ‘s’ possible alternatives with respect to ‘t’ criteria. The steps of the launched
algorithm for CmPF-ELECTRE-I approach are given as:
Algorithm 2: (Process for finding outranking relations between alternatives)
First two steps of CmPF-ELECTRE-I method are same to the Algorithm 1 (CmPF-TOPSIS method),
it means steps 1 and 2 are already provided. So, we start with step 3 as follows:

3). Since the evaluation of objects are described with CmPFNs. So, the concordance set Cxy and
discordance set Dxy are defined as:

Cxy = {1 ≤ j ≤ t | hx j ≥ hy j, x , y; x, y = 1, 2, · · · , s}, (4.1)

Dxy = {1 ≤ j ≤ t | hx j < hy j, x , y; x, y = 1, 2, · · · , s}, (4.2)

where

hi j = R1
li j + R1

ui j + R2
li j + R2

ui j + . . . + Rm
li j + Rm

ui j + ζ1
i j + ζ2

i j + . . . + ζm
i j (4.3)

with i = 1, 2, · · · , s and j = 1, 2, · · · , t.
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4). The CmPF concordance indices cxy
′s are obtained as:

cxy =
∑
j∈Cxy

w j. (4.4)

So, the CmPF concordance matrix C is constructed as the following manner:

C =


− c12 c13 · · · c1s

c21 − c23 · · · c2s
...

...
...

. . .
...

cs1 cs2 cs3 · · · −

 . (4.5)

5). The CmPF discordance indices dxy
′s are computed as:

dxy =

max j∈Dxy

√√√√√√√√√√√√ 1
3m

(
(R1

lx j − R
1
ly j)

2 + (R1
ux j − R

1
uy j)

2 + (R2
lx j − R

2
ly j)

2

+(R2
ux j − R

2
uy j)

2 + . . . + (Rm
lx j − R

m
ly j)

2 + (Rm
ux j − R

m
uy j)

2

+(ζ1
x j − ζ

1
y j)

2 + (ζ2
x j − ζ

2
y j)

2 + . . . + (ζm
x j − ζ

m
y j)

2)

max j

√√√√√√√√√√√√ 1
3m

(
(P1

lx j −P
1
ly j)

2 + (P1
ux j − R

1
uy j)

2 + (R2
lx j − R

2
ly j)

2

+(R2
ux j − R

2
uy j)

2 + . . . + (Rm
lx j − R

m
ly j)

2 + (Rm
ux j − R

m
uy j)

2

+(ζ1
x j − ζ

1
y j)

2 + (ζ2
x j − ζ

2
y j)

2 + . . . + (ζm
x j − ζ

m
y j)

2)
. (4.6)

So, the CmPF discordance matrix D is constructed as the following manner:

D =


− d12 d13 · · · d1s

d21 − d23 · · · d2s
...

...
...

. . .
...

ds1 ds2 ds3 · · · −

 . (4.7)

6). Now we need to calculate some threshold values, which are actually concordance and discordance
levels. The CmPF concordance level (c) and CmPF discordance level (d) are respectively defined
as the average of the CmPF concordance and CmPF discordance indices.

c =
1

s(s − 1)

s∑
x=1
x,y

s∑
y=1
x,y

cxy, (4.8)

d =
1

s(s − 1)

s∑
x=1
x,y

s∑
y=1
x,y

dxy. (4.9)
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7). The CmPF concordance dominance matrix M according to the concordance level is constructed
as:

M =


− m12 m13 · · · m1s

m21 − m23 · · · m2s
...

...
...

. . .
...

ms1 ms2 ms3 · · · −

 , (4.10)

where the indices mxy are defined as:

mxy =

{
1 if cxy ≥ c,
0 if cxy < c.

(4.11)

8). The CmPF discordance dominance matrix N according to the discordance level is constructed as:

N =


− n12 n13 · · · n1s

n21 − n23 · · · n2s
...

...
...

. . .
...

ns1 ns2 ns3 · · · −

 , (4.12)

where the indices nxy are defined as:

nxy =

{
1 if dxy ≤ d,
0 if dxy > d.

(4.13)

9). The CmPF aggregated dominance matrix (F) is constructed by performing the peer-to-peer
multiplication of the entries of the matrices M and N.

F =


− f12 f13 · · · f1s

f21 − f23 · · · f2s
...

...
...

. . .
...

fs1 fs2 fs3 · · · −

 , (4.14)

where the indices fxy are calculated by

fxy = mxy · nxy. (4.15)

10). Output:
Now, rank the alternatives according to the outranking values fxy

′s of the matrix F. There is a
directed edge from the alternative ℵx to ℵy if and only if fxy = 1. Thus, we have the following
three cases.

(a). There exists a unique directed edge from ℵx to ℵy.

(b). There exists a directed edge from ℵx to ℵy and ℵy to ℵx.

(c). There does not exist any edge between ℵx and ℵy.
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In case (a), we say thatℵx is dominant over ℵy. For case (b), we say thatℵx andℵy are not-different
and for case (c), we say that ℵx and ℵy are non-comparable. The flowchart of CmPF-ELECTRE-I
method is shown by Figure 5.

Figure 5. Flowchart of CmPF-ELECTRE-I approach.

4.1. Numerical application for CmPF-ELECTRE-I method

In this section we solved the presented MCDM application as in Section 3.1 using
CmPF-ELECTRE-I method as below:
Steps 1 and 2 have already been done in Section 3.1. So, we start from step 3 as below:

3). For the evaluation of C3PF concordance set (Cxy) and C3PF discordance set (Dxy) the index
matrices hP1

i j and hP2
i j are calculated below by using Eq (4.3).

h
P1
i j =



3.29 3.39 3.02 2.92 2.94 3.29 2.75 2.88
3.00 2.87 3.26 2.80 3.15 2.90 1.93 2.01
2.96 3.03 2.99 3.00 3.01 2.88 2.86 2.88
2.83 3.22 2.84 2.86 3.20 1.97 3.05 1.77
2.96 2.96 2.93 2.22 2.69 2.85 3.02 2.75
3.13 3.08 1.96 2.74 3.05 2.97 2.93 2.94


,
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and

h
P2
i j =



3.06 3.10 2.77 2.79 2.84 2.92 3.01 2.87
2.99 2.82 3.11 2.98 2.79 1.88 2.70 2.84
3.11 3.37 3.42 3.23 3.17 3.16 2.94 3.15
3.00 2.31 2.89 3.01 2.93 3.14 3.00 2.77
3.03 3.11 3.32 2.99 2.79 2.92 2.17 2.82
3.23 2.73 3.09 2.10 2.06 2.73 2.91 2.17


.

Then, according to Eqs (4.1) and (4.2), the sets Cxy and Dxy are provided in Table 10.

Table 10. C3PF concordance and discordance sets.
C3PF concordance sets

For y 1 2 3 4 5 6
C1y - {1, 2, 4, 6, 7, 8} {1, 2, 3, 6, 8} {1, 2, 3, 4, 6, 8} {1, 2, 3, 4, 5, 6, 8} {1, 2, 3, 4, 6}
C2y {3, 5} - {1, 3, 5, 6} {1, 3, 6, 8} {1, 3, 4, 5, 6} {3, 4, 5}

P1 C3y {4, 5, 7, 8} {2, 4, 7, 8} - {1, 3, 4, 6, 8} {1, 2, 3, 4, 5, 6, 8} {3, 4}
C4y {5, 7} {2, 4, 5, 7} {2, 5, 7} - {2, 4, 5, 7} {2, 3, 4, 5, 7}
C5y {7} {2, 7, 8} {1, 7} {1, 3, 6, 8} - {3, 7}
C6y {5, 7, 8} {1, 2, 6, 7, 8} {1, 2, 5, 6, 7, 8} {1, 6, 8} {1, 2, 4, 5, 6, 8} -
y 1 2 3 4 5 6
C1y - {1, 2, 5, 6, 7, 8} {7} {1, 2, 7, 8} {1, 5, 6, 7, 8} {2, 4, 5, 6, 7, 8}
C2y {3, 4} - {} {2, 3, 8} {5, 7, 8} {2, 3, 4, 5, 8}

P2 C3y {1, 2, 3, 4, 5, 6, 8} {1, 2, 3, 4, 5, 6, 7, 8} - {1, 2, 3, 4, 5, 6, 8} {1, 2, 3, 4, 5, 6, 7, 8} {2, 3, 4, 5, 6, 7, 8}
C4y {3, 4, 5, 6} {1, 4, 5, 6, 7} {7} - {4, 5, 6, 7} {4, 5, 6, 7, 8}
C5y {2, 3, 4, 6} {1, 2, 3, 4, 5, 6} {} {1, 2, 3, 8} - {2, 3, 4, 5, 6, 8}
C6y {1, 3} {1, 6, 7} {1} {1, 2, 3} {1, 7} -

C3PF discordance sets
For y 1 2 3 4 5 6

D1y - {3, 5} {4, 5, 7} {5, 7} {7} {5, 7, 8}
D2y {1, 2, 4, 6, 7, 8} - {2, 4, 7, 8} {2, 4, 5, 7} {2, 7, 8} {1, 2, 6, 7, 8}

P1 D3y {1, 2, 3, 6} {1, 3, 5, 6} - {2, 5, 7} {7} {1, 2, 5, 6, 7, 8}
D4y {1, 2, 3, 4, 6, 8} {1, 3, 6, 8} {1, 3, 4, 6, 8} - {1, 3, 6, 8} {1, 6, 8}
D5y {1, 2, 3, 4, 5, 6, 8} {1, 2, 4, 5, 6} {2, 3, 4, 5, 6, 8} {2, 4, 5, 7} - {1, 2, 4, 5, 6, 8}
D6y {1, 2, 3, 4, 6} {3, 4, 5} {3, 4} {2, 3, 4, 5, 7} {3, 7} -
y 1 2 3 4 5 6
D1y - {3, 4} {1, 2, 3, 4, 5, 6, 8} {3, 4, 5, 6} {2, 3, 4} {1, 3}
D2y {1, 2, 5, 6, 7, 8} - {1, 2, 3, 4, 5, 6, 7, 8} {1, 4, 5, 6, 7} {1, 2, 3, 4, 6} {1, 6, 7}

P2 D3y {7} {} - {7} {} {1}
D4y {1, 2, 7, 8} {2, 3, 8} {1, 2, 3, 4, 5, 6, 8} - {1, 2, 3, 8} {1, 2, 3}
D5y {1, 5, 7, 8} {7, 8} {1, 2, 3, 4, 5, 6, 7, 8} {4, 5, 6, 7} - {1, 7}
D6y {2, 4, 5, 6, 7, 8} {2, 3, 4, 5, 8} {2, 3, 4, 5, 6, 7, 8} {4, 5, 6, 7, 8} {2, 3, 4, 5, 6, 8} -

4). The C3PF concordance matrices for both patients are constructed below using the formula of
indices as defined in Eq (4.4).

CP1 =



− 0.70 0.65 0.75 0.90 0.65
0.30 − 0.50 0.45 0.60 0.40
0.45 0.50 − 0.55 0.90 0.25
0.25 0.55 0.45 − 0.55 0.70
0.10 0.40 0.20 0.45 − 0.25
0.35 0.60 0.75 0.30 0.75 −


, CP2 =



− 0.75 0.10 0.50 0.55 0.75
0.25 − 0.00 0.45 0.35 0.70
0.90 1.00 − 0.90 1.00 0.90
0.50 0.55 0.10 − 0.45 0.55
0.55 0.80 0.00 0.55 − 0.80
0.25 0.30 0.10 0.45 0.20 −


.
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5). The C3PF discordance matrices for both patients are constructed below using the formula of
indices as given by Eq (4.6).

DP1 =



− 0.3779 0.4988 0.1625 0.1278 0.2514
1 − 1 0.7471 0.9716 0.9889
1 0.1934 − 0.5670 0.2394 0.5645
1 1 1 − 0.9843 1
1 1 1 1 − 0.9449
1 1 1 0.8241 1 −


,

DP2 =



− 0.2448 1 0.2893 0.3186 0.2594
1 − 1 1 1 0.8361

0.2478 0 − 0.1392 0 0.2093
1 0.9284 1 − 0.8744 1
1 0.9294 1 1 − 1
1 1 1 0.9806 0.9536 −


.

6). The C3PF concordance and C3PF discordance levels are computed as:

(For patient P1)



c =
1

s(s − 1)

s∑
x=1
x,y

s∑
y=1
x,y

cxy =
1

6(6 − 1)
× 15.15 = 0.5050,

d =
1

s(s − 1)

s∑
x=1
x,y

s∑
y=1
x,y

dxy =
1

6(6 − 1)
× 23.4436 = 0.7815,

and

(For patient P2)



c =
1

s(s − 1)

s∑
x=1
x,y

s∑
y=1
x,y

cxy =
1

6(6 − 1)
× 15.20 = 0.5067,

d =
1

s(s − 1)

s∑
x=1
x,y

s∑
y=1
x,y

dxy =
1

6(6 − 1)
× 22.2109 = 0.7404.

7). By using Eq (4.11), the C3PF concordance dominance matrices MP1 and MP2 are calculated as:

MP1 =



− 1 1 1 1 1
0 − 0 0 1 0
0 0 − 1 1 0
0 1 0 − 1 1
0 0 0 0 − 0
0 1 1 0 1 −


, MP2 =



− 1 0 0 1 1
0 − 0 0 0 1
1 1 − 1 1 1
0 1 0 − 0 1
1 1 0 1 − 1
0 0 0 0 0 −


.
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8). The C3PF discordance dominance matrices NP1 and NP2 are constructed below by using Eq (4.13).

NP1 =



− 1 1 1 1 1
0 − 0 1 0 0
0 1 − 1 1 1
0 0 0 − 0 0
0 0 0 0 − 0
0 0 0 0 0 −


, NP2 =



− 1 0 1 1 1
0 − 0 0 0 0
1 1 − 1 1 1
0 0 0 − 0 0
0 0 0 0 − 0
0 0 0 0 0 −


.

9). The C3PF aggregated dominance matrices FP1 and FP2 are constructed below by peer-to-peer
multiplication of the entries of matrices M and N.

FP1 =



− 1 1 1 1 1
0 − 0 0 0 0
0 0 − 1 1 0
0 0 0 − 0 0
0 0 0 0 − 0
0 0 0 0 0 −


, FP2 =



− 1 0 0 1 1
0 − 0 0 0 0
1 1 − 1 1 1
0 0 0 − 0 0
0 0 0 0 − 0
0 0 0 0 0 −


.

10). Output:
The outranking relations between alternatives are shown in Figure 6. Thus, ℵ1 and ℵ3 are the
favourable alternatives for the patients P1 and P2, respectively.

Figure 6. Outranking relations between alternatives.

5. Comparison analysis

5.1. Comparison between proposed techniques

In this subsection, we present a comparative study between our proposed CmPF-TOPSIS and
CmPF-ELECTRE-I methods. The main function of the CmPF-TOPSIS method is to select an
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alternative, that is nearest to the CmPFPIS and far away from the CmPFNIS. On the other hand, in the
CmPF-ELECTRE-I technique, the selection of favorable alternatives depends on the CmPF
concordance and discordance sets, and this task is made by the means of an outranking directed
decision graph. The CmPF-TOPSIS method provides a single alternative as a decision, but the
CmPF-ELECTRE-I method sometimes gives two or more optimal alternatives at once by means of
outranking relations. The comparison of proposed techniques by applying them to the presented
numerical application is provided as:

• The comparison of CmPF-TOPSIS and CmPF-ELECTRE-I methods based on the proposed case
study with m = 3 is described through a ranking comparison bar chart. This comparison shows
patient P1 has the oppositional defiant disorder (ODD) and patient P2 is suffering from conduct
disorder (CD). The desired ranking comparison bar chart is shown in Figure 7.

Figure 7. Ranking comparison of CmPF-TOPSIS and CmPF-ELECTRE-I approaches.

5.2. Comparison with existing methods

The superiority and effectiveness of our proposed methods based on CmPF-TOPSIS and
CmPF-ELECTRE-I techniques are verified by implementing the mPF-TOPSIS method [16] and
mPF-ELECTRE-I method [38] on the given case study.

• For patient P1, the results of mPF-TOPSIS [16] and mPF-ELECTRE-I [38] methods with m = 3
are displayed in Tables 11 and 12 respectively. From the calculations, one can easily observe that
patient P1 is suffering from oppositional defiant disorder (ODD), which is similar to the optimal
alternative computed by applying the proposed techniques.
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Table 11. Results of mPF-TOPSIS method [16] for the patient P1.

P1

Alternatives dE(ℵi,F
+) dE(ℵi,F

−) %(ℵi) Ranks
ℵ1 0.0912 0.1339 0.5948 1
ℵ2 0.1108 0.1049 0.4863 2
ℵ3 0.1268 0.1012 0.4439 4
ℵ4 0.1283 0.0866 0.4030 5
ℵ5 0.1308 0.0858 0.3961 6
ℵ6 0.1191 0.1122 0.4851 3

Table 12. Summery of mPF-ELECTRE-I method [38] for the patient P1.

Correlations Cxy Dxy cxy dxy mxy nxy fxy Outranking
(ℵ1,ℵ2) {1, 2, 3, 4, 6, 7, 8} {4} 0.85 0.5055 1 1 1 ℵ1 → ℵ2

(ℵ1,ℵ3) {1, 2, 3} {4, 5, 7, 8} 0.55 0.4747 1 1 1 ℵ1 → ℵ3

(ℵ1,ℵ4) {1, 2, 3, 4, 6, 8} {5, 7} 0.75 0.4831 1 1 1 ℵ1 → ℵ4

(ℵ1,ℵ5) {1, 2, 3, 4, 5, 6, 8} {7} 0.9 0.2331 1 1 1 ℵ1 → ℵ5

(ℵ1,ℵ6) {1, 23, 4, 5, 6, 8} {7} 0.9 0.3729 1 1 1 ℵ1 → ℵ6

(ℵ2,ℵ1) {5} {1, 2, 3, 4, 6, 7, 8} 0.15 1 0 0 0 Incomparable
(ℵ2,ℵ3) {21, 2, 3, 5} {4, 6, 7, 8} 0.6 0.6944 1 1 1 ℵ2 → ℵ3

(ℵ2,ℵ4) {1, 2, 3, 5, 6, 8} {4, 7} 0.8 0.6162 1 1 1 ℵ2 → ℵ4

(ℵ2,ℵ5) {2, 3, 4, 5} {1, 6, 7, 8} 0.6 0.5332 1 1 1 ℵ2 → ℵ5

(ℵ2,ℵ6) {3, 4, 5} {1, 2, 6, 7, 8} 0.4 0.6343 0 1 0 Incomparable
(ℵ3,ℵ1) {4, 5, 7, 8} {1, 2, 3, 6} 0.45 1 0 0 0 Incomparable
(ℵ3,ℵ2) {4, 5, 6, 7, 8} {1, 2, 3} 0.55 1 1 0 0 Incomparable
(ℵ3,ℵ4) {1, 3, 4, 5, 6, 8} {2, 7} 0.7 0.9906 1 0 0 Incomparable
(ℵ3,ℵ5) {3, 4, 5, 6, 8} {1, 2, 7} 0.6 0.7344 1 1 1 ℵ3 → ℵ5

(ℵ3,ℵ6) {3, 4, 5, 8} {1, 2, 6, 7} 0.5 1 1 0 0 Incomparable
(ℵ4,ℵ1) {5, 7} {1, 2, 3, 4, 6, 8} 0.25 1 0 0 0 Incomparable
(ℵ4,ℵ2) {4, 6, 7} {1, 2, 3, 5, 8} 0.3 1 0 0 0 Incomparable
(ℵ4,ℵ3) {2, 7} {1, 3, 4, 5, 6, 8} 0.3 1 0 0 0 Incomparable
(ℵ4,ℵ5) {4, 5, 7} {1, 2, 3, 6, 8} 0.35 0.8982 0 0 0 Incomparable
(ℵ4,ℵ6) {3, 4, 5} {1, 2, 6, 7, 8} 0.4 0.6579 0 1 0 Incomparable
(ℵ5,ℵ1) {7} {1, 2, 3, 4, 5, 6, 8} 0.1 1 0 0 0 Incomparable
(ℵ5,ℵ2) {1, 2, 6, 7, 8} {3, 4, 5} 0.6 1 1 0 0 Incomparable
(ℵ5,ℵ3) {1, 2, 6, 7} {3, 4, 5, 8} 0.5 1 0 0 0 Incomparable
(ℵ5,ℵ4) {1, 2, 3, 6, 7, 8} {4, 5} 0.75 1 1 0 0 Incomparable
(ℵ5,ℵ6) {3} {1, 2, 4, 5, 6, 7, 8} 0.15 1 0 0 0 Incomparable
(ℵ6,ℵ1) {7, 8} {1, 2, 3, 4, 5, 6} 0.2 1 0 0 0 Incomparable
(ℵ6,ℵ2) {1, 2, 6, 7, 8} {3, 4, 5} 0.6 1 1 0 0 Incomparable
(ℵ6,ℵ3) {1, 2, 6, 7} {3, 4, 5, 8} 0.5 0.6782 0 1 0 Incomparable
(ℵ6,ℵ4) {1, 2, 3, 6, 7, 8} {4, 5} 0.75 1 1 0 0 Incomparable
(ℵ6,ℵ5) {1, 2, 54, 5, 6, 7, 8} {3} 0.7 0.75 1 1 1 ℵ6 → ℵ5
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• For patient P2, the results of mPF-TOPSIS [16] and mPF-ELECTRE-I [38] methods with m = 3
are respectively expressed in Tables 13 and 14. The calculations provided that the patient P2 is
suffering from conduct disorder (CD), which is similar to the optimal alternative computed by
applying the proposed techniques.

Table 13. Results of mPF-TOPSIS method [16] for the patient P2.

P2

Alternatives dE(ℵi,F
+) dE(ℵi,F

−) %(ℵi) Ranks
ℵ1 0.1234 0.1027 0.4542 4
ℵ2 0.1167 0.1020 0.4664 3
ℵ3 0.0895 0.1433 0.6155 1
ℵ4 0.1226 0.0963 0.4399 5
ℵ5 0.1097 0.1129 0.5072 2
ℵ6 0.1374 0.1075 0.4390 6

Table 14. Summery of mPF-ELECTRE-I method [38] for the patient P2.

Correlations Cxy Dxy cxy dxy mxy nxy fxy Outranking
(ℵ1,ℵ2) {1, 2, 5, 6, 7, 8} {3, 4} 0.75 1 1 0 0 Incomparable
(ℵ1,ℵ3) {2, 7} {1, 3, , 4, 5, 6, 8} 0.3 0.8585 0 0 0 Incomparable
(ℵ1,ℵ4) {2, 4, 6, 7, 8} {1, 3, 4, 5} 0.6 1 1 0 0 Incomparable
(ℵ1,ℵ5) {2, 5, 6, 7, 8} {1, 3, 4} 0.65 1 1 0 0 Incomparable
(ℵ1,ℵ6) {2, 4, 5, 6, 7, 8} {1, 3} 0.75 0.7487 1 1 1 ℵ1 → ℵ6
(ℵ2,ℵ1) {3, 4, 5} {1, 2, 6, 7, 8} 0.4 0.8554 0 0 0 Incomparable
(ℵ2,ℵ3) {2, 3} {1, 4, 5, 6, 7, 8} 0.35 1 0 0 0 Incomparable
(ℵ2,ℵ4) {2, 3, 4} {1, 5, 6, 7, 8} 0.45 0.6371 0 1 0 Incomparable
(ℵ2,ℵ5) {3, 4, 5} {1, 2, 6, 7, 8} 0.4 0.899 0 0 0 Incomparable
(ℵ2,ℵ6) {3, 4, 5} {1, 2, 6, 7, 8} 0.4 0.9434 0 0 0 Incomparable
(ℵ3,ℵ1) {1, 3, 4, 5, 6, 8} {2, 7} 0.7 1 1 0 0 Incomparable
(ℵ3,ℵ2) {1, 4, 5, 6, 7, 8} {2, 3} 0.65 0.8923 1 0 0 Incomparable
(ℵ3,ℵ4) {2, 3, 4, 5, 6, 8} {1, 7} 0.7 0.4129 1 1 1 ℵ3 → ℵ4
(ℵ3,ℵ5) {3, 4, 5, 6, 8} {1, 2, 7} 0.6 1 1 0 0 Incomparable
(ℵ3,ℵ6) {3, 4, 5, 6, 8} {1, 2, 7} 0.6 0.5440 1 1 1 ℵ3 → ℵ6
(ℵ4,ℵ1) {1, 3, 4, 5, 6, 7} {2, 4, 8} 0.7 0.8715 1 0 0 Incomparable
(ℵ4,ℵ2) {1, 5, 6, 7, 8} {2, 3, 4} 0.55 1 0 0 0 Incomparable
(ℵ4,ℵ3) {1, 2, 7} {3, 4, 5, 6, 8} 0.4 0.8511 0 0 0 Incomparable
(ℵ4,ℵ5) {1, 4, 5, 6, 7} {2, 3, 8} 0.55 1 0 0 0 Incomparable
(ℵ4,ℵ6) {4, 5, 6, 7, 8} {1, 2, 3} 0.55 1 0 0 0 Incomparable
(ℵ5,ℵ1) {1, 2, 3, 4} {6, 7, 8} 0.6 0.6241 1 1 1 ℵ5 → ℵ1
(ℵ5,ℵ2) {1, 2, 5, 6, 7, 8} {3, 4} 0.75 1 1 0 0 Incomparable
(ℵ5,ℵ3) {1, 2, 3, 7} {4, 5, 6, 8} 0.55 0.8355 0 1 0 Incomparable
(ℵ5,ℵ4) {2, 3, 8} {1, 4, 5, 6, 7} 0.45 0.4775 0 1 0 Incomparable
(ℵ5,ℵ6) {2, 3, 4, 5, 6, 7, 8} {1} 0.90 1 1 0 0 Incomparable
(ℵ6,ℵ1) {1, 2, 3} {4, 5, 6, 7, 8} 0.45 0.5909 0 1 0 Incomparable
(ℵ6,ℵ2) {1, 2, 6, 7, 8} {3, 4, 5} 0, 6 1 1 0 0 Incomparable
(ℵ6,ℵ3) {1, 2, 7} {3, 4, 5, 6, 8} 0.40 1 0 0 0 Incomparable
(ℵ6,ℵ4) {1, 2, 3, 8} {4, 5, 6, 7} 0.55 0.4606 0 1 0 Incomparable
(ℵ6,ℵ5) {1, 2, 7} {3, 4, 5, 6, 8} 0.4 0.8538 0 0 0 Incomparable
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• The comparison of alternatives regarding rankings between proposed and existing techniques
(see [16, 38]) are described in Table 15. For a better understanding, the comparison bar chart
is shown in Figure 8. Thus, the similar optimal decision based on the proposed and existing
techniques proved the sensitivity, reliability, and effectiveness of the proposed CmPF-TOPSIS
and CmPF-ELECTRE-I methods.

Table 15. Comparison of proposed and existing methods regarding rankings.

P1

Models Ranking order Decision
mPF-TOPSIS [16] ℵ1 > ℵ2 > ℵ6 > ℵ3 > ℵ4 > ℵ5 ℵ1

mPF-ELECTRE-I [38] ℵ1 > ℵ2 > ℵ6 = ℵ3 > ℵ4 = ℵ5 ℵ1

CmPF-TOPSIS (proposed) ℵ1 > ℵ3 > ℵ6 > ℵ5 > ℵ2 > ℵ4 ℵ1

CmPF-ELECTRE-I (proposed) ℵ1 > ℵ3 > ℵ6 = ℵ5 = ℵ2 = ℵ4 ℵ1

P2

Models Ranking order Decision
mPF-TOPSIS [16] ℵ3 > ℵ5 > ℵ2 > ℵ1 > ℵ4 > ℵ6 ℵ3

mPF-ELECTRE-I [38] ℵ3 > ℵ5 = ℵ1 > ℵ2 = ℵ4 = ℵ6 ℵ3

CmPF-TOPSIS (proposed) ℵ3 > ℵ1 > ℵ4 > ℵ5 > ℵ2 > ℵ6 ℵ3

CmPF-ELECTRE-I (proposed) ℵ3 > ℵ1 > ℵ4 = ℵ5 = ℵ2 = ℵ6 ℵ3

Figure 8. Comparison bar chart of the proposed and existing techniques concerning ranking.
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5.3. Sensitivity analysis

In MCDM techniques, a sensitivity analysis is necessary to determine the stability of the solution
when changes occur in the data or starting conditions. In this section, we present a sensitivity analysis
of the proposed CmPF-TOPSIS and CmPF-ELECTRE-I methods for different values of m.

• Using the data of explored application in Section 3.1, the provided information in Tables 1 and 2
is respectively converted into one and two polar, that is, m = 1 and m = 2. We then applied the
Algorithm 1 of CmPF-TOPSIS method for m = 1 and m = 2 to evaluate the performance of the
alternatives and obtained the results for both patients, which are displayed in Tables 16 and 17,
respectively.

Table 16. Results of CmPF-TOPSIS method for the patient P1 in case of m = 1, 2, 3.

%(ℵi)
Alternatives m = 1 Ranks m = 2 Ranks m = 3 Ranks
ℵ1 0.7844 1 0.8177 1 0.7879 1
ℵ2 0.4022 6 0.5324 5 0.5568 5
ℵ3 0.7175 3 0.7501 3 0.7495 2
ℵ4 0.4909 5 0.5153 6 0.5366 6
ℵ5 0.7583 2 0.7831 2 0.6175 4
ℵ6 0.5261 4 0.6330 4 0.6351 3

Table 17. Results of CmPF-TOPSIS method for the patient P2 in case of m = 1, 2, 3.

%(ℵi)
Alternatives m = 1 Ranks m = 2 Ranks m = 3 Ranks
ℵ1 0.7062 5 0.7419 4 0.7364 2
ℵ2 0.7095 4 0.5264 5 0.6073 5
ℵ3 0.8283 1 0.7934 1 0.8280 1
ℵ4 0.7377 3 0.7489 3 0.6361 3
ℵ5 0.8088 2 0.7647 2 0.6336 4
ℵ6 0.2129 6 0.3833 6 0.4734 6

By examining the results in Tables 16 and 17, one can easily observe that the best alternative
remains consistent for both patients across different values of m. This finding suggests that the
proposed method is sensitive and reliable and can provide consistent results even when the value
of m is changed.

• In the same way as the previous analysis again repeating the process of the CmPF-ELECTRE-I
method when m = 1 and m = 2, and obtained the results for both patients, which are described
in Tables 18 and 19. From Tables 18 and 19, it can readily see that the final solution for both
patients is stable across different values of m. This finding suggests that the developed approach
is reliable.
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Table 18. Results of CmPF-ELECTRE-I method for the patient P1 in case of m = 1, 2, 3.
m = 1

Alternatives ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

Submissive
Alternatives

ℵ2,ℵ4,ℵ6 − ℵ2 − ℵ2,ℵ4,ℵ6 −

Incomparable
Alternatives

ℵ3,ℵ5 ℵ4,ℵ6 ℵ1,ℵ4,ℵ5,ℵ6 ℵ2,ℵ3,ℵ6 ℵ1,ℵ3 ℵ2,ℵ3,ℵ4

m = 2
Submissive
Alternatives

ℵ2,ℵ6 − − − ℵ2 −

Incomparable
Alternatives

ℵ3,ℵ4,ℵ5 ℵ3,ℵ4,ℵ6 ℵ1,ℵ2,ℵ4,ℵ5,ℵ6 ℵ1,ℵ2,ℵ3,ℵ5,ℵ6 ℵ1,ℵ3,ℵ4,ℵ6 ℵ2,ℵ3,ℵ4,ℵ5

m = 3
Submissive
Alternatives

ℵ2,ℵ3,ℵ4,ℵ5,ℵ6 − ℵ4,ℵ5 − − −

Incomparable
Alternatives

− ℵ2,ℵ3,ℵ4,ℵ5,ℵ6 ℵ2,ℵ6 ℵ2,ℵ5,ℵ6 ℵ2,ℵ4,ℵ6 ℵ1,ℵ2,ℵ3,ℵ4,ℵ5

Table 19. Results of CmPF-ELECTRE-I method for the patient P2 in case of m = 1, 2, 3.

m = 1
Alternatives ℵ1 ℵ2 ℵ3 ℵ4 ℵ5 ℵ6

Submissive
Alternatives

− ℵ6 ℵ1,ℵ2,ℵ6 ℵ1,ℵ6 ℵ1,ℵ2,ℵ6 −

Incomparable
Alternatives

ℵ2,ℵ6 ℵ1,ℵ4 ℵ4,ℵ5 ℵ2,ℵ3 ℵ3,ℵ4 ℵ1

m = 2
Submissive
Alternatives

ℵ6 − ℵ1,ℵ2,ℵ4,ℵ6 ℵ2,ℵ6 ℵ2,ℵ6 −

Incomparable
Alternatives

ℵ2,ℵ4,ℵ5 ℵ1,ℵ6 ℵ5 ℵ1,ℵ5 ℵ1,ℵ3,ℵ4 ℵ2

m = 3
Submissive
Alternatives

ℵ2,ℵ5 − ℵ1,ℵ2,ℵ4,ℵ5,ℵ6 − − −

Incomparable
Alternatives

ℵ6 ℵ4,ℵ5,ℵ6 − ℵ2,ℵ5,ℵ6 ℵ2,ℵ4,ℵ6 ℵ1,ℵ2,ℵ3,ℵ4,ℵ5

Overall, the results of our analysis provide strong evidence that the CmPF-TOPSIS and the CmPF-
ELECTRE-I methods can be applied to various real-life MCDM problems with different values of
m. These findings have important implications for decision-makers who need to consider multiple
conflicting criteria in their decision-making processes.
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6. Conclusions and future directions

Many real-world decision-making problems emanate in a complex environment and involve
conflicting systems of multiple criteria, uncertainty, and imprecise information. Several researchers
have developed MCDM methods to solve these issues precisely. The existing MCDM approaches are
an important part of the decision process for complex problems, and the theory of CmPSs is
well-suited to handle the uncertain multi-polar data in multi-criteria decision problems because some
decision problems have multi-polar information due to the involvement of multiple agents. The
TOPSIS and ELECTRE-I approaches are widely used and well-established MCDM methods with a
history of successful real-world applications under several uncertain theories. In this article, we have
proposed a methodological and computational enhancement of the TOPSIS and ELECTRE-I MCDM
methods for processing CmPF information. We have also proposed Hamming, normalized Hamming,
Euclidean, and normalized Euclidean distance measures for CmPFSs, and verified their validity by
corresponding results. Furthermore, we have illustrated our proposed techniques by solving the
psychiatric problem of diagnosing ICDs. Both methods give similar results and verify their
effectiveness and applicability by a comprehensive comparison with existing methods. The
comparison results of psychiatric problems in the case of proposed and existing methods are given in
Table 15, in which one can easily observe that ℵ1 and ℵ3 are the suitable options for the patients P1

and P2, respectively. All these arguments demonstrate that the CmPF-TOPSIS and
CmPF-ELECTRE-I methods provide effective and comprehensive frameworks for solving MCDM
problems.

There are some limitations of the proposed techniques, (i) The offered approaches only deal with
CmPF information, and cannot account for decision makers’ negative and reluctant preferences. (ii)
The suggested techniques are challenging due to the cubic nature of multi-polar data and
the evaluation of symbolic translation at each multi-calculated stage.

For future work, we will extend our work to other derivatives of the ELECTRE technique under
CmPF information such as:

• Cubic m-polar fuzzy ELECTRE-II, III.

• ELECTRE-TRI under the cubic m-polar fuzzy framework.
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