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Abstract: This paper presents a nonlinear robust H-infinity control strategy for improving trajectory 

following performance of autonomous ground electric vehicles (AGEV) with active front steering 

system. Since vehicle trajectory dynamics inherently influenced by various driving maneuvers and 

road conditions, the main objective is to deal with the trajectory following control challenges of 

parametric uncertainties, system nonlinearities, and external disturbance. The AGEV system dynamics 

and its uncertain vehicle trajectory following system are first modeled and constructed, in which 

parameter uncertainties related to the physical limits of tire are considered and handled, then the 

control-oriented vehicle trajectory following augmented system with dynamic error is developed. The 

resulting nonlinear robust H-infinity state-feedback controller (NHC) of vehicle trajectory-following 

system is finally designed by H-infinity performance index and nonlinear compensation under AGEV 

system requirements, and solved utilizing a set of linear matrix inequalities derived from quadratic H-

infinity performance and Lyapunov stability. Simulations for double lane change and serpentine scenes 

are carried out to verify the effectiveness of the proposed controller with a high-fidelity, CarSim®, full-

vehicle model. It is found from the results that the proposed NHC provides improved vehicle trajectory 

following performance compared with the linear quadratic regulator (LQR) controller and robust H-

infinity state-feedback controller (RHC). 
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1. Introduction 

The emergence of AGEV attracted academia research interest and attention due to it has great 

advantages in reducing road congestion, environmental pollution and improving traffic safety in recent 

years [1–4]. As the new technology of chassis active control for AGEV steer system, active front 

steering (AFS) is used to improve lateral stability and active safety by applying variable steering gear 

ratio in different speed scenarios. AGEV equipped with AFS systems can bring strong guarantees of 

driver safety and handling flexibility through quick input response and efficient steering execution, 

it has been widely applied and developed in trajectory-following control system for autonomous 

vehicles [5–7]. In view of the advantages of fast response and accurate execution, AFS system has 

excellent abilities to enhance the active safety of vehicle and the following performance of target 

trajectory for AGEV [8–13]. 

The trajectory-following for AGEV with AFS system has been explored in many literatures [14,15]. 

The feedforward and feedback controller of the multi-rate Kalman filter with compensation ability is 

designed by considering the difference between the control period of the AGEV motor and the 

sampling time of the ordinary camera, and its AFS is used to realize the trajectory-following 

successfully [16]. Aiming at the mutual interference and control distribution problems of AFS system 

and electronic stability control system for AGEV, a novel integrated stability model predictive control 

(MPC) controller is proposed in [17], and the control of steering and braking based on tire force is 

reassigned to follow the target trajectory. In order to improve the handling stability and the steering 

comfort for AGEV, the work in [18] proposed a variable steering ratio AFS controller by constructing 

the mapping of steering wheel angle and longitudinal vehicle speed. Trajectory-following control in [19] 

is based on successive online linearization of the vehicle model of autonomous vehicles, and its 

controller computed the front steering angle of AFS to follow the trajectory on slippery roads. In 

addition, due to the advanced steering technology of the AFS system, it also plays a non-negligible 

role in other related application fields of trajectory-following control [20–22]. 

Although the aforementioned efforts of trajectory following were successful, there are still some 

challenges such as uncertain model parameters, system nonlinearity and external disturbances [23,24]. 

To address above challenges, nonlinear model predictive control (NMPC) is used to transform the 

nonlinear system into a parameter-dependent adjustment problem, its sufficient conditions for the 

feasibility and convergence are given in [25]. In order to reduce the influence of external disturbances 

on trajectory-following, a combination of super twisting second-order sliding mode (SOSM) and 

nonlinear disturbance observer technique is used to estimate the environmental disturbances and 

modeling errors, and system’s robustness and security is gained through hardware-in-the-loop 

experiments [26]. A novel adaptive sliding mode control (SMC) frame is presented to solve the safety 

problems caused by actuator failures and external attacks of Markov jump cyber-physical systems, a 

new linear-type switching surface is established by state estimator, and the stability criterion of system 

with uncertainty is also deduced, and then the effectiveness of proposed control strategy is final tested 

in tunnel diode circuit experiments [27]. To accurately track the motion trajectory of the uncertain 

industrial robotic arm system, a SMC framework with switching neural networks is proposed in [28], 

and the adaptive algorithm technology and radial basis function are used to provide real-time feedback 

for the multi-modal system with control gain so that the robustness of the trajectory following control 

system can be enhanced. A novel composite adaptive fuzzy controller (FC) is proposed to solve the 

nonlinear problem of the system following model in [29], its strict stability analysis is carried out by 
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Lyapunov method, and the performance of the proposed controller is also verified. Some extensions 

of FC can be found here [30,31]. The active disturbance rejection control (ADRC) is also used to 

estimate and compensate the unmodeled dynamics and unknown external disturbances of the system 

in real time to improve the robustness of vehicle trajectory-following [32]. An optimal preview 

controller is designed to improve the dynamic trajectory following performance and high-speed motion 

stability for the articulated vehicle through the compound lateral position deviation, and the vehicle 

following performance and motion stability are verified in experiments [33]. An MPC strategy for 

optimal speed is presented to achieve fast and accurate trajectory tracking in [34], and the appropriate 

front wheel steering angle is calculated to obtain a satisfactory trajectory following effect, experimental 

results verify the effectiveness of the proposed strategy. An optimal control strategy with nonlinear 

time delay differential equation is used to suppress the chatter of the milling system in [35], and the 

optimal control rate is obtained with the extreme value change algorithm to optimize the chatter 

performance index of the system. The work [36] presented an adaptive multi-model switching control 

method to solve the parameter jump problem of complex nonlinear systems, and some key lemmas 

and extended recursive least squares algorithms are used in the design of adaptive control law. To deal 

with unstructured disturbances of nonlinear systems, a new nonlinear optimal control technique is 

proposed by iterative techniques in [37], and the conditions for asymptotic stability of the system and 

the corresponding H-infinity control law are given. The study [38] designed a new global adaptive 

control based on output feedback to deal with nonlinear and unknown parameters of the system, the 

proposed system feedback controller can ensure the convergence of the system state, boundedness of 

other signals by scaling technology and backstepping method. Meanwhile, robust control has been 

utilized in the field of trajectory-following control for its advantages in dealing with system 

nonlinearity [39], linear variation of parameters [40] and external disturbance of the system [41]. 

Therefore, this paper proposes nonlinear robust control strategy of AGEV with AFS to deal with 

the trajectory following control challenges of parametric uncertainties, system nonlinearities, and 

external disturbance. The AGEV system dynamics and its uncertain vehicle trajectory following 

system is first established. Then, under the requirements of H-infinity performance index, system 

nonlinear compensation and trajectory-following target, the nonlinear robust state feedback controller 

for AGEV of trajectory-following is designed. Finally, the effective of the proposed controller is 

verified with double lane change and serpentine scenes in Simulink/Carsim. The rest of paper structure 

is as follows: problem description and trajectory-following modeling are presented in Section 2. 

Section 3 provides the design process of nonlinear robust controller. Simulation results are analyzed 

and discussed in Section 4, and the conclusions are offered in Section 5. 

2. Problem description and trajectory following model 

2.1. Vehicle dynamics system model 

The paper mainly studies the trajectory following of AGEV problem, we assume that the 

suspension is a rigid structure, the vehicle tire slip angle tends to be small under normal driving 

conditions. In order to facilitate the study of vehicle motion, the vehicle dynamics bicycle model is 

selected as: 

( ) sin cosx y fy f fx f rxm v v F F F  − = + + ,      (2.1) 
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( ) cos sinx fy f fx f ry afm y v F F F F  + = + + − ,     (2.2) 

af a fF F F= + .          (2.3) 

where m is mass,  is yaw angle. Lateral and longitudinal velocity are vx, vy. Fiy (I = f, r) and Fix (I = f, 

r) are the lateral and longitudinal tire forces. δf is front wheel steering angle, the air resistance Fa is 

proportional to Vl, Ff is the rolling resistance, they can be expressed as: 

21

2
a lF C AV= ,         (2.4) 

2

0 1( )f wxF v mg = + ,         (2.5) 

where , C, and A are the density parameter, air resistance coefficient and windward area. 0, 1 are 

nominal and variable value of resistance coefficient respectively, and vwx is the longitudinal velocity 

of the tire. 

( cos sin )z f fy f fx f r ryI l F F l F  = + − ,      (2.6) 

where Iz is moment of inertia, lf and lr are the distance from the front and rear axles to the center of 

vehicle. The longitudinal driving force Fy of the tire can be expressed as: 

( , , , )y y zF f F s = .        (2.7) 

Tire slip angle α is calculated by vwx and vwy: 

1tan ( )wx

wy

v

v
 −= ,         (2.8) 

where vwx is the longitudinal velocity of the tire, vwy is the lateral velocity of the tire. They can be 

represented: 

cos ( )sin

cos ( )sin

wfx x y

wrx x y

v v v a

v v v b

  

  

= + +


= + −
,        (2.9) 

cos ( )sin

cos ( )sin

wfy x y

wry x y

v v v a

v v v b

  

  

= − +


= − −
.        (2.10) 

Due to the difference between wheel speed and actual speed during the actual vehicle movement, 

the desired slip rate sr is as follows: 
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1 ( 0, )

1( 0, )

wx
w w wx

w

r

w
wx w wx

wx

v
rw rw v

rw
s

rw
v rw v

v


−  


= 
 −  


       (2.11) 

where r and ww are the radius and angular velocity of the tire. 

The vertical load on the front and rear tires of the vehicle can be expressed as the following 

equation: 

, 1 2

, 1 2

2( )

2( )

r
Zfl Zfr

r f

f

Zrl Zrr

r f

l mg
F F F

l l

l mg
F F F

l l


=  +  +


 = +  
 +

       (2.12) 

where F1, F2 denote the longitudinal and lateral transfer loads of vehicles, respectively, and the 

specific equations are as follows: 

1

2

( )
                                    

2( )

( )
( sin )

2 2

x y cog

r f

x y cog cogs s

h h

m v v w h
F

l l

m v v w h hgm h
F

L L g




−
 =

+


− = + −



    (2.13) 

where hcog is the height between the center of mass and the ground, Lh is half of wheel base, and hs is 

the suspension height of vehicle body.  is slip angle of wheel. 

Based on the assumption that the tire slip angle tends to be small under normal driving conditions, 

the tire slip force Ffy, Fry are simplified as: 

fy f f

ry r r

F N

F N









=


=
          (2.14) 

where Nαf and Nαr are the cornering stiffness. From vehicle kinematics model, it can be gained that the 

front wheel angle αf and rear wheel angle αr: 

     

y f

f f

x

y f

r

x

v l

v

v l

v


 




+
= −




+ = −



.        (2.15) 

Considering the small front wheel angle, cos  1 and sin  0. At the same time, we suppose the 

AGEV only moves in a plane coordinate system, and the aerodynamics and rolling effect of the motion 

process is not considered in order to study. Therefore, according to Eqs (2.14) and (2.15), the Eqs (2.2) 

and (2.6) are rewritten as: 
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2( )
f f f f r f

x

x x

N N l N l N
y y v w

mv mv

   


+ −
= − − + + ,     (2.16) 

2 2

4

f f r f f f r f

z x z x

l N l N l N l N
y w

I v I v

   
 

− +
= − − +       (2.17) 

where w2 and w4 represent the error of the lateral and yaw angular acceleration. 

2.2. Vehicle trajectory following formulation 

When the AGEV is following the desired trajectory, the current and expected position and heading 

information of the AGEV are what we need to care about. Figure 1 shows diagram of AGEV trajectory 

following process, , r are the current yaw angles and expected yaw angles, and the first derivatives 

of lateral error ye and yaw angle error e can be written as: 

e y x ey v v = − ,          (2.18) 

e r s    = − = −         (2.19) 

where s,  are the actual trajectory and the curvature of the road. The first and second derivatives of s 

can be described as: 

x y es v v = + ,          (2.20) 

x y e y es v v v = + + .        (2.21) 

 

Figure 1. Vehicle trajectory following process. 

From the Eqs (2.18) to (2.21), and the second derivatives of ye and e can be converted to the Eqs 

(2.22) and (2.23). 
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e y x e x ey v v v = − − ,        (2.22) 

e s s   = − − .         (2.23) 

2.3. Uncertain vehicle trajectory following model 

According to a series of formula derivations and equation transformations, the above vehicle 

dynamics equation is rewritten as a state space expression: 

u wx Ax B u B w= + +         (2.24) 

where w, Bw are model disturbances and coefficient matrix to state space, u = f is the control input. 

The expressions for system matrices x, A, Bu, w and Bw are as follows: 

2 2

0 1 0 0

0

,
0 0 0 1

0

f r f r f f r re

x xe

e

e f f r r f f r r f f r r

z x z z x

N N N N l N l Ny

mv m mvy
x A

l N l N l N l N l N l N

I v I I v

     

     





 
 

+ + −   − −   
 = =  
   
   − − +   − −

  

 

 0 0 , 0 1 0 1

T

f f f

u w

z

N l N
B B

m I

  
= = 
 

 

The relationship between the steering wheel angle and the front wheel angle of the steering system 

can be described by the following formula: 

a f =           (2.25) 

where  is the transmission ratio of the steering system. 

When vehicles travel on complex and changeable roads, due to changes in steering angles and 

road surface roughness, the value of tire cornering stiffness Ni (I = f, r) is constantly changing and 

bounded. It can be handled as follows: 

, 1( , )
  

f f f f

i

r r r r

N N n N
n i f r

N N n N

   

   

 
 = +

 =
= +

,    (2.26) 

min max
( , )

2

j j

j

N N
N j f r

 



+
= = ,      (2.27) 
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max min
( , )

2

j j

j

N N
N j f r

 



−
= =        (2.28) 

where Nimax, Nimin are the maximal and minimal values of Ni (i = αf, αr). The system’s ni time varying 

parameters meet |ni|  1(i = αf, αr). 

It is possible to change the vehicle system model (2.24) of the as follows: 

d ud wx A x B u B w= + +         (2.29) 

where the arguments have the following meaning: 

   , , , 1d d ud ud u u d d A B dA A A B B B A B H F E E F= + = +   =  , 

2 2

0 1 0 0 0

0

,
00 0 0 1

0

f r f r f f r r f

x z

d ud

f ff f r r f f r r f f r r

zz x z z x

N N N N l N l N N

mv m I m
A B

l Nl N l N l N l N l N l N

II v I I v

      

     

   
   + + −   − −
   
 = =  
   
   − − +
   − −
     

, 

2

2

1 1
0

1

0 0 0 01 1
0

00 0
, ,

0 0 0 0
0

0 0

0
0

f

x x

r

x x f r

A d B
ff f f

zf rz x z z x

r r r

z x z z x

l

mv m mv

l m

mv m mv N N
E H E

ll l l

IN NI v I I v

l l l

I v I I v

 

 

 
− − 

  
    

−     
    = = =     
  − −  
     
  
  − −

  

. 

3. Nonlinear robust controller design 

3.1. Design of robust feedback control 

The trajectory-following system takes into account a number of objectives, including as lateral 

error, yaw error and vehicle workload. In order to track the target, we define the error function and 

design of robust linear feedback gain as: 

2 2 2 2 2

1 2 3 4 4
0

    s e e e eJ q y q y q q q dt  


= + + + +      (3.1) 

where the meaning of the letter symbol is as follows: 
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, , ,e a d e y x e e r ey y y y v v s      = − = − = − = − . 

The above equation can be written as: 

1 11 1 11
0

1 1 1 1 1 1

2 2 2 2 2 2
1 11 1 11

0 0

[( ) ( ) ]

  [( ) ( ) ( ) ( )

T T

T T

J C x D w U C x D w u Vu dt

U C x U D w U C x U D w V u V u dt



 

= + + +

= + + +



 

   (3.2) 

where the arguments have the following meaning: 

1

2

1 11 5

3

4

0 0 01 0 0 0

0 0 00 1 0 0
, 1, 0,

0 0 00 0 1 0

0 0 00 0 0 1

q

q
C D U V q

q

q

  
  
  = = = =
  
  

   

 

The control output of the model can be defined as: 

1 11 12z C x D w D u= + +          (3.3) 

where 

𝐶1 = [𝑈
1

2�̄�1
0

] , 𝐷11 = [𝑈
1

2�̄�11
0

] , 𝐷12 = [
0

𝑉
1

2
]. 

The optimization of the error performance function J can be translated into the optimization of 

the control output z in order to facilitate the design of the trajectory tracking controller. The error cost 

function J has the following relationship with the control output z: 

2

2
J z= .          (3.4) 

Based on the above system model of vehicle dynamics (2.29) and the control output of the system 

(3.3), vehicle trajectory following with parameter uncertainties can be transformed into a standard H-

infinity control problem. 

1 11 12

d w udx A x B w B u

z C x D w D u

= + +


= + +
.        (3.5) 

According to H∞ control theory, the purpose of this system model is to design a control gain K 

and state feedback controller uL = Kx to meet the vehicle trajectory following requirements. 

From Eq (3.5) and uL = Kx, the following closed-loop system of vehicle trajectory following can 

be obtained. 

s s

s s

x A x B w

z C x D w

= +


= +
         (3.6) 
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where: 

1 12 11( ) ,  ,  ,  s d ud d d A B s w s sA A B K H F E E K B B C C D K D D= + + + = = + = . 

The sufficient and necessary conditions for vehicle trajectory tracking system to be stable are that 

As and Bs are stable, and As and Cs are detectable. In this paper, we regard the system model error w as 

the external perturbation of the system. Considering the system (3.6), its transfer function is: 

( )= ( - )s s s sT s C sI A B D+ .        (3.7) 

The input signal w(t) and output signal energy z(t) are respectively defined as: 

2

2 0
( ) ( ) , ,T t t dt w z

+

 =    = .        (3.8) 

The H∞ norm of T(s) is defined as: 

2

0
2

( )
w

z
T s sup

w


= .         (3.9) 

The equality (3.9) can be changed to: 

( ( ) ( ))
( )

( ( ) ( ))

T

T
w

E z t z t
T s sup

E w t w t
=         (3.10) 

where E(·) is mathematical expectation. 

That is, the peak value of the maximum singular value of the system’s frequency response. In fact, 

the design of H-infinity state feedback controller is to find the optimal K meet the performance of 

tracking system, and the influence of perturbation on the output performance is controlled under a 

certain level. Therefore, the following H∞ performance index is selected: 

2

0 0
( ) ( ) ( ) ( )T Tz t z t dt w t w t dt

 

  .      (3.11) 

The above inequality has the following equivalence relation. 

2

max( ) [ ( )]<  ( ) ( )TG s G jw I G jw G jw   

    .    (3.12) 

To prove the closed-loop system of path following (3.6) is stable and meets H∞ performance, 

some lemmas will be introduced. 

Lemma 1. Given matrix 11 12

21 22

L L
L

L L

 
=  
 

, the dimension of L11 is rr, where L = LT, the following three 

equivalent conditions can be obtained: 

 0L  ,          (3.13) 

11

1

11 22 12 120, 0TL L L L L− −  ,        (3.14) 
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22

1

22 11 12 120, 0TL L L L L− −  .        (3.15) 

Lemma 2. Given an appropriate dimension matrix Q = QT, B and J are symmetric matrices, B and J 

are real matrices, and FTF  1. Then there is the following inequation: 

0T T TQ BFJ J F B+ +   .        (3.16) 

The sufficient and necessary condition is that there exists a positive value  > 0 satisfy following 

inequation: 

1 0T TQ BB J J  −+ +  .       (3.17) 

For the above closed-loop system (3.6) for vehicle path tracking, the H∞ control gain K can be 

solved by the developed Theorem 1. 

Theorem 1. The stability of path following system is considered, the conditions for a closed-loop 

system (3.6) to satisfy the H∞ performance are that there are symmetric matrices X > 0, V > 0, and 

positive numbers , , satisfy the following inequation (3.18), and there exists a control gain K of H∞ 

in the system such that: 

1 2

11

( )

* 0 0

0* * 0 0

* * * 0

* * * *

d ud w d

T

s A X B V B H

I D

y

I

I

s

I

m 









 +  
 

− 
  −
 

− 
 − 

    (3.18) 

where 

1 1 12 2( ) , ,T T T T T T T

A Bsyms XC V D XE V E =+  = +  = +
. 

Proof. According to Lyapunov stability theory. For the closed-loop system (3.6), if there is a symmetric 

positive definite matrix P satisfies that the inequality (3.19) holds for all uncertain parameters δ  ∆. 

( ) ( ) 0T

s sA P PA +  .        (3.19) 

That is, there exist appropriate positive definite n-order matrices P > 0 and scalars  > 0 such that: 

2
( )[ ] ( ) 2 ( ) ( ) ( ) ( )T T T

s s sx t A P PA x t x t A t Px t x t+ +   − .    (3.20) 

Define the Lyapunov function: 

( ( )) ( ) ( )TV x t x t Px t= .        (3.21) 

And assuming that: 
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1 min

2 max

( )

( )

e P

e P





=


=
.        (3.22) 

There are: 

2 2

1 2( ) ( ( )) ( )e x t V x t e x t  ,       (3.23) 

2( ( ))
( )[ ] ( ) 2 ( ) ( ) ( ) ( )T T T

s s s

dV x t
x t PA A P x t x t A t Px t x t

dt
= + +   − .   (3.24) 

Stability of closed-loop systems means that for any A(t) is exponentially stable, and for any 

initial state x(0), there is: 

2 2max

min min

( )
( ) (0) exp[ ]

( ) ( )

P
x t x t

P P

 

 
 −  .     (3.25) 

According to the Raccati theory, there being a positive definite matrix P > 0 such that: 

0 0 0T T T

d dPA A P PH H P E E+ + +  .      (3.26) 

Among them: 

0 d udA A B K= + ,
A BE E E K= + .       (3.27) 

Assume: 

0 0( ) 0T T T

d dQ A P PA PH H P E E= − + + +   .     (3.28) 

Define V(x) = xTPx, then there is the following relationship: 

0 0 0

( ( ))
( ) 2

               ( ) 2

               2

               ( )( )

               

T T T

T T T T T T T

d d d

T T T T T T T T T

d d d d d

T T T T T

d d d d

dV x t
x A P PA x x A Px

dt

x Q PH H P E E x x E F E Px

x Qx x PH H Px x E F F Ex xE F E Px

x Qx x PH E F H P F E x

= + + 

= − − − +

 − − − +

= − − − −

 −
2

x

  (3.29) 

where α > 0 satisfies: 

min ( )Q  .         (3.30) 

Thus, sufficiency of the closed-loop system (3.6) stability is proved. 
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Next, it is proved whether the concerned H∞ performance condition is satisfied in the presence of 

road disturbance. 

The conditions for the system (3.6) to be asymptotically and satisfies H∞ performance condition 

(3.11) is that there exists a symmetric positive definite matrix P > 0 and scale  that satisfies the 

following matrix inequation: 

* 0

* *

T T

s s s s

T

s

PA A P PB C

I D

I





 +
 

−  
 − 

.       (3.31) 

According to closed-loop system (3.6), inequation (3.31) can be written as the following 

conditions: 

1 12

11

( ( ) ( )) ( )

* 0

* *

T

d ud d d A B wsyms P A B K PH F E E K PB C D K

I D T

I





 + + + +
 

−  
 − 

.  (3.32) 

Inequation (3.32) can be written as the following conditions. 

11

( ( )) ( ( )) 0 0

* * 0 0 0

* * * * 0

T

d ud w s d d A B

T

syms P A B K PB C syms PH F E E K

I D

I





 + + 
   

− +    
   −   

.  (3.33) 

Inequation (3.33) is equivalent to the following: 

 

 

11

( ( ))

* 0 ( ) 0 0

* * 0

( )

                                                         0 0 0 0

0

T

d ud w s d

T

d A B

A B

T

d d

syms P A B K PB C PH

I D F E E K

I

E E K

F PH





 +  
   

− + +   
   −   

+ 
 

+ 
 
  

.   (3.34) 

Let 

�̄�𝑑 = [𝑃𝐻𝑑 0 0]𝑇, �̄�𝑑 = 𝐹𝑑 , �̄�𝐴𝐵 = [(𝐸𝐴 + 𝐸𝐵𝐾) 0 0],𝜛 = [
𝛤1 𝑃𝐵𝑤 𝐶𝑐𝑙

𝑇

∗ −𝛾𝐼 𝐷11𝑇
∗ ∗ −𝛾𝐼

]. 

Inequation (3.34) can be written as the following conditions: 

0T T T

d d AB AB d dH F E E F H + +  .        (3.35) 

According to Lemma 2, there exists a positive value 1 > 0 satisfy following inequation: 

1

1 1 0T T

d d AB ABH H E E   −+ +  .       (3.36) 
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According to Lemma 1, the following inequation can be gained. 

1

1

1

0 0

T

d ABH E

I

I







−

 
 

−  
 
 

.        (3.37) 

Expand the above inequality (3.37): 

1 12

11

1

1

1

( ( )) ( ) ( )

* 0 0

0* * 0 0

* * * 0

* * * *

T T

d ud w d A B

T

syms P A B K PB C D K PH E E K

I D

I

I

I









−

 + + +
 

− 
  −
 
 
 
 

.  (3.38) 

The diagonal matrix diag{P-1, I, I, 1, I} is multiplied to the left and right of the above formula 

respectively, and the following inequation (3.39) is obtained. 

1 1 1

1 12 1

11

1

1

(( ) ) ( ) ( )

* 0 0

0* * 0 0

* * * 0

* * * *

T T

d ud w d A B

T

syms A B K P B P C D K H P E E K

I D

I

I

I











− − − + + +
 

− 
  −
 
 
 
 

.  (3.39) 

Let X = P-1, the following inequation (3.40) is obtained. 

1 12 1

11

1

1

(( ) )) ( ) ( )

* 0 0

0* * 0 0

* * * 0

* * * *

T T

d ud w d A B

T

syms A B K X B X C D K H X E E K

I D

I

I

I











 + + +
 

− 
  −
 
 
 
 

.  (3.40) 

Then let KX = V, by the fundamental transformation of the inequality, the Theorem 1 can be 

obtained. 

3.2. Nonlinear robust control feedback design 

Next, so as to improve the system’s fast response, transient response performance and reduce 

overshoot, the nonlinear compensation feedback control rate will be designed as: 

( , ) T

nonlinearu r h B Px=          (3.41) 

where (r, h) is nonlinear compensation function, x is error state, r, h are output reference value and 

actual value respectively. The matrix P is the only positive definite matrix of the following Lyapunov 

equation, and the asymptotic stability of As also guarantees the existence of matrix P. 
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0T

s sA P PA W+ + =          (3.42) 

where W  Rnn is positive definite weighted diagonal matrix. The selection of W can determine 

stability closed-loop poles of the system. The principle of matrix selection is to make the closed-loop 

pole have greater damping when the system reaches the set goal. Thus, the system overshoot near the 

given reference signal is suppressed, the adjustment time of the system is shortened, and the transient 

performance of the system is improved. 

10W I=             (3.43) 

where is an adjustable parameter, I is the corresponding dimension of the unit matrix. 

The selection of nonlinear function (r, h) is very crucial, and its selection needs to satisfy the 

following two basic properties: (1) In the early stage of control, when the error is relatively large, the 

value of the nonlinear function (r, h) needs to become smaller, so the nonlinear feedback 

compensation has no obvious effect on the system. At this time, the linear feedback controller plays a 

leading role and gives priority to meeting the needs of the control system’s rapidity. (2) When the 

control is close to the steady state, the error is relatively small, and the value of the nonlinear function 

should become larger and occupy a dominant position. By continuously increasing the system damping, 

it will meet demand for fast response speed and low overshoot. 

From the above analysis, the form of nonlinear compensation function selected in this paper is as 

follows: 

0

0

1
1

1

1
( , ) ( )

1

h h

r h
r h e e

e



 

−
− −

− −

−
= − −

−
      (3.44) 

where r and h are reference outputs and control outputs respectively, h0 is the initial value of the control 

output. α and  are non-negative adjustable parameters, e is natural number. 

Combining the linear feedback and the nonlinear compensation function, the output of the 

actuator is finally formed in the following form (3.45). The linear gain feedback can bring a faster 

response to the trajectory following system, at the same time, the nonlinear compensation function can 

obtain a stable output and reduce the overshoot of the system. 

( , ) T

final udu Kx r h B Px= + .       (3.45) 

According to the design of the above nonlinear compensation function and considering that the 

output of the actuator of the system will be saturated, the following form of nonlinear robust control 

system model can be rewritten: 

1 11 12

( )

( )

d w ud final

final

x A x B w B sat u

z C x D w D sat u

= + +


= + +
       (3.46) 

where sat() represents the saturation function of the system, sat(ufinal) can be expressed as: 
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max max

max

max max

,                                    

( ) ( , ) ,               

,                                    

final

T

final ud final

final

u u u

sat u Kx r h B Px u u

u u u



 


= + 

−  −

.     (3.47) 

Considering that the front wheel angle will be saturated, the actual nonlinear compensation can 

be expressed as: 

( )nlau sat u Kx= − .         (3.48) 

According to the above conditions, unla can be written as 

0 ( , ) T

nla udu r h B Px  .        (3.49) 

Next, the influence of nonlinear compensation function on the stability and H-infinity 

performance of the system will be proved. 

Proof. The Lyapunov functional is first defined as 

TV x Px=  .         (3.50) 

Take the derivative of the Lyapunov functional: 

  ( ) ( )

  +

  ( ) ( )

T T

T T

w w

T T T T T T T T T

w w

T T T T T T T

w w

V x Px x Px

Ax Rx B w Px x P Ax Rx B w

x A Px x R Px w B Px x PAx x PRx x PB w

x A P PA x x R P PR x w B Px x PB w

= +

= + + + + +

= + + + +

= + + + + +

  (3.51) 

where 

,d ud ud nlaA A B K R B u= + = . 

When there is no disturbance outside the system, it is assumed that w = 0, and the Lyapunov 

functional can be expressed as: 

( ) ( )T T T TV x A P PA x x R P PR x= + + + .      (3.52) 

Assuming that 

1 ( )T TV x A P PA x= + .        (3.53) 

It is known from the matrix inequality that V1 is less than zero. 

Assuming that 
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2 ( ) 2 ( ( ) ) 2 ( ( ) )T T T T

ud udV x R P PR x x PB sat Kx B Px Kx i sat j i j = + = + − = + −  (3.54) 

where i = xTPBud, j = Kx. 

V2 will be discussed in two cases. 

(1) When the input is not saturated, it satisfies: 

max( )sat j i u+  .          (3.55) 

Then there is the following inequality: 

2

2 2 ( ( ) ) 2 0V i sat j i j i = + − = = .      (3.56) 

Therefore: 

1 2 ( ) 2 ( ( ) ) ( ) 0T T T TV V V x A P PA x i sat j i j x A P PA x= + = + + + − = +  . (3.57) 

(2) When the input is saturated, it means: 

max( )sat j i u+  .         (3.58) 

Consider that when j is also saturated, when i = 0, there is only linear feedback at this time, and 

the system is asymptotically stable. 

When j is unsaturated, the output has the following two forms: 

max

max

0, ( ) 0,            0   

0, ( ) 0,          0   

i sat j i j When j i u and j

i sat j i j When j i u and j

 

 

 + −  +  

 + −  +  − 

.  (3.59) 

It can be seen from the condition of inequality (3.59) that when saturation occurs, the signs of i 

and sat (j + i) - j are opposite, that is: 

2 2 ( ( ) ) 0V i sat j i j= + − = .       (3.60) 

Thus: 

1 2 ( ) 2 ( ( ) ) ( ) 0T T T TV V V x A P PA x i sat j i j x A P PA x= + = + + + − = +  .  (3.61) 

Therefore, the system is also closed-loop stable with the introduction of nonlinear compensation 

function and without external interference. 

Next, it will be proved that the system with nonlinear compensation function is closed-loop stable 

when subjected to external interference and satisfies the H∞ performance index. First let’s define a cost 

function Jc: 

2T T

cJ V z z w w= + − .         (3.62) 

Since the system is asymptotically stable, then if the H∞ norm has the following inequality: 
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2 22z w .          (3.63) 

In other words, the following inequality exists: 

2 0T T

cJ V z z w w= + −  .        (3.64) 

According to the above conditions: 

  +

   = ( 2 )

T T

T T T T T T T T T

w w

T T T T T

w w

V x Px x Px

x A Px x R Px w B Px x PAx x PRx x PB w

x A P PA PR x w B Px x PB w

= +

= + + + +

+ + + +

.  (3.65) 

It could also be written: 

2

0

T T

w

T

w

x xA P PA PR PB
V

w wB P

 + +   
=     
    

.      (3.66) 

In the same way: 

( ) ( )T T T T T T T Tz z Cx Dw Cx Dw x C Cx x C Dw w D CxDw= + + = + + .   (3.67) 

The above equation can be further rewritten: 

T T T

T

T T

x xC C C D
z z

w wD C D D

    
=     
    

,      (3.68) 

2

0 02
+ +

00

T T T T

w

c T T T

w

x xA P PA PR PB C C C D
J

w wB P D C D D 

    + +     
=           
        

.   (3.69) 

According to the properties of quadratic form and inequality (3.62), the following inequality holds: 

2

0 02
= + + 0

00

T T T

w

T T T

w

A P PA PR PB C C C D

B P D C D D 

   + +  
      

   
.    (3.70) 

Rewrite the above inequation: 

𝛹 = [
�̄�𝑇𝑃 + 𝑃�̄� + 2𝑃�̄� 𝑃𝐵𝑤

𝐵𝑤
𝑇𝑃 0

] + [𝐶
𝑇𝐶 𝐶𝑇𝐷

𝐷𝑇𝐶 𝐷𝑇𝐷
] = [

�̄�𝑇𝑃 + 𝑃�̄� + 2𝑃�̄� 𝑃𝐵𝑤
𝐵𝑤
𝑇𝑃 𝛾2𝐼

] + [𝐶
𝑇

𝐷𝑇] [𝐶 𝐷]. (3.71) 

Let  = [C D], the above inequality has the following relation: 

T

2

2
=

T

w

T

w

A P PA PR PB

B P I
 



 + +
 + 

 
.      (3.72) 



11169 

 

AIMS Mathematics  Volume 8, Issue 5, 11151–11179. 

According to Lemma 1: 

2

2

=

T T

w

T T

w

A P PA PR PB C

B P I D

C D I



 + +
 

  
 − 

.       (3.73) 

According to Theorem 1 and inequalities (3.54), (3.56) and (3.60), the above equation is less than 

0. Thus, the theorem of robust state feedback control with nonlinear compensation function is proved. 

Remark 1. Note that, in this study, the nonlinear robust control proposed in this paper includes linear 

feedback gain and nonlinear feedback gain parts, which can combine the advantages of linear feedback 

control and nonlinear feedback control. Since the direct design of fully nonlinear robust controller is 

complex and challenged for vehicle trajectory-following system, the main advantage of the proposed 

controller is in allowing application of powerful linear synthesis concepts to nonlinear vehicle 

dynamics system. In addition, compared with optimal control such as model predictive control, 

perhaps the proposed nonlinear robust control method is not better than optimal control in terms of 

optimal performance and implementation [11,12,23–26], whereas the proposed controller excels at 

robust stability and robust performance for the trajectory following system of AGEV where parameter 

uncertainties, system nonlinearity and external disturbances can be effectively dealt with using the 

proposed technique. 

4. Simulation and analysis 

In this section, the nonlinear robust H-infinity state-feedback controller (NRC) law designed 

above is simulated and verified on the Simulink-Carsim® joint platform. Simulink provides the overall 

framework environment, and the high-fidelity CarSim® software provides the dynamics model of 

AGEV trajectory following. The specific flowchart of system simulation framework is shown in 

Figure 2, the main parameters of AGEV are defined in Table 1. During the movement of the vehicle, 

system parameter uncertainty is mainly considered that the tire cornering stiffness of the Nαf, Nαr will 

changes due to factors such as vehicle steering, ground roughness and environmental disturbances. 

Note that the tire cornering stiffness is variable and bounded, and the range of tire cornering stiffness 

in the system simulation: Nαf  [79351,96985] N/rad, Nαr  [97996,119772] N/rad. Since the vehicle 

will inevitably encounter interference from the external environment during the movement, the 

interference often affects the change of vehicle state parameters, so that there is a certain difference 

between the measured signal and the actual signal. This paper assumes that the system interference w 

= [0.01sin(t), 0, 0.01sin(t), 0]. The simulated road conditions are set to double lane change (DLC) and 

serpentine curve scenes, and the forward speed is 72 km/h. The reference trajectory of DLC and 

serpentine curve are generated by a quintic polynomial technique, it is composed of a series of time-

related vehicle state trajectory points, which contains information on vehicle position, heading angle, 

velocity, acceleration and radius of curvature. The reference trajectory we planned has already satisfied 

the obstacle avoidance function, because our work is not focused on trajectory planning of AGEV, here 

we assume that the reference trajectory we planned has already satisfied the obstacle avoidance 

function. For the dynamic trajectory planning, interested readers can refer to our previous and other 

related works [42,43]. In order to reflect the strong tracking ability and good steady-state response 

performance of the proposed controller, the linear quadratic regulator (LQR) controller and robust H-



11170 

 

AIMS Mathematics  Volume 8, Issue 5, 11151–11179. 

infinity state-feedback controller (RHC) are also researched and compared. 
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Figure 2. Specific flowchart of system simulation framework. 

Table 1. Definition of key parameters of the vehicle. 

Parameters Explanation Value(unit) 

m Vehicle mass 1413(kg) 

Iz The moment of inertia around the 𝑧-axis 1536.7(kg·m2) 

lf Distance from center of mass to front axle 1.015(m) 

lr Distance from center of mass to rear axle 1.895(m) 

Nαf Cornering stiffness of front wheels 88168(N/rad) 

Nαr Cornering stiffness of vehicle rear wheels 108884(N/rad) 

lz Height of centroid to ground 0.54(m) 

r Wheel radius 0.325(m) 

4.1. Double lane change condition 

The simulation results of DLC including the global trajectories and lateral errors, curvature of 

road and the front wheel angle, yaw error, the lateral error and nonlinear compensation are shown in 

Figures 3–6. Figure 3 shows the global trajectories and lateral errors of different controllers under 

double lane change working conditions, among which the three controllers all have good tracking 

effects. The maximum lateral error of the LQR and RHC controller are about 0.4 m and 0.2 m 

respectively. The maximum lateral error of NRC is less than the other two controls, it indicates that 

the tracking performance of NRC is better than LQR and NRC. In addition, it can be seen from 

Figure 3, global X is between 56 and 65 meters, NRC also possesses outstanding system response 

when tracking DLC, which shows that proposed controller can improve the transient performance of 
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the closed-loop system. 

 

Figure 3. The global trajectories and lateral errors under DLC condition. 

 

Figure 4. curvature of road and the front wheel angle under DLC condition. 
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Figure 4 shows the curvature of road and the front wheel angle of AGEV during tracking DLC. 

It can be seen from Figure 4 that the value of front wheel angle of NRC is always between LQR and 

RHC, which is because too small front wheel angle will lead to a small response speed of the system, 

while too large front wheel angle will lead to a large overshot. However, the NRC has linear gain part 

to accelerate the system response, while the nonlinear compensation part can reduce large overshoot 

that results in excellent trajectory-following capability. 

In Figure 5, it can be seen that NRC has smaller yaw error and stronger following ability compared 

with LQR and NRC. Figure 6 shows the magnitude of the lateral error and nonlinear compensation of 

NRC. It can see that when the lateral error is small, the nonlinear compensation part of NRC is large, 

and when the lateral error is increased, the nonlinear compensation part of NRC will become smaller, 

which indicates that the nonlinear compensation part meets the original intention of our NRC design, 

specifically the system has a fast response speed in the case of increasing error, and the system has a 

small overshoot under the condition of small error. 

 

Figure 5. Yaw error under DLC condition. 

 

Figure 6. The lateral error and nonlinear compensation under DLC condition. 
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4.2. Serpentine condition 

The simulation results of serpentine condition including the global trajectories and lateral errors, 

curvature of road and the front wheel angle, yaw error, the lateral error and nonlinear compensation 

are shown in Figures 7–10. Figure 7 shows the global trajectories and lateral errors of following in 

serpentine condition. The maximum lateral errors of NRC are smaller than those of LQR and RHC, 

and its response speed and transient performance are also higher than those of the other two controllers, 

it indicating that NRC has better tracking performance on serpentine roads than LQR and NRC. 

Figure 8 shows the curvature and the front wheel angle of AGEV during tracking serpentine road. 

The maximum curvature of the serpentine road is 0.004. Similar to DLC condition, the value of front 

wheel angle of NRC is larger than LQR and smaller than RHC in serpentine working condition. Under 

the compensation of nonlinear part, NRC also has stable trajectory following ability. 

In Figure 9, it can be seen that when AGEV follows a trajectory with large curvature, NRC can 

respond quickly with small yaw error, which brings low yaw error to the system and has stable tracking 

ability. Figure 10 displays the lateral error and nonlinear compensation under the serpentine condition, 

the maximum lateral error is 0.1 m. When the error changes, the nonlinear compensation part changes 

correspondingly, and it has the characteristics of fast response and small overshoot, and meets the 

requirements of trajectory following. 

 

Figure 7. The global trajectories and lateral errors under serpentine condition. 
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Figure 8. curvature of road and the front wheel angle under serpentine condition. 

 

Figure 9. Yaw error under serpentine condition. 
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Figure 10. Lateral error and nonlinear compensation under serpentine condition. 

For quantitative analysis of the tracking performance of the proposed controller, the maximum 

error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) of the vehicle 

lateral displacement are used as the metrics for analysis, and the LQR and RHC are used as 

comparative experiments. The ME, MAE and RMSE are calculated as follows: 

{ , 1,2 }ai diME Max Y Y i N= − = ,        (4.1) 

1

N

ai di

i

Y Y

MAE
N

=

−

=
 ,         (4.2) 

2

1

( )
N

ai di

i

Y Y

RMSE
N

=

−

=

          (4.3) 

where Yai and Ydi represent actual and ideal values, N is the number of samples. 

Table 2 shows ME, MAE, RMSE, Reduction I and Reduction II under the lateral displacement of 

DLC and serpentine conditions. It can be seen from the data in Table 2 that NRC have smaller the ME, 

MAE and RMS than LQR and RHC in the two scenarios. From the point of view of working conditions, 

the error of DLC is greater than that of serpentine condition, which is due to the large lateral 

displacement of DLC, which leads to a larger error in trajectory following. In DLC condition, the 

overall improvement degree of NRC compared with LQR is more than 40%, and in serpentine 

condition, the degree of improvement of NRC compared with LQR is more than 50%. The ME of NRC 

is 10% higher than RHC under DLC condition, it indicating that NRC has a faster response speed than 

RHC in trajectory following with large errors. At the same time, the MAE of NRC is about 7% higher 

than that of RHC under DLC scenario, which shows that NRC has a smaller overshoot in trajectory 

following with small errors than RHC. On the whole, compared with LQR and RHC, the proposed 

controller has the advantages of fast response speed and small overshoot. 
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Table 2. Index analysis of lateral error under DLC and serpentine conditions. 

Condition Index(m) LQR RHC NRC Reduction I Reduction II 

DLC 

ME 0.3977 0.2414 0.2146 46.04% 11.10% 

MAE 0.1538 0.0921 0.0859 44.15% 6.73% 

RMSE 0.1987 0.1248 0.1136 42.83% 8.97% 

Serpentine 

ME 0.2160 0.1211 0.1077 50.14% 11.07% 

MAE 0.1173 0.0629 0.0580 50.55% 7.79% 

RMSE 0.1372 0.0744 0.0684 50.15% 8.06% 

Notes: Reduction I = (LQR - NRC)/ LQR, Reduction II = (RHC - NRC)/ RHC. 

5. Conclusions 

To improve the tracking accuracy, response speed and the overshoot suppression of the trajectory 

following control system, the nonlinear robust H∞ state-feedback controller strategy of AGEV with 

AFS system is proposed. Firstly, the AGEV system dynamics and its control-oriented vehicle trajectory 

following system with dynamic error is developed. According to Lyapunov stability theory, the 

nonlinear robust H∞ state-feedback controller of AGEV trajectory-following system is finally designed, 

solved by applying a set of linear matrix inequalities. Simulation including double lane change and 

serpentine conditions is implemented to verify the effectiveness of the proposed controller by using 

Matlab/Simulink-Carsim®. The simulation shows that the designed controller possesses effectual 

trajectory following performance of AGEV with AFS system. In addition, because we have compared 

the proposed method with LQR control and robust control in simulations, also the main purpose of this 

paper is to solve the engineering application problem of AGEV trajectory following control rather than 

pure control theory development. Therefore, we did not provide more robust optimal control and 

adaptive control as comparison. In the future, we will investigate and compare advanced robust optimal 

control and adaptive optimal control techniques such as SMC for trajectory following control for 

AGEV. 
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