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Abstract: If both the arc length and the intrinsic curvature of a curve or surface are preserved, then
the flow of the curve or surface is said to be inextensible. The absence of motion-induced strain
energy is the physical characteristic of inextensible curve and surface flows. In this paper, we study
inextensible tangential, normal and binormal ruled surfaces generated by a curve with constant torsion,
which is also called a Salkowski curve. We investigate whether or not these surfaces are minimal or
can be developed. In addition, we prove some theorems which are related to inextensible ruled surfaces
within three-dimensional Euclidean space.
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1. Introduction

Many fields, including computer vision [1], computer animation [2] and image processing [3]
benefit greatly from the evolution of curves and surfaces. The movement of curves and surfaces in
R3 prompts nonlinear evolution equations, which are frequently integrable. There have been a lot of
studies done on the connection between integrable systems and the differential geometry of curves.

The evolution of curves in the direction of their curvature vector field, also known as “curve
shortening”, “flow by curvature” and “heat flow”, has been the subject of numerous studies in the
literature. The approaches developed by Gage and Hamilton [4] and Grayson [5] to investigate the
heat equation-based reduction of closed plane curves to a circle are particularly pertinent. In [6], Gage
also investigates plane curve evolutions with area preservation.

For a curve whose length remains constant throughout time, which is called an inelastic plane curve
the evolution equations are obtained. The partial differential equation involving curvature expresses the
necessary and sufficient conditions for a flow of an inelastic curve in [7]. Physically, the absence of any
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strain energy caused by motion is what distinguishes inextensible curve and surface flows. Equivalent
equations were derived for an inextensible flow of an inextensible surface, and it was shown that it
suffices to describe the development of the surface in terms of two non-inextensible curve flows in [8].

The theories of curves and surfaces constitute an important field of study in differential geometry. In
particularly, these theories are considered in the Euclidean, Minkowski and Galilean. See [9–14]. The
evolution of space curves and ruled surfaces has been studied for many different frames and spaces.
See also [15–21] for some related studies. In this article, we obtain and characterize the corresponding
equations for inextensible flows of the tangential, the normal and the binormal ruled surfaces generated
by the curve with constant torsion curve. We hope that this work will be useful for the specialists
studying in this field.

2. Preliminaries

Let α : I −→ E3 be a unit speed curve with an arc-length parameter s in three-dimensional Euclidean
space such that I is an open interval in R. The Frenet vectors of the curve α are {Tα,Nα, Bα}, its
curvature is κα and its torsion τα is constant. Let the curve α which is generated by the curve α be
defined as follows:

α(s) =
1
τα

Nα(s) −
∫ s

0
Bα(u)du, (2.1)

where s is the parameter of the curve α.
By the derivative of the curve α with respect to the parameter s, we have

α′(s) =
dα
ds

ds
ds

= −
κα(s)
τα

Tα(s), (2.2)

where κα and τα are the curvatures of the curve α. If we rearrange Eq (2.2), we get

α′(s) = −σ
κα(s)
τα

Tα(s)

such that σ =
ds
ds

. Additionally, the norm of the speed vector for the curve α is ϑ = σ
κα
τα

. The Frenet

vectors of the curve α are calculated in Theorem 2.1; the curvatures of the curve α are also calculated
in Theorem 2.2

Theorem 2.1. Let the curve α be defined by Eq (2.1). There are the following relations between the
Frenet vectors of the two curves α and α in [22]:

Tα = −Tα, Nα = −Nα, Bα = Bα.

Theorem 2.2. Let the curve α be defined by Eq (2.1). There are the following relations between the
curvatures of the two curves α and α in [22]:

κα = τα, τα = −
τ2
α

κα
.
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Since the curve α is not a unit speed curve, the relationship between the derivation of the curve α and
its Frenet vectors is given as follows:

T ′
α

N′
α

B′
α

 =


0 ϑκα 0
−ϑκα 0 ϑτα

0 −ϑτα 0



Tα

Nα

Bα

 =


0 ε1 0
−ε1 0 ε2

0 −ε2 0



Tα

Nα

Bα

 , (2.3)

where ε1 = ϑκα and ε2 = ϑτα.

Corollary 2.1. The curve α which is generated by the curve α is a Salkowski curve [22].

Definition 2.3. For any differentiable two curves α and β, the surface

φ(u, v) = α(u) + vβ(u) (2.4)

defined by its parameterization in Eq (2.4) is called a ruled surface. The curve α(u) is called the base
curve, and the curve β(u) is called the directrix curve at the point α(u) of the surface φ(u, v) [23].

The unit normal vector field of a surface φ(u, v) is defined below such that φu =
∂φ(u,v)
∂u and φv =

∂φ(u,v)
∂v :

U =
φu × φv

‖φu × φv‖
. (2.5)

Also, the first and the second fundamental forms of the surface φ(u, v) are given respectively as

I = Edu2 + 2Fdudv + Gdv2,

II = edu2 + 2 f dudv + gdv2

such that

E = 〈φu, φu〉, F = 〈φu, φv〉, G = 〈φv, φv〉, e = 〈U, φuu〉, f = 〈U, φuv〉, g = 〈U, φvv〉 (2.6)

are coefficients of the fundamental forms. The Gaussian curvature and the mean curvature of the
surface φ(u, v) are calculated by the following equations, respectively [24]:

K =
eg − f 2

EG − F2 , H =
Eg + Ge − 2F f

2(EG − F2)
. (2.7)

Surfaces with zero Gaussian curvature at each point are called developable surfaces, and those with
zero mean curvature at each point are called minimal surfaces [23].

Kwon and Park obtained fundamental results for inelastic flows of space curves. They clearly
demonstrated the inelastic flows between the initial and final positions of the fixed-length plane and
space curves [7, 8].

Definition 2.4. A curve evolution F(u, t) and its flow
∂F
∂t

in R2 or R3 are said to be inextensible

if
∂

∂t
|
∂F
∂u
| ≡ 0 [8].
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Definition 2.5. A surface evolution φ(s, v, t) and its flow
∂φ

∂t
are said to be inextensible [8] if its first

fundamental coefficients {E, F,G} satisfy

∂E
∂t

=
∂F
∂t

=
∂G
∂t

= 0.

Definition 2.6. Let α be a curve and Tα, Nα and Bα be Frenet vectors of the curve α. Then, the
tangential ruled surface, the normal ruled surface and the binormal ruled surface are respectively
defined as follows [25]:

φT = α + vTα,

φN = α + vNα,

φB = α + vBα.

3. Characterizations of the ruled surface generated by the curve α and its Frenet vectors

Let α be a Salkowski curve given by Eq (2.1) in three-dimensional Euclidean space. In this part,
we would like to examine some properties of the evolution of three different types of ruled surfaces
generated by choosing the director curve as follows.

3.1. Tangential ruled surface

Evolution of a tangential ruled surface with the time parameter t of the curve α defined by Eq (2.1)
is given as follows:

φT (s, v, t) = α(s, t) + vTα(s, t), (3.1)

where Tα is the tangent vector field of the curve α. By the derivative of the tangential ruled surface φT

with respect to the parameter s, we have

φT s =
dα
ds

+ vT ′α. (3.2)

If we arrange Eq (3.2) and substitute it into Eq (2.3), we get

φT s = ϑTα + vε1Nα

such that
dα
ds

= ϑTα, where ϑ = σ
κα
τα

. Hence, we have

φTs = −σ
ε1

ε2
Tα + vε1Nα (3.3)

such that ϑ = −σ
ε1

ε2
, where ε1 = ϑκα and ε2 = ϑτα. If we take the derivative of the tangential ruled

surface φT with respect to the parameter v, then we get

φTv = Tα. (3.4)
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The unit normal vector of the surface φT is calculated by Eq (2.5), so

UφT = −Bα

is obtained. Next, if we take the derivative of Eq (3.3) with respect to the parameters s and v,
respectively, then we have

φTss =

(
−σ

(
ε1

ε2

)
s
− vε2

1

)
Tα +

(
−σ

ε2
1

ε2
+ vε1s

)
Nα + vε1ε2Bα,

φTsv = ε1Nα.

The derivative of Eq (3.4) with respect to the parameter v gives rise to

φTvv = 0.

The coefficients of the first and second fundamental forms are calculated by using Eq (2.6), and they
are given as follows:

E = ε2
1v2 + σ2ε

2
1

ε2
2

, F = −σ
ε1

ε2
, G = 1, (3.5)

where σ =
ds
ds

and
e = −vε1ε2, f = 0, g = 0.

The Gaussian curvature K and mean curvature H of the surface φT are calculated by using Eq (2.7),
respectively, and

K = 0, H = −
ε2

2vε1

are obtained.

Corollary 3.1. The tangential ruled surface φT is developable.

Corollary 3.2. The tangential ruled surface φT is not a minimal surface.

Proof. Since ε2 = ϑτα = −στα is constant, H , 0. Therefore, the tangential ruled surface φT cannot
be minimal. �

Theorem 3.1. The tangent ruled surface φT is inextensible such that ε1t = 0.

Proof. By partial derivation of Eq (3.5) with respect to the parameter t, we get the following respective
equations:

∂E
∂t

= 2ε1tε1

(
v2 +

σ2

ε2
2

)
−

2σ2ε2
1ε2t

ε3
2

,

∂F
∂t

= −σ
ε1tε2 − ε1ε2t

ε2
2

,

∂G
∂t

= 0.

Since ε2 is constant, ε2t = 0. By Definition 2.5, we have that ε1t = 0. �
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3.2. Normal ruled surface

The evolution of a normal ruled surface with the time parameter t of the curve α defined by Eq (2.1)
is given as follows:

φN(s, v, t) = α(s, t) + vNα(s, t), (3.6)

where Nα is the normal vector field of the curve α. Differentiating the normal ruled surface φN with
respect to the parameter s, we have

φN s =
dα
ds

+ vN′α. (3.7)

If we arrange Eq (3.7) and substitute it into Eq (2.3), we get

φN s = ϑTα + v (−ε1Tα + ε2Bα)

such that
dα
ds

= ϑTα, where ϑ = σ
κα
τα

. Hence, we have

φNs = −

(
σ
ε1

ε2
+ vε1

)
Tα + vε2Bα (3.8)

such that ϑ = −σ
ε1

ε2
, where ε1 = ϑκα and ε2 = ϑτα. By taking the derivative of the normal ruled

surface φN with respect to the parameter v, we get

φNv = Nα. (3.9)

The unit normal vector of the surface φN is calculated by using Eq (2.5), so

UφN =
1√(

vε1 + σ
ε1

ε2

)2

+ v2ε2
2

(
−vε2Tα −

(
vε1 + σ

ε1

ε2

)
Bα

)

is obtained. Next, differentiating Eq (3.8) again with respect to the parameters s and v, respectively,
we have

φNss =

(
−ε1s

(
σ

ε2
+ v

)
+ σ

ε1ε2s

ε2
2

)
Tα +

(
−σ

ε2
1

ε2
− v(ε2

1 + ε2
2)
)

Nα + vε2s Bα,

φNsv = −ε1Tα + ε2Bα.

By differentiating Eq (3.9) with respect to the parameter v, the equation

φNvv = 0

is obtained. By using Eq (2.6), the following coefficients of the first and the second fundamental forms
are calculated, respectively,

E =

(
vε1 + σ

ε1

ε2

)2

+ v2ε2
2, F = 0, G = 1, (3.10)
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e =

vε1sε2

(
v +

σ

ε2

)
− vε1ε2s

(
2σ
ε2

+ v
)

√(
vε1 + σ

ε1

ε2

)2

+ v2ε2
2

, f =
−σε1√(

vε1 + σ
ε1

ε2

)2

+ v2ε2
2

, g = 0.

From Eq (2.7), the Gaussian curvature K and mean curvature H of the normal ruled surface φN are
found, respectively, and the equations

K = −
σ2ε2

1(vε1 + σ
ε1

ε2

)2

+ v2ε2
2

2 , H =

vε1sε2

(
v +

σ

ε2

)
− vε1ε2s

(
2σ
ε2

+ v
)

2
(vε1 + σ

ε1

ε2

)2

+ v2ε2
2

3/2 (3.11)

are obtained.

Corollary 3.3. The normal ruled surface φN is not developable.

Proof. Assume that the normal ruled surface φN is developable. Then, the Gaussian curvature K of
the surface φN vanishes such that we have σ2ε2

1 = 0 by Eq (3.11). Since ε1 , 0 and σ , 0, it is a
contradiction. Hence, the normal ruled surface φN is not developable. �

Theorem 3.2. The normal ruled surface φN is a minimal surface, where σ =
ds
ds

and v is the parameter
of that surface if and only if the curve α is a circular helix.

Proof. Assume that the normal ruled surface φN is a minimal surface. Then, H = 0 from the definition
of a minimal surface. In this case, by using Eq (3.11), we get

vε1sε2

(
v +

σ

ε2

)
− vε1ε2s

(
2σ
ε2

+ v
)

= 0.

Since ε2 is constant, the equation ε1s = 0 is obtained. Then, ε1 is constant such that κα = c. Therefore,
the curve α, which has constant torsion τα, is a circular helix.

Suppose that the curve α is a helix. Then, we have that H = 0 by calculating the mean curvature of
the surface φN . Therefore, the surface φN is minimal. �

Theorem 3.3. If the curve α is a circular helix, then the normal ruled surface φN is inextensible.

Proof. Suppose that the curve α is a circular helix with curvatures κα and τα that are constants, given
that the surface φN is defined by Eq (3.6). Then, we have Eq (3.10), which gives the coefficients of the
first fundamental form of the surface φN . By taking the derivative of Eq (3.10) with respect to the t
parameter, we have that

∂E
∂t

= 2
(
σ
ε1

ε2
+ vε1

) (
σ(ε1tε2 − ε1ε2t)

ε2
2

+ vε1t

)
+ 2v2ε2ε2t

is obtained. Since ε1 and ε2 are constant, the partial differential equation
∂E
∂t

= 0. Additionally,
∂F
∂t

= 0

and
∂G
∂t

= 0. Therefore, it is an inextensible surface by Definition 2.5. �
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3.3. Binormal ruled surface

The evolution of a binormal ruled surface with the time parameter t of the curve α defined by
Eq (2.1) is given as follows:

φB(s, v, t) = α(s, t) + vBα(s, t), (3.12)

where Bα is the binormal vector field of the curve α. By taking the derivative of the binormal ruled
surface φT with respect to the parameter s, we have

φBs =
dα
ds

+ vB′α. (3.13)

If we arrange Eq (3.13) and substitute it into Eq (2.3), we get

φBs = ϑTα − vε2Nα

such that
dα
ds

= ϑTα, where ϑ = σ
κα
τα

. Hence, we have

φBs = −σ
ε1

ε2
Tα − vε2Nα (3.14)

such that ϑ = −σ
ε1

ε2
, where ε1 = ϑκα and ε2 = ϑτα. Differentiating the binormal ruled surface φB with

respect to the parameter v, we get
φBv = Bα. (3.15)

The unit normal vector of the surface φB is calculated by using Eq (2.5), so

UφB =
1√

σ2

(
ε1

ε2

)2

+ v2ε2
2

(
−vε2Tα + σ

ε1

ε2
Nα

)

is obtained. Next, by differentiating Eq (3.14) again with respect to the parameters s and v, respectively,
then we have

φBss =

(
−σ

(
ε1sε2 − ε1ε2s

ε2
2

)
+ vε1ε2

)
Tα +

(
−σ

ε2
1

ε2
− vε2s

)
Nα − vε2

2Bα,

φBsv = −ε2Nα.

By taking the derivative of Eq (3.15) with respect to the parameter v gives rise to

φBvv = 0.

By using Eq (2.6), the following coefficients of the first and the second fundamental forms of the
binormal ruled surface φB are obtained:

E = σ2
(
ε1

ε2

)2

+ v2ε2
2, F = 0, G = 1, (3.16)
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e =

−vε2

(
vε1ε2 −

σ

ε2
ε1s

)
− σ2

ε3
1

ε2
2

− 2σvε2s

ε1

ε2√
σ2

(
ε1

ε2

)2

+ v2ε2
2

, f =
−σε1√

σ2

(
ε1

ε2

)2

+ v2ε2
2

, g = 0.

From Eq (2.7), the Gaussian curvature K and the mean curvature H of the binormal surface φB are
found, respectively, and

K = −
σ2ε2

1σ2

(
ε1

ε2

)2

+ v2ε2
2

2 , H =
vσε2

2ε1s − v2ε1ε
4
2 − σ

2ε3
1 − 2σvε1ε2ε2s

2ε2
2

σ2

(
ε1

ε2

)2

+ v2ε2
2

3/2 (3.17)

are obtained.

Corollary 3.4. The binormal ruled surface φB is not developable.

Proof. Assume that the binormal ruled surface φB is developable. Then, the Gaussian curvature K of
the surface φB vanishes such that we have σ2ε2

1 = 0 by Eq (3.17). Since σ2ε1 , 0, it is a contradiction.
Hence, the binormal ruled surface φB is not developable. �

Theorem 3.4. If the curve α is a circular helix, then the binormal ruled surface φB is inextensible.

Proof. Suppose that the curve α is a circular helix with curvatures κα and τα that are constants so
that ε1 and ε2, and given that the binormal ruled surface φB is defined by Eq (3.12). Then, we have
Eq (3.16), which gives the coefficients of the first fundamental form of the binormal ruled surface φB.
Differentiating Eq (3.16) with respect to the parameter t,

∂E
∂t

= 2σ2
(
ε1tε2 − ε1ε2t

ε2
2

)
ε1

ε2
+ 2v2ε2tε2

is obtained. Since ε1 and ε2 are constant, the partial differential equation
∂E
∂t

= 0. In addition,
∂F
∂t

= 0

and
∂G
∂t

= 0. Therefore, it is an inextensible surface by Definition 2.5.
�

Example. Let the curve α be given by the parametric equation α(s) = (
1
√

2
cos(s),

1
√

2
sin(s),

s
√

2
).

Let α be the curve which is generated by the curve α, as defined in Eq (2.1). Additionally, we obtain
some ruled surfaces generated by the curve α and its Frenet vectors. Now, we give some figures with
time t that belong to the tangential ruled surface, the normal ruled surface and the binormal ruled
surface, respectively, in Figures 1–3.
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(a) t = 0 (b) t = 3 (c) t = 9

Figure 1. Tangential ruled surface as defined in Eq (3.1) with the parameters s ∈ (−π, π),
v ∈ (1, 10) and t = 0, 3, 9.

(a) t = 0 (b) t = 3 (c) t = 9

Figure 2. Normal ruled surface as defined in Eq (3.6) with the parameters s ∈ (−π, π),
v ∈ (1, 10) and t = 0, 3, 9.

(a) t = 0 (b) t = 3 (c) t = 9

Figure 3. Binormal ruled surface as defined in Eq (3.12) with the parameters s ∈ (−π, π),
v ∈ (1, 10) and t = 0, 3, 9.
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4. Conclusions

The curve α generated by a curve α with constant torsion is called a Salkowski curve. In this study,
we have obtained some associated ruled surfaces whose base curves are α and directrix curves are
its Frenet vectors. We have examined the first and the second fundamental forms of those surfaces.
First, it is shown that the tangential ruled surface is a developable but not minimal surface. In addition,
a necessary condition is given for inextensible tangential ruled surfaces. Then, it is shown that the
normal ruled surface is not developable, and we obtained that the curve α should be a circular helix
for the normal ruled surface to be minimal. Next, if the curve α is a circular helix, then it is seen
that the normal ruled surface is inextensible. Finally, it is found that the binormal ruled surface is not
developable, and this surface is obtained to be an inextensible ruled surface if the curve α is a circular
helix.

We need to point out that the relationship between our work and singular theory and soliton theory
would be interesting. In literature, there are some references about the latter theories. Therefore, the
references [26–30] might be useful for developing further works.
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