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Abstract: Probabilistic linguistic terms set (PLTS), a new tool for expressing uncertain decision
information, is composed of all possible linguistic terms (LTs) and their related probabilities. It also
increases the corresponding probability of LTs in hesitant fuzzy linguistic term set (HFLTS). On the
other hand, aggregation operator is an important information fusion tool, the Maclaurin symmetric
mean (MSM) operator can provide more flexibility and robustness in information fusion, and make it
more suitable for solving MADM problems with independent attributes. This current study adopts the
merits of PLTS and MSM operator, and then a novel probabilistic linguistic decision making approach
are targeted. Firstly, the operations of two PLTSs are redefined based upon Archimedean t-norm (ATN)
and Archimedean t-conorm (ATC); Secondly, the probabilistic linguistic generalized MSM operator
(PLGMSM) is proposed based on ATN and ATC, some properties of PLGMSM are investigated,
then some special PLGMSM operators have been studied in detail when the parameters take different
values and the generator of ATN takes different functions. Thirdly, the weighted probabilistic linguistic
generalized MSM operator (WPLGMSM) is studied along with some properties of PLGMSM, some
special WPLGMSM operators have been also investigated in detail when the parameters take different
values and the generator of ATN takes different functions. Finally, on the basis of our proposed
aggregation operators, the aggregated-based decision making approach is designed and an example
is supplied to manifest the effectiveness of the proposed approach. Furthermore, some comparison
analyses with extant decision approaches are carried out to illustrate the validity and feasibility of the
proposed approach.
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1. Introduction

Generally speaking, multi-criteria evaluation refers to the evaluation conducted under multiple
criteria that cannot be replaced by each other. In the specific evaluation process, information is
often missing because of the wide range of evaluation criteria. Some information is available but
very inaccurate; Some can only give a rough range based on empirical judgment. Therefore, in the
process of scheme evaluation, quantitative calculation shall be carried out for those criteria that can be
accurately quantified; For those criteria that are difficult to accurately quantify or cannot be quantified,
it is necessary to make a rough estimation or invite relevant experts to conduct qualitative analysis and
hierarchical semi quantitative description. On account of the complexity and uncertainty of objective
things, as well as the fuzziness brought by human cognitive level and thinking mode, it is difficult
for experts to give accurate and quantitative information in evaluation process. Therefore, how to
realize mutual transformation between qualitative and quantitative as well as reflect the soft reasoning
ability in linguistic expression has always been a research hot-spot in uncertain system evaluation and
decision-making.

For example, the fuzzy set [1] shows the relationship between scheme and criterion in a quantitative
way, which has been recognized by many scholars. Since then, quantitative decision tools, that is,
various extensions of fuzzy set [2–5], have been emerged to show decision information. However, with
the ceaseless advancement and change of decision-making environment, it is difficult for decision-
makers to use a set of quantitative and specific values to describe the decision-making information
of a scheme under a certain criterion. To solve this deficiency, Zadeh proposed linguistic variable
(LV) [6], which qualitatively displays the decision information of decision-makers in a non-numerical
way for the first time. Then, In line with LV, decision tools such as uncertain LV [7–9], hesitant fuzzy
linguistic term set (HFLTS) [10, 11], terms with weakening modifiers [12] appeared to help decision-
makers give qualitative decision information. In the face of complex MADM problems, owing to the
influence of complex information as well as uncertain factors of group cognition, people sometimes
use a single linguistic term (LT) to describe attribute evaluation information, but sometimes need to
use several LTs to express decision information at the same time [13, 14]. For example, when students
evaluate the quality of class teaching, they may use both “good” and “very good” to evaluate it at the
same time. Inspired by hesitant fuzzy sets [15] and linguistic term set (LTS) [6], Rodriguez et al [10]
defined HFLTS in 2012, which allows decision-makers to use several possible LTs to evaluate attributes
simultaneously.

Although HFLTSs can meet the needs of decision-makers to express information by multiple LTs,
the HFLTSs are assumed that the weight of all possible LTs are equal. Obviously, this assumption is
too idealistic and inconsistent with actual situation. Because although decision-makers shilly-shally
about several possible LTs, they may tend to use some of them under certain circumstances. Therefore,
different LTs should possess different weights. In line with this reality, Pang et al. (2016) Proposed
probabilistic linguistic term sets (PLTSs), which is composed of possible LTs and associated with
their probabilities [16]. On the one hand, probability linguistic contains several LTs to show decision-
makers view in decision-making, which retains the good nature of HFLTS. On the other hand, it reflects
the corresponding weights of several LTs. This way of displaying decision information by combining
qualitative and quantitative information well reflects decision-makers decision information, which will
not lose linguistic evaluation information, so they can make decision evaluation more in line with the
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reality. Although it is difficult to give a definite decision-making view on the problems that needs
to decide, it will give the weight of corresponding view and give relatively clear decision-making
information as much as possible to help experts solve decision-making problems. Briefly, the merit
of PLTSs is that it can express information more completely and accurately. Hence, PLTSs could be
utilized to solve practical decision-making problems.

Aggregation operator (AO) is an important tool for information fusion. Most AOs are built on
the special triangle t-norm. Archimedeans t-norm (ATN) and Archimedeans t-conorm (ATC) are
composed of t-norm (TN) and t-conorm(TC) families. They can deduce some basic algorithms of
fuzzy sets. Linguistic scaling functions can define different semantics for LTs in different linguistic
environments. At the same time, the significant advantage of Muirhead operator is that it can reflect
the relationship between any parameters. Liu et al. [17] defined the algorithm for PLTS based
on ATN and linguistic scaling function, and then combined the Muirhead average operator with
the PLTSs to propose the Archimedeans Muirhead average operator and Archimedeans weighted
Muirhead average operator of probabilistic linguistic, Archimedean dual Muirhead average operator
of probability linguistic and Archimedean weighted dual Muirhead average operator of probability
linguistic. After that, more and more attention has been paid to various aggregation operators [18–20].
In real MADM, it is rare that the evaluation attributes of various alternatives are independent with each
other. For example, there is a positive correlation between teaching quality and lesson design, that is,
the better the curriculum design, the higher the quality of teaching. For capturing these dependencies,
Maclaurin [21] initially proposed Maclaurin symmetric mean (MSM) operator, which can consider the
relationship between multiple attribute values at the same time, and MSM has an adjusting parameter
k. The MSM operator is a flexible operator that can consider the relationship between several attribute
values. Therefore, it is essential to develop some MSM operators [22–34] in different polymerization
environment; Besides, the operation laws are essential in the process of aggregation, and they can
generate many operation laws based on certain ATTs and ATCs. Although MSM operators have
attracted a lot of attentions since it’s appearance, MSM operator has some disadvantages. The main
disadvantage of MSM operator is that it only focus on the overall relationship, ignoring heterogeneity
among individuals. To address this handicap, Detemple and Robertson [35] proposed generalized
Maclaurin symmetric mean (GMSM), which is considered as a new generalization of MSM. GMSM
can not only reflect the relationship of the whole, but also consider the importance level of individuals.
Besides, compared with MSM, GMSM can avoid information loss. Because the polymerization
process increased equality constraints. Therefore, GMSM is extensively employed in information
fusion.

Since PLTSs are introduced by integrating the LTSs and the HFSs, PLTSs can successfully express
random and fuzzy information. Therefore, it is necessary to develop a novel important probabilistic
linguistic information fusion tool (that is, PLGMSM operator) which can not only combine the merits
of PLTSs and MSM, but also reflect the relationship of the whole and consider the importance level of
individuals. These considerations lead us to lock the main targets that follow from this work:

(1) To introduce new probabilistic linguistic GMSM operators along with investigate some
properties as well as some special situations;

(2) To construct an MADM algorithm based upon the proposed PLGMSM operators;
(3) To manifest an example based on probabilistic linguistic information to prove the availability of

the proposed MADM approach;
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(4) To analyze the sensitivities of parameters in the proposed aggregation operators.
To achieve the above objective, some probabilistic linguistic GMSM operators are introduced for

PLTSs based on ATN and ATC in current work. The structure of this work is arranged as: In
Sect.2, some related basic concepts are presented, for instance PLTS, MSM operators, ATN and
ATC, etc. In Sect.3, the PLGMSM are introduced based upon the ATN and ATC, some properties
of the PLGMSM operators and special situations of PLGMSM operators are also given. In Sect.4, the
weighted PLGMSM (WPLGMSM) is introduced based upon the ATN and ATC, some properties of the
PLGMSM and special situations of WPLGMSM are also listed in this section. Section. 5 constructs
a MADM method for evaluating quality of classroom teaching. Some comparisons are carried out in
Sect.6. and a conclusion is made in Sect.7.

2. Related knowledge

Some basic concepts will be reviewed in this part, including linguistic term set (LTS), probabilistic
linguistic term set (PLTS), ATN and ATC.

2.1. PLTS

Definition 2.1. [36] Suppose S = {sv|v = −τ, . . . ,−1, 0, 1, . . . , τ} be a LTS, where sv expresses a
possible value of a LV, and τ is a positive integer. For any two LVs sα, sβ ∈ S , it satisfies: if α > β, then
sα > sβ.

Definition 2.2. [16] Suppose S = {sv|v = −τ, . . . ,−1, 0, 1, . . . , τ} be a LTS, a PLTS is defined as
following:

` (p) =

`(i)
(
p(i)

) ∣∣∣`(i) ∈ S , p(i) > 0, i = 1, . . . , #` (p) ,
#`(p)∑
i=1

p(i) 6 1

 (2.1)

where `(i)
(
p(i)

)
denotes the i-th LV ` with probability p(i), and #` (p) represents the number of all

different elements in ` (p).

In line with Definition 2.2, Eq (2.1) can be transformed

` ( p̃) =

`(i)
(
p̃(i)

) ∣∣∣`(i) ∈ S , p̃(i) ≥ 0, i = 1, . . . , #` (p) ,
#`(p)∑
i=1

p̃(i) = 1

 (2.2)

where p̃(i) = p(i)/
#`(p)∑
i=1

p(i).

The score of ` (p) can be calculated as

E(` (p)) = sr, (2.3)

where r =
#`(p)∑
i=1

r(i) p(i)/
#`(p)∑
i=1

p(i), r(k) is subscript of `(k).
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The deviation degree of `(p) is

σ(` (p)) =

 #`p∑
i=1

(
(r(i) − r)p(i)

)2


1/2

/

#`(p)∑
i=1

p(i). (2.4)

For any two LPTSs `1(p), `2(p),
(1) if E(`1 (p)) > E(`2 (p)), the `1(p) > `2(p);
(2) if E(`1 (p)) = E(`2 (p)), when σ(`1 (p)) > σ(`2 (p)), then `1(p) < `2(p);
(3) if E(`1 (p)) = E(`2 (p)), when σ(`1 (p)) = σ(`2 (p)), then `1(p) = `2(p).
In order to calculate the PLTSs more conveniently, the transformation function g was introduced by

Gou et al. [37]. Suppose there is a LTS S and a PLTS ` (p), the g and g−1 are defined as:

g : [−τ, τ]→ [0, 1] , g (`v (p)) =

{(
ν + τ

2τ

) (
p(i)

)}
=

{
(γ)

(
p(i)

)}
, γ ∈ [0, 1] , (2.5)

and

g−1 : [0, 1]→ [−τ, τ] , g−1 (g (` (p))) =
{
S (2γ−1)τ

(
p(i)

)
|γ ∈ [0, 1]

}
= ` (p) . (2.6)

2.2. ATN and ATC

AOs are very important tools for information fusion in some decision-making problems. However,
most of AOs are defined based on TNs and TCs. So it is essentially to review TNs and TCs before the
operations of PLTS are given.

Definition 2.3. [37] If the function ς : [0, 1]2 → [0, 1] meets the following four requirements for all
α, β, δ ∈ [0, 1], it was named as a TN:

(1) ς (α, β) = ς (β, α);
(2) ς (α, ς (β, δ)) = ς (ς (α, β) , δ);
(3) ς (α, β) ≤ ς (α, δ), if β ≤ δ;
(4) ς (1, α) = α.

A TC ς∗ [38] is a mapping from [0, 1]2 to [0, 1], if ς∗ meets the following four requirements for all
α, β, δ ∈ [0, 1]:

(1) ς∗ (α, β) = ς∗ (β, α);
(2) ς∗ (α, ς∗ (β, δ)) = ς∗ (ς∗ (α, β) , δ);
(3) ς∗ (α, β) ≤ ς∗ (α, δ), if β ≤ δ;
(4) ς∗ (0, α) = α.
The TN ς and TC ς∗ are dual, that is, ς∗ (α, β) = 1 − ς (1 − α, 1 − β).
A TN ς is Archimedean t-norm (ATN), if there exists an integral n, such that ς(a, · · · , a︸   ︷︷   ︸

n times

) < b for

any (a, b) ∈ [0, 1]2. A TC ς∗ is Archimedean t-conorm (ATC), if there is an integral n, such that
ς∗(a, · · · , a︸   ︷︷   ︸

n times

) > b for any (a, b) ∈ [0, 1]2. Specially, if ς and ς∗ satisfy the three given requirements:

(1) ς and ς∗ are continuous;
(2) ς and ς∗ and are strictly increasing;
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(3) for all α ∈ [0, 1], and ς∗ (α, α) > α,
then ς and ς∗ are strict ATN and strict ATC respectively.

Assuming there is an additive generator J : [0, 1] → [0,∞). A strict ATN ς (α, β) can be defined
by:

ς (α, β) = J−1 (J (α) + J (β)) , (2.7)

where J−1 is the inverse of J. Similarly, its ATC ς∗ (α, β) also can be generated by its additive generator
J∗:

ς∗ (α, β) = (J∗)−1 (J∗ (α) + J∗ (β)) , (2.8)

where J∗ (α) = J (1 − α), (J∗)−1 (α) = 1 − J−1 (α) and (J∗)−1 is the inverse of J∗.
Moreover, we can also derive ς∗ (α, β) as:

ς∗ (α, β) = 1 − J−1 (J (1 − α) + J (1 − β)) . (2.9)

2.3. Generalized MSM operators

MSM operator [21] was originally proposed by Maclaurin and then further generalized by
Detemple [35], it’s merit is that it can reflect the relationship between multiple input parameters. The
MSM is defined as follows:

Definition 2.4. [21] Let ξ1, ξ2, · · · , ξn be n nonnegative real numbers, and m = 1, . . . , n. A MSM
operator will be expressed as

MS M(m) (ξ1, ξ2 . . . , ξn) =


∑

1≤i1<···<im≤n

m∏
j=1
ξi j

Cm
n


1
m

, (2.10)

where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n).

Definition 2.5. [35] Let ξ1, ξ2, · · · , ξn be n nonnegative real numbers, and µ j ≥ 0. A GMSM operator
can be expressed as

GMS M(m,u1,...,um) (ξ1, ξ2, . . . , ξn) =


∑

1≤i1<···<im≤n

m∏
j=1
ξ

u j

i j

Cm
n


1

(u1+u2+···+um)

, (2.11)

where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n), i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

The properties of GMSM(m,u1 ,...,um) are given as follows:
(a) Idempotency. GMS M(m,u1 ,...,um) (ξ, . . . , ξ) = ξ, if ξi=ξ for all i;
(b) Monotonicity. GMS M(m,u1 ,...,um) (ξ1, . . . , ξn) ≤ GMS M(m,u1 ,...,um) (η1, . . . , ηn) , if ξi ≤ ηi for all i ;
(c) Boundedness. mini (ξi) ≤ GMS M(m,u1 ,...,um) (ξ1, ξ2, . . . , ξn) ≤ maxi (ξi).
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Under some special situations, GMSM(m,u1 ,...,um) can reduce to some concrete operators when m takes
different values:

(1) When m = 2, the GMSM(m,u1 ,...,um) will reduce to BM operator:

GMS M(m,u1,u2) (ξ1, ξ2, . . . , ξn) =


∑

1≤i< j≤n
ξu1

i ξ
u2
j

n(n − 1)


1

(u1+u2)

. (2.12)

(2) When m = 3, the GMSM(m,u1 ,...,um) will reduce to generalized BM operator:

GMS M(m,u1,u2,u3) (ξ1, ξ2, . . . , ξn) =


∑

1≤i, j,k≤n,i, j,k
ξu1

i ξ
u2
j ξ

u3
k

n(n − 1)(n − 2)


1

(u1+u2+u3)

. (2.13)

(3) When u1=u2= · · ·=um=1, the GMSM(m,u1 ,...,um) will reduced to MSM operator:

GMS M(m,u1,...,um) (ξ1, ξ2, . . . , ξn) =


∑

1≤i1<···<im≤n

m∏
j=1
ξi j

Cm
n


1
m

. (2.14)

3. PLGMSM operators based on ATN and ATC

3.1. The operation laws of PLTSs based on ATN and ATC

In terms of ATN and ATC, a series of operation laws of PLTS can be defined as follows:

Definition 3.1. Let `1(p), `2(p) be two PLTSs, then
(1)

`1 (p) ⊕ `2 (p) = g−1

 ∪
η(t)

i ∈g(`i(p))(i=1,2)

{
ς∗

(
η(t)

1 , η
(t)
2

) (
p(i)

1 p(i)
2

)}
= g−1

 ∪
η(t)

i ∈g(`i(p))(i=1,2)

{(
1 − J−1

(
J
(
1 − η(i)

1

)
+ J

(
1 − η(i)

2

))) (
p(i)

1 p(i)
2

)} ;

(2)

`1 (p) ⊗ `2 (p) = g−1

 ∪
η(t)

i ∈g(`i(p))(i=1,2)

{
ς
(
η(i)

1 , η
(i)
2

) (
p(i)

1 p(i)
2

)}
= g−1

 ∪
η(t)

i ∈g(`i(p))(i=1,2)

{
J−1

(
J
(
η(i)

1

)
+ J

(
η(i)

2

)) (
p(i)

1 p(i)
2

)} ;

(3)

λ`1 (p) = g−1

 ∪
η(t)

1 ∈g(`1(p))

{(
1 − J−1

(
λJ

(
1 − η(i)

1

))) (
p(i)

1

)} , f or all λ ∈ R;
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(4)

`1(p)λ = g−1

 ∪
η(t)

1 ∈g(`1(p))

{
J−1

(
λJ

(
η(i)

1

)) (
p(i)

1

)} , f or all λ ∈ R.

Remark 3.1. In Definition 3.1, J is a generator of ATN, when J takes different function which satisfies
the condition of generators, we can obtain different operations of two PLTSs. Therefore, Definition 3.1
can be regarded as a unified expression of some existing operations of PLTSs.

3.2. PLGMSM operators based on ATN and ATC

In what follows, `i (p) =
{
`(t)

i

(
p(t)

i

)
|t = 1, 2, . . . , #` i (p)

}
if not specifically stated. Based upon

operational laws of PLTSs defined in Defintion 3.1, PLGMSM operator can be proposed and listed
as follows.

Definition 3.2. Let `1(p), · · · , `n(p) be a group of PLTSs, the probabilistic linguistic generalized MSM
operator (PLGMSM) based on ATN and ATC is a function PLGMS M : Ωn → Ω and

PLGMS M(m,u1,...,um) (`1 (p) , . . . , `n (p)) =


⊕

1≤i1<···<im≤n

(
m
⊗
j=1
`(p)i j

u j

)
Cm

n


1

u1+u2+···+um

, (3.1)

where Ω is the set of all PLTSs.

According to Definition 3.1 and Definition 3.2, the following result can be derived.

Theorem 3.1. Let `1(p), · · · , `n(p) be a group of PLTSs, then

PLGMS M(m,u1,u2,...,um) (`1(p), · · · , `n(p))

= g−1

 ∪
η(t)

i ∈g(`i(p))

J−1

 1
m∑

k=1
uk

· J

1 − J−1

 1
Cm

n

 Σ
1≤i1<
···<im≤n

J

1 − J−1

 m∑
j=1

u j · J
(
η(t)

i j

)







∏
1≤i1<
···<im≤n

m∏
j=1

p(t)
i j



 (3.2)

Proof. According to Definition 3.1, we have

(
`(p)i j

)u j
= g−1

 ∪
η(t)

i ∈g(`i(p))

{
J−1

(
u j · J

(
η(t)

i j

)) (
p(t)

i j

)} ,
and

m
⊗
j=1

(
`(p)i j

)u j
= g−1

 ∪
η(t)

i ∈g(`i(p))

J−1

 m∑
j=1

(
J
(
J−1

(
u j · J

(
η(t)

i j

))))
 m∏

j=1

p(t)
i j





= g−1

 ∪
η(t)

i ∈g(`i(p))

J−1

 m∑
j=1

(
u j · J

(
η(t)

i j

))
 m∏

j=1

p(t)
i j



 ,
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therefore

⊕
1≤i1<···<im≤n

(
m
⊗
j=1

(
`(p)i j

)u j

)
= g−1

 ∪
η(t)

i ∈g(`i(p))

1 − J−1

 m∑
j=1

J

1 − J−1

 m∑
j=1

u j · J
(
η(t)

i j

)


 ∏

1≤i1<···<im≤n

m∏
j=1

p(t)
i j



 .

Furthermore, we have

⊕
1≤i1<···<im≤n

(
m
⊗
j=1
`(p)i j

u j

)
Cm

n

= g−1

 ∪
η(t)

i ∈g(`i(p))

1 − J−1

 1
Cm

n
J

1 −
1 − J−1

 Σ
1≤i1<···<im≤n

J

1 − J−1

 m∑
j=1

u j · J
(
η(t)

i j

)





 ∏

1≤i1<···<im≤n

m∏
j=1

p(t)
i j



 .

So 
⊕

1≤i1<···<im≤n

(
m
⊗
j=1
`(p)i j

u j

)
Cm

n


1

u1+u2+···+um

= g−1

 ∪
η(t)

i ∈g(`i(p))

J−1

 1
m∑

k=1
uk

· J

1 − J−1

 1
Cm

n

 Σ
1≤i1<···<im≤n

J

1 − J−1

 m∑
j=1

u j · J
(
η(t)

i j

)





 ∏

1≤i1<···<im≤n

m∏
j=1

p(t)
i j



 .

Proved. �

Theorem 3.2. Let `1(p), · · · , `n(p) be a group of PLTSs. If
(
`′1(p) (p) , `2

′ (p) , · · · , `n
′ (p)

)
is a

permutation of (`1 (p) , · · · , `n (p)), then

PLGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p)) = PLGMS M(m,u1,u2,...,um) (`′1 (p) , · · · , `n
′ (p)

)
. (3.3)

Proof. The proofs is similar to Property 3 in [24]. So, the details are omitted. �

3.3. Some special PLGMSM operators based on different generators

In this section, some special PLGMSMS operators will be investigated when parameters take
different values and the generator takes different functions.

3.3.1. When parameters takes different values

(a) When m = 1, the PLGMSM operator based on ATN and ATC will reduce to

PLMS M (`1 (p) , . . . , `n (p))

= g−1

∪
η(t)

i

J−1

 1
u1
· J

1 − J−1

1
n

∑
1≤i≤n

J
(
1 − J−1

(
u1J

(
η(t)

i

))) ∏
1≤i≤n

p(t)
i



 . (3.4)
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(b) When m = 2, the PLGMSM operator based on ATN and ATC will reduce to

PLGMS M(2,u1,u2,) (`1 (p) , . . . , `n (p))

= g−1

∪
η(t)

i

J−1

 1
u1 + u2

· J

1 − J−1

 1
n(n − 1)

 Σ
1≤i1<i2≤n

J

1 − J−1

 2∑
j=1

u j · J
(
η(t)

i j

)





 ∏

1≤i1<i2≤n

2∏
j=1

p(t)
i j



 . (3.5)

(c) When u1=u2= · · ·=um=1, the PLGMSM operator based on ATN and ATC will reduce to

PLGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p))

= g−1

∪
η(t)

i

J−1

 1
m
· J

1 − J−1

 1
Cm

n

 Σ
16i1<···<im6n

J

1 − J−1

 m∑
j=1

u j · J
(
η(t)

i j

)





 ∏

16i1<···<im6n

m∏
j=1

p(t)
i j



 . (3.6)

3.3.2. When generator takes different functions

(a) If J (x) = −lnx, it has J−1 (x) =e−x. Then we get probabilistic linguistic Archimedean Algebraic
GMSM (PLAAGMSM) [16] operators as follows:

PLAAGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p))

= g−1

∪η(t)
i

1 −
 ∏

16i1<···<im6n

1 − m∏
j=1

(
η(t)

i j

)u j


1

Cm
n


1

m∑
k=1

uk


 ∏

16i1<···<im6n

m∏
j=1

p(t)
i j


 . (3.7)

In this situation, GPLGMSM reduce to the PLAAMSM.
(b) If J (x) = ln 2−x

x , it gains J−1 (x) = 2
ex+1 . We get probabilistic linguistic Archimedean Einstein

GMSM (PLAEGMSM) operators as follows:

PLAEGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p))

= g−1

∪η(t)
I

 2(A − 1)

1
m∑

k=1
uk

(2A + 3)

1
m∑

k=1
uk

+ (A − 1)

1
m∑

k=1
uk


 ∏

16i1<···<im6n

m∏
j=1

p(t)
i j


 , (3.8)

in which,

A =
∏

1≤i1<···<im≤n


m∏

j=1

(
2 − η(t)

i j

)u j
+ 3

m∏
j=1

(
η(t)

i j

)u j

m∏
j=1

(
2 − η(t)

i j

)u j
−

m∏
j=1

(
η(t)

i j

)u j


1

Cm
n

.

(c) If J (x) = ln ε+(1−ε)x
x (ε > 0), then it has J−1 (x) = ε

ex+ε−1 . We can get probabilistic linguistic
Archimedean Hamacher GMSM (PLAHGMSM) operators as follows.
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PLAHGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p))

= g−1

∪η(t)
i


ε(

ε2

b−1 + 1
) 1

m∑
k=1

uk
+ ε − 1


 ∏

16i1<···<im6n

m∏
j=1

p(t)
i j


 , (3.9)

in which,

b =
∏

1≤i1<···<im≤n

(
ε2

a − 1
+ 1

) 1
Cm

n

,

and where

a =

m∏
j=1

ε + (1 − ε) η(t)
i j

η(t)
i j


u j

.

In this case, when ε = 1, PLAHGMSM reduces to the GPLAAMSM.

Example 3.1. Suppose `1 = {`−1 (1)}, `2 = {s−2 (1)}, `3 = {s0 (0.3) , s1 (0.7)} be three PLTSs, applying
the function g to convert `i (i = 1, 2, 3) into

g (`1) = {0.25 (1)} , g (`2) = {0 (1)} , g (`3) = {0.5 (0.3) , 0.75 (0.7)} .

Besides, previous different operators could be used to aggregate `i (i = 1, 2, 3). Here, set
m = 2, u1 = 1, u2 = 2. In line with the above formula, we get

PLAAGMS M(2,1,2) (`1 (p) , `2 (p) , `3 (p))

= g−1

 ∪
η(t)

i ∈g(`i(p)),i=1,3

1 −
 ∏

16i1<i263

1 − 2∏
j=1

(
η(t)

i j

)u j


1

C2
3


1

1+2

 ∏

16i1<i263

2∏
j=1

p(t)
i j




= {s−1.34 (0.3) , s−0.8 (0.7)} .

4. Weighted probabilistic linguistic generalized MSM operators based upon ATN and ATC

Due to each individual’s different background knowledge and preference, the importance should be
different. Hence, it is essential to consider the individual weight information to make the decision
results are more reasonable and scientific. In this section, the weighted probabilistic linguistic
generalized MSM operators based on ATN and ATC will be introduced.

Definition 4.1. Let `1(p), · · · , `n(p) be n PLTSs and wi be the weight of `i (p) with wi ∈ [0, 1],∑n
i=1 wi = 1. The WPLGMSM is a function WPLGMS M(m,u1,u2,...,um) : Ωn → Ω, if

WPLGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p)) =


⊕

16i1<···<im6n

(
m
⊗
j=1

((
nwi j

)
⊗ `(p)i j

)u j

)
Cm

n


1

u1+u2 + ···+um

, (4.1)

where Ω is the set of all PLTSs.
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In the light of Definition 4.1, the following result can be derived.

Theorem 4.1. Let `1(p), · · · , `n(p) be n PLTSs and wi be the weight of `i (p) with wi ∈ [0, 1] ,∑n
i=1 wi = 1. Then

WPLGMS M(m,u1 ,u2 ,···,um) (`1 (p) , . . . , `n (p))

= g−1

 ∪
η

(t)
i ∈g(`i(p))

J−1

 1
m∑

k=1
uk

J

1 − J−1

 1
Cm

n

∑
16i1<···<im6n

J

1 − J−1

 m∑
j=1

u j J
(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))





 ∏

16i1<···<im6n

m∏
j=1

pi j
(t)


 .

Proof. In line with the operational formula, we have

(
nwi j ⊗ `(p)i j

)
= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

) {1 − J−1
(
nwi j J

(
1 − η(t)

i j

))} (
p(t)

i j

) ,
(
nwi j ⊗ `(p)i j

)u j
= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

) {{J−1
[
u jJ

(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))]}} (
p(t)

i j

) .
Therefore,

m
⊗
j=1

(
nwi j ⊗ `(p)i j

)u j
= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

)
J−1

 m∑
j=1

J
(
J−1

[
u jJ

(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))])

 m∏

j=1

p(t)
i j




= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

)
J−1

 m∑
j=1

(
u jJ

(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

))))

 m∏

j=1

p(t)
i j




and so

m
⊗
j=1

(
nwi j ⊗ `(p)i j

)u j
= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

)
J−1

 m∑
j=1

J
(
J−1

[
u jJ

(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))])

 m∏

j=1

p(t)
i j




= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

)
J−1

 m∑
j=1

(
u jJ

(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

))))

 m∏

j=1

p(t)
i j


 ,

1
Cm

n
⊕

16i1<···<im6n

(
m
⊗
j=1

(
nwi j ⊗ `(p)i j

)u j
)

= g−1

 ∪
η

(t)
i j
∈g

(
`(p)i j

)
1 − J−1

 1
Cm

n
J

J−1

 ∑
16i1<···<im6n

J

1 − J−1

 m∑
j=1

u j J
(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))





 ∏

16i1<···<im6n

m∏
j=1

pi j
(t)




= g−1

 ∪
η

(t)
i j
∈g

(
`(p)i j

)
1 − J−1

 1
Cm

n

 ∑
16i1<···<im6n

J

1 − J−1

 m∑
j=1

u j J
(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))




 ∏

16i1<···<im6n

m∏
j=1

pi j
(t)


 .

Hence,
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(
1

Cm
n

⊕
16i1<···<im6n

(
m
⊗
j=1

((
nwi j

)
⊗ `(p)i j

)u j
)) 1

u1+u2 + ···+um

= g−1

 ∪
η

(t)
i j
∈g

(
`(p)i j

)
J−1

 1
m∑

k=1
uk

J

1 − J−1

 1
Cm

n

∑
16i1<···<im6n

J

1 − J−1

 m∑
j=1

u j J
(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))





 ∏

16i1<···<im6n

m∏
j=1

pi j
(t)


 .

Proved. �

Theorem 4.2. Let `1(p), · · · , `n(p) be a group of PLTSs. If
(
`′1 (p) , · · · , `n

′ (p)
)

is a permutation of
(`1 (p) , · · · , `n (p)), then

WPLGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p)) = WPLGMS M(m,u1,u2,...,um) (`′1 (p) , · · · , `n
′ (p)

)
. (4.2)

Proof. The proofs of this theorem is similar to Property 3 in [24]. So, the details are omitted. �

4.1. Some special WPLGMSM operators based on different generators

In this section, some special PLGMSMS operators will be investigated when the parameters take
different values and the generator takes different function.

4.1.1. When parameters take different values

(a) When m = 1, the WPLGMSM operator based on ATN and ATC will reduce to

WPLMS M (`1 (p) , . . . , `n (p))

= g−1

 ∪
η(t)

i ∈g(`i(p))

J−1

 1
u1

J

1 − J−1

1
n

∑
16i16n

J
(
1 − J−1

(
u jJ

(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))))



 ∏

16i16n

pi1
(t)


 .

(b) When m = 2, the PLGMSM operator based on ATN and ATC will reduce to

PLGMS M(2,u1 ,u2 ,) (`1 (p) , . . . , `n (p)) =

g−1

 ∪
η

(t)
i ∈g(`i(p)),

J−1

 1
u1 + u2

· J

1 − J−1

 1
n(n − 1)

 Σ
16i1<i26n

J

1 − J−1

 2∑
j=1

u j J
(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))





 ∏

16i1<i26n

2∏
j=1

p(t)
i j



 .

(c) When u1 = u2 = · · · = um = 1, the PLGMSM operator based on ATN and ATC will reduce to

PLGMS M(m,u1 ,u2 ,...,um) (`1 (p) , . . . , `n (p))

= g−1

 ∪
η

(t)
i j
∈g

(
`(p)i j

)
J−1

 J
m

1 − J−1

 1
Cm

n

 Σ
16i1<···<im6n

J

1 − J−1

 m∑
j=1

u j J
(
1 − J−1

(
nwi j J

(
1 − η(t)

i j

)))





 ∏

16i1<···<im6n

m∏
j=1

p(t)
i j



 .

4.2. When generator takes different functions

In the what follows, the special situations of the WPLGMSM based on ATN and ATC will be
discussed.

(1) If J (x) = −lnx, then J−1 (x) =e−x. The weighted probabilistic linguistic Archimedean Algebraic
GMSM (WPLAAGMSM) operators will be obtained as follows:
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WPLAAGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p))

= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

)
1 −

 ∏
16i1<···<im6n

1 − m∏
j=1

(
1 −

(
1 − η(t)

i j

)nwi j
)u j


1

Cm
n


1

u1+u2 + ···+um


 ∏

16i1<···<im6n

m∏
j=1

p(t)
i j


 . (4.3)

(2) If J (x) = ln 2−x
x , it has J−1 (x) = 2

ex+1 . Then the weighted probabilistic linguistic Archimedean
Einstein GMSM (WPLAEGMSM) operators will be obtained as follows:

WPLAEGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p)))

= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

)


2
(
A

1
Cm

n − 1
) 1

u1+u2 + ···+um

(
A

1
Cm

n − 1
) 1

u1+u2 + ···+um
+

(
A

1
Cm

n + 1
) 1

u1+u2 + ···+um


 ∏

16i1<···<im6n

m∏
j=1

p(t)
i j


 , (4.4)

where,

A =
∏

16i1<···<im6n


 m∏

j=1


(
2 − η(t)

i j

)nwi j +
(
η(t)

i j

)nwi j(
2 − η(t)

i j

)nwi j −
(
η(t)

i j

)nwi j


u j

+ 1


/ m∏

j=1


(
2 − η(t)

i j

)nwi j +
(
η(t)

i j

)nwi j(
2 − η(t)

i j

)nwi j −
(
η(t)

i j

)nwi j


u j

− 1


.

(3) If J (x) = ln ε+(1−ε)x
x (ε > 0), then J−1 (x) = ε

ex+ε−1 , the weighted probabilistic linguistic
Archimedean Hamacher GMSM (WPLAHGMSM) operators will be obtained as follows:

WPLAHGMS M(m,u1,u2,...,um) (`1 (p) , . . . , `n (p))

= g−1

 ∪
η(t)

i j
∈g

(
`(p)i j

)


ε
(
Ci j

) 1
u1+u2 + ···+um

(
ε + (1 − ε) Ci j

) 1
u1+u2 + ···+um

− (1 − ε)
(
Ci j

) 1
u1+u2 + ···+um


 ∏

16i1<···<im6n

m∏
j=1

p(t)
i j


 ,(4.5)

where,

Ci j =


 ∏

16i1<···<im6n

ε + (1 − ε) Bi j

Bi j


1

Cm
n

− 1


/

 ∏
16i1<···<im6n

ε + (1 − ε) Bi j

Bi j


1

Cm
n

− (1 − ε)

,
B(t)

i j
=

(
ε + (1 − ε) Ai j

)u j
− Ai j

u j(
ε + (1 − ε) Ai j

)u j
− (1 − ε) Ai j

u j
,

A(t)
i j

=

(
ε + (1 − ε)

(
1 − η(t)

i j

))nwi j
−

(
η(t)

i j

)nwi j(
ε + (1 − ε)

(
1 − η(t)

i j

))nwi j
− (1 − ε)

(
η(t)

i j

)nwi j
.

In the following, we will continue to give some examples to testify different aggregation operators, and
discuss some special situations for diverse parameters.
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Example 4.1. Let `1 = {s - 1(0.3), s1(0.7)}, `2 = {s1(1)}, `3 = {s0(0.25), s2(0.75)} be three PLTSs.
Suppose w = (0.35, 0.25, 0.4) is the weight vector of `1, `2, `3. Set τ = 3, then, with the function
g, `1, `2, `3 will converted into g (`1 (p)) = {0.33(0.3), 0.67 (0.7)}, g (`2 (p)) = {0.67(1)}, g (`3 (p)) =

{0.5(0.25), 0.83 (0.75)}, respectively.
Then will use the WPLGMSM operator based on ATN and ATC to fuse `1, `2, `3. set

m = 2, u1 = 1, u2 = 2, with different additive generators, the aggregated results are obtained
as follows:

(1) If J (x) = −ln x:

WPLGMS M(2,1,2) (`1 (P) , `2 (P) , `3 (P))

=


⊕

16i1<i263

(
2
⊗
j=1

((
3wi j

)
⊗ `(p)i j

)u j

)
C2

3


1

1+2

=


S 0.068 (0.006) S 0.329 (0.013) S 0.436 (0.017) S 1.024 (0.039)
S 0.329 (0.013) S 0.546 (0.031) S 0.637 (0.039) S 1.153 (0.092)
S 0.708 (0.017) S 0.873 (0.039) S 0.943 (0.051) S 1.362 (0.118)
S 0.873 (0.039) S 1.108 (0.092) S 1.081 (0.118) S 1.460 (0.276)


=


S 0.068 (0.006) S 0.329 (0.026) S 0.436 (0.017) S 1.024 (0.039)
S 0.546 (0.031) S 0.637 (0.039) S 1.153 (0.092) S 0.708 (0.017)
S 0.873 (0.078) S 0.943 (0.051) S 1.362 (0.118) S 1.108 (0.092)

S 1.081 (0.118) S 1.460 (0.276)

 .
(2) If J (x) = ln 2−x

x :

WPLAEGMS M(2,1,2) (`1 (P) , `2 (P) , `3 (P))

=


⊕

16i1<i263

(
2
⊗
j=1

((
3wi j

)
⊗ `(p)i j

)u j

)
C2

3


1

1+2

=


s0.226 (0.006) s0.469 (0.013) s0.638 (0.017) s1.136 (0.039)
s1.008 (0.013) s1.136 (0.031) s1.233 (0.039) s1.558 (0.092)
s0.437 (0.017) s0.641 (0.039) s0.787 (0.051) s1.235 (0.118)
s1.118 (0.039) s1.235 (0.092) s1.325 (0.118) s1.628 (0.276)

 .
(3) If J (x) = ln ε+(1−ε)x

x (ε = 2):

WPLAHGMS M(2,1,2) (`1 (P) , `2 (P) , `3 (P))

=


⊕

16i1<i263

(
2
⊗
j=1

((
3wi j

)
⊗ `(p)i j

)u j

)
C2

3


1

1+2
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=


s0.857 (0.006) s0.782 (0.013) s0.737 (0.017) s0.568 (0.039)
s0.567 (0.013) s0.529 (0.031) s0.505 (0.039) s0.406 (0.092)
s0.721 (0.017) s0.666 (0.039) s0.632 (0.051) s0.497 (0.118)
s0.496 (0.039) s0.465 (0.092) s0.445 (0.118) s0.361 (0.276)


5. Decision-making approach based upon WPLGMSM and application in teaching quality

evaluation

5.1. Aggregation-based decision-making approach

Before giving the decision-making approach, a formal description of a MADM problem with
probabilistic linguistic information will be given. Suppose A = {A1, . . . , Ak} be a set of diverse
alternatives, CR = {CR1,CR2, . . . ,CRl} be the set of different attributes, and w = {w1,w2, . . . ,wl} be
the weight vector of attributes CRi with wi and

∑l
i=1 wi = 1. A probabilistic linguistic decision matrix

can be expressed as M =
(
`(p)i j

)
k×l

, where `(p)i j=
{
`(t)

i j

(
p(t)

i j

)
|t = 1, 2, . . . , #`(p)i j

}
is a PLTS, and `(p)i j

expresses the evaluation value of alternatives A j ( j = 1, 2, . . . , k) for the attributes CRi (i = 1, . . . , l).
In line with the given above-mentioned description of MADM problem, the proposed aggregated

operators will adopted to address some actual issues and find an ideal alternative. Some main
procedures are listed as follows:

Step 1. Standardize the attribute values by the following ways:
If the attribute is a benefit type, then

`(p)i j =
{
`(t)

i j

(
p(t)

i j

)
|t = 1, 2, . . . , #`(p)i j

}
, (5.1)

If the attribute is a cost type, then

`(p)i j = g−1

 ∪
η(t)

i j ∈g(LS(p)ij)

{(
1 − η(t)

i j

) (
p(t)

i j

)} . (5.2)

Step 2. Transform all attributes values `(p)i j of each alternative to probabilistic hesitant fuzzy
element r(p)i j.

Step 3. Aggregate all attributes values r(p)i j of each alternative to the comprehensive values r(p) j.
Step 4. Transform r(p) j into PLTS `(p) j.
Step 5. Calculate the score function and the deviation degree of A j ( j = 1, . . . , k) by Eq (2.3) and

Eq (2.4).
Step 6. Rank all alternatives and then choose the desirable one.

5.2. Teaching quality evaluation in universities

This section will discuss the decision making option based upon the given WPLGMSM with
experimental cases.

Example 5.1. At present, continuous improvement of education quality has been placed at an
important position in colleges and universities, and the evaluation of teaching quality is the baton for
the healthy development of education, as well as an essential part of education mechanism. Exploring
the evaluation index system of teaching quality, building a scientific evaluation model, and forming
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a reasonable education evaluation system will help to improve the teaching quality and promote the
high-quality development of education. In this study four main factors will be used as teaching quality
evaluation indexes, they are CR1: teaching content, CR2: teaching method, CR3: teaching effect and
CR4: teaching attitude. It is assumed that the weight of four indexes are w = (0.2, 0.3, 0.4, 0.1), and
four teachers’ (A1 − A4) teaching course Bayesian formula and its application in Probability Theory
and Mathematical Statistics will be evaluated. At the same time, through the questionnaire survey on
teaching experience of some graduated students and teachers, they are required to evaluate with the
following linguistic variables through their own experience:

{s−3 = extremely bad,s−2 = very bad, s−1 = bad, s0 = medium,

s1 = good, s2 = very good, s3 = extremely good}.

After collecting data, relevant decision-making information is obtained as in Table 1.

Table 1. Original decision making matrix.

CR1 CR2 CR3 CR4

A1 {s0 (0.45) , s1 (0.55)} {s2 (1)} {s0 (0.3) , s2 (0.7)} {s0 (1)}
A2 {s0 (1)} {s0 (0.25) , s2 (0.75)} {s1 (1)} {s0 (1)}
A3 {s0 (0.45) , s1 (0.55)} {s2 (1)} {s0 (0.3) , s2 (0.7)} {s0 (1)}
A4 {s0 (0.45) , s1 (0.55)} {s2 (1)} {s0 (0.3) , s2 (0.7)} {s0 (1)}

The following task is to make decision by using the procedure in Section 5.1:
Step 1. Standardize the attribute values `(p)i j. As all criteria are benefit-type, so it is not necessary

to standardize.
Step 2. Transformed all attributes values of each alternative to probabilistic hesitant fuzzy element

r (p)i j. We set τ = 3 and use the function of g. Probabilistic linguistic information will transformed
into probabilistic hesitant fuzzy element and listed r (p)i j in Table 2.

Table 2. Probabilistic hesitant fuzzy element decision information matrix.

CR1 CR2 CR3 CR4

g (A1(p))
{

1
2 (0.45) , 2

3 (0.55)
} {

5
6 (1)

} {
1
2 (0.3) , 5

6 (0.7)
} {

1
2 (1)

}
g (A2(p))

{
1
2 (1)

} {
1
2 (0.25) , 5

6 (0.75)
} {

2
3 (1)

} {
1
2 (1)

}
g (A3(p))

{
1
2 (0.5) , 2

3 (0.5)
} {

2
3 (1)

} {
1
3 (0.3) , 5

6 (0.7)
} {

1
3 (1)

}
g (A4(p))

{
5
6 (1)

} {
1
2 (0.35) , 5

6 (0.65)
} {

2
3 (1)

} {
2
3 (1)

}
Step 3.-Step 4. We choose the aggregation operator based on algebraic generator to fuse decision

information. As the vast numbers, the results not listed here.
Step 5. Calculate the expected value and listed as follows:

E(A1) = 1.1233, E(A2) = 1.1145, E(A3) = 0.6608, E(A4) = 1.4618.

Step 6. Determine the desirable alternative according to the expected values. From the calculated
results of Step 5, we have A4 � A1 � A2 � A3. Therefore, A4 is the desirable one.
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Meanwhile, we use other three proposed aggregation operators to fuse above decision information,
the results are listed in Table 3.

Table 3. The ranking based three proposed aggregation operators when u1 = 1, u2 = 2.

Aggregation operators Expected values Ranking

WPLAAGMSM E(A1) = 1.1233, E(A2) = 1.1145, E(A3) = 0.6608, E(A4) = 1.4618 A4 � A1 � A2 � A3

WPLAEGMSM E(A1) = 1.2210, E(A2) = 0.8550, E(A3) = 0.8217, E(A4) = 1.2546 A4 � A1 � A2 � A3

WPLAHGMSM E(A1) = −0.3405, E(A2) = −0.3837, E(A3) = −0.3964, E(A4) = −0.2681 A4 � A1 � A2 � A3

It is obviously the ranking results are consistent with different aggregated operators. Meanwhile,
we feed back the ranking results of this paper to some evaluators. Most of them state that the results
are in line with their selection order, which also demonstrates the rationalities and effectiveness of the
proposed method in Section 5.1.

6. Comparative analyses

To further justify the validity and robustness of our proposed decision-making method, more
comparisons will be carried out in this section.

6.1. Comparison with the method of possibility degree matrix

B. Fang, et al. [40] proposed an improved possibility degree formula to assess the education
and teaching quality in military academies with probabilistic linguistic MCDM method, some main
concepts are reviewed as follows.

Definition 6.1. [40] Assume S = {sυ|υ = −τ, . . . ,−1, 0, 1, . . . , τ} be a LTS, for any two PLTSs `1(p)
and `2 (p), the possibility degree of `1 (p) > `2 (p) could be defined as follows:

P (`1 > `2) = 0.5 +

#`1∑
t=1

τ + r(t)
1

2τ
− 0.5

τ + r(t)
1

2τ

2 ∗ p(t)
1 −

#`2∑
t=1

τ + r(t)
2

2τ
− 0.5

τ + r(t)
2

2τ

2 ∗ p(t)
2 (6.1)

in which, r(t)
1 and r(t)

2 are the subscript of `(t)
1 and `(t)

2 , p(t)
1 and p(t)

2 are the corresponding probability,
respectively.

Step 1. Calculate comprehensive possibility degree matrix. For each attribute CR j, w j is the weight

of CR j and
n∑

j=1
w j = 1. If P j

ik = P
(
`i j ≥ `k j

)
, then the possibility degree matrix of will be defined as

follows:

P j =


P j

11 P j
12 · · · P j

1n
P j

21 P j
22 · · · P j

2n
...

...
. . .

...

P j
n1 P j

2n · · · P j
nn

 .
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Step 2. Then with the method of weighted arithmetic average, the comprehensive possibility degree
matrix will be calculated by

P =

n∑
j=1

w jP j.

Step 3. Calculate the ranking results of alternatives Set δ = (δ1, δ2, · · · , δm)T is the ordering vector

of matrix P, and 0 ≤ δi ≤ 1 with
m∑

i=1
δi = 1. Then the alternatives can be ranked with the values of δi.

The higher value of δi, the better of the alternative, in which,

δi =
1
m

 m∑
k=1

Pik + 1

 − 0.5,

with this method, the teaching quality in Example 5.1 could be ranked as follows.
Firstly, calculating the possibility degree matrix with Step 1.

P1 =


0.5 0.5382 0.5035 0.4271

0.4618 0.5 0.4653 0.3889
0.4965 0.5347 0.5 0.4236
0.5729 0.6111 0.5764 0.5

 , P2 =


0.5 0.5278 0.5417 0.5389

0.4722 0.5 0.5139 0.5111
0.4583 0.4861 0.5 0.4972
0.4611 0.4889 0.5028 0.5

 ,

P3 =


0.5 0.5083 0.5292 0.5083

0.4917 0.5 0.5208 0.5
0.4708 0.4792 0.5 0.4792
0.4917 0.5 0.5208 0.5

 , P4 =


0.5 0.5 0.5972 0.4306
0.5 0.5 0.5972 0.4036

0.4028 0.4028 0.5 0.3333
0.5694 0.5694 0.6667 0.5

 .
Secondly, calculating the compressive possibility degree matrix with weight w = (0.2, 0.3, 0.4, 0.1)

as follows:

P =

4∑
i=1

wiPi =


0.5 0.5193 0.5346 0.4935

0.4807 0.5 0.5153 0.4742
0.4654 0.4847 0.5 0.4589
0.5065 0.5258 0.5411 0.5


Lastly, calculating the ranking results:

δ1 = 0.2618, δ2 = 0.2425, δ3 = 0.2273, δ4 = 0.2684.

According to the above results, the ranking order is

A4 � A1 � A2 � A3,

which is the same as our proposed method.
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6.2. Comparison with Zhao’s method

We take the example of Zhao [39]. To evaluate four cities (Λ1: Nanchang, Λ2: Ganzhou, Λ3:
Jiujiang, Λ4: Jingdezhen) intelligent transportation system. Taking four factors into consideration
(CR1: Traffic data collection, CR2: Convenient transportation, CR3: Accident emergency handling
capacity, CR4: Traffic signal equipment) to improve the rationality of evaluation. There we set w =

(0.2, 0.35, 0.25, 0.2)T are the weight of CRi (i = 1, 3, 4), and the LTS is:

S =
{
s−2= bad, s−1= slightly bad, s0= medium, s1= slightly good, s2= good

}
,

using the data of the decision-making matrix without considering the hesitance, after normalizing the
probability and listed in the following Table 4.

Table 4. Decision matrix.

CR1 CR2 CR3 CR4

Λ1 {s−1 (0.4) , s0 (0.6)} {s0 (0.6)} {s−2 (0.5) , s−1 (0.4)} {s−1 (0.5)}
Λ2 {s−1 (0.5) , s0 (0.3)} {s0 (0.4)} {s−1 (0.7)} {s−2 (0.7)}
Λ3 {s−2 (0.4) , s0 (0.2)} {s1 (0.4)} {s−2 (0.3) , s−1 (0.2)} {s0 (0.6)}
Λ4 {s−2 (0.7)} {s−1 (0.7)} {s−1 (0.4)} {s−2 (0.5) , s−1 (0.4)}

After normalizing the probability and using the function of g, the probabilistic hesitant fuzzy matrix
will be obtained and listed in Table 5.

Table 5. Normalized decision matrix.

CR1 CR2 CR3 CR4

g (Λ1)
{

1
4 (0.4) , 1

2 (0.6)
} {

1
2 (1)

} {
0 (0.56) , 1

4 (0.44)
} {

1
4 (1)

}
g (Λ2)

{
1
4 (0.625) , 1

2 (0.375)
} {

1
4 (1)

} {
1
4 (1)

}
{0 (1)}

g (Λ3)
{
0 (0.67) , 1

2 (0.33)
} {

1
4 (3)

} {
0 (0.6) , 1

4 (0.4)
} {

1
2 (1)

}
g (Λ4) {0 (1)}

{
1
4 (1)

} {
1
4 (1)

} {
0 (0.56) , 1

4 (0.44)
}

Based on the operator of J (x) = −lnx, the following expected values and ranking order are obtained:

E(Λ1) = −0.9548, E(Λ2) = −1.0790, E(Λ3) = −0.6757, E(Λ4) = −1.9367.

It has Λ3 � Λ1 � Λ2 � Λ4. Hence, the optimal intelligent transportation system is Λ3 (Jiujiang),
which is the same as the answer in Zhao [39].

6.3. Comparison with Liu’s method

Peide Liu et al. [17] proposed probabilistic linguistic Archimedean Muirhead mean operators to
rank the alternatives. For the case of maximization profit problems, we make a comparison between
our methods and Archimedean Muirhead Mean operators’ methods.

For four potential projects Λi (i = 1, 2, 3, 4), directors need to choose the desirable one through four
attributes (Λ1: Financial perspective, Λ2: Customers satisfaction, Λ3: Internal business process, Λ4:
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Learning and growth) to improve the rationality of evaluation. Suppose the weight of attributes are
w = (0.2, 0.3, 0.3, 0.2), and the LTS is:

S =
{
s−2= low, s−1= little low, s0= medium, s1= little high, s2= high

}
.

The original decision-making matrix with PLTSs can be normalized and listed in Table 6.

Table 6. Original decision matrix.

CR1 CR2 CR3 CR4

Λ1 {s0 (1)} {s−1 (0.6)} {s1 (0.4) , s2 (0.4)} {s1 (0.8)}
Λ2 {s0 (0.8)} {s−1 (0.8)} {s−2 (0.6) , s−1 (0.2)} {s0 (0.6)}
Λ3 {s−1 (0.4)} {s1 (0.6)} {s0 (0.8) , s1 (0.2)} {s−2 (0.5)}
Λ4 {s−1 (0.8)} {s−1 (0.6)} {s1 (0.5) , s2 (0.5)} {s0 (1)}

To assure the calculated results more accurate, we do not normalize the probabilities. Using the
function of g, we get the probabilistic hesitant fuzzy matrix and listed in Table 7.

Table 7. Probabilistic hesitant fuzzy decision matrix.

CR1 CR2 CR3 CR4

g (Λ1)
{

1
2 (1)

} {
1
4 (0.6)

} {
3
4 (0.4) , 1 (0.4)

} {
3
4 (0.8)

}
g (Λ2)

{
1
2 (0.8)

} {
1
4 (0.8)

} {
0 (0.6) 1

4 (0.2)
} {

1
2 (0.6)

}
g (Λ3)

{
1
4 (0.4)

} {
3
4 (0.6)

} {
1
2 (0.8) , 3

4 (0.2)
}

{0 (0.5)}
g (Λ4)

{
1
4 (0.8)

} {
1
4 (0.6)

} {
1 (0.5) 3

4 (0.5)
} {

1
2 (1)

}
Using different decision approaches in [16,17] and our proposed approaches to address this decision

problem and the results are listed in Table 8.

Table 8. The results obtained by different decision approaches.

Methods Aggregated results Ranking

PLWA [16] E (Λ1) =1.48, E (Λ2) =0.83, E (Λ3) =0.95, E (Λ4) =1.27 Λ1 � Λ4 � Λ3 � Λ2

PLWG [16] E (Λ1) =1.59, E (Λ2) =0.61, E (Λ3) =0, E (Λ4) =1.38 Λ1 � Λ4 � Λ2 � Λ3

HPLAWMM [17]
E (Λ1) =3.20, E (Λ2) =1.28, E (Λ3) =2.05, E (Λ4) =3.01(
suppose P = (1, 0, 0, 0) and δ = 1

) Λ1 � Λ4 � Λ3 � Λ2

HPLADWMM [17]
E (Λ1) =2.08, E (Λ2) =0.33, E (Λ3) =0, E (Λ4) =1.67(
suppose P = (1, 0, 0, 0) and δ = 1

) Λ1 � Λ4 � Λ2 � Λ3

Proposed PLAAGMSM
E (Λ1) =0.516, E (Λ2) = − 1.278, E (Λ3) = − 0.258,
E (Λ4) = − 0.159

(
suppose u1 = 1 u1 = 2, n = 3

) Λ1 � Λ4 � Λ3 � Λ2

Proposed PLAEGMSM
E (Λ1) =0.5433, E (Λ2) = − 0.7559, E (Λ3) = − 0.3227,
E (Λ4) = − 0.1177

(
suppose u1 = 1, u1 = 2, n = 3

) Λ1 � Λ3 � Λ4 � Λ2

Proposed PLAHGMSM
E (Λ1) = − 0.2653, E (Λ2) = − 0.3507, E (Λ3) = − 0.3076,
E (Λ4) = − 0.3087

(
suppose u1 = 1, u1 = 2, n = 3

) Λ1 � Λ3 � Λ4 � Λ2

According to the ranking order, the optimal project is Λ1, which is the same obtained by other extant
decision making approach. This also shows the reliability and effectiveness of the method.
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Although the proposed decision-making approach integrated the advantages of PLTSs and GMSM
operators, there is a limitation of the proposed approach, that is, as the number of elements increases,
the complexity of calculation will increase, corresponding.

7. Conclusions

Classical MSM operators have been attracted great attention of many scholars and widely been
used in the field of information fusion due to their biggest merit that they can reflect the relationship
between multiple input arguments. On this basis, Wang generalized the traditional MSM operators
and introduced the generalized MSM operators. On the other hand, PLTS, a new tool for describing
uncertain decision information, can better reflect the actual decision-making problems such as the
hesitation of decision-makers, the relative importance of linguistic variables. Combining the merits
of PTLS and GMSM operators, PLGMSM and WPLGMSM based on ATN and ATC are proposed
and their properties are also investigated. Meanwhile, some special situations are discussed when
parameters take different values and the generators of ATN take different function. Besides, this
proposed method is applied in teaching quality evaluation in universities, to evaluate an ideal classroom
teaching in four alternatives. At last, several comparison analysis are adopted to ensure the validity of
the decision-making results, which further verify the reasonability of our proposed decision-making
approach.

In future studies, we will continue the current work in expanding and applying the current operators
into other contexts. Also some novel MADM approaches will be developed to address some decision-
making problems with probabilistic linguistic information. The proposed MADM problem could also
be used to other complicated issues.
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