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Abstract: A set-valued minimax programming problem (in short, SVMP) is taken into consideration
in this study. We present the idea of σ-arcwisely connectivity of set-valued maps (in short, SVM) in the
broader sense of arcwisely connected SVMs. The sufficient criteria for Karush-Kuhn-Tucker (KKT)
optimality are constituted for the problem (MP) under contingent epidifferentiation and σ-arcwisely
connectivity suppositions. In addition, we develop the Mond-Weir (MWD), Wolfe (WD), and
mixed (MD) kinds models of duality and verify the associated strong, weak, and converse theorems
of duality among the primal (MP) and the associated figures of duals under σ-arcwisely connectivity
supposition.
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1. Introduction

An exclusive subset of optimization problems is the class of minimax programming problems. It
is used in a variety of mathematical, economic, and operational research domains. In 1966, Bram [7]
and Danskin [11,12] constituted the necessary conditions of optimality of static minmax programming
problems (in short, MPPs) with the help of Lagrange multiplier rule. Later, in 1977, Schmitendorf [25]
derived the sufficient as well as necessary conditions of optimality for MPPs. Later, Tanimoto [26]
studied theorems of duality of various kinds for the MPPs. After that, Demyanov and Malozehon [19],
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Datta and Bhatia [18], Zalmai [30], Bector and Bhatia [4], Bector et al. [5] and Chandra and Kumar [9]
provided the sufficient as well as necessary conditions of optimality of MPPs and proved the theorem
of duality. In 1999, Mehra and Bhatia [23] developed the necessary conditions of optimality for
MPPs. They further formulated the Mond-Weir kind results of duality under arcwisely connectivity
and generalized arcwisely connectivity suppositions.

Avriel [3] presented the idea of arcwisely connectivity in the theory of vector optimization. By
substituting a continuous arc for the line segment connecting two points, the idea of convexity was
generalized to arcwisely connectivity. Fu and Wang [20] and Lalitha et al. [22] proposed the idea of
arcwisely connected SVMs. It is a development of the cone convex SVM class. Lalitha et al. [22]
provided the sufficient condition of optimality for set-valued optimization problems (in short, SVOPs)
via contingent epidifferentiation and cone arcwisely connectivity suppositions. Yu [28] provided the
sufficient as well as necessary conditions of optimality for the identification of proper global points
of efficiency of vector optimization problems (in short, VOPs) involving arcwisely connected SVMs.
Yihong and Min [27] proposed the idea of nearly arcwisely connected SVMs of α-order. They also
proved the sufficient as well as necessary conditions of optimality of SVOPs. Yu [29] provided the
sufficient as well as necessary conditions of optimality for proper global efficiency in VOPs under
cone arcwisely connectivity supposition. Peng and Xu [24] proposed the idea of cone subarcwisely
connected SVMs. They also constituted the necessary conditions of optimality of second-order for the
identification of local proper global efficient elements of SVOPs.

The notion of contingent derivative is basically an extension of the Frechet differentiability from
single-valued to set-valued case. This concept has also been widely used in set-valued optimization
theory. But the necessary and sufficient optimality conditions do not coincide under standard
assumptions. So contingent derivatives are not completely the right tool for the formulation of
optimality conditions in set-valued optimization. The notion of contingent epiderivative is one possible
generalization of directional derivatives in the single-valued convex case. The main differences
between the contingent derivative and the contingent epiderivative are that the graph is now replaced
by the epigraph and the derivative is now single-valued. A special property of contingent epiderivatives
in the cone-convex case is that they are sublinear, if they exist. So we are more interested in contingent
epiderivative in the study of set-valued minimax programming problems.

The concept of arcwise connectedness is a generalization of convexity by replacing the line segment
joining two points by a continuous arc. We introduce the notion of σ-cone arcwise connectedness of
set-valued maps as a generalization of cone arcwise connected set-valued maps. For σ = 0, we get the
usual notion of cone arcwise connected set-valued maps. Further, we construct an example of σ-cone
arcwise connected set-valued map, which is not cone arcwise connected. We are mainly interested
in finding the sufficient optimality conditions of set-valued minimax programming problems in more
generalized case by using contingent epiderivative and σ-cone arcwise connectedness assumptions
on the objective functions and constraints. We also study the weak, strong, and converse duality
theorems of Mond-Weir, Wolfe, and mixed types under contingent epiderivative and σ-cone arcwise
connectedness assumptions. For σ = 0, our results reduce the existing ones available in the literature.

The dual of dual need not be the original primal for the general nonlinear programming problems.
Duality is not defined uniquely. This has led to the introduction of some other forms of dual such as
the Lagrangian, Mangasarian, Wolfe, and Mond-Weir types. The beauty of Mond-Weir type dual is
that the objective function is same as that of the primal problem. The mixed type dual is constructed
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as a combination of the Mond-Weir and Wolfe dual problems.
The Wolfe dual to a constrained scalar optimization problem was introduced by Wolfe, while the

Mond-Weir dual followed twenty years later, due to Mond and Weir. In both cases the functions
involved were considered differentiable and endowed with generalized convexity properties. Then
these duality concepts evolved parallelly and one can distinguish two main directions for both of
them. On one hand, considering the primal problem convex, the differentiability assumptions were
dropped and the gradients that appear in the duals were replaced by subdifferentials. On the other
hand, especially for Mond-Weir duality, the differentiability continued to play an important role and
the convexity assumptions on the functions involved were weakened.

In this study, we determine the KKT conditions of sufficiency of the SVMPP (MP) under contingent
epidifferentiation and σ-arcwisely connectivity suppositions. We construct the duals of Mond-
Weir (MWD), Wolfe (WD), and mixed (MD) kinds and verify the associated theorems of duality under
σ-arcwisely connectivity supposition.

The structure of this paper is as follows. SVM definitions and basic ideas are covered in Section 2.
We present the notion ofσ-arcwisely connectivity of SVMs in the broader sense of arcwisely connected
SVMs in Section 3. We also give an illustration of σ-arcwisely connected SVM, which is not
necessarily arcwisely connected. In Section 4, we give the primal problem SVMPP (MP) of set-
valued minimax programming. In Section 5, the KKT requirements of sufficiency are constituted for
the problem (MP). In Section 6, we establish the weak, strong, and converse duality results of Mond-
Weir kind dual (MWD), where the SVMs ψ(., qm) and ωn are contingent epidifferentiable using the
assumptions of generalized cone arcwise connectivity. In Sections 7 and 8, we develop the duality
results of Wolfe (WD), and mixed (MD) kinds models under σ-arcwisely connectivity supposition.
Section 9 is the concluding remarks of our work.

2. Definitions and preliminaries

Let β be a real normed space (in short, RNS) and Q be a nonvoid subset of β. Then, Q is referred to
as a cone if ξq ∈ Q, for every q ∈ Q and ξ ∈ R, with ξ ≥ 0. Moreover, Q is referred to as non-trivial if
Q , {0β}, proper if Q , β, pointed if Q∩ (−Q) = {0β}, solid if int(Q) , ∅, closed if Q = Q, and convex
if ξQ + (1 − ξ)Q ⊆ Q, for every ξ ∈ [0, 1], where int(Q) and Q represent the interior and closure of Q,
respectively and 0β is the zero element of β.

Aubin [1, 2] proposed the idea of contingent cone in a RNS. Additionally, Aubin [1, 2] and
Cambini et al. [8] proposed the idea of second-order contingent set in a RNS.

Definition 2.1. [1, 2] Let β be a RNS, ∅ , N ⊆ β, and q′ ∈ N. The contingent cone to N at q′ is
signified by η(N, q′) and is interpreted as follows: an element q ∈ η(N, q′) if there appear sequences
{ξn} in R, with ξn → 0+ and {qn} in β, with qn → q, satisfying

q′ + ξnqn ∈ N, ∀n ∈ N,

or, there appear sequences {νn} in R, with νn > 0 and {q′n} in N, with q′n → q′, satisfying

νn(q′n − q′)→ q.

Let α, β be RNSs, 2β be the set of all subsets of β, and Q be a pointed solid convex cone in β. Let
π : α → 2β be a SVM from α to β, i.e., π(p) ⊆ β, for every p ∈ α. The domain, image, graph, and
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epigraph of π are interpreted by

domain(π) = {p ∈ α : π(p) , ∅},

π(M) =
⋃
p∈M

π(p), for any ∅ , M ⊆ α,

grp(π) = {(p, q) ∈ α × β : q ∈ π(p)},

and
epigrp(π) = {(p, q) ∈ α × β : q ∈ π(p) + Q}.

Jahn and Rauh [21] proposed the idea of contingent epidifferentiation of SVMs.

Definition 2.2. [21] A function
−→
∆π(p′, q′) : α → β whose epigraph is identical with the contingent

cone to the epigraph of π at (p′, q′), i.e.,

epigrp(
−→
∆π(p′, q′)) = η(epigrp(π), (p′, q′)),

is presumed to be the contingent epidifferentiation of π at (p′, q′).

We now focus on the idea of the cone convexity of SVMs, developed by Borwein [6].

Definition 2.3. [6] Let M be a nonvoid convex subset of a RNS α. A SVM π : α → 2β, with M ⊆
domain(π), is referred to as Q-convex on M if ∀p1, p2 ∈ M and ξ ∈ [0, 1],

ξπ(p1) + (1 − ξ)π(p2) ⊆ π(ξp1 + (1 − ξ)p2) + Q.

Avriel [3] presented the concept of arcwisely connectivity in the broader sense of convexity.

Definition 2.4. A subset M of a RNS α is presumed to be an arcwisely connected set if for every
p1, p2 ∈ M there appears a continuous arc χp1,p2(ξ) defined on [0, 1] with a value in M satisfying
χp1,p2(0) = p1 and χp1,p2(1) = p2.

Fu and Wang [20] and Lalitha et al. [22] proposed the idea of arcwisely connected SVMs as an
elongation of the class of convex SVMs.

Definition 2.5. [20, 22] Let M be an arcwisely connected subset of a RNS α and π : α → 2β be a
SVM, with M ⊆ domain(π). Then π is presumed to be Q-arcwisely connected on M if

(1 − ξ)π(p1) + ξπ(p2) ⊆ π(χp1,p2(ξ)) + Q, ∀p1, p2 ∈ M and ∀ξ ∈ [0, 1].

Peng and Xu [24] proposed the idea of cone subarcwisely connected SVMs.

Definition 2.6. [24] Let M be an arcwisely connected subset of a RNS α, e ∈ int(Q), and π : α → 2β

be a SVM, with M ⊆ domain(π). Then π is presumed to be Q-subarcwisely connected on M if

(1 − ξ)π(p1) + ξπ(p2) + ϵe ⊆ π(χp1,p2(ξ)) + Q, ∀p1, p2 ∈ M, ∀ϵ > 0, and ∀ξ ∈ [0, 1].

Remark 2.1. Let α and β be real topological linear spaces (in short, RTLSs). A SVM π : α → 2β is
referred to as upper semicontinuous if π+(N) = {p ∈ α : π(p) ⊆ N} is an open set in α for an arbitrary
open set N in β.

AIMS Mathematics Volume 8, Issue 5, 11238–11258.



11242

Remark 2.2. Let β be a RTLS, Q be a cone in β, and N be a nonvoid subset of β. Then, N is referred
to as Q-semicompact if for every complements of all open cover having the form

{(qm + Q)c : qm ∈ N, i ∈ I},

a finite subcover exists.

Remark 2.3. Let α and β be RTVSs and Q be a cone in β. A SVM π : α → 2β is referred to as
Q-semicompact-valued if π(p) is Q-semicompact for every p ∈ α.

Let α, β be RTVSs, M be a nonvoid subset of α, π : α→ 2β be a SVM, and Q be a pointed convex
cone in β. Consider a SVOP (P):

max
p∈M

π(p). (P)

The maximizer of the problem (P) is illustrated as follows:

Definition 2.7. Let p′ ∈ M and q′ ∈ π(p′). Then, (p′, q′) is referred to as to maximize the problem (P)
if there appear no p ∈ M and q ∈ π(p) satisfying

q′ < q.

Corley [10] constituted necessary conditions of optimality for identification of maximal points of
SVOPs in RTVSs.

Theorem 2.1. [10] Let α, β be RTVSs, M be a nonvoid compact subset of α, and Q is pointed convex
cone in β. Let π : α→ 2β be Q-semicompact-valued and upper semicontinuous. Then there appears a
maximal point for the problem (P).

3. σ-arcwisely connectivity

Das and Nahak [13–17] proposed the idea of σ convexity of SVMs. They constituted the KKT
conditions of sufficiency of optimality and verify the results of duality for various kinds of SVOPs
under contingent epidifferentiation and σ convexity suppositions. For σ = 0, it diminishes to the
common concept of cone convex SVMs, presented by Borwein [6].

We present the notion of σ-arcwisely connectivity of SVMs in the broader sense of arcwisely
connected SVMs.

Definition 3.1. Let M be an arcwisely connected subset of a RNS α, p1, p2 ∈ M, e ∈ int(Q), and
π : α→ 2β be a SVM, with M ⊆ domain(π). Then, π is presumed to be σ-Q-arcwisely connected w.r.t.
e on M for p1, p2 if there appears σ ∈ R, satisfying

(1 − ξ)π(p1) + ξπ(p2) ⊆ π(χp1,p2(ξ)) + σξ(1 − ξ)∥p1 − p2∥
2e + Q, ∀ξ ∈ [0, 1]. (3.1)

Remark 3.1. Let M be an arcwisely connected subset of a RNS α, e ∈ int(Q), and π : α → 2β be a
SVM, with M ⊆ domain(π). Then, π is presumed to be σ-Q-arcwisely connected w.r.t. e on M if there
appears σ ∈ R, satisfying (3.1) for every p1, p2 ∈ M.
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Remark 3.2. If σ > 0, then, π is presumed to be strongly σ-Q-arcwisely connected, if σ = 0, we have
the common concept of Q-arcwisely connectivity , and if σ < 0, then π is presumed to be weakly σ-Q-
arcwisely connected. Undoubtedly, strongly σ-Q-arcwisely connectivity ⇒ Q-arcwisely connectivity
⇒ weakly σ-Q-arcwisely connectivity.

Additionally, we create an illustration of σ-arcwisely connected SVM, which is not necessarily
arcwisely connected.

Example 3.1. Let α = R2, β = R, Q = R+, and

M =
{

p = (p1, p2) | p1 + p2 ≥
1
2
, p1 ≥ 0, p2 ≥ 0

}
⊆ α.

Define
χp,p′(ξ) = (1 − ξ2)p + ξ2 p′,

where p = (p1, p2), p′ = (p′1, p′2), and ξ ∈ [0, 1]. Evidently, M is an arcwisely connected set. Let us
consider a SVM π : R2 → 2R as follows:

π(p) =

[0, 2], if p1 + p2 ≥
1
2 , p1 , 3p2, p = (p1, p2),

[3, 5], otherwise.

We select p = (1, 0), p′ = (0, 1), and ξ = 1
2 . So,

χp,p′
(1
2

)
=
(3
4
,

1
4

)
and

1
2
π(1, 0) +

1
2
π(0, 1) =

1
2

[0, 2] +
1
2

[0, 2] = [0, 2] ⊈ [3, 5] + R+ = π
(3
4
,

1
4

)
+ R+.

Hence, π is not R+-arcwisely connected. However, by taking into account σ = −2 and e = 3, we have
that

(1 − ξ)π(1, 0) + ξπ(0, 1) = (1 − ξ)[0, 2] + ξ[0, 2] = [0, 2]

and
π(χp,p′(ξ)) + σξ(1 − ξ)∥p − p′∥2e = π(1 − ξ2, ξ2) − 12ξ(1 − ξ).

For ξ , 1
2 ,

π(1 − ξ2, ξ2) = [0, 2].

So,
(1 − ξ)π(1, 0) + ξπ(0, 1) + 12ξ(1 − ξ) = [0, 2] + 12ξ(1 − ξ) ⊆ [0, 2] + R+ = R+.

For ξ = 1
2 , we have

π(1 − ξ2, ξ2) = π
(3
4
,

1
4

)
= [3, 5].

So,
(1 − ξ)π(1, 0) + ξπ(0, 1) + 12ξ(1 − ξ) = [0, 2] + 3 = [3, 5] ⊆ [3, 5] + R+.

Accordingly, π is a (−2)-R+-arcwisely connected SVM w.r.t. 3 on M for (1, 0), (0, 1).
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Theorem 3.1. Let M be an arcwisely connected subset of a RNS α, e ∈ int(Q), and π : α → 2β be
σ-Q-arcwisely connected w.r.t e on M. Let p′ ∈ M and q′ ∈ π(p′). Then,

π(p) − q′ ⊆
−→
∆π(p′, q′)(χ′p′,p(0+)) + σ∥p − p′∥2e + Q, ∀p ∈ M,

where

χ′p′,p(0+) = lim
ξ→0+

χp′,p(ξ) − χp′,p(0)
ξ

,

presuming that χ′p′,p(0+) exists for every p, p′ ∈ M.

Proof. Let p ∈ M. As π is σ-Q-arcwisely connected w.r.t. e on M, we have

(1 − ξ)π(p′) + ξπ(p) ⊆ π(χp′,p(ξ)) + σξ(1 − ξ)∥p − p′∥2e + Q, ∀ξ ∈ [0, 1].

Let q ∈ π(p). Choose a sequence {ξn}, with ξn ∈ (0, 1), n ∈ N, satisfying ξn → 0+ when n→ ∞. Let us
consider

pn = χp′,p(ξn)

and
qn = (1 − ξn)q′ + ξnq − σξn(1 − ξn)∥p − p′∥2e.

So,
qn ∈ π(pn) + Q.

It is undeniable that

pn = χp′,p(ξn)→ χp′,p(0) = p′, qn → q′, whenever n→ ∞,

pn − p′

ξn
=
χp′,p(ξn) − χp′,p(0)

ξn
→ χ′p′,p(0+), whenever n→ ∞,

and
qn − q′

ξn
= q − q′ − σ(1 − ξn)∥p − p′∥2e→ q − q′ − σ∥p − p′∥2e, whenever n→ ∞.

Therefore,

(χ′p′,p(0+), q − q′ − σ∥p − p′∥2e) ∈ η(epigrp(π), (p′, q′)) = epigrp(
−→
∆π(p′, q′)).

Accordingly,

q − q′ − σ∥p − p′∥2e ∈
−→
∆π(p′, q′)(χ′p′,p(0+)) + Q,

that is accurate, for every q ∈ π(p). So,

π(p) − q′ ⊆
−→
∆π(p′, q′)(χ′p′,p(0+)) + σ∥p − p′∥2e + Q, ∀p ∈ M.
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4. Construction of the primary problem

Let M be a nonvoid subset of Ri and N be a nonvoid compact subset of R j. Let ψ : Ri × R j → 2R

and ω : Ri → 2R
k

be two SVMs with

M × N ⊆ domain(ψ) and M ⊆ domain(ω).

We assume the following SVMPP (MP):

minimize
p∈M

max
⋃
q∈N

ψ(p, q),

s. t. ω(p) ∩ (−Rk
+) , ∅,

(MP)

where the SVM ψ(p, .) : R j → 2R is R+-semicompact-valued and upper semicontinuous on N, for
every p ∈ M.

The feasible set of (MP) can be constituted as

S = {p ∈ M : ω(p) ∩ (−Rk
+) , ∅}.

For p ∈ M, suppose that
C(p) = {n ∈ N : 0 ∈ ωn(p), 1 ≤ n ≤ k},

D(p) = {1, ..., k} \C(p),

and
N(p) = {n ∈ N : max

⋃
q∈N

ψ(p, q) ⊆ ψ(p, n)}.

Under these suppositions, N(p) , ∅, for every p ∈ M.
When ψ and ω becomes single-valued functions, the problem (MP) diminishes to the minimax

programming problem.
The minimizer of the problem (MP) is illustrated as follows:

Definition 4.1. Let p′ ∈ S and r′ ∈ max
⋃

q∈N
ψ(p′, q). Then, (p′, r′) is referred to as to minimize the

problem (MP) if there appear no p ∈ S and r ∈ max
⋃

q∈N
ψ(p, q) satisfying r < r′.

5. Sufficient conditions of optimality

We determine the KKT conditions of sufficiency for the SVMPP (MP) under σ-arcwisely
connectivity supposition.

Theorem 5.1. (Sufficient conditions of optimality) Let M be an arcwisely connected subset ofRi, p′ ∈ S
and r′ ∈ max

⋃
q∈N
ψ(p′, q). Assume that there appear a natural number l, r∗m ≥ 0, qm ∈ N(p′) (1 ≤ m ≤ l)

with
l∑

m=1

r∗m , 0 and s∗n ≥ 0, s′n ∈ ωn(p′) ∩ (−R+) (1 ≤ n ≤ k) satisfying

l∑
m=1

r∗m
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) +

k∑
n=1

s∗n
−→
∆ωn(p′, s′n)(χ′p′,p(0+)) ≥ 0, ∀p ∈ M, (5.1)
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and

s∗ns′n = 0, ∀n = 1, ..., k. (5.2)

If ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely connected and σ′n-R+-arcwisely
connected w.r.t. 1, on M, respectively, together with

l∑
m=1

r∗mσm +

k∑
n=1

s∗nσ
′
n ≥ 0, (5.3)

then, (p′, r′) minimizes the problem (MP).

Proof. Presume that (p′, r′) does not minimize the problem (MP). Then, there appear p ∈ S and
r ∈ max

⋃
q∈N
ψ(p, q) satisfying

r < r′.

As qm ∈ N(p′) (1 ≤ m ≤ l),
max
⋃
q∈N

ψ(p′, q) ⊆ ψ(p′, qm).

As r′ ∈ max
⋃

q∈N
ψ(p′, q),

r′ ∈ ψ(p′, qm), ∀m = 1, ..., l.

Choose
rm ∈ ψ(p, qm), ∀m = 1, ..., l.

Again, as r ∈ max
⋃

q∈N
ψ(p, q) and qm ∈ N(p′) ⊆ N,

rm ≤ r.

Therefore,
rm ≤ r < r′.

So,
l∑

m=1

r∗mrm <

l∑
m=1

r∗mr′.

As p ∈ S , there appears
sn ∈ ωn(p) ∩ (−R+) (1 ≤ n ≤ k).

As s∗n ≥ 0 (1 ≤ n ≤ k),
s∗nsn ≤ 0, ∀n = 1, ..., k.

Hence,
k∑

n=1

s∗nsn ≤ 0.

As s∗ns′n = 0, ∀n = 1, ..., k,
k∑

n=1

s∗nsn ≤

k∑
n=1

s∗ns′n.
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So,

l∑
m=1

r∗mrm +

k∑
n=1

s∗nsn <

l∑
m=1

r∗mr′ +
k∑

n=1

s∗ns′n. (5.4)

Since ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely connected and σ′n-R+-arcwisely
connected w.r.t. 1, on M,

ψ(p, qm) − r′ ⊆
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) + σm∥p − p′∥2 + R+,

and
ωn(p) − s′n ⊆

−→
∆ωn(p′, s′n)(χ′p′,p(0+)) + σ′n∥p − p′∥2 + R+.

Therefore,

rm − r′ ⊆
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) + σm∥p − p′∥2 + R+, (5.5)

and

sn − s′n ⊆
−→
∆ωn(p′, s′n)(χ′p′,p(0+)) + σ′n∥p − p′∥2 + R+. (5.6)

From (5.1), (5.3), (5.5) and (5.6), we have

l∑
m=1

r∗m(rm − r′) +
k∑

n=1

s∗n(sn − s′n) ≥ 0,

which is in conflict with (5.4). Therefore, (p′, r′) minimizes the problem (MP).

6. Mond-Weir kind dual

We assume the Mond-Weir kind dual (MWD), where the SVMs ψ(., qm) and ωn are contingent
epidifferentiable.

maximize r′,

s. t.
l∑

m=1

r∗m
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) +

k∑
n=1

s∗n
−→
∆ωn(p′, s′n)(χ′p′,p(0+)) ≥ 0,∀p ∈ M,

for some l ∈ N and qm ∈ N(p′) (1 ≤ m ≤ l),
k∑

n=1

s∗ns′n ≥ 0, p′ ∈ M, r′ ∈ max
⋃
q∈N

ψ(p′, q), s′ = (s′1, ..., s
′
k), s

′
n ∈ ωn(p′),

r∗ = (r∗1, ..., r
∗
l ), s∗ = (s∗1, ..., s

∗
k), r∗m ≥ 0, s∗n ≥ 0 (1 ≤ m ≤ l, 1 ≤ n ≤ k), and

l∑
m=1

r∗m , 0.

(MWD)
A point (p′, r′, s′, r∗, s∗) meeting all the requirements of (MWD) is referred to as feasible to the

problem (MWD).
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Definition 6.1. A feasible point (p′, r′, s′, r∗, s∗) of the problem (MWD) is said to maximize (MWD) if
there appears no feasible point (p, r, s, r∗1, s

∗
1) of the problem (MWD) satisfying

r′ < r.

Theorem 6.1. Let M be an arcwisely connected subset of Ri, p0 ∈ S and (p′, r′, s′, r∗, s∗) be feasible
to the problem (MWD). If ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely connected and
σ′n-R+-arcwisely connected w.r.t. 1, on M, respectively and (5.3) is satisfied. Then,

max
⋃
q∈N

ψ(p0, q) ≮ r′.

Proof. Presume that for some r0 ∈ max
⋃

q∈N
ψ(p0, q),

r0 < r′.

As r′ ∈ max
⋃

q∈N
ψ(p′, q),

r′ ∈ ψ(p′, qm), ∀m = 1, ..., l.

Choose
rm ∈ ψ(p0, qm), ∀m = 1, ..., l.

Since r0 ∈ max
⋃

q∈N
ψ(p0, q) and qm ∈ N(p′) ⊆ N,

rm ≤ r0.

Therefore,
rm ≤ r0 < r′.

Hence,
l∑

m=1

r∗mrm <

l∑
m=1

r∗mr′.

As p0 ∈ S , there appears sn ∈ ωn(p0) ∩ (−R+) (1 ≤ n ≤ k). Since s∗n ≥ 0 (1 ≤ n ≤ k),

s∗nsn ≤ 0, ∀n = 1, ..., k.

Therefore,
k∑

n=1

s∗nsn ≤

k∑
n=1

s∗ns′n.

Hence,

l∑
m=1

r∗mrm +

k∑
n=1

s∗nsn <

l∑
m=1

r∗mr′ +
k∑

n=1

s∗ns′n. (6.1)

Since ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely connected and σ′n-R+-arcwisely
connected w.r.t. 1, on M,

ψ(p0, qm) − r′ ⊆
−→
∆ψ(., qm)(p′, r′)(χ′p′,p0

(0+)) + σm∥p0 − p′∥2 + R+,
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and
ωn(p0) − s′n ⊆

−→
∆ωn(p′, s′n)(χ′p′,p0

(0+)) + σ′n∥p0 − p′∥2 + R+.

Therefore,

rm − r′ ⊆
−→
∆ψ(., qm)(p′, r′)(χ′p′,p0

(0+)) + σm∥p0 − p′∥2 + R+, (6.2)

and

sn − s′n ⊆
−→
∆ωn(p′, s′n)(χ′p′,p0

(0+)) + σ′n∥p0 − p′∥2 + R+. (6.3)

From the requirements of (MWD) and Eqs (5.3), (6.2) and (6.3), we have

l∑
m=1

r∗m(rm − r′) +
k∑

n=1

s∗n(sn − s′n) ≥ 0,

which is in conflict with (6.1). Hence,
r0 ≮ r′.

As r0 ∈ max
⋃

q∈N
ψ(p0, q) is arbitrary,

max
⋃
q∈N

ψ(p0, q) ≮ r′.

Theorem 6.2. Let (p′, r′) minimize the problem (MP) and s′n ∈ ωn(p′) ∩ (−R+) (1 ≤ n ≤ k). Assume

that for some natural number l, r∗m ≥ 0, qm ∈ N(p′) (1 ≤ m ≤ l) with
l∑

m=1

r∗m , 0 and s∗n ≥ 0 (1 ≤ n ≤ k),

Eqs (5.1) and (5.2) are satisfied at (p′, r′, s′, r∗, s∗). Then, (p′, r′, s′, r∗, s∗) is a feasible to (MWD). If
the Theorem 6.1 between (MP) and (MWD) holds, then, (p′, r′, s′, r∗, s∗) maximizes (MWD).

Proof. As the Eqs (5.1) and (5.2) are satisfied at (p′, r′, s′, r∗, s∗),

l∑
m=1

r∗m
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) +

k∑
n=1

s∗n
−→
∆ωn(p′, s′n)(χ′p′,p(0+)) ≥ 0, ∀p ∈ M,

and

s∗ns′n = 0, ∀n = 1, ..., k.

Hence, (p′, r′, s′, r∗, s∗) is a feasible to (MWD). Presume that the Theorem 6.1 between (MP)
and (MWD) holds and (p′, r′, s′, r∗, s∗) does not maximize (MWD). Let (p, r, s, r∗1, s

∗
1) be feasible

to (MWD) satisfying
r′ < r.

It contradicts the Theorem 6.1 between (MP) and (MWD). Accordingly, (p′, r′, s′, r∗, s∗)
maximizes (MWD).
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Theorem 6.3. Let M be an arcwisely connected subset of Ri and (p′, r′, s′, r∗, s∗) be a feasible point
of (MWD). Assume that ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely connected and
σ′n-R+-arcwisely connected w.r.t. 1, on M, respectively and (5.3) is satisfied. If p′ ∈ S , then (p′, r′)
minimizes (MP).

Proof. Presume that (p′, r′) does not minimize the problem (MP). Then, there appear p ∈ S and
r ∈ max

⋃
q∈N
ψ(p, q) satisfying r < r′.

As qm ∈ N(p′) (1 ≤ m ≤ l),
max
⋃
q∈N

ψ(p′, q) ⊆ ψ(p′, qm).

As r′ ∈ max
⋃

q∈N
ψ(p′, q),

r′ ∈ ψ(p′, qm), ∀m = 1, ..., l.

Choose
rm ∈ ψ(p, qm), ∀m = 1, ..., l.

Since r ∈ max
⋃

q∈N
ψ(p, q) and qm ∈ N(p′) ⊆ N,

rm ≤ r.

Therefore,
rm ≤ r < r′.

So,
l∑

m=1

r∗mrm <

l∑
m=1

r∗mr′.

As p ∈ S , there appears
sn ∈ ωn(p) ∩ (−R+) (1 ≤ n ≤ k).

As s∗n ≥ 0 (1 ≤ n ≤ k),
s∗nsn ≤ 0, ∀n = 1, ..., k.

So,
k∑

n=1

s∗nsn ≤ 0.

From the requirements of (MWD),
k∑

n=1

s∗ns′n ≥ 0.

So,
k∑

n=1

s∗nsn ≤

k∑
n=1

s∗ns′n.

Hence,

l∑
m=1

r∗mrm +

k∑
n=1

s∗nsn <

l∑
m=1

r∗mr′ +
k∑

n=1

s∗ns′n. (6.4)
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Since ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely connected and σ′n-R+-arcwisely
connected w.r.t. 1, on M,

ψ(p, qm) − r′ ⊆
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) + σm∥p − p′∥2 + R+,

and
ωn(p) − s′n ⊆

−→
∆ωn(p′, s′n)(χ′p′,p(0+)) + σ′n∥p − p′∥2 + R+.

Therefore,

rm − r′ ⊆
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) + σm∥p − p′∥2 + R+, (6.5)

and

sn − s′n ⊆
−→
∆ωn(p′, s′n)(χ′p′,p(0+)) + σ′n∥p − p′∥2 + R+. (6.6)

From the requirements of (MWD) and Eqs (5.3), (6.5) and (6.6), we have
l∑

m=1

r∗m(rm − r′) +
k∑

n=1

s∗n(sn − s′n) ≥ 0,

which is in conflict with (6.4). Therefore, (p′, r′) minimizes the problem (MP).

7. Wolfe kind dual

We assume the Wolfe kind dual (WD) linked with the primal problem (MP), where the SVMs
ψ(., qm) and ωn are contingent epidifferentiable.

maximize r′ +
k∑

n=1

s∗ns′n,

s. t.
l∑

m=1

r∗m
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) +

k∑
n=1

s∗n
−→
∆ωn(p′, s′n)(χ′p′,p(0+)) ≥ 0, ∀p ∈ M,

for some l ∈ N and qm ∈ N(p′) (1 ≤ m ≤ l),

p′ ∈ M, r′ ∈ max
⋃
q∈N

ψ(p′, q), s′ = (s′1, ..., s
′
k), s′n ∈ ωn(p′),

r∗ = (r∗1, ..., r
∗
l ), s∗ = (s∗1, ..., s

∗
k),

r∗m ≥ 0, s∗n ≥ 0(1 ≤ m ≤ l, 1 ≤ n ≤ k), and
l∑

m=1

r∗m , 0.

(WD)

A point (p′, r′, s′, r∗, s∗) meeting all the requirements of (WD) is referred to as feasible to the
problem (WD).

Definition 7.1. A feasible point (p′, r′, s′, r∗, s∗) of the problem (WD) is said to maximize (WD) if there
appears no feasible point (p, r, s, r∗, s∗) of the problem (WD) satisfying

r′ +
k∑

n=1

s∗ns′n < r +
k∑

n=1

s∗nsn,

where s′ = (s′1, ..., s
′
k), s∗ = (s∗1, ..., s

∗
k), s = (s1, ..., sk) and s∗ = (s∗1, ..., s

∗

k).
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Theorem 7.1. Let M be an arcwisely connected subset of Ri p0 ∈ S and (p′, r′, s′, r∗, s∗) be feasible
to the problem (WD). If ψ(., qm) (1 ≤ m ≤ l) and ωn, (1 ≤ n ≤ k) are σm-R+-arcwisely connected and
σ′n-R+-arcwisely connected w.r.t. 1, on M, respectively and (5.3) is satisfied. Then,

max
⋃
q∈N

ψ(p0, q) ≮ r′ +
k∑

n=1

s∗ns′n.

Proof. The proof is comparable to that of Theorem 6.1. It is therefore omitted.

Theorem 7.2. Let (p′, r′) minimize the problem (MP) and s′n ∈ ωn(p′) ∩ (−R+) (1 ≤ n ≤ k). Assume

that for some natural number l, r∗m ≥ 0, qm ∈ N(p′) (1 ≤ m ≤ l) with
l∑

m=1

r∗m , 0 and s∗n ≥ 0 (1 ≤ n ≤ k),

Eqs (5.1) and (5.2) are satisfied at (p′, r′, s′, r∗, s∗). Then, (p′, r′, s′, r∗, s∗) is a feasible to (WD). If the
Theorem 7.1 between (MP) and (WD) holds, then, (p′, r′, s′, r∗, s∗) maximizes (WD).

Proof. The proof is comparable to that of Theorem 6.2. It is therefore omitted.

Theorem 7.3. Let M be an arcwisely connected subset of Ri and (p′, r′, s′, r∗, s∗) be a feasible point

of (WD), with
k∑

n=1

s∗ns′n ≥ 0. Assume that ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely

connected and σ′n-R+-arcwisely connected w.r.t. 1, on M, respectively and (5.3) is satisfied. If p′ ∈ S ,
then (p′, r′) minimizes (MP).

Proof. The proof is comparable to that of Theorem 6.3. It is therefore omitted.

8. Mixed kind dual

We assume the mixed kind dual (MD) linked with the primal problem (MP), where the SVMs
ψ(., qm) and ωn are contingent epidifferentiable.

maximize r′ +
k∑

n=1

s∗ns′n,

s. t.
l∑

m=1

r∗m
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) +

k∑
n=1

s∗n
−→
∆ωn(p′, s′n)(χ′p′,p(0+)) ≥ 0,∀p ∈ S ,

for some l ∈ N and qm ∈ N(p′) (1 ≤ m ≤ l),
k∑

n=1

s∗ns′n ≥ 0, p′ ∈ M, r′ ∈ max
⋃
q∈N

ψ(p′, q),

s′ = (s′1, ..., s
′
k), s′n ∈ ωn(p′), r∗ = (r∗1, ..., r

∗
l ), s∗ = (s∗1, ..., s

∗
k),

r∗m ≥ 0, s∗n ≥ 0 (1 ≤ m ≤ l, 1 ≤ n ≤ k), and
l∑

m=1

r∗m , 0.

(MD)

A point (p′, r′, s′, r∗, s∗) meeting all the requirements of (MD) is referred to as feasible to the
problem (MD).
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Definition 8.1. A feasible point (p′, r′, s′, r∗, s∗) of the problem (MD) is said to maximize (MD) if there
appears no feasible point (p, r, s, r∗, s∗) of the problem (MD) satisfying

r′ +
k∑

n=1

s∗ns′n < r +
k∑

n=1

s∗nsn,

where s′ = (s′1, ..., s
′
k), s∗ = (s∗1, ..., s

∗
k), s = (s1, ..., sk) and s∗ = (s∗1, ..., s

∗

k).

Theorem 8.1. Let M be an arcwisely connected subset of Ri, p0 ∈ S and (p′, r′, s′, r∗, s∗) be feasible
to the problem (MD). If ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely connected and
σ′n-R+-arcwisely connected w.r.t. 1, on M, respectively and (5.3) is satisfied. Then,

max
⋃
q∈N

ψ(p0, q) ≮ r′ +
k∑

n=1

s∗ns′n.

Proof. The proof is comparable to that of Theorem 6.1. It is therefore omitted.

Theorem 8.2. Let (p′, r′) minimize the problem (MP) and s′n ∈ ωn(p′) ∩ (−R+) (1 ≤ n ≤ k). Assume

that for some natural number l, r∗m ≥ 0, qm ∈ N(p′) (1 ≤ m ≤ l) with
l∑

m=1

r∗m , 0 and s∗n ≥ 0 (1 ≤ n ≤ k),

Eqs (5.1) and (5.2) are satisfied at (p′, r′, s′, r∗, s∗). Then, (p′, r′, s′, r∗, s∗) is a feasible to (MD). If the
Theorem 8.1 between (MP) and (MD) holds, then, (p′, r′, s′, r∗, s∗) maximizes (MD).

Proof. The proof is comparable to that of Theorem 6.2. It is therefore omitted.

Theorem 8.3. Let M be an arcwisely connected subset of Ri and (p′, r′, s′, r∗, s∗) be a feasible point
of (MD). Assume that ψ(., qm) (1 ≤ m ≤ l) and ωn (1 ≤ n ≤ k) are σm-R+-arcwisely connected and
σ′n-R+-arcwisely connected w.r.t. 1, on M, respectively and (5.3) is satisfied. If p′ ∈ S , then, (p′, r′)
minimizes (MP).

Proof. The proof is comparable to that of Theorem 6.3. It is therefore omitted.

Example 8.1. Let M = [0, 1] × [0, 1] and N = [−1, 0] × [−1, 0]. Then, M is a nonvoid subset of R2

and N is a nonvoid compact subset of R2. We consider the SVMs ψ : R2 ×R2 → 2R and ω : R2 → 2R
2
,

defined as

∀(p, q) ∈ R2 × R2, ψ(p, q) =


{
√

t + ∥q∥ :
√

t ≥ ∥p∥2}, if p , (0, 0), p , ( 1
2 ,

1
2 ),

{
√
−t + ∥q∥ : t ∈ [−1

4 , 0]}, if p = (1
2 ,

1
2 ),

{0}, if p = (0, 0),
{0}, if q = (0, 0),

and

∀p ∈ R2, ω(p) =


{(t2 + ∥p∥2, t2 + ∥p∥2) : t ∈ R}, if p , (0, 0), p , ( 1

2 ,
1
2 ),

{(t + 1
4 , t +

1
4 ) : t ≥ 0}, if p = ( 1

2 ,
1
2 ),

{(0, 0)}, if p = (0, 0).
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It is clear that for all p ∈ M, ψ(p, .) : R2 → 2R is upper semicontinuous and R+-semicompact-valued
on N. The feasible set of the problem (MP) is

S = {p ∈ M : ω(p) ∩ (−R2
+) , ∅} = {(0, 0)}.

Let p = (p1, p2) ∈ R2, and p′ = (p′1, p′2) ∈ R2. Let us consider a continuous arc χp′,p : [0, 1] → R2

defined by
χp′,p(ξ) = (1 − ξ3)p′ + ξ3 p, ∀ξ ∈ [0, 1].

Clearly, M is an arcwisely connected subset of R2. Now,

χ′p′,p(0+) = lim
ξ→0+

χp′,p(ξ) − χp′,p(0)
ξ

= (0, 0).

Let p′ = (0, 0) ∈ S , r′ = max
⋃

q∈N
ψ(p′, q) = 0, and s′ = (s′1, s

′
2), with s′n = 0 ∈ ωn(p′) ∩ (−R+)

(n = 1, 2). Obviously, N(p′) = {n ∈ N : {0} = max
⋃

q∈N
ψ(p′, q) ⊆ ψ(p′, n)} = N. We choose l = 2 and

qm = −1 ∈ N(p′), m = 1, 2. We can show that ψ(., qm) is (−4)-R+-arcwisely connected and ω is 5-R2
+-

arcwisely connected w.r.t. 1 on M. Hence, ωn is 5-R+-arcwisely connected w.r.t. 1 on M, (n = 1, 2).
So σm = −4 and σ′n = 5, where m = 1, 2 and n = 1, 2. So, there exist r∗ = (r∗1, r

∗
2) = ( 1

2 ,
1
2 ) ∈ R2

+,

with
2∑

i=1

r∗i = 1 and s∗ = (s∗1, s
∗
2) = (1, 1) ∈ R2

+ such that Eqs (5.1)–(5.3) are satisfied. Then, the point

(p′, r′) = ((0, 0), 0) minimizes the problem (MP).
Now, we have

epi(ψ) = {((p, q), t) ∈ R2 × R2 × R : (p, q) ∈ R2 × R2, t ∈ ψ(p, q) + R+}

= {((p, q), t) : p , (0, 0), p ,
(1
2
,

1
2

)
, t ≥ ∥p∥2 + ∥q∥}

∪ {((p, q), t) : p =
(1
2
,

1
2

)
, t ≥

1
2
+ ∥q∥}

∪ {((p, q), t) : p = (0, 0), t ≥ 0}
∪ {((p, q), t) : q = (0, 0), t ≥ 0}.

Therefore,

T (epi(ψ), ((p, q), t)) =


(R2
+ + p) × (R2

+ + q) × R+, if p , (0, 0), p ,
(

1
2 ,

1
2

)
,

(R2
+ + ( 1

2 ,
1
2 )) × R2

+ × (R+ + 1
2 ), if p =

(
1
2 ,

1
2

)
,

R2
+ × (R2

+ + q) × R+, if p = (0, 0),
(R2
+ + p) × R2

+ × R+, if q = (0, 0).

Let (p′, q′) ∈ R2 × R2 and t′ ∈ ψ(p′, q′). Then, it is obvious that

min{t : ((p, q), t) ∈ T (epi(ψ), ((p′, q′), t′))} =

 1
2 , if p =

(
1
2 ,

1
2

)
,

0, otherwise.
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Now, we have

−→
∆ψ((p′, q′), t′)(p, q) = min{t : ((p, q), t) ∈ T (epi(ψ), ((p′, q′), t′))} =

 1
2 , if p′ =

(
1
2 ,

1
2

)
,

0, otherwise.

Similarly, we can prove that

−→
∆ω(p′, t′)(p) =


(

1
4 ,

1
4

)
, if p′ =

(
1
2 ,

1
2

)
,

(0, 0), otherwise.

Now, we have
−→
∆ψ((p′, q′), t′)(χ′p′,p(0+)) =

−→
∆ψ((p′, q′), t′)(0, 0) = 0

and
−→
∆ω(p′, t′)(χ′p′,p(0+)) =

−→
∆ω(p′, t′)(0, 0) = (0, 0).

So, we have
−→
∆ψ(., qm)(p′, r′)(χ′p′,p(0+)) =

−→
∆ψ(., qm)(p′, r′)(0, 0) = 0

and
−→
∆ωn(p′, s′n)(χ′p′,p(0+)) =

−→
∆ωn(p′, s′n)(0, 0) = 0.

It is clear that for r∗ = (r∗1, r
∗
2) = ( 1

2 ,
1
2 ) ∈ R2

+, with
2∑

i=1

r∗i = 1 and s∗ = (s∗1, s
∗
2) = (1, 1) ∈ R2

+, the

sufficient optimality conditions (5.1)–(5.3) are satisfied and
2∑

m=1

r∗m , 0. So (p′, r′, s′, r∗, s∗) is a feasible

solution of the (MWD). Again, s∗ns′n = 0,∀n = 1, 2. Hence, the weak duality Theorem 6.1 holds
between (MP) and (MWD). We prove that (p′, r′, s′, r∗, s∗) maximizes (MWD). Let any feasible point of
the Mond-Weir type dual (MWD) be (p, r, s, r∗, s∗), where p ∈ M, r ∈ max

⋃
q∈N
ψ(p, q), s = (s1, s2), sn ∈

ωn(p), r∗ = (r∗1, r
∗

2), s∗ = (s∗1, s
∗

2), r∗m ≥ 0, s∗n ≥ 0 (m = 1, 2; n = 1, 2), and
2∑

m=1

r∗m , 0. Now

max
⋃

q∈N
ψ(p, q) exists only when p = (0, 0). So, p = (0, 0) and hence r = 0. Hence, (p′, r′, s′, r∗, s∗),

p′ = (0, 0), r′ = 0, s′n = 0, (n = 1, 2), r∗ = (r∗1, r
∗
2) = (1

2 ,
1
2 ), and s∗ = (s∗1, s

∗
2) = (1, 1) maximizes the

problem (MWD). Hence, Theorems 6.1–6.3 are satisfied. Similarly, the Wolfe and mixed kind duality
results can be illustrated by this example.

9. Conclusions

In this paper, we have determined the KKT sufficient conditions of optimality of a SVMPP (MP)
under contingent epidifferentiation and generalized cone arcwisely connectivity suppositions. We
also formulated the results of duality of Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds
under the stated suppositions. We deal with σ-arcwisely connectivity of set-valued maps in finding
the solutions of set-valued minimax programming problems. The idea of σ-arcwisely connectivity
is more generalized than that of σ-cone convexity. It is shown by illustrating an example in our
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work. We basically work with σ-arcwisely connected set-valued maps as objective functions and
constraints of set-valued minimax programming problems. This is the main advantage of our results.
We assume the set-valued maps as contingent epi-derivable. We are not able to find out the solutions
whenever set-valued maps fail to be contingent epi-derivable. From the analysis of work presented in
this work, there are several scopes for extension. One can study optimality conditions for approximate
efficient solutions and symmetric duals of set-valued minimax programming problems. One can
study approximate duality results of set-valued minimax programming problems via approximate
cone convexity assumptions. One can extend these results via various generalized notions of
differentiability of set-valued maps, such as T-epiderivative, generalized contingent epiderivative etc.
The complementarity and control problems in the setting of set-valued maps can also be studied.
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