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1. Introduction

Stability analysis of dynamical systems has always been a hot and important topic in theoretical
research and practical application. As is well-known, Lyapunov’s second method is not only used
to investigate the stability in the sense of Lyapunov [1–3], but also used to discuss the practical
stability [4–8]. When utilizing this method to analyse the stability of dynamical systems, one needs
to find a suitable positive definite Lyapunov function, whose time derivative along the solutions of
the considered system is negative definite. Lyapunov’s second method is powerful, yet in some cases,
the construction of Lyapunov function is not a simple task since there are no general rules, except for
some special cases. Moreover, from a practical point of view, the condition that the time derivative
of Lyapunov function is negative definite may be conservative and difficult to be satisfied. Thus, it is
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necessary and interesting to come up with some less conservative stability conditions. In recent years,
some research work has been done to weaken the requirement on negative definiteness of the time
derivatives of related Lyapunov functions. For example, some new stability conditions for continuous-
time and discrete-time linear time-varying systems were derived in [9–11], respectively. In [12, 13],
the traditional Lyapunov stability theorems for continuous-time nonlinear time-varying systems were
generalized in the sense that the time derivatives of Lyapunov functions were allowed to be indefinite.
With the help of the new notion of practical stable functions, some differential Lyapunov inequalities
based necessary and sufficient conditions were derived in [14] for testing global uniform practical
asymptotic stability and practical exponential stability of general continuous-time nonlinear systems.
For some other relevant works, one can refer to [15–18].

In 1988, Stefan Hilger introduced the theory of time scales in his Ph.D. thesis to unify continuous
and discrete analysis. Later, Bohner and Peterson summarized and organized a great deal of time scale
calculus in their books [19, 20]. With the development of the theory of time scales, the stability of
dynamical systems on time scales, such as asymptotic stability, exponential stability, practical stability
and h-stability, has received much attention from numerous authors and a large number of results
have been obtained in [21–33]. In particular, Pötzsche et al. [21] studied exponential stability of linear
time-invariant systems using the standard exponential function, while DaCunha [22] discussed uniform
exponential stability of linear time-varying systems employing the generalized exponential function on
time scales. In addition, Ben Nasser et al. [28] introduced the concepts for local uniform exponential
stability, uniform exponential stability and uniform practical exponential stability of nonlinear time-
varying systems utilizing a more general exponential function, and studied exponential stability of the
closed-loop systems on arbitrary time scales. Recently, the authors in [26, 27] investigated uniform
exponential stability of linear time-varying system with nonlinear perturbation using the generalized
exponential function on time scales. However, the uniform exponential stability results established
in [26,27] were based on the negative definiteness restriction on the time derivative of related Lyapunov
function. In 2020, by means of a less conservative Lyapunov inequality on time scales, Lu et al. [33]
proposed an improved uniform exponential stability criteria for linear time-varying system on time
scales, which weakened the negative definiteness restriction on the time derivative of Lyapunov
function. Furthermore, to the best of our knowledge, the research on practical stability of nonlinear
time-varying perturbed systems on time scales is inadequate. But as emphasized in [14], practical
stability is a significant performance specification from an engineering point of view. Therefore, it is
necessary and helpful to propose some other improved stability theorems for nonlinear time-varying
perturbed systems on time scales.

Motivated greatly by the above-mentioned works, in this paper, we consider the stability of
nonlinear time-varying perturbed system on time scales under the assumption that the corresponding
linear time-varying nominal system is uniformly exponentially stable. The main contributions are
summarized as follows:
(i) Compared with [33], the cases of linear time-varying nominal system under vanishing and non-
vanishing perturbations are investigated in this note, respectively.
(ii) Compared with [26,27], a less conservative sufficient condition for uniform exponential stability of
perturbed system is derived with the help of the uniformly exponentially stable function on time scales.
Moreover, based on an improved Gronwall-type integral inequality on time scales, a new sufficient
condition for uniform practical exponential stability is explored.
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(iii) The advantage of the theorems proposed in this paper is that the time derivatives of related
Lyapunov functions are not required to be negative definite for all time. Owing to the complexity
and generality of time scales, the proofs need to be more technical.

The rest of this paper is organized as follows. In Section 2, some foundational definitions and results
about time scales are briefly outlined. In Section 3, the studied problem is stated. Our main results are
obtained in Section 4. Three illustrative examples are presented in Section 5. The paper is concluded
in Section 6.

In the sequel, the following notations will be used. N0 and Z denote the sets of nonnegative integers
and integers, respectively. R+ and R denote the sets of nonnegative real numbers and real numbers,
respectively. Rn denotes the space of n-dimensional real vectors. The norm of an n × 1 vector x is
defined to be ∥x∥ =

√
xTx, where xT stands for the transpose of x. Rm×n denotes the space of m × n

real matrices and In is an n × n identity matrix. The norm of an n × n matrix A is defined to be
∥A∥ = [λmax(ATA)]

1
2 , where AT stands for the transpose of A and λmax(ATA) is the maximum eigenvalue

of ATA. Moreover, for symmetric matrices P, Q ∈ Rn×n, the notation P ≥ Q (P ≤ Q) means that P − Q
is a positive semi-definite (negative semi-definite) matrix. exp(t) represents the standard exponential
function et.

2. Preliminaries

In this section, we shall provide some foundational definitions and results on time scales, which
will be useful for the following sections. For more details, one can refer to [19, 29]. A time scale is an
arbitrary nonempty closed subset of the real numbers and is often denoted by the symbol T, which has
the topology that it inherits from the real numbers with the standard topology. Also, T takes the sets R
and Z as its special cases. Throughout this paper, for a ∈ T, we define the set T+a = [a,+∞) ∩ T.

Definition 2.1. Let t ∈ T. The forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t},

while the backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.

In this definition, it is assumed that inf ∅ = supT and sup ∅ = inf T, where ∅ denotes the empty set.
If σ(t) > t, then t is called right-scattered, while if ρ(t) < t, then t is called left-scattered. Also, if
t < supT and σ(t) = t, then t is called right-dense, and if t > inf T and ρ(t) = t, then t is called
left-dense. If T has a left-scattered maximum m, then Tk = T − {m}, otherwise, Tk = T. Finally, the
graininess function µ : T→ R+ is defined by

µ(t) := σ(t) − t.

Definition 2.2. Assume f : T → R is a function and let t ∈ Tk. Then f ∆(t) is defined to be the
number (provided it exists) with the property that given any ε > 0, there is a neighborhood U of t (i.e.,
U = (t − δ, t + δ) ∩ T for some δ > 0) such that∣∣∣[ f (σ(t)) − f (s)] − f ∆(t) [σ(t) − s]

∣∣∣ ≤ ε|σ(t) − s| for all s ∈ U.
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In this case, f ∆(t) is called the delta derivative of f at t.
Moreover, f is called delta differentiable (or in short: differentiable) on Tk provided f ∆(t) exists for

all t ∈ Tk. The function f ∆ : Tk → R is called the (delta) derivative of f on Tk.

Remark 2.1. If T = R, then f ∆(t) = f ′(t) is the usual derivative. If T = Z, then f ∆(t) = ∆ f (t) is the
usual forward difference operator.

Lemma 2.1. [19] Assume f : T→ R is differentiable at t ∈ Tk. Then f (σ(t)) = f (t) + µ(t) f ∆(t).

Lemma 2.2. [19] Assume f , g : T → R are differentiable at t ∈ Tk. Then the product f g : T → R is
differentiable at t with

( f g)∆(t) = f ∆(t)g(t) + f (σ(t))g∆(t) = f (t)g∆(t) + f ∆(t)g(σ(t)).

Definition 2.3. A function f : T → R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of rd-continuous
functions f : T→ R is denoted by Crd(T,R).

Definition 2.4. A function F : T→ R is called an antiderivative of f : T→ R provided

F∆(t) = f (t) holds for all t ∈ Tk.

If F : T→ R is an antiderivative of f : T→ R, then the Cauchy integral is defined by∫ s

r
f (t)∆t = F(s) − F(r) for all s, r ∈ T.

Remark 2.2. Let r, s ∈ T and f ∈ Crd(T,R). Then
(i) if T = R, then

∫ s

r
f (t)∆t =

∫ s

r
f (t)dt;

(ii) if T = Z, then ∫ s

r
f (t)∆t =


∑s−1

t=r f (t), r < s,

0, r = s,

−
∑r−1

t=s f (t), r > s.

Definition 2.5. A function p : T→ R is called regressive provided

1 + µ(t)p(t) , 0 for all t ∈ Tk

holds. The set of all regressive and rd-continuous functions f : T→ R is denoted by R(T,R). The set of
positively regressive functions R+(T,R) is defined as the set consisting of those p ∈ R(T,R) satisfying

1 + µ(t)p(t) > 0 for all t ∈ T.

Definition 2.6. If p ∈ R(T,R), then the exponential function is defined by

ep(t, s) = exp
( ∫ t

s
ξµ(τ)(p(τ))∆τ

)
for t, s ∈ T

with the cylinder transformation ξh(z) defined by

ξh(z) =


1
h

Log(1 + zh), h > 0,

z, h = 0,

where Log is the principal logarithm function.
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Remark 2.3. Let p ∈ R(T,R). Then
(i) if T = R, then ep(t, s) = e

∫ t
s p(τ)dτ;

(ii) if T = Z, then ep(t, s) =
t−1
Π
τ=s

(1 + p(τ)).

Definition 2.7. If p, q ∈ R(T,R), then the functions p ⊕ q and ⊖p are defined by

(p ⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ Tk,

(⊖p)(t) := −
p(t)

1 + µ(t)p(t)
for all t ∈ Tk.

Lemma 2.3. [19] Let p ∈ R(T,R) and s, r ∈ T. Then
(i) ep(t, t) ≡ 1 for all t ∈ T;
(ii) e∆p(t, s) = p(t)ep(t, s) for all t ∈ Tk;
(iii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s) for all t ∈ Tk;
(iv) ep(t, s) = 1

ep(s,t) = e⊖p(s, t) for all t ∈ T;
(v) ep(t, s)ep(s, r) = ep(t, r) for all t ∈ T;
(vi) ep(t, s)eq(t, s) = ep⊕q(t, s) for all t ∈ Tk.

Moreover, if p ∈ R+(T,R) and t0 ∈ T, then ep(t, t0) > 0 for all t ∈ T.

Lemma 2.4. [19] If p ∈ R(T,R) and a, b, c ∈ T, then∫ b

a
p(t)ep(c, σ(t))∆t = ep(c, a) − ep(c, b).

Lemma 2.5. [19] Let t0 ∈ T, y, f ∈ Crd(T,R) and p ∈ R+(T,R). Then

y∆(t) ≤ p(t)y(t) + f (t) for all t ∈ T

implies

y(t) ≤ y(t0)ep(t, t0) +
∫ t

t0
ep(t, σ(τ)) f (τ)∆τ for all t ∈ T.

Lemma 2.6. [19] (Gronwall’s inequality) Let t0 ∈ T, y, f ∈ Crd(T,R) and p ∈ R+(T,R), p ≥ 0. Then

y(t) ≤ f (t) +
∫ t

t0
y(τ)p(τ)∆τ for all t ∈ T

implies

y(t) ≤ f (t) +
∫ t

t0
ep(t, σ(τ)) f (τ)p(τ)∆τ for all t ∈ T.

Lemma 2.7. [27] Let t0 ∈ T. If p is rd-continuous and nonnegative, then

1 +
∫ t

t0
p(τ)∆τ ≤ ep(t, t0) ≤ exp

( ∫ t

t0
p(τ)∆τ

)
for all t ∈ T+t0 .

Lemma 2.8. [34] Let t0 ∈ T. If p ∈ R+(T,R) and p(t) ≤ q(t) for all t ∈ T, then

ep(t, t0) ≤ eq(t, t0) for all t ∈ T+t0 .
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The following is an improved Gronwall-type integral inequality on time scales.

Lemma 2.9. [27] Let ϕ, φ, ψ, α, χ ∈ Crd(T,R+) and t0 ∈ T. Then

ϕ(t) ≤ φ(t) + ψ(t)
∫ t

t0

[
α(τ)ϕ(τ) + χ(τ)

]
∆τ

implies

ϕ(t) ≤ φ(t) + ψ(t)
∫ t

t0

[
α(τ)φ(τ) + χ(τ)

]
exp

( ∫ t

σ(τ)
α(s)ψ(s)∆s

)
∆τ

for all t ∈ T+t0 .

Definition 2.8. Let A be an m × n-matrix-valued function on T. A is called rd-continuous on T if
each entry of A is rd-continuous on T, and the class of all such rd-continuous m × n-matrix-valued
function on T is denoted by Crd(T,Rm×n). Moreover, A is called differentiable on T provided each entry
of A is differentiable on T, and in this case A∆ = (a∆i j)1≤i≤m,1≤ j≤n, where A = (ai j)1≤i≤m,1≤ j≤n. The set of
m × n-matrix-valued functions that are differentiable and whose derivative is rd-continuous is denoted
by C1

rd(T,Rm×n).

Lemma 2.10. [19] Let A be an m×n-matrix-valued function on T. If A is differentiable at t ∈ Tk, then
A(σ(t)) = A(t) + µ(t)A∆(t).

Definition 2.9. An n×n-matrix-valued function A on T is called regressive (with respect to T) provided

In + µ(t)A(t) is invertible for all t ∈ Tk.

Definition 2.10. A function f : T × Rn → Rn is called rd-continuous, if g defined by g(t) = f (t, x(t)) is
rd-continuous for any continuous function x : T→ Rn.

3. Problem statement

Let T be a time scale with a ∈ T and supT = +∞. Assume that the graininess function µ is bounded
on T. First, we consider the following nonlinear time-varying system: x∆(t) = f (t, x(t)),

x(t0) = x0,
(3.1)

where t0 ∈ T
+
a , x0 ∈ R

n, x : T+a → R
n is the state vector and f : T+a × R

n → Rn is an rd-continuous
vector-valued function. It is assumed that the conditions for the existence of a unique solution of
system (3.1) on T+t0

(
T+t0 = [t0,+∞) ∩ T+a

)
are satisfied. For the existence, uniqueness and extensibility

of the solutions of system (3.1), one can refer to [19]. Hereafter, x(t) := x(t, t0, x0) denotes the solution
of system (3.1) starting from an arbitrary initial state x0 at initial time t0.

The following definition is given in [24] with an additional concept of uniform practical exponential
stability.

AIMS Mathematics Volume 8, Issue 5, 11131–11150.



11137

Definition 3.1. System (3.1) is said to be
(i) exponentially stable if there exists a positive constant α with −α ∈ R+(T+a , (−∞, 0)) such that for
every t0 ∈ T

+
a , there exists N = N(t0) ≥ 1 such that the solution of (3.1) satisfies

∥x(t)∥ ≤ N ∥x(t0)∥ e−α(t, t0) for all t ∈ T+t0;

(ii) uniformly exponentially stable if it is exponentially stable and constant N can be chosen
independently of t0 ∈ T

+
a ;

(iii) uniformly practically exponentially stable if there exist constants N ≥ 1, α > 0 with −α ∈
R+(T+a , (−∞, 0)) and r > 0 such that for every t0 ∈ T

+
a , the solution of (3.1) satisfies

∥x(t)∥ ≤ N ∥x(t0)∥ e−α(t, t0) + r for all t ∈ T+t0 .

In particular, if f (t, x(t)) = A(t)x(t) + g(t, x(t)) for t ∈ T+a , where A : T+a → R
n×n is an rd-continuous

and regressive matrix-valued function, and g : T+a × R
n → Rn is an rd-continuous vector-valued

function, then system (3.1) is transformed into the following nonlinear time-varying perturbed system: x∆(t) = A(t)x(t) + g(t, x(t)),
x(t0) = x0.

(3.2)

Here, the perturbation term g could result from modeling errors, aging, or uncertainties and
disturbances, which exist in any realistic problem. If g(t, x(t)) ≡ 0 for all t ∈ T+a , then system (3.2) is
transformed into the following linear time-varying system: x∆(t) = A(t)x(t),

x(t0) = x0,
(3.3)

which is regarded as the corresponding nominal system of perturbed system (3.2).
Next, we consider the following scalar linear time-varying system:{

y∆(t) = β(t)y(t),
y(t0) = y0,

(3.4)

where t0 ∈ T
+
a , y0 ∈ R, y : T+a → R is the state variable and β ∈ R+(T+a ,R). As stated in [19], the unique

solution of system (3.4) is given by y(t) = eβ(t, t0)y0.
The exponential stability and uniform exponential stability criteria of system (3.4) in terms of the

exponential function are characterized in the following lemma.

Lemma 3.1. [33] System (3.4) is
(i) exponentially stable if and only if for any t0 ∈ T

+
a , there exist constants η(t0) ≥ 1 and α > 0 with

−α ∈ R+(T+a , (−∞, 0)) such that

eβ(t, t0) ≤ η(t0)e−α(t, t0), t ∈ T+t0;

(ii) uniformly exponentially stable if and only if η in Item (i) is independent of t0.

Definition 3.2. [33] The function β is said to be
(i) exponentially stable if system (3.4) is exponentially stable;
(ii) uniformly exponentially stable if system (3.4) is uniformly exponentially stable.
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At the end of this section, we notice that a very interesting question comes into focus. When linear
time-varying nominal system (3.3) is uniformly exponentially stable, what about the stability behavior
of nonlinear time-varying perturbed system (3.2)? The answer to this question depends crucially on
whether the perturbation term vanishes at the origin. Moreover, a natural approach to address this
question is to use a Lyapunov function for nominal system (3.3) as a Lyapunov function candidate for
perturbed system (3.2). In the next section, by imposing different assumptions on the perturbation term,
we shall investigate the cases of nominal system (3.3) under vanishing and non-vanishing perturbations,
respectively.

4. Main results

Inspired by the improved uniform exponential stability criteria of nominal system (3.3) in [33], we
make the following assumption:
(A1) There exist two positive constants λ1 and λ2, a symmetric matrix function Q ∈ C1

rd(T+a ,R
n×n), and

a uniformly exponentially stable function β ∈ R+(T+a ,R) such that for all t ∈ T+a ,

λ1In ≤ Q(t) ≤ λ2In, (4.1)

AT(t)Q(t) +
(
In + µ(t)AT(t)

)(
Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)

)
≤ β̃(t)Q(t), (4.2)

where β̃(t) =
(
2 + µ(t)β(t)

)
β(t), here, β(t) is given in system (3.4) and µ(t) is the graininess function

denoted in Definition 2.1.
When assumption (A1) holds, according to Theorem 4.2 in [33], we know that nominal system (3.3)

is uniformly exponentially stable. Moreover, it follows from β ∈ R+(T+a ,R) and β̃(t) = (2+µ(t)β(t))β(t)
that β̃ ∈ R+(T+a ,R). At the same time, if t0 ∈ T

+
a , then by Lemma 2.3, we have

eβ(t, t0) > 0 for all t ∈ T+a (4.3)

and
eβ̃(t, t0) = eβ⊕β(t, t0) =

(
eβ(t, t0)

)2 for all t ∈ T+a . (4.4)

For convenience, in the remainder of this paper, we denote

w1(t) := µ2(t)∥Q∆(t)∥ + λ2µ(t), t ∈ T+a ,

w2(t) := µ2(t)∥A(t)∥ · ∥Q∆(t)∥ + λ2µ(t)∥A(t)∥ + µ(t)∥Q∆(t)∥ + λ2, t ∈ T+a .

Now, let us start with the case of nominal system (3.3) under vanishing perturbation. In this case,
the origin is an equilibrium point of perturbed system (3.2). It is assumed that the perturbation term is
bounded as follows:
(A2) There exists an rd-continuous function k : T+a → R+ such that for all t ∈ T+a ,

∥g(t, x(t))∥ ≤ k(t) ∥x(t)∥ ,

where x(t) is an arbitrary solution of system (3.2).
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Theorem 4.1. Suppose that (A1) and (A2) hold. If there exists a positive constant M such that for all
t ∈ T+a , ∫ t

a

w1(τ)k2(τ) + 2w2(τ)k(τ)
1 + µ(τ)β̃(τ)

∆τ ≤ M, (4.5)

then system (3.2) is uniformly exponentially stable.

Proof. Construct the following Lyapunov function:

V(t, x) = xTQ(t)x for (t, x) ∈ T+a × R
n.

Let t0 ∈ T
+
a be arbitrarily given. Then by Lemmas 2.2 and 2.10, we know that the delta derivative of

the function V(t, x) along the solutions of system (3.2) is as follows:

V∆(t, x(t)) |(3.2)=
(
xT(t)Q(t)

)∆x(t) + xT(σ(t))Q(σ(t))x∆(t)
=
[
(xT(t))∆Q(t) + xT(σ(t))Q∆(t)

]
x(t) + xT(σ(t))Q(σ(t))x∆(t)

=(x∆(t))TQ(t)x(t) +
[
xT(t) + µ(t)(x∆(t))T][Q∆(t)x(t) +

(
Q(t) + µ(t)Q∆(t)

)
x∆(t)

]
=
[
xT(t)AT(t) + gT(t, x(t))

]
Q(t)x(t) +

{
xT(t) + µ(t)

[
xT(t)AT(t) + gT(t, x(t))

]}
·
{
Q∆(t)x(t) + Q(t)

[
A(t)x(t) + g(t, x(t))

]
+ µ(t)Q∆(t)

[
A(t)x(t) + g(t, x(t))

]}
=xT(t)

[
Q∆(t) + AT(t)Q(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)

+ µ(t)AT(t)Q∆(t) + µ(t)AT(t)Q(t)A(t) + µ2(t)AT(t)Q∆(t)A(t)
]
x(t)

+ µ2(t)gT(t, x(t))Q∆(t)g(t, x(t)) + µ(t)gT(t, x(t))Q(t)g(t, x(t))
+ µ2(t)gT(t, x(t))Q∆(t)A(t)x(t) + µ2(t)xT(t)AT(t)Q∆(t)g(t, x(t))
+ µ(t)gT(t, x(t))Q(t)A(t)x(t) + µ(t)xT(t)AT(t)Q(t)g(t, x(t))
+ µ(t)gT(t, x(t))Q∆(t)x(t) + µ(t)xT(t)Q∆(t)g(t, x(t))
+ gT(t, x(t))Q(t)x(t) + xT(t)Q(t)g(t, x(t)) for t ∈ T+t0 . (4.6)

In view of (4.6), (A1) and (A2), we can obtain

V∆(t, x(t)) |(3.2)≤xT(t)β̃(t)Q(t)x(t) +
[
µ2(t)∥Q∆(t)∥ + λ2µ(t)

]
k2(t)∥x(t)∥2

+ 2
[
µ2(t)∥A(t)∥ · ∥Q∆(t)∥ + λ2µ(t)∥A(t)∥ + µ(t)∥Q∆(t)∥ + λ2

]
k(t)∥x(t)∥2

=β̃(t)V(t, x(t)) +
[
w1(t)k2(t) + 2w2(t)k(t)

]
∥x(t)∥2 for all t ∈ T+t0 . (4.7)

Now, by means of (4.7) and Lemma 2.5, we get

V(t, x(t)) ≤ V(t0, x(t0))eβ̃(t, t0) +
∫ t

t0
eβ̃(t, σ(τ))

[
w1(τ)k2(τ) + 2w2(τ)k(τ)

]
∥x(τ)∥2∆τ for all t ∈ T+t0 ,

which together with (4.1) and Lemma 2.3 shows that

λ1 ∥x(t)∥2 ≤V(t, x(t))

≤V(t0, x(t0))eβ̃(t, t0) +
∫ t

t0
eβ̃(t, σ(τ))

[
w1(τ)k2(τ) + 2w2(τ)k(τ)

]
∥x(τ)∥2 ∆τ

≤λ2 ∥x(t0)∥2 eβ̃(t, t0)
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+ eβ̃(t, t0)
∫ t

t0
eβ̃(t0, τ) ∥x(τ)∥2 eβ̃(τ, σ(τ))

[
w1(τ)k2(τ) + 2w2(τ)k(τ)

]
∆τ for all t ∈ T+t0 .

In view of (4.3) and (4.4), we know that eβ̃(t, t0) > 0 for all t ∈ T+t0 . So,

∥x(t)∥2

eβ̃(t, t0)
≤
λ2

λ1
∥x(t0)∥2 +

∫ t

t0

∥x(τ)∥2

eβ̃(τ, t0)
·

w1(τ)k2(τ) + 2w2(τ)k(τ)
λ1

(
1 + µ(τ)β̃(τ)

) ∆τ for all t ∈ T+t0 . (4.8)

If we define

p(t) =
w1(t)k2(t) + 2w2(t)k(t)

λ1
(
1 + µ(t)β̃(t)

) for t ∈ T+a ,

then it is not difficult to know that p ∈ R+(T+a ,R+). On the one hand, by (4.8) and Lemma 2.6, we have

∥x(t)∥2

eβ̃(t, t0)
≤
λ2

λ1
∥x(t0)∥2 +

∫ t

t0

λ2

λ1
ep(t, σ(τ)) ∥x(t0)∥2 p(τ)∆τ for all t ∈ T+t0 ,

which together with Lemma 2.4 and ep(t, t) ≡ 1 for all t ∈ T+a implies that

∥x(t)∥2

eβ̃(t, t0)
≤
λ2

λ1
∥x(t0)∥2

[
1 + ep(t, t0) − ep(t, t)

]
=
λ2

λ1
∥x(t0)∥2 ep(t, t0) for all t ∈ T+t0 ,

so,

∥x(t)∥2 ≤
λ2

λ1
ep(t, t0) ∥x(t0)∥2 eβ̃(t, t0) for all t ∈ T+t0 . (4.9)

On the other hand, by Lemma 2.7 and (4.5), we know

ep(t, t0) ≤ exp
( ∫ t

t0
p(τ)∆τ

)
≤ e

M
λ1 for all t ∈ T+t0 . (4.10)

Moreover, since β is uniformly exponentially stable, there exist constants η ≥ 1 and α > 0 with
−α ∈ R+(T+a , (0,−∞)) such that

eβ(t, t0) ≤ ηe−α(t, t0) for all t ∈ T+t0 ,

which together with (4.3) and (4.4) shows that

eβ̃(t, t0) ≤ η2(e−α(t, t0)
)2 for all t ∈ T+t0 . (4.11)

So, in view of (4.9)–(4.11), we obtain

∥x(t)∥2 ≤
η2λ2e

M
λ1

λ1
∥x(t0)∥2

(
e−α(t, t0)

)2 for all t ∈ T+t0 ,

and so,

∥x(t)∥ ≤
η
(
λ1λ2

) 1
2 e

M
2λ1

λ1
∥x(t0)∥e−α(t, t0) for all t ∈ T+t0 ,

which indicates that system (3.2) is uniformly exponentially stable. □
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Next, let us turn to the case of nominal system (3.3) under non-vanishing perturbation. In this
situation, the origin is no longer the equilibrium point of perturbed system (3.2). We assume that the
perturbation term is bounded as follows:
(A3) There exist two rd-continuous functions l1, l2 : T+a → R+ such that for all t ∈ T+a ,

∥g(t, x(t))∥ ≤ l1(t) ∥x(t)∥ + l2(t),

where x(t) is an arbitrary solution of system (3.2).

Theorem 4.2. Suppose that (A1) and (A3) hold. If there exist two positive constants N1 and N2 such
that for all t ∈ T+a , ∫ t

a

u1(τ)
1 + µ(τ)β̃(τ)

∆τ ≤ N1, (4.12)∫ t

a
eβ̃(t, σ(τ))u2(τ)∆τ ≤ N2, (4.13)

where
u1(t) = w1(t)l2

1(t) + 2w2(t)l1(t) +
λ2

λ1

[
w1(t)l1(t) + w2(t)

]
l2(t), t ∈ T+a ,

u2(t) =
[
w1(t)l1(t) + w2(t)

]
l2(t) + w1(t)l2

2(t), t ∈ T+a ,

then system (3.2) is uniformly practically exponentially stable.

Proof. Choose the following Lyapunov function:

V(t, x) = xTQ(t)x for (t, x) ∈ T+a × R
n.

Then it follows from (4.1) that

∥x∥ ≤
( 1
λ1

V(t, x)
) 1

2

≤
1

2λ1
V(t, x) +

1
2
≤

λ2

2λ1
∥x∥2 +

1
2

for all (t, x) ∈ T+a × R
n. (4.14)

Let t0 ∈ T
+
a be arbitrarily given. Then as calculated in Theorem 4.1, the delta derivative of the function

V(t, x) along the solutions of system (3.2) is as follows:

V∆(t, x(t)) |(3.2)=xT(t)
[
Q∆(t) + AT(t)Q(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)

+ µ(t)AT(t)Q∆(t) + µ(t)AT(t)Q(t)A(t) + µ2(t)AT(t)Q∆(t)A(t)
]
x(t)

+ µ2(t)gT(t, x(t))Q∆(t)g(t, x(t)) + µ(t)gT(t, x(t))Q(t)g(t, x(t))
+ µ2(t)gT(t, x(t))Q∆(t)A(t)x(t) + µ2(t)xT(t)AT(t)Q∆(t)g(t, x(t))
+ µ(t)gT(t, x(t))Q(t)A(t)x(t) + µ(t)xT(t)AT(t)Q(t)g(t, x(t))
+ µ(t)gT(t, x(t))Q∆(t)x(t) + µ(t)xT(t)Q∆(t)g(t, x(t))
+ gT(t, x(t))Q(t)x(t) + xT(t)Q(t)g(t, x(t)) for t ∈ T+t0 ,

which together with (A1) and (A3) implies that
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V∆(t, x(t)) |(3.2)≤xT(t)β̃(t)Q(t)x(t) +
[
µ2(t)∥Q∆(t)∥ + λ2µ(t)

][
l1(t)∥x(t)∥ + l2(t)

]2

+ 2
[
µ2(t)∥A(t)∥ · ∥Q∆(t)∥ + λ2µ(t)∥A(t)∥ + µ(t)∥Q∆(t)∥ + λ2

]
·
[
l1(t)∥x(t)∥ + l2(t)

]
∥x(t)∥

=β̃(t)V(t, x(t)) +
[
w1(t)l2

1(t) + 2w2(t)l1(t)
]
∥x(t)∥2

+ 2
[
w1(t)l1(t) + w2(t)

]
l2(t) ∥x(t)∥ + w1(t)l2

2(t) for all t ∈ T+t0 . (4.15)

In view of (4.14) and (4.15), we have

V∆(t, x(t)) |(3.2)≤β̃(t)V((t, x(t)) +
{
w1(t)l2

1(t) + 2w2(t)l1(t) +
λ2

λ1

[
w1(t)l1(t) + w2(t)

]
l2(t)

}
∥x(t)∥2

+
[
w1(t)l1(t) + w2(t)

]
l2(t) + w1(t)l2

2(t)
=β̃(t)V(t, x(t)) + u1(t) ∥x(t)∥2 + u2(t) for all t ∈ T+t0 . (4.16)

Now, by means of (4.16) and Lemma 2.5, we get

V(t, x(t)) ≤ V(t0, x(t0))eβ̃(t, t0) +
∫ t

t0
eβ̃(t, σ(τ))

[
u1(τ) ∥x(τ)∥2 + u2(τ)

]
∆τ for all t ∈ T+t0 ,

which together with (4.1) and Lemma 2.3 shows that

λ1∥x(t)∥2 ≤V(t, x(t))

≤V(t0, x(t0))eβ̃(t, t0) +
∫ t

t0
eβ̃(t, σ(τ))

[
u1(τ) ∥x(τ)∥2 + u2(τ)

]
∆τ

≤λ2 ∥x(t0)∥2 eβ̃(t, t0)

+ eβ̃(t, t0)
∫ t

t0

[ 1
λ1

eβ̃(t0, σ(τ))u1(τ)λ1 ∥x(τ)∥2 + eβ̃(t0, σ(τ))u2(τ)
]
∆τ for all t ∈ T+t0 . (4.17)

By (4.17) and Lemma 2.9, we get

λ1 ∥x(t)∥2 ≤λ2 ∥x(t0)∥2 eβ̃(t, t0)

+ eβ̃(t, t0)
∫ t

t0

[λ2

λ1
eβ̃(t0, σ(τ))u1(τ) ∥x(t0)∥2 eβ̃(τ, t0) + eβ̃(t0, σ(τ))u2(τ)

]
· exp

( ∫ t

σ(τ)

1
λ1

eβ̃(t0, σ(s))u1(s)eβ̃(s, t0)∆s
)
∆τ for all t ∈ T+t0 ,

so,

∥x(t)∥2 ≤
λ2

λ1
∥x(t0)∥2 eβ̃(t, t0)

+

[
λ2

λ2
1

∥x(t0)∥2 eβ̃(t, t0)
∫ t

t0

u1(τ)
1 + µ(τ)β̃(τ)

∆τ +
1
λ1

∫ t

t0
eβ̃(t, σ(τ))u2(τ)∆τ

]
· exp

( 1
λ1

∫ t

t0

u1(s)
1 + µ(s)β̃(s)

∆s
)

for all t ∈ T+t0 ,
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which together with (4.12) and (4.13) indicates that

∥x(t)∥2 ≤
λ2

λ1
∥x(t0)∥2 eβ̃(t, t0) +

λ2N1e
N1
λ1

λ2
1

∥x(t0)∥2 eβ̃(t, t0) +
N2e

N1
λ1

λ1
for all t ∈ T+t0 . (4.18)

Furthermore, it follows from the fact β is uniformly exponentially stable that there exist constants
η ≥ 1 and α > 0 with −α ∈ R+(T+a , (0,−∞)) such that

eβ(t, t0) ≤ ηe−α(t, t0) for all t ∈ T+t0 . (4.19)

By (4.3), (4.4) and (4.19), we have

eβ̃(t, t0) ≤ η2(e−α(t, t0)
)2 for all t ∈ T+t0 . (4.20)

So, in view of (4.18) and (4.20), we can obtain

∥x(t)∥2 ≤
η2λ1λ2 + η

2λ2N1e
N1
λ1

λ2
1

∥x(t0)∥2
(
e−α(t, t0)

)2
+

N2e
N1
λ1

λ1
for all t ∈ T+t0 ,

and so,

∥x(t)∥ ≤
η
(
λ1λ2 + λ2N1e

N1
λ1

) 1
2

λ1
∥x(t0)∥ e−α(t, t0) +

(
λ1N2

) 1
2 e

N1
2λ1

λ1
for all t ∈ T+t0 ,

which implies that system (3.2) is uniformly practically exponentially stable. □

Remark 4.1. Note that inequality (4.2) is a generalised form and covers many special cases. For
example, when T = R, inequality (4.2) is transformed as Q̇(t)+AT(t)Q(t)+Q(t)A(t) ≤ 2β(t)Q(t). When
T = Z, inequality (4.2) is transformed as [In + AT(t)]Q(t + 1)[In + A(t)] ≤ (1 + β(t))2Q(t).

Remark 4.2. The sufficient conditions for uniform exponential stability of perturbed system (3.2)
proposed in [26, 27] require the time derivatives of the quadratic Lyapunov functions to be negative
definite, which are conservative. By (4.7), we know that the time derivative of the quadratic Lyapunov
function along the trajectories of system (3.2) is allowed to be indefinite. Thus, the sufficient conditions
for uniform exponential stability of system (3.2) derived in Theorem 4.1 are less conservative than those
in [26, 27].

Remark 4.3. If l1(t) ≡ 0 for all t ∈ T+a in assumption (A3), then integral inequalities (4.12) and (4.13)
in Theorem 4.2 can be simplified.

Remark 4.4. We say system (3.2) is uniformly exponentially stable if the origin is uniformly
exponentially stable. However, we say system (3.2) is uniformly practically exponentially stable if
a neighborhood of the origin is uniformly exponentially stable.

Remark 4.5. The main results obtained in this paper are of great generality, since they can be effective
for not only trivial continuous-time and discrete-time nonlinear time-varying perturbed systems, but
also some other nontrivial cases, such as systems on hybrid time domains.
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5. Some illustrative examples

In this section, we provide three examples to demonstrate the effectiveness of the results obtained.

Example 5.1. Let T = ∪
k∈N0

[k, k + 0.6] and a = 0. We consider the following nonlinear time-varying

perturbed system:  x∆(t) = A(t)x(t) + g(t, x(t)),
x(t0) = x0,

(5.1)

where t0 ∈ T, x0 ∈ R
2, x : T→ R2,

A(t) =
(
−1 − 0.9 sin t 0

0 −1 − 0.9 sin t

)
and

g(t, x(t)) =
√2e−1(t, 0)∥x(t)∥
√

2e−1(t, 0)∥x(t)∥

 .
First, if we choose λ1 = λ2 = 1, Q(t) = I2 and β(t) = −1− 0.9 sin t for t ∈ T, then we may assert that

all conditions of assumption (A1) are satisfied.
In fact, it is obvious that Q ∈ C1

rd(T,R2×2) is symmetric and (4.1) is satisfied. At the same time, we
know that −1.9 ≤ β(t) ≤ −0.1 for all t ∈ T. Since T = ∪

k∈N0
[k, k + 0.6], we have

µ(t) =


0, t ∈ ∪

k∈N0
[k, k + 0.6),

0.4, t ∈ ∪
k∈N0
{k + 0.6}.

So, it is not difficult to check that β ∈ R+(T,R), which together with Lemma 2.8 indicates that for any
t0 ∈ T,

eβ(t, t0) ≤ e−0.1(t, t0) for all t ∈ T+t0 . (5.2)

By (5.2) and Lemma 3.1, we know that β is uniformly exponentially stable. Moreover, for all t ∈ T,
we have

AT(t)Q(t) +
(
I2 + µ(t)AT(t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)

)
=AT(t) + A(t) + µ(t)AT(t)A(t)

=
[
−2(1 + 0.9 sin t) + µ(t)(1 + 0.9 sin t)2

]
Q(t)

=β̃(t)Q(t),

which implies that (4.2) is fulfilled.
Next, we let k(t) = 2e−1(t, 0) for t ∈ T. Then k : T → R+ is rd-continuous and ∥g(t, x(t))∥ =

k(t) ∥x(t)∥ for t ∈ T. That is, (A2) holds.
Finally, we choose M = 150. Then in view of w1(t) = µ(t) and w2(t) = µ(t)(1 + 0.9 sin t) + 1 for

t ∈ T, we can obtain
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∫ t

0

w1(τ)k2(τ) + 2w2(τ)k(τ)
1 + µ(τ)β̃(τ)

∆τ

≤

∫ t

0

1.6
(
e−1(τ, 0)

)2
+ 4

[
0.4(1 + 0.9 sin t) + 1

]
e−1(τ, 0)(

1 + 0.4β(τ)
)2 ∆τ

≤150
∫ t

0
e−1(τ, 0)∆τ

=150
(
1 − e−1(t, 0)

)
<150 for all t ∈ T,

which indicates that (4.5) is fulfilled.
Therefore, it follows from Theorem 4.1 that system (5.1) is uniformly exponentially stable.

Example 5.2. Let T = R and a = 0. We consider the following continuous-time nonlinear time-varying
perturbed system:  x′(t) = A(t)x(t) + g(t, x(t)),

x(t0) = x0,
(5.3)

where t0 ∈ R+, x0 ∈ R, x : R+ → R, A(t) = t cos t2−2
2 and g(t, x(t)) = e−2t + 1

6(t2+1) tanh(x(t))x(t).

Choose λ1 = 2, λ2 = 3, Q(t) = e−t + 2, β(t) = t cos t2−2
2 , l1(t) = 1

6(t2+1) and l2(t) = e−2t for t ∈ R+,
N1 =

2π+9
4 and N2 =

3
2 . Then Q ∈ C1(R+,R), β ∈ C(R+,R) and l1, l2 ∈ C(R+, (0,+∞)). In view of

µ(t) ≡ 0, we know that β̃(t) = t cos t2 − 2, w1(t) = 0 and w2(t) = 3 for t ∈ R+. In what follows, we will
verify that all conditions of Theorem 4.2 are satisfied.

First, (4.1) is obviously satisfied. Moreover, for any t0 ∈ R+ and t ∈ [t0,+∞), we have

eβ(t, t0) = exp
( ∫ t

t0

τ cos τ2 − 2
2

dτ
)
≤
√

ee−(t−t0) =
√

ee−1(t, t0),

which together with Lemma 3.1 implies that β is uniformly exponentially stable. At the same time, for
all t ∈ R+, we get

AT(t)Q(t) + Q′(t) + Q(t)A(t) = (t cos t2 − 2)Q(t) − e−t < 2β(t)Q(t),

which shows that (4.2) is fulfilled. Thus, (A1) holds.
Next, for all t ∈ R+, we have

|g(t, x(t))| ≤ l1(t)|x(t)| + l2(t),

which shows that (A3) holds.
Finally, in view of w1(t) = 0 and w2(t) = 3 for t ∈ R+, we know that u1(t) = 1

t2+1 +
9
2e−2t and

u2(t) = 3e−2t for t ∈ R+. So, by some calculations, for all t ∈ R+,∫ t

0
u1(τ)dτ = arctan t +

9
4

(1 − e−2t) < N1

and ∫ t

0
eβ̃(t, τ)u2(τ)dτ ≤ 3e

∫ t

0
e−2(t−τ)e−2τdτ = 3ete−2t ≤ N2,
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which implies that (4.12) and (4.13) are satisfied.
Therefore, it follows from Theorem 4.2 that system (5.3) is uniformly practically exponentially

stable.

Example 5.3. Let T be a time scale with a non-uniform step size and a = 0. The graininess function
is bounded as follows:

0 ≤ µ(t) ≤ 0.25 for all t ∈ T.

We consider the following nonlinear time-varying perturbed system: x∆(t) = A(t)x(t) + g(t, x(t)),
x(t0) = x0,

(5.4)

where t0 ∈ T
+
0 , x0 ∈ R

2, x : T+0 → R
2,

A(t) =
(
−a(t) −1

1 −a(t)

)
and

g(t, x(t)) =


−0.125(a(t) − 1) cos t

1 + ∥x(t)∥
0.125(a(t) − 1) sin t

1 + ∥x(t)∥

 ,
here, a(t) = e⊖8(t, 0) + 1, t ∈ T+0 .

First, if we choose λ1 = λ2 = 1, Q(t) = I2 and β(t) = −e⊖8(t, 0) − 1
2 for t ∈ T+0 , then we may

assert that all conditions of assumption (A1) are satisfied. In fact, (4.1) is obviously satisfied and for all
t ∈ T+0 ,

AT(t)Q(t) +
(
I2 + µ(t)AT(t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)

)
=

[
−2a(t) + µ(t)(a2(t) + 1)

]
Q(t)

<β̃(t)Q(t),

where β̃(t) =
(
2 + µ(t)β(t)

)
β(t). Moreover, in view of ⊖8 = − 8

1+8µ(t) , we get ⊖8 ∈ R+(T+0 ,R) and
−8 ≤ ⊖8 ≤ − 8

3 for all t ∈ T+0 . So, 0 < e⊖8(t, 0) ≤ 1 for all t ∈ T+0 , and so, −3
2 ≤ β(t) < −1

2 for all t ∈ T+0 .
At the same time, we have −39

16 ≤ β̃(t) < −15
16 for all t ∈ T+0 . Then it follows from Lemmas 2.8 and 3.1

that β ∈ R+(T+0 ,R) is uniformly exponentially stable.
Next, since

∥g(t, x(t))∥ =
e⊖8(t, 0)

8(1 + ∥x(t)∥)
≤

1
8

e⊖8(t, 0) for all t ∈ T+0 ,

we can choose l1(t) ≡ 0 and l2(t) = 1
8e⊖8(t, 0) for t ∈ T+0 . Obviously, l2 : T+0 → R+ is rd-continuous.

This implies that assumption (A3) holds.
Finally, in view of w1(t) = µ(t) and w2(t) = µ(t)

√
(e⊖8(t, 0) + 1)2 + 1 + 1 for t ∈ T+0 , we can obtain

u1(t) =
1
8
[
µ(t)

√
(e⊖8(t, 0) + 1)2 + 1 + 1

]
e⊖8(t, 0), t ∈ T+0 ,
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and
u2(t) =

1
8
[
µ(t)

√
(e⊖8(t, 0) + 1)2 + 1 + 1

]
e⊖8(t, 0) +

1
64
µ(t)

(
e⊖8(t, 0)

)2
, t ∈ T+0 .

So, if we choose N1 =
12+3

√
5

100 and N2 =
33+8

√
5

240 , then for all t ∈ T+0 , we can obtain∫ t

0

u1(τ)
1 + µ(τ)β̃(τ)

∆τ ≤
4 +
√

5
32

∫ t

0

e⊖8(τ, 0)(
1 + µ(τ)β(τ)

)2∆τ ≤
8 + 2

√
5

25

∫ t

0
e− 8

3
(τ, 0)∆τ ≤ N1,

∫ t

0
eβ̃(t, σ(τ))u2(τ)∆τ < −

33 + 8
√

5
240

∫ t

0
β̃(τ)eβ̃(t, σ(τ))∆τ = −

33 + 8
√

5
240

(
eβ̃(t, 0) − eβ̃(t, t)

)
≤ N2,

which shows that (4.12) and (4.13) are satisfied.
Therefore, it follows from Theorem 4.2 that system (5.4) is uniformly practically exponentially

stable.

Remark 5.1. When the origin is an equilibrium point of perturbed system, the uniform exponential
stability has been studied . When the origin is no longer the equilibrium point of perturbed system, the
uniform practical exponential stability has been discussed, which enriches the existing results on time
scales.

Remark 5.2. By the above examples, we know that the time derivatives of related Lyapunov functions
are allowed to be nonnegative definite on some time intervals.

Remark 5.3. Note that the time scale and the corresponding linear time-varying nominal system
considered in Example 5.3 are the same as those in [26]. The authors in [26] have only discussed the
case of nominal system under vanishing perturbation, while we have investigated the case of nominal
system under non-vanishing perturbation.

6. Conclusions

This paper is concerned with nonlinear time-varying perturbed systems on time scales, which can
cover not only trivial continuous-time and discrete-time dynamical perturbed systems, but also some
other nontrivial cases, such as systems on hybrid time domains, where time is partly continuous and
partly discrete.

Inspired by the uniform exponential stability criteria for linear time-varying nominal system in [33],
we use a Lyapunov function for nominal system as a Lyapunov function candidate for perturbed
system. Although the work of this paper is motivated by linear time-varying system in [33], the
system considered in this article is quite different from it. By imposing different assumptions on
the perturbation term, we investigate the cases of nominal system under vanishing and non-vanishing
perturbations, respectively. It should be pointed out that if applying the existing methods in [26, 27]
to analyse the exponential stability of nonlinear time-varying perturbed system, we must guarantee
that the time derivatives of related Lyapunov functions are negative definite for all time. However,
by inequalities (4.7) and (4.16), we know that the time derivatives of Lyapunov functions in this
paper are allowed to be nonnegative definite on some time intervals. Compared with [26, 27], a
less conservative sufficient condition for uniform exponential stability of perturbed system is derived
with the help of the uniformly exponentially stable function on time scales. In addition, it should be

AIMS Mathematics Volume 8, Issue 5, 11131–11150.
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emphasized that the research about the practical stability problem of nonlinear time-varying perturbed
systems on time scales is inadequate. Based on an improved Gronwall-type integral inequality and the
uniformly exponentially stable function on time scales, a new sufficient condition for uniform practical
exponential stability of perturbed system is explored, which enriches the existing results on time scales.
Finally, some examples are included to illustrate the effectiveness of the results obtained.

Our possible future work is to investigate the stability for nonlinear systems with time-delay on
time scales. Besides, since the conclusions obtained in this paper are all theoretical results, we will pay
more attention to the combination of theoretical research and practical application in the future.
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