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Abstract: This article is devoted to the structured and unstructured condition numbers for the
total least squares with linear equality constraint (TLSE) problem. By making use of the dual
techniques, we investigate three distinct kinds of unstructured condition numbers for a linear function
of the TLSE solution and three structured condition numbers for this problem, i.e., normwise,
mixed, and componentwise ones, and present their explicit expressions under both unstructured
and structured componentwise perturbations. In addition, the relations between structured and
unstructured normwise, componentwise, and mixed condition numbers for the TLSE problem are
investigated. Furthermore, using the small-sample statistical condition estimation method, we also
consider the statistical estimation of both unstructured and structured condition numbers and propose
three algorithms. Theoretical and experimental results show that structured condition numbers are
always smaller than the corresponding unstructured condition numbers.
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1. Introduction

The total least squares with linear equality constraint (TLSE) problem is stated as

min
G,h
∥[G, h]∥F , subject to (A +G)x = b + h, Qx = d (1.1)
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where Q ∈ Rp×n and
[
Q

A

]
are full row-rank and full column rank, respectively such that A ∈ Rq×n,

b ∈ Rq and d ∈ Rp. As proved in Eq (17) in [1], if the following genericity condition holds

σ̄n−p > σ̃n−p+1, (1.2)

then the TLSE problem guarantees the existence of the unique solution

x = Q†
A

d +HAT b, (1.3)

where

H =
(
B

(
ATA− σ̃2

n−p+1In

)
B
)†
, Q†

A
=

(
In −HA

TA
)
Q†, B = In − Q

†Q.

The TLSE problem is reduced to the total least squares (TLS) problem [2, 3] when Q = 0 and
d = 0, to the least squares problem with equality constraint [4–8] when G = 0, and to the mixed
least squares-total least squares problem [3, 9] when Q = 0 and d = 0, and some columns of G are
zero. The TLSE problem was first demonstrated by Dowling et al. [10] in 1992. They introduced the
TLSE problem and interpreted how to solve it by using SVD and QR matrix factorizations, whereas
Schaffrin and felus [11,12] investigated an iterative method of constrained total least squares estimation
and an algorithmic approach to the TLSE problem with linear and quadratic constraints by using the
Euler-Lagrange theorem. Liu et al. [13] suggested a QR-based inverse iteration method. Liu and
colleagues [1, 14] presented the perturbation analysis and condition numbers of the TLSE problem.

Condition numbers play a vital role in estimating forward errors of the algorithms [15–17]. Recent
studies of condition numbers for different problems such as TLS, TLSE, multidimensional, mixed least
squares, truncated and scaled TLS problems can be found in [1, 14, 18–24]. Structured TLS problems
have received significant attention in recent years (see [25–27]). This topic has shifted many authors
attention toward research on the structured condition numbers in which the TLS problem [28, 29], the
truncated TLS problem [30], the scaled TLS problem [31] and the mixed LS-TLS problem [32] are
included. The analysis of the structured perturbations on the input data is essential for structured TLS
problems because studying the structured TLSE problem is motivated by the fact that these methods
preserve the underlying matrix structure that can improve the accuracy and efficiency of computation.

As far as we know, no work has been done on structured condition numbers for the TLSE problem.
So, the main purpose of this work is to study structured condition numbers for TLSE problems as well
as their relationships to unstructured condition numbers, and their statistical estimation. In certain
situations, the computation of unstructured and structured condition numbers is not directly
applicable to analyzing the forward error bound, but studying a reliable statistical condition
estimation for unstructured and structured condition numbers is attractive and interesting.

Particularly, we will derive the unstructured condition numbers for a linear function of the TLSE
problem by using the dual technique in Section 3. The dual technique was first introduced in [33] for
the mixed and componentwise condition numbers of the least squares problem. Later, it was applied
to get the mixed and componentwise condition numbers of the total least squares problem [28], the
weighted least squares problem [34] and the constrained and weighted least squares problem [35]. As
described in [33], the dual technique allows us to derive condition numbers by maximizing a linear
function over a space of smaller dimension than the data space. Furthermore, in Section 4, the explicit
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expressions of relevant structured condition numbers are provided, and the links between the
unstructured condition numbers for the TLSE problem and their corresponding structured
counterparts are investigated. We also discuss how to recover the expressions of structured condition
numbers for the solution of the TLS problem with the help of the derivative of the TLSE problem.
Considering that it is expensive to compute these condition numbers, we consider the statistical
estimation of both structured and unstructured condition numbers by using the small-sample
statistical condition estimation (SSCE) method [36] and design three algorithms in Section 5.
Meanwhile, in Section 5, we also provide some numerical findings and demonstrate the accuracy of
the proposed algorithms by considering numerical examples. Moreover, Section 2 describes some
useful preliminaries, and Section 6 gives some brief conclusions.

2. Basic notations

In this section, we recall some necessary definitions and results about Dual techniques, which will
be used throughout the paper.

2.1. Dual techniques

Consider a linear operator J : X → Y, between two Euclidean spaces X and Y with the scalar
products ⟨·, ·⟩X and ⟨·, ·⟩Y, respectively. Denote the corresponding norms by ∥·∥X and ∥·∥Y, respectively.
Here we provide definitions for “adjoint operator” and “dual norm”.
Definition 2.1. The adjoint operator of J ,J∗ : Y→ X is expressed as follows:

< y,Jx >Y=< J∗y, x >X,

where (x, y) ∈ X × Y.
Definition 2.2. The dual norm ∥ · ∥X∗ of ∥ · ∥X is

∥x∥X∗ = max
u,0

⟨x,u⟩X
∥u∥X

.

It is known that the dual norms of the standard vector norms for the canonical scalar product in Rn

are provided by:
∥ · ∥1∗ = ∥ · ∥∞ and ∥ · ∥∞∗ = ∥ · ∥1 and ∥ · ∥2∗ = ∥ · ∥2.

Considering the scalar product < A, B >= trace(AT B), the norm of a matrix in Rm×n is ∥A∥F∗ = ∥A∥F .
Suppose that ∥ · ∥X,Y is an operator norm induced by ∥ · ∥X and ∥ · ∥Y for the linear operator J from

X to Y. Assume that ∥ · ∥Y∗,X∗ is an operator norm induced by dual norms ∥ · ∥X∗ and ∥ · ∥Y∗ for the linear
operator from Y to X.

The above discussion implies the following results [33].
Lemma 2.3. Assume that J is a linear operator from X to Y; then,

∥J∥X,Y = ∥J
∗∥Y∗,X∗ .

If the Euclidean spaceY∗ has fewer dimensions thanX, then it will be very suitable to find ∥J∗∥Y∗,X∗
in place of ∥J∥X,Y as given in [33].
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According to [15], the absolute condition number of φ at y ∈ X is defined as

κ = ∥dφ(y)∥X,Y = max
∥z∥X=1

∥dφ(y) · z∥Y, (2.1)

where φ is Fréchet differentiable in the neighborhood of y ∈ X and dφ(y) presents the Fréchet
differential of φ at y. The relative normwise condition number for nonzero φ is given by

κn =
κ∥y∥X
∥φ(y)∥Y

. (2.2)

By using Lemma 2.3, we can define κ in terms of an adjoint operator and a dual norm as follows:

κ = max
∥dy∥S=1

∥dφ(y) · dy∥Y = max
∥z∥Y∗=1

∥dφ(y)∗ · z∥X∗ . (2.3)

Let X = Rn be a data space for the componentwise metric and Xy presents the subset of all elements
dy ∈ Rn for any input data y ∈ Rn satisfying dyi = 0 for yi = 0, 1 ≤ i ≤ n. Thus, the perturbation
dy ∈ Xy of y can be measured by applying the below componentwise norm with respect to y as follows:

∥dy∥c = min{w, |dyi| ≤ w|yi|, i = 1, · · · , n}.

Equivalently,

∥dy∥c = max
{
|dyi|

|yi|
, yi , 0

}
=

∥∥∥∥∥∥
(
|dyi|

|yi|

)∥∥∥∥∥∥
∞

. (2.4)

By Eq (2.16) in [28], the dual norm of (2.4) can be written as

∥d(y)∥c∗ = ∥(∥dy1∥X∗ , · · · , ∥dyn∥X∗)∥∞ = ∥(|dy1||y1|, · · · , |dyn||yn|)∥1. (2.5)

Using the above componentwise norm, we can rewrite the condition number κ.
Lemma 2.4. [28, 33] Given the above assumptions and the componentwise norm defined in (2.4), the
condition number κ can be expressed as

κ = max
∥z∥Y∗=1

∥(dφ(y))∗ · z∥c∗ ,

where ∥ · ∥c∗ is given by (2.5).
Next, we present some necessary results for the TLSE problem, which will be used throughout the

paper.
Lemma 2.5. Let

Ã = [A,b], Q̃ = [Q,d],

K =

[
Q

A

]
, f =

[
d
b

]
.

Consider the following linear function φ of the TLSE solution:

φ : Rm×n × Rm → Rl, (K , f ) −→ φ(K , f ) = L
(
Q
†

A
d +HAT b

)
, (2.6)
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where L ∈ Rl×n. With the help of [14, Theorem 3.2], using the genericity assumption (1.2) implies
that φ : Rm×n × Rm×1 is a continuous map. Further, φ is Fréchet differentiable at (K , f ); its Fréchet
derivative is

ℵ := dφ(K , f ) · (dK , d f ) = L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT ]) (dK x − d f ) − LHdKT t (2.7)

where dK ∈ Rm×n, d f ∈ Rm×1, tT = rT [ − (
ÃQ̃†

)
, Iq

]
and r = Ax − b.

Using the ‘vec’ operator and applying vec(AXB) = (BT ⊗ A)vec(X), we obtain

dφ(K , f ) · (dK , d f ) = vec(dφ(K , f) · (dK , df))

=

(
xT ⊗ L

(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT ]) − L (

H ⊗ tT
)

− L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT ])) [ vec(dK)

d f

]
= WK , f

[
vec(dK)

d f

]
, (2.8)

where

WK , f =
(
xT ⊗ L

(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT ]) − L (

H ⊗ tT
)

− L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT ])).

Using (2.3) and (2.8), the absolute normwise condition number of φ for the TLSE solution can be
expressed as follows:

κ(K , f ) =
∥∥∥WK , f

∥∥∥
2
.

The relative normwise condition number corresponding to κ(K , f ) is given by

κn(K , f ) =
κ(K , f )∥[K , f ]∥F

∥Lx∥2
. (2.9)

3. Unstructured condition number of TLSE problem

When the data are sparse or poorly scaled, the componentwise perturbation analysis is more
appropriate for investigating the TLSE problem’s conditioning. Through the use of dual techniques
discussed in the previous part, we will derive the explicit expressions of unstructured mixed and
componentwise condition numbers for the TLSE problem in this section. Additionally, we
demonstrate the mathematical equality between the derived expressions and the earlier ones [1].
Before moving on to the main results, we will first provide the lemma, which is as follows:
Lemma 3.1. The adjoint operator of the Fréchet derivative ℵ(dK , d f ) in (2.7) is given by

ℵ∗ : Rl → Rm×n × Rm×1

u 7→
([

2∥r∥−2
2 HA

T rtT −
[
Q
†

A
−HA

T
]]⊤
L⊤ux⊤ − tu⊤LH ,

[
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

]]⊤
L⊤u

)
.
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Proof. Let ℵ1(u) and ℵ2(u) be the first and second terms in the sum (2.7), respectively. For any u ∈ Rl,
we get the following expression by using the concept of the scalar product in the matrix space:

⟨u,ℵ1(u)⟩ = u⊤L
[(

2∥r∥−2
2 HA

T rtT −
[
Q
†

A
,HKT

])
dK x −H(dK)⊤t

]
= trace

(
xu⊤L

(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
dK

)
− trace

(
tu⊤LH(dK)⊤

)
=

〈[
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

]]⊤
L⊤ta⊤ − tu⊤LH , dK

〉
.

For ℵ2, we have

⟨u,ℵ2(u)⟩ = u⊤L
[
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HKT

]]
d f

=

〈[
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

]]⊤
L⊤u, d f

〉
.

Let
ℵ∗1(u) =

[
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

]]⊤
L⊤ux⊤ − tu⊤LH

ℵ∗2(u) =
[
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

]]⊤
L⊤u;

then

⟨ℵ∗(u), (dK , d f )⟩ =
〈(
ℵ∗1(u), f )

〉
=

〈(
ℵ∗1(u),ℵ∗2(u)

))
, (dK , d d f )

〉
= ⟨u,ℵ(dK , d f )⟩,

which completes the proof. Now, we present an explicit expression of the condition number κ (2.3) by
applying the dual norm in the solution space.
Theorem 3.2. The condition number (2.3) for the linear function φ of the TLSE solution is expressed
as

κ = max
∥u∥Q∗=1

∥∥∥∥[VDK ,SD f

]T
LT u

∥∥∥∥
1
=

∥∥∥∥[VDK ,SD f

]T
LT

∥∥∥∥
Q∗,1
,

where

V = xT ⊗
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT

])
−H ⊗ tT ,

S =
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT

])
, (3.1)

and DX presents the diagonal matrix diag(vec(X)) for any matrix X.
Proof. Let dki j and d fi be the entries of dK and d f , respectively. Thus, using (2.5), we obtain

∥(dK , d f )∥c∗ =
∑

i, j

∣∣∣ dki j∥ki j

∣∣∣ +∑
i

| d fi| | fi| .

Using Lemma 3.1, we get the following:

∥ℵ∗(u)∥c∗ =
m,n∑

i, j=1

∣∣∣ki j

∣∣∣ ∣∣∣∣∣([2∥r∥−2
2 HA

T rtT −
[
Q
†

A
,HAT

]]⊤
L⊤ux⊤ − tu⊤LH

)
i j

∣∣∣∣∣
+

m∑
i=1

| fi|

∣∣∣∣∣([2∥r∥−2
2 HA

T rtT −
[
Q
†

A
,HAT

]]⊤
L⊤u

)
i

∣∣∣∣∣
=

m,n∑
i, j=1

∣∣∣ki j

∣∣∣ ∣∣∣∣[x j

(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
ei − tiH

T e j

]⊤
LT u

∣∣∣∣
+

m∑
i=1

| fi|

∣∣∣∣((2∥r∥−2
2 HA

T rtT −
[
Q
†

A
,HAT

])
ei

)
LT u

∣∣∣∣ ,
AIMS Mathematics Volume 8, Issue 5, 11350–11372.
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where t j is the jth component of t. Consider (3.1), it can be verified that x j

(
2∥r∥−2

2 HA
T rtT−[

Q
†

A
,HAT

])
ei − tiH

T e j is the (m( j − 1) + i)th column of the n × (mn) matrix V. Thus, the above
expression equals ∥∥∥∥∥∥

[
DKVTLu
D fS

TLu

]∥∥∥∥∥∥
1

=
∥∥∥∥[VDK ,SD f

]T
LT u

∥∥∥∥
1
.

Then, by Lemma 2.4, we get the required result.
Using Theorem 3.2, we can easily obtain the explicit expressions of the mixed condition number

for the linear function φ of the TLSE solution.
Corollary 3.3. When the infinite norm is taken as the norm in the solution space Y under the same
assumption as in Theorem 3.2, then obtain

κ∞(K , f ) = ∥|LV|vec(|K|) + |LS|| f |∥∞.

If the infinity norm is selected as the norm in the solution space Rn, the corresponding mixed condition
number is given by

κm(K , f ) =
∥|LV|vec(|K|) + |LS|| f |∥∞

∥Lx∥∞

=

∥∥∥∥∥ ∣∣∣∣∣L[
xT ⊗

(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT

])
−H ⊗ tT

]∣∣∣∣∣ vec(|K|)

+
∣∣∣∣L [

2∥r∥−2
2 HA

T rtT −
[
Q
†

A
, HAT

]]∣∣∣∣ | f |∥∥∥∥∥
∞

∥Lx∥∞
. (3.2)

Using Theorem 3.2, we can also find the explicit expressions of the componentwise condition
number for the linear function φ of the TLSE solution.
Corollary 3.4. Considering the componentwise norm on the solution space given by

∥y∥c = min {w, |yi| ≤ w |(Lx)i| , i = 1, · · · , l} = max {|yi| / |(Lx)1| , i = 1, · · · , l} . (3.3)

The componentwise condition number for the linear function φ of the TLSE solution has the following
expression:

κc(K , f ) = ∥D−1
LxL

[
VDH , S D f

]
∥∞

=
∥∥∥|D−1

Lx|(|LV|vec(|K|) + |LS||f|)
∥∥∥
∞

(3.4)

=

∥∥∥∥∥|D−1
Lx|

( ∣∣∣∣∣L[
xT ⊗

(
2∥r∥−2

2 HA
T rtT −

[
C†
A
, HAT

])
−H ⊗ tT

]∣∣∣∣∣ vec(|K|)

+
∣∣∣∣L [

2∥r∥−2
2 HA

T rtT −
[
Q
†

A
, HAT

]]∣∣∣∣ | f |)∥∥∥∥∥
∞

.

By applying the 2-norm to the solution space, we get an upper bound for the relevant condition
number in terms of the 2-norm.
Corollary 3.5. When the 2-norm is used in the solution space, we obtain

κ2(K , f ) ≤
√

kκ∞(K , f ). (3.5)
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Proof. If ∥ · ∥Q = ∥ · ∥2, then ∥ · ∥∗Q = ∥ · ∥2. Utilizing Theorem 3.2, we obtain the following

κ2(K , f ) =
∥∥∥∥[VDK ,SD f

]T
LT

∥∥∥∥
2,1
.

According to [37], for any matrix W, ∥W∥2,1 = max∥u∥2=1 ∥Wu∥1 = ∥Wû∥1, where û ∈ Rl is a unit 2-norm
vector. Using ∥û∥1 ≤

√
k∥û∥2, we get

∥W∥2,1 = ∥Wû∥1 ≤ ∥W∥1∥û∥1 ≤
√

k∥W∥1.

Substituting the above W with
[
VDK ,SD f

]T
LT , we have

κ2(K , f ) ≤
√

k
∥∥∥∥[VDK ,SD f

]T
LT

∥∥∥∥
1
,

which implies (3.5).
Additionally, we utilize the dual techniques to derive the condition number expressions, which

allows us to minimize the computational complexity of the problem. This is possible due to the fact
that the number of columns in the matrix expression of ℵ is often less than the number of rows.
Remark 3.6. Using the Kronecker product property and the fact that

∥r∥−2
2 HA

T rtT = ρ−2H xtT ,

as shown in Eq (3.3) [14], we have

V = xT ⊗
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT

])
−H ⊗ tT

= xT ⊗
(
2ρ−2H xtT −

[
Q
†

A
, HAT

])
−H(In ⊗ tT ),

S = 2∥r∥−2
2 HA

T rtT −
[
Q
†

A
, HAT

]
= 2ρ−2H xtT −

[
Q
†

A
, HAT

]
.

Applying these two facts together with (3.2) and (3.4) for the case where L = In allows us to recover
the expressions of normwise, mixed and componentwise condition numbers of the TLSE problem,
which are given in [1, Theorem 5].

The following corollary, based on a triangle inequality, yields the upper bounds for κm and κc,
without the Kronecker product, and it omits its proof. Note that the following relationship holds for
any matrix W ∈ Rp×q and diagonal matrix Dv ∈ R

q×q:
∥WDv∥∞ = ∥|WDv|∥∞ = ∥|W | |Dv|∥∞ = ∥|W |∥Dv |e ∥∞ =∥|W ∥Dv |∥∞ =∥|W∥ v | ∥∞, where e = [1, . . . , 1] ∈
Rq.
Corollary 3.7. The mixed and componentwise condition numbers for the linear function φ of the TLSE
solution can be bounded as follows:

κum(K , f ) =
∥∥∥∥∥LD

|(2∥r∥−2
2 HA

T rtT−[Q†
A
, HAT ])||K||x|

∥∥∥∥∥
∞

+

∥∥∥∥∥LD|H||KT ||t|

∥∥∥∥∥
∞

+

∥∥∥∥∥LD
|(2∥r∥−2

2 HA
T rtT−[Q†

A
, HAT ])||b|

∥∥∥∥∥
∞

∥Lx∥∞
,

κuc(K , f ) =
∥∥∥∥∥D−1
LxLD

|(2∥r∥−2
2 HA

T rtT−[Q†
A
, HAT ])||K||x|

∥∥∥∥∥
∞

+

∥∥∥∥∥D−1
LxLD|H||KT ||t|

∥∥∥∥∥
∞

+

∥∥∥∥∥D−1
LxLD

|(2∥r∥−2
2 HA

T rtT−[Q†
A
, HAT ])||b|

∥∥∥∥∥
∞

.
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4. Structured condition numbers of TLSE problem

In this section, we study the sensitivity of a linear function of the structured TLSE solution to
perturbations on the data k and f , which is given below:

φs : Rθ × Rm → Rl (4.1)

such that φs (k, f ) = Lx = L
(
Q
†

A
b + HAT d

)
and x is the solution of the structured TLSE problem.

Assume that K ∈ S is a linear structured matrix, like a Toeplitz matrix for the structured TLSE
problem, where the set S of the linear structured matrix has the dimension θ and there exists a unique
vector denoted by k = [k1, . . . , kθ]T such that

K =

θ∑
i=1

kiS i,

where S 1, . . . , S θ form a basis of S . Note that

dK =
θ∑

i=1

dkiS i (4.2)

and

vec(K) =
θ∑

i=1

ki vec (S i) = Φs
K

k,

where Φs
K
= [vec (S 1) , vec (S 2) , · · · , vec (S θ)] and by the statement in [31, Theotrem 4.1], Φs

K
is

orthogonal with full column rank and has one nonzero entry in each row at most. Consider the fact that

vec([K , f ]) = Φs
K , f s :=

[
Φs
K

0
0 Im

] [
k
f

]
,

when we restrict the perturbation matrices [∆K ,∆ f ] into [K , f ], i.e., vec([∆K ,∆ f ]) = Φs
K , f ϵ, where

ϵ ∈ Rθ+m.
The following structured absolute normwise condition number of φs can be obtained by using (2.3)

and (2.8)
κs(k, f ) =

∥∥∥∥NΦs
K , f

∥∥∥∥
2
,

where

NΦs
K , f =

(
xT ⊗ L

(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT ]) − L (

H ⊗ tT
)

− L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT ])) [ Φs

K
0

0 Im

]
=

(
L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
, HAT ]) [S 1x, · · · , S θx,−Im] − LH

[
S T

1 t, · · · , S T
θ t, 0n×1

])
.

The structured relative normwise condition number corresponding to κs(k, f ) is expressed as

κs,n(k, f ) =
κs(k, f )

∥∥∥∥[kT , f T
]∥∥∥∥

2

∥Lx∥2
, (4.3)

AIMS Mathematics Volume 8, Issue 5, 11350–11372.



11359

which can be efficiently computable with less storage and it is Kronecker product-free.
With the help of (2.7), we have to prove that φs given in (4.1) is Fréchet differentiable at (k, f ) and

find its Fréchet derivative.
Lemma 4.1. Assume the following linear function φs of the TLSE solution

φs : Rθ × Rm → Rl, (k, f ) −→ φ(k, f ) = L
(
Q
†

A
b +HAT d

)
,

where L ∈ Rl×n. With the help of [14, Theorem 3.2], using the genericity assumption (1.2) implies that
φs : Rθ×Rm is a continuous map. Further, φs is Fréchet differentiable at (K , f ); its Fréchet derivative is

ℵs := dφs(k, f ) · (dk, d f ) = LU dk − L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
d f , (4.4)

where U = [u1, . . . , uθ] ∈ Rn×θ, ui =
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
S ix −HS

T
i t,

dk ∈ Rθ and d f ∈ Rm.

Lemma 4.2. The adjoint operator of the Fréchet derivative ℵs( dk, d f ) in (4.4) is given by

ℵ∗s : Rl → Rθ × Rm

u 7→
(
UTL⊤u,

[
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

]]⊤
L⊤u

)
.

Theorem 4.3. The condition number of the linear function φs for the structured TLSE problem can be
deduced from (3.1) as follows:

κs =
∥∥∥∥[VsDK ,SD f

]T
LT

∥∥∥∥
Q,1
,

where
Vs = U.

With the help of Theorem 4.3, we can simply determine the structured mixed condition number for
the linear function φs of the TLSE solution.
Corollary 4.4. When the infinite norm is taken as the norm in the solution space Y, under the same
assumption as in Theorem 4.3, we get

κs,∞(k, f ) = ∥|LVs| |k| + |LS || f |∥∞ .

If the infinity norm is selected as the norm in the solution space Rn, the corresponding structured mixed
condition number is given by

κs,m(k, f ) =
∥|LVs| |k| + |LS|| f |∥∞

∥Lx∥∞

=

∥∥∥∥∥ θ∑
i=1

|ki|

∣∣∣∣L ((
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
S ix −HS T

i t
)∣∣∣∣

+
∣∣∣∣L (

2∥r∥−2
2 HA

T rtT −
[
Q
†

A
,HAT

])∣∣∣∣ | f |∥∥∥∥∥
∞

∥Lx∥∞
. (4.5)

In light of the 2-norm to the solution space, we will derive an upper bound for the associated
structured condition number in terms of the 2-norm. Since the proof is similar to that of Corollary 3.5,
we will not repeat it here.
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Corollary 4.5. When the 2-norm is used in the solution space, we get

κs,2(k, f ) ≤
√

kκs,∞(k, f ). (4.6)

Corollary 4.6. Assume that (3.3) represents the componentwise norm in the solution space. The
structured componentwise condition number for the linear function φs of the TLSE solution has the
following two expressions:

κs,c(k, f ) =
∥∥∥|D−1

Lx| (|LVs| |k| + |LS || f |)
∥∥∥
∞

=

∥∥∥∥∥|D−1
Lx|

( θ∑
i=1

|ki|

∣∣∣∣L ((
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
S ix −HS T

i t
)∣∣∣∣

+
∣∣∣∣L (

2∥r∥−2
2 HA

T rtT −
[
Q
†

A
,HAT

])∣∣∣∣ | f |)∥∥∥∥∥
∞

. (4.7)

For a linearly structured matrix given by (4.2), we verify that the structured absolute normwise
κs(k, f ), mixed κs,m(k, f ) and componentwise condition numbers κs,c(k, f ) are less than the unstructured
condition numbers κn(K , f ), κm(K , f ) and κc(K , f ) respectively.
Theorem 4.7. Using the notations above, we have that κs(k, f ) ≤ κ(K , f ). Moreover suppose that the
basis {S 1, S 2, . . . , S θ} for S satisfies |K| =

∑θ
i=1 |ki| |S i| for any K ∈ S; then,

κs,m(k, f ) ≤ κm(K , f ) and κs,c(k, f ) ≤ κc(K , f ).

Proof. The matrix Φs
K

is column orthogonal according to [31, Theorem 4.1]. Therefore, ∥Φs
K
∥2 = 1

and it is simple to observe that κs(k, f ) ≤ κ(K , f ) by comparing their expressions. By
applying monotonicity of the infinity norm and using the assumption that

|K| =

θ∑
i=1

|ki| |S i| ,

we get the following result.

κs,m(k, f ) =
∥∥∥∥∥ θ∑

i=1

|ki|

∣∣∣∣L ((
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
S ix −HS T

i t
)∣∣∣∣ (4.8)

+
∣∣∣∣L (

2∥r∥−2
2 HA

T rtT −
[
Q
†

A
,HAT

])∣∣∣∣ | f |∥∥∥∥∥
∞

∥Lx∥∞

=

∥∥∥∥∥∥|L[VU S]|
[
|k|
| f |

]∥∥∥∥∥∥
∞

∥Lx∥∞
≤

∥∥∥∥∥∥[|LV||U | |LS|]
[
|k|
| f |

]∥∥∥∥∥∥
∞

∥Lx∥∞

≤

∥∥∥|LV|∑θi=1 |ki| |vec(S i)| + |LS|| f |
∥∥∥
∞

∥Lx∥∞
=
∥|LV|vec(|K|) + |LS|| f |∥∞

∥Lx∥∞
= κm(K , f ). (4.9)

Similarly, we can prove that κs,c(k, f ) ≤ κc(K , f ).
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Remark 4.8. By utilizing the intermediate results of Lemma 4.1, we can retrieve the structured
condition numbers for the TLS problem [28]. Suppose that Q = ∆Q = 0 and d = ∆d = 0; we have

Q
†

A
= 0n×p, H =

(
ATA− σ2

n+1In

)−1
=: P̄−1, tT =

[
01×p, rT

]
, r̄ = −(b −Ax),

2∥r∥−2
2 A

T rrT = − 2xr̄T

1+xxT and

LP̄−1
[
0n×p 2∥r∥−2

2 A
T rrT −AT

]
= LP̄−1

[
0n×p −

(
AT +

2xr̄T

1 + xxT

)]
.

Considering the above fact and using (4.4), we obtain

ℵ̄s := dφs(a, b) · (da, db) = LP̄−1U da +LP̄−1(AT +
2xr̄T

1 + xxT

)
db,

Ū = [ū1, . . . , ūθ] ∈ Rn×θ, ūi = −
(
AT + 2xr̄T

1+xxT

)
S ix + ST

i r̄, da ∈ Rθ and db ∈ Rm, where the latter is just
the result in [28, Lemma 3.2] with which we can recover the structured condition numbers for the TLS
problem [28].

5. Numerical experiments

In the following section, we continue our research on estimating the unstructured and structured
condition numbers for the TLSE problem before presenting the specific examples. In this part, we
construct two algorithms to estimate the unstructured condition numbers. The first one, outlined in
Algorithm A, is from [36] and has been used for different matrix problems [29,30,38–42]. We propose
an algorithm for the unstructured normwise condition estimation of the TLSE problem based on SSCE.
The second one, outlined in Algorithm B, is also from [36]. We provide a statistical estimation of the
unstructured mixed and componentwise condition numbers by using the SSCE method [36].

Denote by κTLSE
i (A, d) the normwise condition number of the function zT

i x, where zi’s are from the
unit n-sphere S n−1 and are orthogonal. From (2.9), we have

κ
TLSE,(γ)
abs :=

ωγ

ωβ

√
|σ1|

2 + |σ2|
2 + · · · +

∣∣∣σγ∣∣∣2, (5.1)

where

σi = L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
(dKix − d fi) − LHdKT

i t.

The analysis in [36] shows that

κ
TLSE,(γ)
SCE =

NTLSE,(γ)
SCE ∥[K , f ]∥F
∥Lx∥2

, (5.2)

where NTLSE,(γ)
SCE := ωγ

ωβ

√
∥σ1∥

2
2 + ∥σ2∥

2
2 + · · · +

∥∥∥σγ∥∥∥2

2
=

∥∥∥κTLSE,(γ)
abs

∥∥∥
F

is a good estimate of the normwise
condition number (2.9). In the above expression, ωβ is the Wallis factor with ω1 = 1, ω2 = 2/π, and
for β > 2;

ωβ =


1 · 3 · 5 · · · (β − 2)
2 · 4 · 6 · · · (β − 1)

, for β odd,

2
π

2 · 4 · 6 · · · (β − 2)
3 · 5 · 7 · · · (β − 1)

, for β even.
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The Wallis factor can be approximated by

ωβ ≈

√
2

π(β − 1
2 )

(5.3)

with high accuracy. As a matter of fact, we can devise Algorithm A.
Algorithm A (SSCE method for the unstructured normwise condition number)

(1) Generate matrices
[
∆K1,∆ f1

]
, . . . ,

[
∆Kγ, ∆ fγ

]
with each entry in N(0, 1), and orthonormalize

the matrix  vec (∆K1) vec (∆K2) · · · vec
(
∆Kγ

)
∆ f1 ∆ f2 · · · ∆ fγ


to obtain

[
τ1, τ2, . . . , τγ

]
via the modified Gram-Schmidt orthogonalization process. Each τi can

be converted into the corresponding matrices
[
∆Ki,∆ fi

]
by applying the unvec operation.

(2) Let β = m + mn. Approximate ωβ and ωγ by using (5.3).
(3) For i = 1, 2, . . . , γ, compute

σi = L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
(dKix − d fi) − LHdKT

i t. (5.4)

(4) Compute the absolute condition vector by using (5.1), where the square operation is applied to
each entry of σi, i = 1, 2, . . . , γ and the square root is also applied componentwise.

(5) Estimate the normwise condition number (2.9) by using (5.2).

Algorithm B (SSCE method for the unstructured mixed and componentwise condition numbers)

(1) Generate matrices
[
∆K1,∆ f1

]
,
[
∆K2,∆ f2

]
, . . . ,

[
∆Kγ,∆ fγ

]
with each entry in N(0, 1) and

orthonormalize the matrix  vec (∆K1) vec (∆K2) · · · vec
(
∆Kγ

)
∆ f1 ∆ f2 · · · ∆ fγ


to obtain

[
τ1, τ2, . . . , τγ

]
via the modified Gram-Schmidt orthogonalization process. Apply the

unvec operation to convert each τi into the corresponding matrices
[
∆Ki,∆ fi

]
. Suppose that[

∆Ki,∆ fi
]

is the matrix
[
∆̃K i, ∆̃ fi

]
and is multiplied by [K , f ] componentwise.

(2) Assume that β = m(n + 1). Approximate ωβ and ωγ by using (5.3).
(3) For i = 1, 2, . . . , γ, compute

yi = L
(
2∥r∥−2

2 HA
T rtT −

[
Q
†

A
,HAT

])
(dKix − d fi) − LHdKT

i t.

Using the approximations for ωβ and ωγ, compute the absolute condition vector

CTLSE,(γ)
abs =

ωγ

ωβ

√
|y1|

2 + |y2|
2 + · · · +

∣∣∣yγ∣∣∣2.
(4) Compute the relative condition vector CTLSE,(γ)

rel = CTLSE,(γ)
abs /x. Estimate the mixed and

componentwise condition estimations mTLSE,(γ)
SCE and cTLSE,(γ)

SCE as follows:

mTLSE,(γ)
SCE :=

∥∥∥CTLS,(γ)
abs

∥∥∥
∞

∥Lx∥∞
, cTLSE,(γ)

SCE :=
∥∥∥CTLS,(γ)

rel

∥∥∥
∞
=

∥∥∥∥∥∥∥CTLS,(γ)
abs

Lx

∥∥∥∥∥∥∥
∞

.
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On the basis of the SSCE method [36], we propose Algorithm C to estimate the structured normwise,
mixed and componentwise condition numbers.
Algorithm C (SSCE method for the structured condition numbers)

(1) Generate matrices
[
∆k1,∆k2, . . . ,∆kγ

]
and

[
∆ f1,∆ f2, . . . ,∆ fγ

]
with entries in N(0, 1), where ki ∈

Rθ and fi ∈ R
m. Orthonormalize the below matrix[

∆k1 ∆k2 · · · ∆kγ
∆ f1 ∆ f2 · · · ∆ fγ

]
to get an orthonormal matrix

[
ξ1, ξ2 . . . , ξγ

]
by using a modified Gram-Schmidt orthogonalization

technique, where ξi can be converted into the corresponding matrices
[
k⊤i , f ⊤i

]⊤
by applying the

unvec operation.
(2) Let α = q + m. Approximate ωα and ωγ by using (5.3).
(3) For j = 1, 2, . . . , γ, compute y j from (5.4). Estimate the absolute condition vector

κ̄abs
s =

ωγ

ωα

√
|y1|

2 + |y2|
2 + · · · +

∣∣∣yγ∣∣∣2.
(4) Estimate the structured normwise condition estimation as follows:

κ
STLSE,(γ)
SCE =

∥∥∥κ̄abs
s

∥∥∥
2

∥∥∥∥[kT , f T
]T∥∥∥∥

2

∥Lx∥2
.

(5) Compute the structured mixed condition estimation mSTLSE,(γ)
SCE and structured componentwise

condition estimation cSTLSE,(γ)
SCE as follows:

mSTLSE,(γ)
SCE :=

∥∥∥κ̄abs
s

∥∥∥
∞

∥Lx∥∞
, cSTLSE,(γ)

SCE :=
∥∥∥κTLSE,(γ)

rel

∥∥∥
∞
=

∥∥∥∥∥∥ κ̄abs
s

Lx

∥∥∥∥∥∥
∞

.

Moving forward, we will illustrate four specific examples. The first compares the unstructured
condition numbers with our SSCE-based estimates. It also comes to a conclusion about how well
Algorithms A and B make estimates that are too high. The second is used to present the efficiency of
statistical condition estimators of structured normwise, mixed, and componentwise condition numbers,
while the third compares the structured and unstructured condition numbers, and the fourth checks the
efficiency of over estimation ratios by implementing Algorithm C in association with the structured
condition numbers.
Example 5.1. To compare the unstructured normwise, mixed and componentwise condition numbers
and interpret the effectiveness of Algorithms A and B, we employ the random TLSE problem that
is generated by following method given in [18]. Consider a random matrix [A,b], and the matrix
Q̃ = [Q,d] is constructed as follows

Q̃ = Y
[

D
0

]
ZT ,
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where Y = Ip − 2yyT ,Z = In+1 − 2zzT , and y ∈ Rγ, z ∈ Rn+1 are random unit vectors, and D denotes the
diagonal matrix of order p × p with a condition number of κ

Q̃
. For Algorithms A and B, we assume

q = 300, p = 75 and n = 225, we create various TLSE problems for every chosen κ
Q̃

. The matrix L
is provided for the purpose of selecting the component part of the solution. For instance, when L = In

(l = n), all n components of the solution x are chosen equally. Whenever L = e⊤i (l = 1), the ith
row of In is chosen and only the ith part of the solution is chosen. Assume that xmax and xmin denote
the highest and lowest elements of x in absolute value, respectively. We select the L matrix for our
condition numbers.

L0 = In, L1 = [e1 e2]T , L2 = e⊤max, L3 = e⊤min,

Here, max and min are the indices for xmax and xmin, respectively. As a result, the components xmax

and xmin, the whole x, and the subvector [x1 x2]T , are chosen in accordance with the following four
matrices.

In light of Table 1, the mixed and componentwise condition numbers may more directly convey
the true conditioning of this TLSE problem than the normwise condition number. We also found that
Algorithms A and B can yield accurate results from condition estimates based on SSCE.

Table 1. Efficiency of statistical condition estimates by Algorithms A and B.

L0 κC̃ κ
TLSE,(γ)
SCE κn(K , f ) mTLSE,(γ)

SCE κm(K , f ) cTLSE,(γ)
SCE κc(K , f )

100 3.6402e+04 4.4831e+04 4.2091e+00 5.6123e+00 5.2533e+00 6.3214e+00
10−1 4.8304e+05 5.3057e+05 5.3421e+00 6.5216e+00 6.5503e+00 7.6052e+00
10−3 6.0632e+05 7.9206e+05 5.3891e+00 6.6844e+00 6.7606e+00 7.8605e+00
10−5 7.3281e+05 8.5316e+05 6.4371e+00 7.5211e+00 7.1976e+00 8.2906e+00
10−8 3.1505e+08 3.8551e+08 7.7803e+00 8.4302e+00 8.6431e+00 8.7653e+00

L1 κC̃ κ
TLSE,(γ)
SCE κn(K , f ) mTLSE,(γ)

SCE κm(K , f ) cTLSE,(γ)
SCE κc(K , f )

100 5.0425e+03 6.1032e+03 4.1022e+00 5.3052e+00 5.1677e+00 6.2309e+00
10−1 3.1146e+04 4.3204e+04 4.4781e+00 5.6893e+00 5.3501e+00 6.0814e+00
10−3 5.6421e+04 6.8711e+04 4.515e+00 5.8661e+00 5.5432e+00 6.7322e+00
10−5 7.3462e+04 8.4560e+04 5.0112e+00 6.1210e+00 6.1205e+00 7.1633e+00
10−8 4.7311e+05 5.8773e+05 5.4423e+00 6.3404e+00 6.4065e+00 7.3211e+00

L2 κC̃ κ
TLSE,(γ)
SCE κn(K , f ) mTLSE,(γ)

SCE κm(K , f ) cTLSE,(γ)
SCE κc(K , f )

100 4.4502e+03 5.6732e+03 3.8303e+00 4.9326e+00 4.7522e+00 5.8220e+00
10−1 1.8733e+04 2.3504e+04 2.5581e+00 3.6282e+00 3.4655e+00 4.5931e+00
10−3 4.5611e+04 6.0532e+04 2.7442e+00 3.8934e+00 4.6997e+00 5.8906e+00
10−5 6.3015e+04 7.1441e+04 2.9052e+00 3.9977e+00 5.0114e+00 6.1642e+00
10−8 3.8522e+05 4.4913e+05 4.8437e+00 5.9042e+00 5.2309e+00 6.9732e+00

L3 κC̃ κ
TLSE,(γ)
SCE κn(K , f ) mTLSE,(γ)

SCE κm(K , f ) cTLSE,(γ)
SCE κc(K , f )

100 4.2618e+03 5.4501e+03 3.6214e+00 4.7406e+00 4.1088e+00 5.3876e+00
10−1 1.7421e+04 2.1562e+04 2.3521e+00 3.5245e+00 3.3832e+00 4.4097e+00
10−3 4.0669e+04 5.8660e+04 2.5880e+00 3.7621e+00 4.2452e+00 5.6421e+00
10−5 6.0153e+04 6.9401e+04 2.0133e+00 3.8001e+00 4.8773e+00 6.0113e+00
10−8 3.6542e+05 4.0903e+05 4.3415e+00 5.7553e+00 5.1066e+00 6.8302e+00
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The rest of this part is provided to evaluate the efficiency of the over-estimation ratios proposed in
Algorithms A and C. Assume random perturbations

[∆K , ∆ f ] = 10−12 ∗ rand(p + q, n + 1),

and fix
ϵ =
∥[∆K ,∆ f ]∥F
∥[K , f ]∥F

.

When the perturbations

∥∥∥∥∥∥
[
∆Q

∆A

]
,

[
∆d
∆b

]∥∥∥∥∥∥
F

are small enough, under the genericity condition (1.2), the

following perturbed TLSE problem has the following unique solution, denoted by x + ∆x:

min
G, f
∥[G, f ]∥F , subject to ((A + ∆A) +G)x = (b + ∆b) + f , (Q + ∆Q)x + ∆x = d + ∆d,

where the perturbations ∆A ofA, ∆Q of Q, ∆b of b, and ∆d of d are represented by

∆K =

[
∆Q

∆A

]
, ∆ f =

[
∆d
∆b

]
.

In order to show the efficiency of unstructured over-estimation ratios of Algorithms A and B. We
determine the following over-estimation ratios

rn :=
κ

TLSE,(γ)
SCE · ε

∥∆x∥2/∥x∥2
, rm :=

mTLSE,(γ)
SCE · ε

∥∆x∥∞/∥x∥∞
, rc :=

cTLSE,(γ)
SCE · ε

∥∆x/x∥∞
.

To carry out the experiments, we generated 500 TLSE problems, where κTLSE,(γ)
SCE , mTLSE,(γ)

SCE and
cTLSE,(γ)

SCE are the outcomes from Algorithms A and B. Generally, the ratios in (0.1, 10) are
acceptable [37, Chapter 19]. From Figure 1, we indicate that the mixed condition estimation rm and
componentwise condition estimation rc are more effective than rn which may significantly
overestimate the actual relative normwise error.

0 100 200 300 400 500 600 700 800 900 1000

Test times

100

150

200

250

300

350

400

450

500

550

N
o
rm

w
is

e
 o

v
e
r-

e
s
ti
m

a
ti
o
n
 r

a
ti
o
s

0 100 200 300 400 500 600 700 800 900 1000

Test times

1

2

3

4

5

6

7

M
ix

e
d

o
ve

r-
e
st

im
a
tio

n
ra

tio
s

0 100 200 300 400 500 600 700 800 900 1000

Test times

0

1

2

3

4

5

6

7

8

C
o
m

p
o
n
e
n
tw

is
e

o
ve

r-
e
s
tim

a
tio

n
ra

ti
o
s

Figure 1. Results for Algorithms A and B.

Regarding the structured TLSE problem, it is reasonable to take into consideration the fact that the
perturbation ∆K has the same structure as K . For Toeplitz matrices, the assumption

|K| =

θ∑
i=1

|ki| |S i|
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for θ = m + n − 1 is satisfied, when

S 1 = toeplitz (0, en) , . . . , S n = toeplitz (0, e1) ,
S n+1 = toeplitz (e2, 0) . . . , S m+n−1 = toeplitz (em, 0) ,

where the MATLAB-routine notationK = toeplitz (Tc,Tr) ∈ S denotes a Toeplitz matrix with Tc ∈ R
m

as its first column and Tr ∈ R
n as its first row; and, K =

∑θ
i=1 kiS i, where k =

[
T T

c ,Tr(2 : end )
]T
∈

Rm+n−1.

Example 5.2. A signal restoration implementation is the source of this example, which is derived
from [25]. Assume that η is 1.21 and ν is 4. The K̄ convolution matrix is a m× (m−2ν) Toeplitz matrix
with the first column

ki1 =
1√
2πη2

exp
[
−(ν − z̃ + 1)2

2η2

]
, i = 1, 2, . . . , 2ν + 1,

and the rest is ki1 = 0. Only k11 is a non-zero value in this row. Now, we generate a Toeplitz matrix
and a corresponding right-hand side vector in this manner.

K = K̄ +G and f = f̄ + h.

Here, G is a random Toeplitz matrix of the same structure as K̄ , and f̄ is the vector of all ones. A
standard normal distribution is used to construct the G and h elements, and it scaled such that

∥h∥2
∥ f̄ ∥2

=
∥G∥2
∥K̄∥2

= ω.

We take ω = 0.001 and m = 300 in our experiment. In this example we compare the structured
normwise, mixed and componentwise condition numbers and interpret the effectiveness of Algorithm
C.

Taking into account the data presented in Table 2, we are able to reach the conclusion that Algorithm
C is capable of providing accurate estimates of the structured mixed and componentwise numbers,
whereas the structured normwise condition estimation may significantly overestimate the true relative
structured normwise condition number.

AIMS Mathematics Volume 8, Issue 5, 11350–11372.



11367

Table 2. Efficiency of statistical condition estimates by Algorithm C.

m, n κ
STLSE,(γ)
SCE κs,n(k, f ) mSTLSE,(γ)

SCE κs,m(k, f ) cSTLSE,(γ)
SCE κs,c(k, f )

200, 198 L0 1.1032e+02 2.8632e+02 4.1038e+00 6.4943e+00 5.2065e+00 6.5483e+00
L1 2.3064e+01 4.3719e+01 3.7429e+00 4.3862e+00 4.8572e+00 6.1654e+00
L2 4.1065e+01 5.2076e+01 2.4301e+00 3.5042e+00 2.8095e+00 3.9644e+00
L3 4.1065e+01 5.2076e+01 2.4301e+00 3.5042e+00 2.8095e+00 3.9644e+00

m, n κ
STLSE,(γ)
SCE κs,n(k, f ) mSTLSE,(γ)

SCE κs,m(k, f ) cSTLSE,(γ)
SCE κs,c(k, f )

300, 298 L0 3.6432e+02 5.2467e+02 4.8436e+00 6.7935e+00 5.9764e+00 7.6043e+00
L1 3.1753e+02 4.8711e+02 3.9875e+00 5.8622e+00 5.1342e+00 6.9664e+00
L2 5.5045e+01 6.7762e+01 2.8503e+00 4.3329e+00 3.1065e+00 4.5483e+00
L3 5.5045e+01 6.7762e+01 2.8503e+00 4.3329e+00 3.1065e+00 4.5483e+00

m, n κ
STLSE,(γ)
SCE κs,n(k, f ) mSTLSE,(γ)

SCE κs,m(k, f ) cSTLSE,(γ)
SCE κs,c(k, f )

400, 398 L0 1.7654e+03 3.5749e+03 5.4332e+00 7.1109e+00 6.8753e+00 8.0655e+00
L1 1.2435e+03 2.5420e+03 4.7344e+00 6.3427e+00 6.4673e+00 7.7644e+00
L2 2.6545e+02 4.3566e+02 3.2345e+00 5.6311e+00 5.3444e+00 6.8643e+00
L3 2.6545e+02 4.3566e+02 3.2345e+00 5.6311e+00 5.3444e+00 6.8643e+00

m, n κ
STLSE,(γ)
SCE κs,n(k, f ) mSTLSE,(γ)

SCE κs,m(k, f ) cSTLSE,(γ)
SCE κs,c(k, f )

500, 498 L0 3.0441e+03 5.3325e+03 5.8643e+00 8.0776e+00 7.8061e+00 8.9077e+00
L1 2.3064e+03 4.3719e+03 5.1065e+00 7.2460e+00 7.0572e+00 8.1103e+00
L2 5.1427e+02 7.8761e+02 4.7436e+00 6.4935e+00 6.1743e+00 7.6043e+00
L3 5.1427e+02 7.8761e+02 4.7436e+00 6.4935e+00 6.1743e+00 7.6043e+00

Example 5.3. In this example, we consider the data matrix K and the vector f [3]

K =



m − 1 −1 . . . −1
−1 m − 1 . . . −1
...

...
. . .

...

−1 −1 . . . m − 1
−1 −1 . . . −1
−1 −1 . . . −1


∈ Rm×(m−2), f =



−1
−1
...

m − 1
−1


∈ Rm.

We note that the first m − 2 singular values of [K f ] are equal but larger than the (m − 1)th singular
σm−1. It seems obvious that K is a Toeplitz matrix. Here we fix γ = 2 in all calculations for Algorithm
C. For Toeplitz matrix K and the vector f , we find that Algorithm C gives reliable componentwise
condition estimations. From Table 3, we conclude that, in accordance with Theorem 4.7, the structured
normwise mixed and componentwise condition numbers κn,s(k, f), κm,s(k, f ) and κc,s(k, f ), respectively,
are consistently smaller than the corresponding unstructured ones κn(K, f ), κm(K, f ) and κc(K, f ) as a
result of selecting different values of m and n.
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Table 3. Comparison of structured and unstructured condition numbers.

m, n κs,n(k, f ) κn(K , f ) κs,m(k, f ) κm(K , f ) κs,c(k, f ) κc(K , f )
200, 198 L0 5.3211e+03 3.7543e+04 9.4332e+01 2.4031e+02 7.1322e+01 4.5094e+02

L1 3.6774e+03 1.8722e+04 4.8130e+01 1.7659e+02 5.8572e+01 3.1654e+02
L2 7.2043e+02 4.7965e+03 7.3422e+00 5.3507e+01 8.3504e+00 9.5436e+01
L3 6.8782e+02 2.0532e+03 4.9643e+00 3.8951e+01 6.6543e+00 7.8390e+01

m, n κs,n(k, f ) κn(K , f ) κs,m(k, f ) κm(K , f ) κs,c(k, f ) κc(K , f )
300, 298 L0 6.5853e+03 2.4706e+04 7.6964e+01 6.3820e+02 8.5728e+01 6.0765e+02

L1 5.1453e+03 1.9432e+04 6.0443e+01 3.6543e+02 6.6404e+01 5.8261e+02
L2 9.4065e+02 8.2976e+03 4.2712e+01 2.8903e+02 5.9632e+01 4.5722e+02
L3 6.1427e+02 7.8761e+03 3.6042e+01 1.7211e+02 4.2704e+01 3.4821e+02

m, n κs,n(k, f ) κn(K , f ) κs,m(k, f ) κm(K , f ) κs,c(k, f ) κc(K , f )
400, 398 L0 3.6543e+04 4.6542e+05 6.5320e+02 5.5732e+03 7.0875e+02 6.2063e+03

L1 2.4743e+04 3.0542e+05 3.7654e+02 4.0754e+03 6.8572e+02 5.8432e+03
L2 4.7543e+03 9.8654e+04 7.0665e+01 3.8943e+03 9.3520e+01 4.7543e+03
L3 4.3401e+03 7.2311e+04 5.9870e+01 2.9205e+03 8.2145e+01 4.4002e+03

m, n κs,n(k, f ) κn(K , f ) κs,m(k, f ) κm(K , f ) κs,c(k, f ) κc(K , f )
500, 498 L0 9.1032e+04 7.6502e+05 7.2461e+02 6.4320e+03 9.3043e+02 8.9201e+03

L1 2.3064e+04 6.2511e+05 5.8549e+02 5.7017e+03 8.1702e+02 6.3354e+03
L2 4.1065e+03 3.9647e+05 3.6038e+02 4.9552e+03 6.0641e+02 5.8602e+03
L3 5.1427e+03 2.6021e+05 3.0403e+02 4.3193e+03 5.9762e+02 5.3511e+03

Example 5.4. Under structured perturbations, we can check the efficiency of structured condition
estimations for the TLSE problem in the following example by taking 1000 samples of Toeplitz matrix
K and f as taken before in Example 5.3. We construct the componentwise structured perturbation
matrix ∆K and the perturbation vector ∆ f for each sample as given below:

∆K = ε × (E ⊡K), ∆ f = ε × (g ⊡ f ),

where ε = 10−8,E is a Toeplitz matrix and E and g are random matrices whose entries are uniformly
distributed in the open interval (−1, 1). Over estimation ratios with respect to the componentwise
structured perturbations ∆K and ∆ f are given below:

rs,n :=
κ

STLSE,(γ)
SCE · ε

∥∆x∥2/∥x∥2
, rs,m :=

mSTLSE,(γ)
SCE · ε

∥∆x∥∞/∥x∥∞
, rs,c :=

cSTLSE,(γ)
SCE · ε

∥∆x/x∥∞
.

Hence the structured condition estimations mSTLSE,(γ)
SCE and cSTLSE,(γ)

SCE are very reliable whereas the
structured normwise condition estimation κSTLSE,(γ)

SCE may seriously overestimate the true relative
normwise error for γ = 2 as shown in Figure 2.
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Figure 2. Results for Algorithm C.

6. Conclusions

Using a dual technique, we have obtained explicit expressions for both the structured and
unstructured condition numbers of the linear function of the TLSE problem in this article.
Additionally, we investigated how the new results relate to the earlier findings. The comparisons
between the structured and unstructured condition numbers are also given. We show that the previous
structured condition numbers of the TLS problem can be recovered from the structured condition
numbers of the TLSE problem. To efficiently estimate the structured and unstructured normwise,
mixed, and componentwise conditions for the TLSE problem, we applied the SSCE method and
constructed three algorithms. Finally, the performance of the proposed algorithms is illustrated in the
numerical results. We have found that the structured condition numbers for the TLSE problem might
be smaller than their unstructured counterparts, and that differences are significant. In the future, we
will continue our research on this problem.
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