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Abstract: The present manuscript gives an overview of how two-dimensional heat diffusion
models underwent a fractional transformation, system coupling as well as solution treatment. The
governing diffusion models, which are endowed with Caputo’s fractional-order derivatives in time ¢,
are suitably coupled using the (1) convection phenomenon, (2) interfacial coupling by considering
the mechanism of a double-layered bar, and the (3) nonlinear coupling due to temperature-dependent
thermal diffusivities. Semi-analytical and analytical methods are considered for the solution treatment.
Moreover, we seek a computational environment to graphically illustrate the systems’ response to
different fractional orders in each case through the determined diffusional fields. Besides, we supply
certain concluding notes at the end.
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1. Introduction

Heat diffusion procedures have been comprehensively examined in both the fast and current
literature owing to their enormous uses. The area is still hot and remains fresh on the minds of
many researchers owing to the present technological progress. A very good account of the heat
conduction, as well as diffusion procedures in solid media like bars, cylinders, composites, and shells,
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can be seen in the work of Carslaw and Jaeger [1]; see also [2—4] and the cited papers therein.
Nevertheless, with the current energetic return of the fractional derivative theory [5—10], after being
stuck in the past decades, a lot of scientists have shifted their inquisitiveness to the study of heat
diffusion/conduction processes within the framework of fractional calculus. Thus, various analytical
and approximation methods have been devised and utilized to scrutinize the governing models. For
instance, Yan et al. [11] have proposed a series solution method and further applied it to a class of
diffusion equations featuring fractional-order derivatives. We also recall the work by Al-Khaled and
Momani [12] on the determination of approximate solutions of wave-diffusion equations endowed
with fractional orders. More so, we summarily mention some relevant examinations with regard to the
relevance of fractional-order derivatives in the theory, as well as in the application of heating processes,
including, the nonlinear heat transfer process, comparative examination of the conformable and Caputo
fractional-orders with regard to the nonlocal heat equation, and the correlation between the nonlinearity
and fractional-order derivative in diffusion equations to mentioned a few; all by the modification of
Adomian decomposition methods [13—-18]. We also make mention of Lie’s method of symmetry for
the two-dimensional diffusion model [19], the integral transformation, and other methods [20-30] to
mention a few.

Moreover, with the re-birth of the fractional calculus theory, together with its contemporary
applications in modern science and technology, the present study aims to propose three different
couplings for the heat diffusion models; of course, after being fractionalized. To do this, we first
seek two separate diffusion equations that were initially examined with nonlocal boundary conditions
by Bokhari et al. [15] Indeed, the models with their respective exact analytical solutions take the
following expressions:

dw _ Pwi P
o~ ox? 0y’
Model I: (1.1)
wi(x,v,1) = e~ sin(x) sin(y),
ows 8wy 8wy
o~ ox? 0?2
Model II: (1.2)

WZ(-x, y7 t) = e_2t Sin(x + y)’

where w; = wi(x,y,1) and w, = wy(x,y, ) are the respective dimensionless diffusional fields; and all
the physical as well as the material properties are considered to be unity. Such diffusion models are
found to model various physical phenomena in thermoelasticity [1]; in addition to their relevance in
nonlocal scenarios [15].

Additionally, when the models given in Eqgs (1.1) and (1.2) are fractionalized in time #, using the
Caputo’s fractional derivative definition with 0 < @ < 1, the models thus become [18]:

8wy _ 0wy 8wy
e o T 9y’ O<ac<l,

Fractionalized model I: (1.3)
wi(x,y,1) = E(=21) sin(x) sin(y),

wy _ O*wy wy
o = a2 T o O<a<l,

Fractionalized model 1I: (1.4)
wa(x,y,t) = E (—=2¢t) sin(x + y).
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where E,(.) in Egs (1.3), and (1.4), is the one-parameter Mittag-Lefller function that is explicitly
defined by [16,18]

(o) tn
E =Y — 1.
(6 ;F(an+l)’ a>0, te C, (1.5)

with I'(.) denoting the Gamma function, and further takes the following definition:

I'z)=G-1D!= foo e ldr. (1.6)
0

However, the current manuscript is arranged as follows: some basics about the fractional-order calculus
and the aiming methodologies are given in Section 2; while Section 3 gives the statement of the
problem. The application of the delineated methodology is given in Section 4, and lastly, Section 5
presents the concluding points.

2. Preludes and methods

The current section gives some important preludes on the fractional calculus that would be utilized
in the study. Also, the section recalls the definitions of the classical Laplace and Fourier transforms
alongside their inverses. Further, the Laplace Adomian decomposition methodology is also reviewed.

2.1. Fractional derivative

The current study makes consideration of Caputo’s fractional derivative [16,20]. More so, Caputo’s
fractional derivative is the most widely used fractional derivative after Riemann-Liouville’s derivative;
the two (Caputo and Riemann-Liouville) are also the pioneers.

Therefore, the fractional-order derivative definition based on Caputo’s definition of a function w(t)
is given by [16,18,20],

4 yv(n)(s)

biw = o= ) G=ser

ds, n—1<a<n. 2.1

Consequently, we deduce the following properties from the above definition:

(1) Df(constant) = 0,
o _ TBH) Pg
2) DI = s,
(3) Dy (ew(t)) = cDfw(t), ¢ constant,
4) Df (ciwi(?) + cowa (1)) = 1 DY (w1 (1)) + c2Df (wa (1)), ¢1, ¢2 constants,

(5) DE(w(t) = I'* (4w(r)) , where

Low(s)

T(@) Jo 1= s

I"(w(1)) =

(6) Df(w(1)) = Dy (w(1)) — w(0)

_r
I(1-a)’

where D? in (6) is the Riemann-Liouville’s operator; while « in (5) and (6) belong to 0 < a < 1.
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2.2. Integral transforms

As we are going to utilize both the Fourier and Laplace transforms in the present study, the formal
definitions of these transforms are outlined in the present subsection.

2.2.1. Fourier transform

The Fourier transform of a given function w(x,y, f) in x-variable and its analogous inverse Fourier
transform are sequentially defined as [22],

Siw(x,y, 0} = w(gq, y, 1) = \/Lz_ﬂ I : e w(x, y, dx,
1 " (2.2)
F (g, y, D} = wx, y,0) = N I ) € (g, y, dgq,

where ¢ is the Fourier transform parameter.

2.2.2. Laplace transform

The Laplace transform of a given function w(x, y, ¢) in ¢-variable and its analogous inverse Laplace
transform are sequentially defined as [21,22],

Lw(x, v, 0} = wi(x,y, s) = f‘x’ e 'w(x,y, t)dt, Re(s) >0,
0 (2.3)

1 Cc+ico
LW (x,y, 9} = wlx, 1) = %f e"w'(x,y, s)ds, ¢ >0,

oo

where s is the Laplace transform parameter. Moreover, in both transforms given in Eqs (2.2) and (2.3),
the operators £, 2!, & and ! are all linear operators.

Also, from Eq (2.3), we consequently deduce the Laplace transform in favour of Caputo’s fractional
operator of the function w(x, y, f) with respect to ¢ as follows [18]

-1
LUDIw(x,y, 1)} = s W' (x,y, ) — s ®(x,y,0), n—1<a<n. 2.4)
k=0

N

In the same vein, we mention here that the inversion process of the Laplace transform would be
carried out numerically whenever the analytical procedure fails; in fact, the methodology by Abate
and Valko [31] would be adopted. Such numerical inversion process is widely used in the literature
for inverting the expected solution back to its original domain; see Nuruddeen [32], Ahmed et al. [33]
and others [34,35] to mention a few. Moreover, other inversion schemes also exist like the Stehfest
algorithm [36,37] among others.

2.3. Laplace Adomian decomposition approach

We present the Laplace Adomian decomposition approach based on the original Adomian
method [23-30] to solve the formulated fractional models. In light of this, we make consideration
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of the following two-dimensional nonhomogeneous nonlinear time-fractional differential equation to
demonstrate the method,

Diw(x,y,t) = Lw(x,y,t) + Nw(x, y,t) + h(x, y,1), O<ac<l, (2.5

coupled with the following initial data:

w(x,y,0) = g(x,y), (2.6)

where in the above equations L is the linear differential operator, N is the nonlinear operator; while
h(x,y, t) is the nonhomogeneous term, and g(x, y) is the prescribed moving initial data.

Thus, with the attendance of Caputo’s fractional operator in Eq (2.5), this necessitates the
application of the Laplace integral transform (in #-variable) coupled with the relation given in Eq (2.4)
and the initial data in Eq (2.6) to get

Wi, y, 8) = s g(x, y) + 5L (Lw(x, v, ) + Nw(x, y, 1) + s 2L(h(x, v, 1)). 2.7

What’s more, upon applying the inverse Laplace transform to both sides of the later equation (in s), it
then yields

w(x,y,0) = g(x,y) + L (s (Q(x, v, 1)) + €7 (s77L (Lw(x, 1) + Nw(x, 1))). (2.8)

Then, on using the standard Adomian approach [28], the solution w(x,y, ) and the nonlinear term
Nw(x,y, t) are then decomposed via the summation of infinite series of components as follows

weey = Y waxy,n,  Nwxy,n= ) A, (2.9)
n=0 n=0

where A,’s are the polynomials by Adomian, which will then be recursively determined via the
application of the Adomian’s relation [28]. Further, upon substituting Eq (2.9) into Eq (2.8), we get
the following recursive scheme for the problem:

0,
0. (2.10)

2

{ wo(x,y, 1) = g(x,y) + €71 (s (2(h(x,y,1))), &
W1 (%, 3, 1) = L7 (572 (L (Wi (x, Y, 1) + Ap)) s k

where the first component wy(x, y, f) is associated with the terms emanating from the initial data and the
nonhomogeneous term; and the remaining terms wy(x, y, t) for k > 0 follow recursively. Furthermore,
the convergence of Adomian’s method for the solution of functional equations has been proven long
ago by a variety of researchers, including the references [38,39] to mention but a few.

3. Statement of the problem

In this section, we present three couplings based on the fractionalized two-dimensional heat
diffusion models given in Eqs (1.3) and (1.4). The current couplings will pave the way to obtaining
coupled systems of time-fractional two-dimensional heat diffusion models that will describe the

diffusion process in a doubled-layered media.
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3.1. Convective coupling model

Considering the individual fractionalized two-dimensional heat diffusion models in Eqgs (1.3)
and (1.4), the first coupling is made possible by introducing, and at the same time swapping the

respective convective terms n% and n% in the models as follows
wy  Owy  Pw Pw
= + + , O<a<l,
o oy T T gy n A
(9aW2 an 82W2 62W2 0 < <1 ’
= b a 9
o oy T T oy
couple with the following initial data
wy = sin(x) sin(y), at =0,
I (x) sin(y) (3.2)

wyp = sin(x +y), at r=0.

Here, the convective coefficients 7; and 7, are presumed to be equal (17, = 1, = n) for simplicity.
Thus, 1 can equally be seen as an advection coefficient. Accordingly, we consider the convective
coeflicient n7 to be very small in order to examine the significance or otherwise of the coupling in
relation to the original individual models; evidently, when n < 1, the respective exact solutions of
the individual models are expected to be approached. Besides, the respective convective terms are
expected to dominate the model when the convective coeflicient i is very very large.

3.2. Nonlinear coupling model

Yet, we consider the individual fractionalized two-dimensional heat diffusion models as given in
Eqgs (1.3) and (1.4). However, in this case, the diffusivity constants in respective equations are assumed
to be temperature-dependents. In fact, we swap the respective diffusivity constants and further express
the models as follows

Im_ 2 (f(wZ)%) + 2 (f(wZ)%), 0<a<l,
ot 0x ox ay ay (3.3)
0”wz 0 0W2 0 6wz
o - ox (g(WI)E) + oy (g(WOa—y), O<a<l,
couple with the following initial data
wip = sin(x) sin(y), at =0, (3.4)

wy = sin(x +y), at t=0.
In fact, the nonlinear terms g(w;) and f(w,) are both assumed to obey the power nonlinearity, that
is [14]
gwy) = wl, fwp) = ws, m,n € R. (3.5)

Indeed, the one-dimensional version of the corresponding integer-order model was studied by Bokhari
et al. [14] using the classical Adomian decomposition. More so, the same power nonlinearity was used
and mentioned that the power nonlinearities of m = —1/2 and m = 2 found applications in diffusion
processes of plasma diffusion (and thermal expulsion of liquid Helium), and melting, together with the
evaporation of metals, respectively.
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3.3. Interfacial coupling model

Again, referring to the fractionalized heat diffusion models in Eqs (1.3) and (1.4), the present
coupling is made possible by considering an infinite double-layered bar as shown in Figure 1. The
double-layered bar is made of two different layers with the upper layer lying in 0 < y < A, and the
lower one occupying —h <y < 0.

}J
L (x Vs t)

4 [
K X

wa(xy.t)

Figure 1. A double-layered bar.

Therefore, the related diffusional fields in the respective layers satisfy the following equations:

aawl (92w1 62W1
= + 0 <1
o ox2  0y*’ ses5

3.6
(9"wz (92W2 + 62W2 0 < <1 ( )
= B a < B
or ox? dy?
and couple with the following initial data:
wy = sin(x) sin(y), at =0,
1 (x) sin(y) 3.7)

wy = sin(x + ), at t=0.

Additionally, perfect continuity conditions between the two layers are further assumed at the interface
(v = 0), which take the following prescription:

wi=w, on y=0,
%:% on y=0 (38)
dy Oy ’
where Eq (3.8); means that the two diffusional fields are equal on the interface; while Eq (3.8), states
that the respective fluxes are equal on the same interface (remember that, both diffusivities x; and «,
are initially assumed to be unity).
In addition, as the outer surface of the bar is assumed to be fully insulated, the respective fluxes in
the two layers (y = +h) are bound to equal zero. In fact, the following insulation boundary conditions
are imposed [27]:

% =0, on y=h,
Y (3.9)
(9wz
— =0, on y=-h
Ay

AIMS Mathematics Volume 8, Issue 5, 11180-11201.
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4. Application

This section employs the outlined methodologies to treat the formulated fractionalized models for
the two-dimensional heat diffusion processes earlier given in Eqs (1.3) and (1.4).

4.1. Laplace Adomian decomposition approach

In this subsection, we deploy the application of the Laplace Adomian decomposition approach to
securitize the convective and nonlinear coupling models, respectively, of the related fractionalized
heating model.

4.1.1. Convective coupling model

To solve the convective coupling model given in Eqs (3.1) and (3.2), we utilize the Laplace Adomian
decomposition approach described earlier. Thus, without further delay, the following recursive solution
is admitted by the governing model:

wi,(x,y, 1) = sin(x) sin(y), k=0, @
wi,,, (x, ¥, 1) = ! (s“’ (nwzky + WTM + W*lkyy )) , k>0, )

W, (X, y,1) = sin(x +y), k=0, s
wa,., (x,y,1) = g7 (s‘“ (nw’fky +w; + wzk)) k>0 (4.2)

AIMS Mathematics Volume 8, Issue 5, 11180-11201.
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More so, certain explicit components are expressed from Eqs (4.1) and (4.2) as follow

Wio (-xa Y, t) = Sin(X) Sin(y)a
Wi (e, 0) = €7 (57 (s, +wi, o+, )

_ 1%(pcos(x +y) — 2sin(x) sin(y))
N T(a+1) ’

wi, (x,y,1) = €71 (S_“ ('YWZy iyt WTnyy))

22 (7 - 4) sin() sin(y) + 4y cos(x + )

IQa+1) ’

wi,(x,y,0) = 27! (s_“ (nw}zy +wy, + Wszy))

£ (2(4 - 372) sin() sin(y) + (172 — 12) cos(x + )

TGa+1) ’
wi, (x,y,0) = €7 (S_a (nwzy +wy, + WTS»:))
' (87 (1 = 4) cos(x + ) + (i = 2417 + 16) sin() sin(y))
Tda + 1) ’

(4.3)

wi (6,3, 1) = €7 (57 (w3, +wi, +wi, )
e (r] (174 —40n% + 80) cos(x +y) — 2 (5174 —40n% + 16) sin(x) sin(y))
TGa+1) ’
wi,(x,y,0) = 27! (s_" (nwzsy + wjfsxx + WTSW))

% (4n (37 — 407> + 48) cos(x +y) + (n° — 6077* + 240n* - 64) sin(x) sin(y))
T(6a + 1) :

AIMS Mathematics Volume 8, Issue 5, 11180-11201.
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and

W, (X,y,1) = sin(x +y),

wo, ()C, v, t) = ,8—1 (s_a (nWToy + W;Oxx + WZO}",V ))
_ 1*(psin(x) cos(y) — 2sin(x + y))
B Ta+1) ’

wo, (6,3, 1) = €7 (57 (ipw, i+ w3 )
2 ((7]2 —~ 4) sin(x + y) + 47 sin(x) cos(y))
TQa+ 1) ’
wo, (x,y,1) = 27! (s_“ (an , + wy, + wzzyy))
£ (2(4 = 37%) sin(x +y) + 7 (n* - 12) sin(x) cos(y))
TGa+ 1) ’

wa, (e f) = €7 (57 (i, +wa, +wa, ) (4.4)
4 (8 (m? — 4) sin(x) cos(y) + (n* — 24n% + 16) sin(x + y))
Ida+1) ’
wo, (x,y,1) = 27! (s_“ (nwLy +wy, + wiyy))
15 (1 (i7* — 401 + 80) sin(x) cos(y) — 2 (5n* — 40n” + 16) sin(x + y))
IF'Sa+1) ’
Wy (X, y,1) = ! (s_“ (17w’[Sy + wzsﬂ + wzsyy))
1% (45 (3" — 4077 + 48) sin(x) cos(y) + (11° — 6077* + 2401 — 64) sin(x +y))
['6a+1) ’
Then, upon taking the net sums via the following expressions
Wiy, 1) = ) wi, (63,0,
N (4.5)
wa(x, y, 1) = Z wa, (X, ¥, 1),
n=0
the following resulting closed-form solution is yielded
wi(x,y,1) = Ai(a,t) cos(x +y) + (Eo(—21) + Ax(a, 1)) sin(x) sin(y),
(4.6)

wa(x, y, 1) = (@, 1) sin(x) sin(y) + (Eo(=21) + (e, 1)) sin(x + y),
where E,(.) is the Mittag-Lefller function formally defined in Eq (1.5), and A;(«, t) and A,(a,t) are
given by
e A n (172 — 12) £ 8n (172 - 4) * p (174 —40n% + 80) re

@D = oD " Tea+ D) TGatl) T TdatD  TGatl)

+... 4.7)

AIMS Mathematics Volume 8, Issue 5, 11180-11201.
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ore o2re (2407 — ) e . (402 — 5p*) 50 . (#° - 60n* + 240n?) £
FQa+1) TGa+l) TEa+1) [(5a+1) [(6a + 1)

(a,t) = — + ...

4.8)
Moreover, as can be seen from Eqs (4.6)—(4.8), when n = 0, the expected convergent closed-form
solution is recovered. Thus, to ensure a convergent solution, the convective coefficient n is thus
constrained to be n < 1.

In what follows, we graphically portray the two-dimensional (2D) and three-dimensional (3D)
visualizations for wy(x,y,t) = Z;liio wy, (x,y,1) and wy(x,y,t) = Z},io wy, (x,y,t). In Figures 2 and 3,
we give the 3D plots for (a) wi(x,y, t) and (b) wy(x,y,t) when ¢t = 0.5 and @ = 0.55. Similarly, we give
in Figures 4 and 5 the 2D plots for (a) wi(x,y,?) and (b) wy(x,y,t) when t = 0.05 and y = 1. Also, we
set 7 = 0.007 and in Figures 2 and 4, and n = 0.97 and in Figures 3 and 5 to further study the effect of
the convective coefficient parameter.

Figure 2. 3D visualization of the solution given in Eq (4.5) for (a) wi(x, y, 1) and (b) w,(x, y, 1)
when nn = 0.007, @ = 0.55, t = 0.5.

Figure 3. 3D visualization of the solution given in Eq (4.5) for (a) wi(x, y, t) and (b) w,(x, y, 1)
whenn = 0.97, « =0.55, t =0.5.

AIMS Mathematics Volume 8, Issue 5, 11180-11201.
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(a) (b)

wplxy.t) wyplxy.t

Figure 4. 2D visualization of the solution given in Eq (4.5) for (@) wi(x, y, ) and (b) wa(x, y, t)
when n = 0.007, y =1, t = 0.05.

(a) (b)

wy(xy.t) wyixy.t)

N

Figure 5. 2D visualization of the solution given in Eq (4.5) for (@) wi(x, y, ) and (b) wa(x, y, t)
whenn =097, y=1, t =0.05.

4.1.2. Nonlinear coupling model

To solve the nonlinear coupling model given in Egs (3.3)—(3.5), we make use of the same Laplace
Adomian decomposition method. Indeed, the following recursive scheme is obtained

wi,(x,y, 1) = sin(x) sin(y), k=0, 4.9)
W1k+1(x, ) t) = 8_1 (S_aB (Ak + Bk + Ck)) ) k > 0’ '
WQO(-x’y’ t) = Sin(x +y)’ k= Oa (4 10)

W, (%, y,8) = L1 (57 (D + E; + F)), k>0, :

where Ay, By, Cy, Dy, Ey, and F; are Adomian polynomials corresponding to the following respective
nonlinear terms

0w 0*w, 0 ow 0 ow
Awi,w) =wh | —— + — Blwi,wp) = ——(Wh)——,  Clwi,wa) = —-(w3)——,
0x; 0y; Ox Ox y
P’w,  Pw 8w (9 “4.11)
m 2 2 2 w2
D(wi,wy) =wh' | — + , E(wi,wy) = wi)—— F(wi,wy) = wi)——
2 2
ox; dy;

AIMS Mathematics Volume 8, Issue 5, 11180-11201.
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Moreover, these terms are to be computed using the generalized formula of the Adomian
polynomials [10,28]. For instance, for A;, we have the following expression

Ay = l'd—k[N(ngwj)]gzo, k=0,1,2, .. (4.12)

Notetably, at n = m = 0, Eq (4.11) reduces to the following

(92W1 82w1 82W2 82W2
2 Tt D(wi,wy) = >t =7
ox; dy; ox; dy;

A(wi,wy) = (4.13)

when
B(wi,wy) = C(wi,wy) = E(wi,ws) = F(wi,wy) = 0.

In such a situation, the governing nonlinear coupling model (now linear model) further admits the
following recursive scheme as a special case

wi,(x,y, ) = sin(x) sin(y), k=0, "
Gy = (s (wi +wi ), k20, (414)

Wa, (X, ¥, 1) = sin(x +y), k=0, 1S
wa,, (6, y,1) = €71 (s‘“i‘» (Wék + W, )) k>0, @15

which are the obvious solutions of the uncoupled models. More so, as the present solution goes hand-
in-hand with that of the previous subsection, with regard to the methodology, we, therefore, deem not
to dissect it in this scenario. Additionally, Bokhari et al. [14] have provided a sufficient explanation
about the one-dimensional version of the corresponding integer-order model, including the coding for
the numerical simulation and analysis.

4.2. Integral transforms method on interfacial coupling model

Now, taking the Laplace and Fourier transforms in #- and x-variables simultaneously in Eq (3.6),
the model reduces to the system of second-order differential equations as follows

Pw

. Y o] -
(9_)12 - r2w1 = — \/;6(q — 1)s* ! sin(y),

0w Y 1
8y22 - rzw; = —i \/;6(61 — 1)s* e,

where i = V=1, r = /¢*> + s and 6(g — 1) is a Dirac delta function for ¢ > 1, which appears as a result
of taking the Fourier transform in x; remember also that the Dirac delta function satisfies

(4.16)

f F(@)¥d(q — q0)dq = f(qo). (4.17)

Similarly, the Laplace-Fourier transformed interfacial and boundary data take the following expression
ow,  on

W =w, and 8—; = alyz on y=0, (4.18)

AIMS Mathematics Volume 8, Issue 5, 11180-11201.



11193

and

o}

— =0 on y=h, and 8_:0 on y=-h. 4.19)
y

Therefore, the system of second-order differential equations given in Eq (4.16) admits the following

exact transformed solutions

Q—lé‘ -1
Wi(g,y, ) = Are” + Age™ + z@ L sy,

a—1
s70(q — 1)e_iqy
5+ 2q7 ’

(4.20)
w(q,y,s) = Bie” + Bye™ + i\/g

where A, and B, for d = 1,2 are constants to be found from the prescribed conditions.
Additionally, if we apply the transformed continuity and insulation boundary conditions given in
Eqgs (4.18) and (4.19) to Eq (4.20), the following system of algebraic linear equations is posed

AX = b, “4.21)
where
1 1 -1 -1 Ay
1 -1 -1 1 | A
A - ehr _e—hr O 0 ) X = B1 ’ (422)
0 0 e el B,
and
s(’-i—iZqz
T - (2+r1 - w1+2)
b= 550 -D| " st : (4.23)
2 r(r2+1)
eih
T (s+2)

Moreover, Eq (4.21) admits the following solution

x=A"b, (4.24)
where
1— €—2hr i €—2hr zehr _2e—hr
—l + e2hr _1 _ eZhr 2e—hr _2ehr
-1 _ Qhroq _—4hryy—1
AT =27 (1 =) 1 = 2hr ] _2hr 2phr  _nphr (4.25)

-1+ e—Zhr i e—Zhr 2e—hr _Zehr

For explicit expression of X = (A, A,, By, B))T, see Appendix A.

Therefore, having determined the expressions for A, A,, By, and B,, we thus return to Eq (4.20) to
reverse the solution back to the original domain, that is, (p,y, s) — (x,y,?). In doing so, we start off by
applying the inverse Fourier transform to Eq (4.20) to reveal

a—1
1 u —ix -y Vs® s L.
Wi 9) = g (e T 4yl T s disingy)
! (4.26)
Wz(xa Y, S) = me_ix (’)/36_)7\/m + 74e(h+y) \/ﬁ + 4l-e—iy) ,
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where y y,,v3 and y,4 are given Appendix B.

Next, employing the inverse Laplace transform on Eq (4.26), one gets

e (etic [ ga-l VT Wt )
wi(x,y, 1) = f ( (yle_y S Ly VU 4 44 s1n0/))) ds, ¢>0,

167 Joljeo \S¥+2
—Zl Cc+i00 ’ a—1 (427)
wa(x,y,1) = 1e67ri f . (sj 3 (’)/36_y Vstrl ne”’mm + 4ie_iy)) ds, c¢>0.

We mention here that the Laplace inversion of Eq (4.27) is not possible analytically! However, we
seek a numerical inversion algorithm to carry out this task. Thus, we get hold of one of the powerful
numerical algorithms by Abate and Valké [31]. In [31], an efficient algorithm was proposed that

numerically inverts Laplace transform at a given point, say at 7,. More, the Mathematica software is
deplored for the simulation.

More so, we graphically portray the 2D and 3D visualizations of the solutions w;(x,y, ) and
wa(x,y,t) determined in Eq (4.27) at + = 0.5. In Figures 6 and 7, we give the 3D surfaces for
(a) wi(x,y,t) and (b) wy(x,y,t) at @ = 0.45 and @ = 0.85, correspondingly. Similarly, we depict
in Figure 8 the 2D plots for (a) wi(x,y, ) and (b) w,(x,y, ) when y = 1 for various values of a.

(b)a=0.45
a—

Figure 6. 3D visualization of the solution given in Eq (4.27) for (a) wi(x,y,f) and
(b) wa(x,y,t) when a = 0.45.
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(b)a=0.85
S

20

w Ex'lllo
1XY, 0

Figure 7. 3D visualization of the solution given in Eq (4.27) for (a) wi(x,y,t) and
(b) wo(x,y,t) when when a = 0.85.

(a) (b)
wpixy.t) wolxy.t)

15F

Figure 8. 2D visualization of the solution given in Eq (4.27) for (a) wi(x,y,t) and
(b) wa(x,y,t) at y = 1 for various values of when a.

5. Conclusions

In conclusion, the present manuscript gave a complete overview of the two-dimensional heat
diffusion models that underwent a fractional transformation, system coupling, as well as solution
treatment. Two heat diffusion models were considered and endowed with Caputo’s fractional-order
derivatives in time ¢, and further coupled using the ideas of the convection-diffusion process, nonlinear
coupling, and also the idea of interfacial coupling-making consideration to the dynamics of an infinite
double-layered thermoelastic bar. The Laplace Adomian decomposition approach and the integral
transformation method were employed to study the respective models. Further, these methods have
various advantages in their own rights, including rapid convergence to the exact solution, and the fact
that they neither need discretization nor linearization to reach the expected closed-form solution, to
state a few. Thus, graphical illustrations were presented to graphically view the obtained solutions,
and thereafter, described the significance of the fractional orders on the respective fields. All-in-all, we
draw the following observations:
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1) The first coupled model with regard to the convection-diffusion idea behaved more like the
respective individual models when n << 1, and far away when n >> 1; see Figures 2-5. In fact,
this is so because when n = 0, both A;(a, t) and A,(a, t) varnish from Eq (4.6); which evidently,
the diffusional fields w(x, y, ) and w,(x, y, f) return the exact solutions of the original models.

2) The second coupling entailed nonlinear coupling due to temperature-dependent diffusivities. The
Laplace Adomian decomposition method was used to recurrently determine the resulting solution
in compact form. Such situations have been reported to be applicable to various media, like gases,
where the thermal parameters are found to be proportional to the temperature of the media [14].

3) The third coupled model for the double-layered bar also worked fine analytically; only the
analytical Laplace inversion was not possible. However, everything went smoothly upon
employing the computational Laplace inversion algorithm [31]. The significance of the fractional-
order derivative on the diffusional fields w;(x,y, ) and w,(x,y,t) (determined in Eq (4.26) were
shown in Figures 6-8. In Figures 6 and 7, certain singular regions were noted that might arise
from the Laplace inversion.

Conclusively, the present study can be applied to various thermodynamical models in
thermoelasticity, especially in the design/fabrication and modeling of multilayered thermoelastic
structures. Moreover, the present study also fits the application of heat diffusion scenarios, including
modeling anomalies and cancer tumors in heterogeneous media.
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Appendix A

The following are the determined expressions for the unknowns A, A,, B; and B, in Eq (4.20) that
are obtained from Eq (4.24):

V30(g = Ds* 1O\ [Ba(q - D cos(h)s eV
Vs + 1(s7+2) (V3T — 1) Vs 4 1(s" +2) (VT - 1)
iZo(g - Ds* (tanh (A V57 + 1) = 1) (4= £) {Eo(g— 1)s*! (coth (h Vs* +T) - 1)

4(s*+2) Vs +1(s* +2) ,

=
|

VEis(q — 15! Vs . JZ6(q — 1)521 GV 1+)

Ay = _
’ 2057 +2) (VT 4 1) V4 1 (57 +2) (VT 1)
i \E3(q — Dcos(ys*~' VT (4= 4) \Fo(g — 1) VT (coth (h Vs + 1) — 1)
Vs + 1 (s +2) (e V5T — 1) Vst +1(s*+2) ’
5 \/gé(q_ 1)Sa—leh(m+i) l\/§5(61— l)sa—leZh\/m
1= - -

Vs T(s2+2) (M1 — 1) 2(s7+2) (2 V5T + 1)
i E(g — 1) cos(h)s*~ eV T (1= 1) Zo(q — 1)s*~1 eV (coth (h Vs* + 1) - 1)

Vs + 1 (s +2) (e V5T — 1) Vs¥ + 1 (s +2) ’

5 _ \/?5(61 _ l)sa—leh(3\/ﬁ+i) B l\/gé‘(q _ l)cos(h)sa—leh\/m—*_
o Vot F (57 +2) (VT 1) oo+ 1 (s +2) (VT - 1)
i36(g - Ds° (tanh (A Vs* + 1) = 1) (5= 4) {Eo(g— 1)s*" (coth (h Vs* +T) - 1)

4(s* +2) Vst +1(s* +2)
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Appendix B

The expressions for yy,y,,v3 and 4 in Eqs (4.26) and (4.27) are given by:
_2ieh(m—i) _ 2ieh(m+i) + 4eh(3 «/ﬁﬂ')

" S+ 1 (e VT — 1) ’

26 (Vs H T+ (1+1) e V¥ = 2i (Vs + T+ (=1 = 1)) V41
S+ 1(64”‘/@— 1)

2

4 (Vs 1+0) _jafsa 11 + (=2 + 2i)
sa+1(e4hm—1) ’
2i (Vs*+ 1+ (1+10)) V1 — di cos(h)e? Vo1
ST T (VT - 1)

b

2o (Vs+1=i) _ 0 h(Vs@+1+i) 4 g oh(3 Vs+1+i)

o ST T (VT - 1) ’

2i(Vs“+1+(1+i))—2i(\/m+(_1_i))62h\/m
5 + l(e“h‘/m— 1)

b

de = 20 (Vs + T+ (=1 = i)) Vo1

I ST T (VT — 1) '

2i(\/sw F1+(1+ i)) MV _ 4 cos(h)eh Vs
@+ 1 (e4h\/su+1 _ 1)
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