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1. Introduction and the main result

Let T > 0, a(·) be a T -periodic continous function defined in R, and α (∈ R) be a positive constant.
Define a potential function V as follows

V(t, x) =
c(t)
2
|x|2 +

a(t)
P + 1

|x|P+1, (1.1)

where P > 1 and a(t) ≥ α > 0. In this paper, we investigate the existence of multiple nontrivial
T -periodic solutions of the following problem{

ẍ + Vx(t, x) = 0,
x(0) = x(T ), ẋ(0) = ẋ(T ),

(1.2)

where x ∈ RN , N ≥ 1, and c(·) satisfies the following condition, (Hc) 0 < c(t) is a T -periodic continous
function and c ∈ C(R,R).
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It’s obvious that x = 0 is a trivial solution of (1.2). Indeed, we are interested in the multiplicity
of nontrivial T -periodic solutions of (1.2), and will get that (1.2) has at least two nontrivial T -periodic
solutions when c(t) is near to any fixed eigenvalue of the linear periodic boundary value problem, for
t ∈ [0,T ], {

ẍ + λx = 0,
x(0) = x(T ), ẋ(0) = ẋ(T ).

(1.3)

Actually, (1.3) has eigenvalues λk = (2kπ
T )2, k = 0, 1, 2, 3, ..., and eigenfunctions

cos
2kπ
T

⊗
e, sin

2kπ
T

⊗
f , (1.4)

where, e, f ∈ RN , as k > 1; e ∈ RN , as k = 0.
Next, the variational framework for (1.2) will be given. Set

E := H1
per((0,T ),RN) = {x ∈ H1((0,T ),RN)|x(0) = x(T )}.

It’s obvious that E is a Hilbert space with the inner product and norm listed below

〈x, y〉 =

∫ T

0
(ẋẏ + xy)dt, ‖x‖2 = 〈x, x〉, x, y ∈ E.

By the compact embeddings

E ↪→ C([0,T ],RN), E ↪→ Lq([0,T ],RN), q ≥ 1,

the T -periodic solutions of (1.2) correspond to the critical points of the functional

I(x) =

∫ T

0

1
2

[|ẋ|2 − c(t)|x|2] −
a(t)

P + 1
|x|P+1dt.

It’s obvious that as c(t) ≥ λ1, the trivial solution x = 0 is a critical point as a local saddle point of the
functional I. By assumptions, we know I ∈ C2(E,R) and the derivatives

〈I′(x), y〉 =

∫ T

0
(ẋẏ − c(t)xy)dt −

∫ T

0
a(t)|x|P−1xydt,

〈I′′(x)y, z〉 =

∫ T

0
(ẏż − c(t)yz)dt −

∫ T

0
(a(t)|x|P−1x)′xyzdt,

where x, y, z ∈ E.
Our result is the following theorem.

Theorem 1.1. Assume k ≥ 1 and V(t, x) satisfies the (1.1). Then, there exists a δ > 0 such that as
c(t) ∈ (λk+1 − δ, λk+1 + δ), (1.2) has a nontrivial T -periodic solution x1, and the critical group satisfies
the following

Cik+1+1(I, x1) � 0.

Furthermore, as c(t) ∈ (λk+1 − δ, λk+1), there exists another nontrivial T -periodic solutions x2 of (1.2),
and the critical group satisfies

Cik+1(I, x2) � 0.
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This paper is directly motivated by [1, 2]. In [1], as c(t) is a positive constant in R, by linking
theorem, the existence of one nontrivial T -periodic solutions of the problem (1.2) in one dimension is
discussed. In [2], the authors studied the multiple periodic solutions of superlinear second order ODEs
in one dimension by morse theory. Actually, a typical model in the applications of Morse theory and
minimax methods is the second order Hamiltonian system. We can refer to [3–12] for some historical
progress.

Here, applying morse theory and homological linking to look for multiple periodic solutions for
ODEs in N(≥ 1) dimensions. On the one hand, in our problem, c(t) is a T -periodic vibrating function
different from the previous case that c(t) is a positive constant. As c(t) is not the T -periodic function,
the existence of unbounded solutions of higher order differential equations considered as perturbations
of certain linear differential equations can be referred to [13]. On the other hand, the dimension in our
problem is N(≥ 1), which is more general than the dimension in [2]. To solve the problem, we need to
construct new critical groups and direct sum decomposition.

Precisely, in Theorem 1.1, as c(t) is near to λk+1, we can construct the homological linking with
respect to Ek+1 ⊕ E⊥k+1. And we get at least two nontrivial T -periodic solutions, which is different from
the result there is at least one nontrivial T -periodic solution in [1]. Furthermore, as c(t) ∈ (λk+1−δ, λk+1),
we can also construct the homological linking w.r.t. Ek ⊕ E⊥k and investigate the existence of the
nontrivial T -periodic solutions. In the remarkable paper [14], the author obtained one nonconstant
periodic solution as c(t) = 0 and the potential V was of class C1, using a critical point theorem, which is
now famous as the generalized mountain pass theorem. In [6], the author extended the existence result
in [14] investigating (1.2) as c(t) is a constant symmetric matrix by local linking argument, and got one
nontrivial periodic solution as the potential V was of class C1 and satisfied local sign condition [6] near
the origin. The fundamental idea here is sources from [15], where the authors studied the superlinear
elliptic problem with a saddle structure near zero by bifurcation methods, Morse theory, and topological
linking.

The structure of the paper is arranged as follows. In Section 2, we recall the basic Morse theories
and give a lemma on the (PS ) condition. In Section 3, we prove the main result.

2. Preliminaries

In this section, we recall some preliminaries on Morse theory and homological linking in [7,8,16].
Assume the functional I ∈ C2(E,R), where E is a Hilbert space. Set K = {x ∈ E|I′(x) = 0}, Ic =

{x ∈ E|I(x) ≤ c}, and Kc = {x ∈ K|I(x) = c}. We recall that I satisfies (PS )c condition at the level c ∈ R,
if any sequence {xn} ⊂ E satisfying I(xn)→ c, I′(xn)→ 0 as n→ ∞, has a convergent subsequence. I
satisfies (PS ) if I satisfies (PS )c at any c ∈ R.

Assume that the functional I satisfies (PS ) and # K < ∞ in this paper. Let x0 ∈ K with I(x0) =

c ∈ R, and U be a neighborhood of x0 such that U ∩ K = {x0}. Then, q-th critical group of I at x0 is
defined below

Cq(I, x0) := Hq(Ic ∩ U, Ic ∩ U \ {x0}), q ∈ Z,

where H∗(A, B) denotes the singular relative homology group of the pair (A, B) with coefficient field F
( [7,8,16]). We can distinguish critical points by critical groups. The multiplicity of critical points and
critical groups can be referred to [16].

For the critical groups of I at an isolated critical point, the following basic conclusions hold.
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Proposition 2.1. Assume that x is an isolated critical point of I ∈ C2(E,R) with finite Morse index i(x)
and nullity ν(x). Then
(1) Cq(I, x) � δq,i(x)F, if ν(x) = 0;
(2) Cq(I, x) � 0 for q < [i(x), i(x) + ν(x)] (Gromoll and Meyer [17]).

From Theorems 1.1′ and 1.5 of Chapter II in [8], the following abstract linking theorem is easily
obtained (See also [3, 18]).

Proposition 2.2. ( [3,8,18]) Let E be a real Banach space with E = X ⊕Y and suppose that l = dim X
is finite. Suppose that I ∈ C1(E,R) satisfies (PS )condition and
(H1) there exist ρ > 0, α0 > 0 such that

I(x) ≥ α0, x ∈ S ρ = Y ∩ ∂Bρ,

where Bρ = {x ∈ E| ‖x‖ ≤ ρ},
(H2) there exist R > ρ > 0, and e ∈ Y with ‖e‖ = 1 such that

I(x) < α0, x ∈ ∂Q,

where Q = {x = x1 + se| ‖x‖ ≤ R, x1 ∈ X, 0 ≤ s ≤ R}.
Then I has a critical point x∗ with I(x∗) ≥ α0 and

Cl+1(I, x∗) � 0.

Remark 2.1. In proposition above, S ρ and ∂Q are homotopically linked with respect to direct sum
decomposition E = X ⊕ Y.

Lemma 2.1. Assume that the T-periodic function c(·) satisfies (Hc), and the potential function V
satisfies (1.1). Then, I satisfy the (PS) condition.

Proof. Let {xn} ⊂ E = H1
per((0,T ),RN) satisfy the following,{

|I(xn)| ≤ C, n ∈ N,
I′(xn)→ θ, as n→ ∞,

(2.1)

where θ is a zero vector, C > 0 is a constant. In fact, ∀ϕ ∈ E = H1
per((0,T ),RN), we have

dI(xn, ϕ) =

∫ T

0
[ẋnϕ̇ − c(t)xnϕ − a(t)|xn|

P−1xnϕ]dt → 0. (2.2)

Taking ϕ = xn in (2.2), we have∫ T

0
[|ẋn|

2 − c(t)|xn|
2 − a(t)|xn|

P+1]dt = o(‖xn‖), (2.3)

and by (2.1), the following holds

|

∫ T

0
[
|ẋn|

2 − c(t)|xn|
2

2
− a(t)

|xn|
P+1

P + 1
]dt| ≤ C, (2.4)

i.e.,
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−C ≤
∫ T

0
[
|ẋn|

2 − c(t)|xn|
2

2
− a(t)

|xn|
P+1

P + 1
]dt ≤ C. (2.5)

Combining (2.3) and (2.4) (or (2.5)), we have

−C − o(‖xn‖) ≤ (
1
2
−

1
P + 1

)
∫ T

0
|ẋn|

2 − c(t)|xn|
2dt ≤ C + o(‖xn‖). (2.6)

Since P > 1, we have 1
2 −

1
P+1 > 0. So by (2.6), the following holds

−C1 − o(‖xn‖) ≤
∫ T

0
|ẋn|

2 − c(t)|xn|
2dt ≤ C1 + o(‖xn‖), (2.7)

where C1 > 0 is a constant. Then, by (2.7) and (2.3), we have∫ T

0
a(t)|xn|

P+1dt ≤ C2, (2.8)

where C2 > 0 is a constant. Furthermore, there exists a CM > 0 such that 0 < c(t) ≤ CM,∀ t ∈ [0,T ].
By Hölder inequality, we get∫ T

0
|xn(t)|2dt ≤ (

∫ T

0
a(t)|xn|

P+1dt)
2

P+1 (
∫ T

0
a−

2
P−1 (t)dt)

P−1
P+1 , (2.9)

and ∫ T

0
c(t)|xn(t)|2dt ≤ CM

∫ T

0
|xn(t)|2dt ≤ CM(

∫ T

0
a(t)|xn|

P+1dt)
2

P+1 (
∫ T

0
a−

2
P−1 (t)dt)

P−1
P+1 . (2.10)

Next, by (2.7), (2.8), and (2.10), we have∫ T

0
|ẋn(t)|2dt ≤ C3,

where C3 > 0 is a constant. So, ‖xn‖ ≤ C4, where C4 > 0 is a constant, i.e., {xn} is bounded in E.
Without loss of generality, up to a subsequence, assume that there exists a point x0 ∈ E such that as
n→ ∞, xn ⇀ x0 in E and xn → x0 in C([0,T ],RN), and furthermore xn → x0 in L2([0,T ],RN). So

‖xn − x0‖ = sup
‖u‖≤1

< xn − x0, u >= sup
‖u‖≤1

[
∫ T

0
(ẋn − ẋ0, u̇) + (xn − x0, u)dt]

= sup
‖u‖≤1
{

∫ T

0
(a(t)[|xn|

P−1xn − |x0|
P−1x0], u) + (c(t)(xn − x0), u))dt

+〈I′(xn) − I′(x0), u〉 +
∫ T

0
(xn − x0, u)dt} → 0, as n→ ∞.

Hence, xn → x0 in E. The proof is completed. �
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We need some notations to construct the linking. For j ∈ N, set

E(λ j) = ker(
d2

dt2 + λ j), E j =

j⊕
i=1

E(λi), E = E j

⊕
E⊥j .

For each j ≥ 1, by (1.4), we have ν j := dim E(λ j) = 2N, i j := dim E j =
j∑

k=0
νk = 2 jN + N. It’s obvious

that in E⊥j , ∫ T

0
|ẋ(t)|2dt ≥ λ j+1

∫ T

0
|x(t)|2dt, (2.11)

and in E j, ∫ T

0
|ẋ|2dt ≤ λ j

∫ T

0
|x|2dt. (2.12)

3. Proof of the main result

At the beginning of this section, to verify the conditions (H1) and (H2) in Proposition 2.2, we give
some preliminary lemmas below.

Lemma 3.1. For any 0 < c(t) < λ j+1, t ∈ [0,T ], there exist r j, α j > 0 such that

Φ(x) ≥ α j, x ∈ {x ∈ E⊥j | ‖x‖ = r j}.

Proof. By embedding theorem (Chapter 10 in [1], Chapter 1 in [16]), we have

‖x‖P+1 ≤ C‖x‖, (3.1)

where C > 0 is a constant, ‖x‖P+1 = (
∫ T

0
|x|P+1dt)

1
P+1 , ‖x‖ = (

∫ T

0
|ẋ|2 + |x|2dt)

1
2 . Meanwhile, since a(t) is

a T -periodic continuous function. There exist m,M such that 0 < α ≤ m ≤ a(t) ≤ M. So by (3.1), the
following holds

1
P + 1

∫ T

0
a(t)|x|P+1dt ≤ M′CP+1‖x‖P+1, where M′ =

M
P + 1

.

In addition, since c(t) is a T -periodic continuous function, for any 0 < c(t) < λ j+1, there exists a
constant cM > 0, which is the maximum of c(t), t ∈ [0,T ], such that 0 < c(t) ≤ cM < λ j+1. So for
x ∈ E⊥j , by (2.11), we have

I(x) =
1
2

∫ T

0
[|ẋ|2 − c(t)|x|2]dt −

1
P + 1

∫ T

0
a(t)|x|P+1dt

=
1
2

∫ T

0
[|ẋ|2 + |x|2 − (c(t) + 1)|x|2]dt −

1
P + 1

∫ T

0
a(t)|x|P+1dt

≥
1
2

∫ T

0
[|ẋ|2 + |x|2 − (cM + 1)|x|2]dt − M′CP+1‖x‖P+1 (3.2)

≥
1
2

(‖x‖2 −
cM + 1
λ j+1 + 1

‖x‖2) − M′CP+1‖x‖P+1
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≥
1
2

(
λ j+1 − cM

λ j+1 + 1
)‖x‖2 − M′CP+1‖x‖P+1.

Next, taking α∗ =
λ j+1−cM

λ j+1+1 > 0, β = M′CP+1, we have

I(x) ≥
α∗
2
‖x‖2 − β‖x‖P+1, x ∈ E⊥j .

As a result of P > 1, the function g(s) = α∗
2 s2 − βsP+1 on (0,∞) has its maximum

α j := gmax = g([
α∗

(P + 1)β
]

1
P−1 ) =

P − 1
2(P + 1)

α
P+1
P−1
∗ (β(P + 1)

2
1−P ).

Set r j = [ α∗
(P+1)β ]

1
P−1 . By the process above, we therefore have

I(x) ≥ α j, for x ∈ E⊥j with ‖x‖ = r j.

The proof is completed. �

Remark 3.1. It’s obvious that α j and r j decreasingly approach to zero as cM → λ−j+1.

Now, for the eigenvalue λ j+1 of (1.3), we take the corresponding unit eigenfunction ϕ j+1, i.e.,
‖ϕ j+1‖ = 1. For j = k, k + 1, define

S k = {x ∈ E⊥k | ‖x‖ = rk}, S k+1 = {x ∈ E⊥k+1| ‖x‖ = rk+1},

Vk = Ek ⊕ span{ϕk+1}, Vk+1 = Ek+1 ⊕ span{ϕk+2},

where r j is defined in Lemma 3.1, j = k, k + 1.

Lemma 3.2. Assume V(t, x) satisfies (1.1) and c(t) ∈ (λk, λk+2).There exist σ ∈ R, δ > 0, and R > 0
independent c(t) and δ, such that as c(t) ∈ (λk+1 − δ, λk+1 + δ), the following holds

I(x) ≤ σ < αk+1, for x ∈ ∂Qk+1,

where Qk+1 = {x ∈ Vk+1| ‖x‖ ≤ R, x = x1 + sϕk+2, x1 ∈ Ek+1, s ≥ 0}. Furthermore, as c(t) ∈ (λk, λk+1),
there exists a constant R > 0 independent of c(t) such that

I(x) ≤ 0, x ∈ ∂Qk,

where Qk = {x ∈ Vk| ‖x‖ ≤ R, x = x1 + sϕk+1, x1 ∈ Ek, s ≥ 0}.

Proof. Since a(·) > 0 is a T -periodic continuous function and a(t) ≥ α, t ∈ [0,T ], by (2.12) and
c(t) ∈ (λk, λk+2), we easily get, for x = x1+x2+x3 ∈ Vk+1, where x1 ∈ Ek, x2 ∈ E(λk+1), x3 ∈ span{ϕk+2},

I(x) =
1
2

∫ T

0
[|ẋ|2] − c(t)|x|2]dt −

∫ T

0

a(t)
P + 1

|x|P+1dt

≤
1
2

∫ T

0
(λk − c(t))|x1|

2 + (λk+1 − c(t))|x3|
2 + (λk+2 − c(t))|x3|

2dt −
α

P + 1

∫ T

0
|x|P+1dt
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≤
1
2

∫ T

0
(λk+2 − c(t))|x|2dt −

α

P + 1

∫ T

0
|x|P+1dt

≤
1
2

∫ T

0
(λk+2 − λk)|x|2dt −

α

P + 1

∫ T

0
|x|P+1dt. (3.3)

Since P > 1, dim Vk+1 < ∞, and all norms are equivalent in a space with a finite dimension, by (3.3),
we have I(x)→ −∞, as ‖x‖ → ∞. So, there exists a constant R > 0 independent of c(t) such that

I(x) ≤ 0, x ∈ Vk+1, ‖x‖ = R. (3.4)

Now, choosing R > max{rk, rk+1} > 0. For Ek+1 3 y = y1 + y2 with ‖y‖ ≤ R, where y1 ∈ Ek, y2 ∈ E(λk+1).
Next, for c(t) ∈ (λk, λk+2), by (2.12), we have

I(y) ≤
1
2

(λk − c(t))‖y1‖
2
2 +

1
2

(λk+1 − c(t))‖y2‖
2
2

≤
1
2
|λk+1 − c(t)|R2.

Now, taking σ = αk+1
2 , δ = 2σ

R2 , where αk+1 is defined in Lemma 3.1, we get as |λk+1 − c(t)| < δ,

I(y) ≤ σ < αk+1, for y ∈ Ek+1, ‖y‖ ≤ R, as |λk+1 − c(t)| < δ. (3.5)

Meanwhile, we have

∂Qk+1 = {x = x1 + sϕk+2| ‖x‖ = R, x1 ∈ Ek+1, s ≥ 0} ∪ {x1 ∈ Ek+1| ‖x1‖ ≤ R}.

Then, by (3.4) and (3.5), we obtain

I(x) ≤ σ < αk+1,∀x ∈ ∂Qk+1, as c(t) ∈ (λk+1 − δ, λk+1 + δ).

Furthermore, as a matter of fact, we have

∂Qk = {x = x1 + tϕk+1|‖x‖ = R, x1 ∈ Ek, t ≥ 0} ∪ {x1 ∈ Ek|‖x‖ ≤ R}. (3.6)

On the one hand, since Vk ⊂ Vk+1, for c(t) ∈ (λk, λk+1) ⊂ (λk, λk+2), R > 0 mentioned above, by (3.4), it
follows that

I(x) ≤ 0, x ∈ Vk, ‖x‖ = R. (3.7)

On the other hand, it’s obvious that, for ∀ x1 ∈ Ek,

I(x1) ≤
1
2

(λk − c(t))‖x1‖
2
2 −

∫ T

0

a(t)
P + 1

|x1|
P+1dt ≤ 0. (3.8)

So, by (3.6), (3.7), and (3.8), we get
I(x) ≤ 0, x ∈ ∂Qk.

The proof is completed. �

Now, by two lemmas proved above, using the Proposition 2.2, we could prove the main result.
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Proof. Proof of Theorem 1.1. To give a clear proof, we shall take several steps to finish it.
Firstly, by Lemma 2.1, I satisfies the (PS ) condition.
Secondly, by Lemmas 3.1 and 3.2, I satisfies the (H1) and (H2) in Proposition 2.2. So the following

holds
inf

x∈S k+1
I(x) ≥ αk+1 >

αk+1

2
≥ max

x∈∂Qk+1
I(x).

Next, for the R mentioned in Lemma 3.2, it satisfies the following

R > max{rk, rk+1} > 0. (3.9)

So we have S k+1 and ∂Qk+1 homotopically link w.r.t. the decomposition E = Ek+1
⊕

E⊥k+1.
Furthermore, since dim Vk+1 = ik+1 + 1, by Proposition 2.2, we have a critical point x1 of the functional
I with I(x1) ≥ αk+1 > 0 and

Cik+1+1 � 0.

Thirdly, for the situation c(t) ∈ (λk+1−δ, λk+1) ⊂ (λk, λk+1), I satisfies (H1) and (H2). What’s more,
the following holds

inf
x∈S k

I(x) ≥ αk > 0 ≥ max
x∈∂Qk

I(x).

By (3.9), S k and ∂Qk homotopically link w.r.t. the decomposition E = Ek
⊕

E⊥k . Furthermore, since
dim Vk = ik + 1, by Proposition 2.2, we have a critical point x2 of the functional I with I(x2) ≥ αk > 0
and

Cik+1 � 0.

Finally, as a matter of fact, we have

(ik+1 + 1) − (ik + 1) = ik+1 − ik = [2(k + 1)N + N] − (2kN + N) = 2N.

Combining the following fact,

dim ker I′′(x∗) = dim{x ∈ E|ẍ + (c(t)IN + (a(t)|x|P−1x)′x|x=x∗)x = 0}
= dim{x ∈ E|ẍ + (c(t)IN + B(t, x∗))x = 0} ≤ 2N,

where x∗ is a critical point of the functional I, and

B(t, xc) =


∂a(t)|x|P−1 x1

∂x1

∂a(t)|x|P−1 x1
∂x2

... ∂a(t)|x|P−1 x1
∂xN

∂a(t)|x|P−1 x2
∂x1

∂a(t)|x|P−1 x2
∂x2

... ∂a(t)|x|P−1 x2
∂xN

... ... ... ...
∂|x|P−1 xN

∂x1

∂a(t)|x|P−1 xN
∂x1

... ∂a(t)|x|P−1 xN
∂xN

 |x=x∗ ,

by Proposition 2.1(2), we obtain x1 , x2. The proof is completed. �

Right now, we can directly have the following conclusion by Theorem 1.1.

Corollary 3.1. Assume V(t, x) satisfies (1.1) and k(∈ N) ≥ 1. Then, there exists a δ > 0 such that as
c(t) ∈ (λk+1, λk+1 + δ), (1.2) has at least one nontrivial T -periodic solution.
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4. Conclusions

In this paper, we prove the existence of multiple nontrivial T -periodic solutions of the equation
ẍ + Vx(t, x) = 0 in RN , N(≥ 1), where Vx(t, x) is the derivative of V(t, x) satisfying (1.1) with respect
to x. Since the nontrivial T -periodic solutions correspond to the critical points of the functional of the
problem, to get the multiple T -periodic solutions, we prove the existence and multiplicity of critical
points of the functional. Employing the homological linking and morse theory, we get at least two
nontrivial T -periodic solutions and distinguish them by critical groups. By the way, as the range of the
T -periodic function c(t) satisfying (Hc) in (1.1), a right small neighborhood of the k-th eigenvalue
of (1.3), there exists a nontrivial T -periodic solution. Here, our main result is different from the
previous works (see [1, 2] and the references therein).
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