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1. Introduction

Probability theory and uncertainty theory are two axiomatic mathematical systems that model
uncertain phenomena. Probability theory is based on frequency. Traditionally, probability theory has
been used to describe uncertain events, such as the price of the underlying asset in financial derivatives.
If your distribution function is close enough to the frequency, using probability theory is fine. In fact,
when we can only get small samples or no samples, the distribution function may deviate far from
the real frequency. In this case, using probability theory may lead to counterintuitive results. The
relevant content can be seen in Chapter 1 of [18]. Furthermore, as early as 1979, Kahneman and
Tversky [12] pointed out that people always overestimate the probability of impossible events. Thus
people always hope that experts in the field will give the belief degree of an event. In order to rationally
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deal with the belief degree, Liu [13] founded the uncertainty theory which is an axiomatic mathematical
system based on normality, duality, subadditivity and product axioms in 2007. Nowadays uncertainty
theory has become a branch of mathematics concerned with the analysis of belief degree. The forward
development of a discipline is inseparable from the joint efforts of many scholars (see [4, 13–16, 28]).

In 2009, Liu [15] introduced the uncertainty theory into the financial field and proposed an uncertain
stock model that follows uncertain differential equations driven by the geometric Liu process. Peng
and Yao [22] gave a class of uncertain stock models with mean reversion. Dai et al. [8] gave a
nonlinear uncertain stock model. In addition, Yu [29] studied uncertain stock models with jumps and
Chen et al. [5] also proposed an uncertain stock model with periodic dividends. Many option pricing
formulas have been obtained using the above uncertain stock models.

In recent years, with the development of the financial market, hedging and avoiding financial risk
have become more and more important, and various types of options have emerged. Default risk,
also known as credit risk, comes from the possibility of the default of loan borrowers, bond issuers
and derivative counterparties. In general, it has been assumed that options have no default risk when
options are traded on an organized exchange. However, the rapid growth in the over-the-counter options
has motivated increased attention to the implications of counterparty credit risk. The holders of over-
the-counter options are exposed to potential credit risk due to the possibility of their counterparty
being unable to make the necessary payments at the expiration date. In 1987, Johnson and Stulz [10]
discussed the impact of credit default risk on option prices and called this option with credit risk a
vulnerable option. In 2022, Xie and Deng [26] studied the pricing of European vulnerable options
under the conditions of Heston stochastic volatility and a stochastic interest rate model. In 2021,
Liang and Wang [21] proposed a closed-form hybrid credit risk model to price vulnerable options with
stochastic volatility. In 2019, Zhou and Li [30] proposed a method to estimate the price of vulnerable
options when the volatility of the underlying assets is within a small interval.

For Cox-Ingersoll-Ross(CIR) interest rate models, most of the related research is carried out in the
field of randomization. In 2022, Zheng [31] priced European export-oriented barrier options by using
a CIR model. In 2020, Lei [20] studied the asset liability management problem with a CIR interest
rate by using a Heston model. In 2019, Sun et al. [23] studied the Euler grid difference method and
convergence analysis of CIR interest rate models under the conditions of a fractional jump diffusion
environment. In 2018, Chen and Hsu [3] studied barrier option pricing and hedging by using a Markov-
modulated double exponential jump diffusion-CIR model. Wu [25] discussed the application of a
CIR model in the Chinese market under the condition of a stochastic field in 2017. More references
can be seen in [7, 9, 24]. Although the CIR interest rate model has many applications in the field of
randomness, CIR interest rate models have few applications in the field of uncertainty. In this paper,
we get the solution of the CIR interest rate model in terms of distribution. Based on the CIR interest
rate model, the pricing formulas of the European vulnerable call option and European vulnerable put
option are obtained, and the related risks are analyzed.

This paper gives the pricing formulas of vulnerable options as obtained by implementing the
uncertain CIR interest rate model. The rest of the article is arranged as follows. In Section 2, we
introduce some definitions and theorems that will be used in this article. In Section 3, the solution
in terms of the distribution of an uncertain differential equation is given. Sections 4 and 5 give the
pricing formulas of the European vulnerable call option and the European vulnerable put option based
on a new uncertain vulnerable option pricing model, respectively. In Section 6, in order to obtain
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the numerical solution, two numerical algorithms are designed to calculate the prices of European
vulnerable call options and European vulnerable put options, and numerical examples are given to
verify the effectiveness of the numerical algorithm. Finally, a brief summary is given in Section 7.

2. Preliminaries

Definition 2.1. [13] Let Γ be a nonempty set and L be a σ-algebra on Γ. The set function M is called
an uncertain measure if it satisfies the following axioms:
Axiom 1. (Normality axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality axiom) M{Λ} +M{Λc} = 1 for any Λ ∈ L.
Axiom 3. (Subadditivity axiom) For every countable sequence Λ1,Λ2, · · · in L, we have

M

 ∞⋃
i=1

Λi

 ≤ ∞∑
i=1

M{Λi}.

The triplet (Γ,L,M) is called an uncertainty space. Moreover, the product uncertainty measure was
defined by Liu [15] in 2009 as follows.
Axiom 4. (Product axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · . The product
uncertainty measure M is an uncertainty measure satisfying

M

 ∞∏
k=1

Λk

 = ∞∧
k=1

Mk{Λk}

where Λk denotes arbitrarily chosen events from Lk, k = 1, 2, · · · .

Definition 2.2. [13] Let ξ be a function from an uncertainty space (Γ,L,M) to the set of real numbers
such that ξ ∈ B is an event for any Borel set B of real numbers; then, the function ξ is called an
uncertain variable.

Theorem 2.1. [16] Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncertainty
distributions Φ1, Φ2, · · · , Φn, respectively. If f (ξ1, ξ2, · · · , ξn) is a strictly increasing function with
respect to ξ1, ξ2, · · · , ξm and a strictly decreasing function with respect to ξm+1, ξm+2, · · · , ξn, then
ξ = f (ξ1, ξ2, · · · , ξn) has an inverse uncertainty distribution

Ψ−1(α) = f
(
Φ−1

1 (α), · · · ,Φ−1
m (α),Φ−1

m+1(1 − α), · · · ,Φ−1
n (1 − α)

)
.

Definition 2.3. [13] The expected value of an uncertain variable ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞

M{ξ ≤ x}dx

provided that at least one of the two integrals exists.

Theorem 2.2. [13] Let ξ be an uncertain variable with the uncertainty distribution Φ. Then

E[ξ] =
∫ +∞

0
(1 − Φ(x)) dx −

∫ 0

−∞

Φ(x)dx.
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Theorem 2.3. [16] Let ξ be an uncertain variable with the regular uncertainty distribution Φ. Then

E[ξ] =
∫ 1

0
Φ−1(α)dα

where Φ−1(α) is the inverse uncertain distribution of the uncertain variable ξ.

Theorem 2.4. [19] Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncertainty
distributions Φ1, Φ2, · · · , Φn, respectively. If f (x1, x2, · · · , xn) is a continuous, strictly increasing
function with respect to x1, x2, · · · , xm and a strictly decreasing function with respect to xm+1, xm+2, · · · ,
xn, then the uncertain variable ξ = f (ξ1, ξ2, · · · , ξn) has an expected value of

E[ξ] =
∫ 1

0
f
(
Φ−1

1 (α), · · · ,Φ−1
m (α),Φ−1

m+1(1 − α), · · · ,Φ−1
n (1 − α)

)
dα.

Definition 2.4. [14] Let T be a totally ordered set (e.g. time) and let (Γ,L,M) be an uncertainty space.
An uncertain process is a function Xt(γ) from T × (Γ,L,M) to the set of real numbers such that {Xt ∈ B}
is an event for any Borel set B of real numbers at each time t.

Definition 2.5. [15] An uncertain process Ct is said to be a Liu process if
(1) C0 = 0 and almost all sample paths are Lipschitz continuous;
(2) Ct has stationary and independent increments;
(3) every increments Ct+s−Ct is a normal uncertain variable with an expected value 0 and variance t2.
It is very clear that a Liu process Ct ∼ N(0, t2), that is, the uncertainty distribution of Ct is

Φt(x) =
(
1 + exp

(
−πx
√

3t

))−1

, x ∈ ℜ.

Definition 2.6. [14] Uncertain processes X1t, X2t, · · · , Xnt are said to be independent if for any positive
integer k and any times t1, t2, · · · , tk, the uncertain vectors

ξi = (Xit1 , Xit2 , · · · , Xitk), i = 1, 2, · · · , n

are independent, i.e., for any Borel sets B1, B2, · · · , Bn of k-dimensional real vectors, we have

M

 n⋂
i=1

(ξi ∈ Bi)

 = n∧
i=1

M{ξi ∈ Bi}.

Definition 2.7. [17] The uncertainty distribution Φt(x) of an uncertain process Xt is defined by

Φt(x) = M{Xt ≤ x}

for any time t and any real number x.

Definition 2.8. [17] Let Xt be an uncertain process with the regular uncertainty distribution Φt(x).
Then the inverse function Φ−1

t (α) is called the inverse uncertainty distribution of Xt.
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Theorem 2.5. [27] Let Xt be a sample-continuous independent increment process with the regular
uncertainty distribution Φt(x). Then for any time s > 0, the time integral

Ys =

∫ s

0
Xtdt

has an inverse uncertainty distribution

Ψ−1
s (α) =

∫ s

0
Φ−1

t (α)dt.

Definition 2.9. [28] Let α be a number with 0 < α < 1. An uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt

is said to have an α-path Xαt if it solves the corresponding ordinary differential equation

dXαt = f (t, Xαt )dt + |g(t, Xαt )|Φ−1(α)dt

where Φ−1(α) is the inverse uncertainty distribution of standard normal uncertain variables,i.e.,

Φ−1(α) =

√
3
π

ln
α

1 − α
.

Theorem 2.6. [28] Let Xt and Xαt be the solution and α-path of the uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt

respectively. Then the solution Xt has an inverse uncertain distribution

Φ−1
t (α) = Xαt .

Theorem 2.7. [27] Let Xt and Xαt be the solution and α-path of the uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt

respectively. Then for any time s > 0 and a strictly increasing function J(x), the time integral∫ s

0
J(Xt)dt has an inverse uncertainty distribution Ψ−1

s (α) =
∫ s

0
J(Xαt )dt.

3. Solution for the distribution of an uncertain differential equation

In 1985, the well-known interest rate model, the CIR model was proposed for probability theory [6]

drt = (m − art)dt + σ
√

rtdWt (3.1)

where m > 0 , a , 0 and σ are constants, and Wt is Brownian motion. As its counterpart, Chen and
Gao [2] proposed an uncertain interest model based on uncertainty theory in 2013. The interest rate rt

follows the next uncertain differential equation driven by the Liu process

drt = (m − art)dt + σ
√

rtdC1t (3.2)

where m > 0 , a , 0 and σ are constants, and C1t is the Liu process.
Jiao and Yao [11] gave a numerical method of the uncertain interest model and obtained a formula

to calculate the price of the zero coupon bond based on it.
Next we will discuss the solution in terms of uncertainty distribution for the expression (3.2).
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Theorem 3.1. Let rt be the solution of the uncertain differential equation (3.2) with the inverse
uncertainty distribution Ω−1

t (α). Then Ω−1
t (α) can be expressed in three forms with different values

of ∆, where ∆ = [σΦ−1(α)]2 + 4am.
Case I: ∆ > 0.

A1 ln
(√
Ω−1

t (α) − x1

)
+ A2 ln

(√
Ω−1

t (α) − x2

)
= t + A1 ln

(√
r0 − x1

)
+ A2 ln(

√
r0 − x2)

where A1 =
−σΦ−1(α)+

√
∆

√
∆

, A2 =
σΦ−1(α)+

√
∆

√
∆

, x1 =
σΦ−1(α)−

√
∆

2a and x2 =
σΦ−1(α)+

√
∆

2a .
Case II: ∆ = 0.

ln
(√
Ω−1

t (α) −
σΦ−1(α)

a

)
−

σΦ−1(α)

a
√
Ω−1

t (α) − σΦ−1(α)
=

1
2

t + ln
(
√

r0 −
σΦ−1(α)

a

)
−

σΦ−1(α)
a
√

r0 − σΦ−1(α)
.

Case III: ∆ < 0.

−1
a

ln
(
u2 + p

)
−
σΦ−1(α)

a2√p
arctan

u
√

p

= t −
1
a

ln

(√r0 −
σΦ−1(α)

2a

)2

+ p

 − σΦ−1(α)
a2√p

arctan
√

r0 −
σΦ−1(α)

2a
√

p

where p = ∆
−4a2 and u =

√
Ω−1

t (α) − σΦ
−1(α)
2a .

Proof. From Definition 2.9, the uncertain differential equation

drt = (m − art)dt + σ
√

rtdC1t

has the α-path
drαt = (m − arαt )dt + σ

√
rαt Φ

−1(α)dt. (3.3)

In order to obtain the solution of the differential equation (3.3), we divide it into three cases.
Case I: ∆ = [σΦ−1(α)]2 + 4am > 0. For the convenience of presentation, let

A1 =
−σΦ−1(α) +

√
∆

√
∆

, A2 =
σΦ−1(α) +

√
∆

√
∆

,

x1 =
σΦ−1(α) −

√
∆

2a
, x2 =

σΦ−1(α) +
√
∆

2a
.

By solving Eq (3.3), we can get

A1 ln(
√

rαt − x1) + A2 ln(
√

rαt − x2) = t + c

where c is an arbitrary constant. Substituting the initial conditions rα0 = r0 into the above equation, we
get

c = A1 ln(
√

r0 − x1) + A2 ln(
√

r0 − x2).

Finally

A1 ln
( √

rαt − x1

)
+ A2 ln

( √
rαt − x2

)
=

1
2

t + A1 ln
(√

r0 − x1

)
+ A2 ln

(√
r0 − x2

)
.
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By Theorem 2.6, Case I is true.
Case II: ∆ = [σΦ−1(α)]2 + 4am = 0. For the convenience of presentation, let A1 = 1, A2 = x1 =

x2 =
σΦ−1(α)

a . The general solution of Eq (3.3) is

A1√
rαt − x1

+
A2

(
√

rαt − x1)2
=

1
2

t + c

where c is an arbitrary constant. From the initial value rα0 = r0

c = A1 ln(
√

r0 − x1) − A2
1

√
r0 − x1

.

Finally we get the special solution of Eq (3.3) as

A1 ln(
√

rαt − x1) − A2
1√

rαt − x1

=
1
2

t + A1 ln(
√

r0 − x1) − A2
1

√
r0 − x1

.

By Theorem 2.6, the result of Case II be proved.
Case III: ∆ = [σΦ−1(α)]2 + 4am < 0. For the convenience of presentation, let p = ∆

−4a2 ,u =√
rαt −

σΦ−1(α)
2a . In this case, the general solution of Eq (3.3) is

−
1
a

ln(u2 + p) −
σΦ−1(α)

a2√p
arctan

u
√

p
= t + c

where c is an arbitrary constant. By applying the initial value rα0 = r0 we get the special solution of
Eq (3.3) as

−1
a

ln
(
u2 + p

)
−
σΦ−1(α)

a2√p
arctan

u
√

p

= t −
1
a

ln

(√r0 −
σΦ−1(α)

a

)2

+ p

 − σΦ−1(α)
a2√p

arctan
√

r0 −
σΦ−1(α)

a
√

p
.

From Theorem 2.6, the result of Case III is true.
We have completed the proof of this theorem.

4. European vulnerable call option pricing formula

As is well known, the European call option is a contract which gives the holder the right rather than
the obligation to buy stocks at an expiration date T for a strike price K. The European vulnerable call
option supposes that the value of a company is Zt at the time t. Then the option seller promises to give
(YT − K)+ to the option holder at the expiration date T . If the option seller cannot give (YT − K)+ to
the holder at the expiration date T , the option holder will immediately take over the company. In other
words, the final payoff of the option holder at time T is min

(
(YT − K)+ ,ZT

)
. We assume that the price

of this European vulnerable call option is fc. According to the fair price principle, we can get the price
of the European vulnerable call option

fc = E
[
exp

(
−

∫ T

0
rtdt

)
min

(
(YT − K)+,ZT

)]
.
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In order to obtain the price of options, Liu [15] first modeled the change in financial asset price
by using uncertain differential equations and proposed the Liu model, which is the counterpart of the
famous B-S model [1]. From then on, based on the uncertainty theory, some scholars have put forward
other uncertain financial derivatives models that are more suitable for market practice, such as the
mean reversion stock model [22] and uncertain exponential Ornstein-Uhlenbeck model [8]. The above
models always assume that the risk interest rate is a constant. However, in the real financial market,
interest rates are often uncertain, so interest rates should follow an uncertain differential equation.

In this paper, let rt, Yt and Zt be the interest rate, stock price and the company value at time t of a
European vulnerable option, respectively, and they follow the uncertain differential equations

drt = (m − art)dt + σ
√

rtdC1t

dYt = e1Ytdt + σ1YtdC2t

dZt = e2Ztdt + σ2ZtdC3t

(4.1)

where m > 0, a , 0, e1, e2, σ, σ1 and σ2, are all constants and C1t, C2t and C3t are three independent
Liu processes.

Theorem 4.1. Assume that a European vulnerable call option satisfies the model (4.1) with a strike
price K and an expiration date T; then, the price of the European vulnerable call option is

fc =

∫ 1

0
Φ−1

1T (α) ·
(
Υ−1

1T (α) ∧ Ψ−1
T (α)

)
dα (4.2)

where Φ−1
1T (α) = exp

(
−

∫ T

0
Ω−1

t (1 − α)dt
)
, Υ−1

1T (α) =
Y0

e1T +

√
3σ1T
π

ln
α

1 − α

 − K
+ and

Ψ−1
T (α) = Z0

e2T +

√
3σ2T
π

ln
α

1 − α

.
Proof. The inverse uncertainty distribution Ω−1

t (α) of rt has been obtained by Theorem 3.1.
From Theorem 2.5, we can get the inverse uncertainty distributionΦ−1

T (α) =
∫ T

0
Ω−1

t (α)dt of
∫ T

0
rtdt.

Since y = exp(−x) is a decreasing function of x, from Theorem 2.1,

exp
(
−

∫ T

0
rtdt

)
has an inverse uncertainty distribution

Φ−1
1T (α) = exp

(
−Φ−1

T (1 − α)
)
. (4.3)

Let Yαt be an α-path of the uncertain differential equation

dYt = e1Ytdt + σ1YtdC2t.

By solving the ordinary differential equation

dYαt = e1Yαt dt + σ1Yαt Φ
−1(α)dt,

AIMS Mathematics Volume 8, Issue 5, 11113–11130.
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we can get

Yαt = Y0

e1t +

√
3σ1t
π

ln
α

1 − α

 .
It follows from Theorem 2.6 that YT has an inverse uncertainty distribution

Υ−1
T (α) = YαT . (4.4)

Due to (YT − K)+ being an increasing function with respect to YT , by Theorem 2.1, (YT − K)+ has an
inverse uncertainty distribution

Υ−1
1T (α) =

(
Υ−1

T (α) − K
)+
.

Similarly, we can get

Zαt = Z0

e2t +

√
3σ2t
π

ln
α

1 − α

 .
Thus from Theorem 2.6, ZT has an inverse uncertainty distribution

Ψ−1
T (α) = ZαT . (4.5)

Following Theorem 2.1, the expression

exp
(
−

∫ T

0
rtdt

)
min

(
(YT − K)+,ZT

)
has an inverse uncertainty distribution

Φ−1
1T (α) ·

(
Υ−1

1T (α) ∧ Ψ−1
T (α)

)
.

Thus according to Theorem 2.1 and Theorem 2.3, the price of the European vulnerable call option is
shown as follows.

fc = E
[
exp

(
−

∫ T

0
rtdt

)
min

(
(YT − K)+,ZT

)]
=

∫ 1

0
Φ−1

1T (α) ·
(
Υ−1

1T (α) ∧ Ψ−1
T (α)

)
dα.

We have completed the proof of this theorem.

5. European vulnerable put option pricing formula

In this section, we will give the pricing formulas of the European vulnerable put option. Note that
rt, Yt and Zt are the same as in Theorem 4.1.

The European put option is a contract which gives the holder the right rather than the obligation to
sell stocks at an expiration date T for a strike price K. For the European vulnerable put option, the
option seller promises to give (K − YT )+ to the option holder at the expiration date T . If the option seller
cannot give (K − YT )+ to the holder at the expiration date T , the option holder will immediately take
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over the company. In other words, the final payoff of the option holder at time T is min
(
(K − YT )+ ,ZT

)
.

We assume that the price of this European vulnerable put option is fp.
According to the fair price principle, we can get the price of the European vulnerable put option

fp = E
[
exp

(
−

∫ T

0
rtdt

)
min

(
(K − YT )+,ZT

)]
.

Theorem 5.1. Assume that a European vulnerable put option satisfies the uncertain stock model (4.1)
with a strick K and an expiration date T; then, the price of the European vulnerable put option is

fp =

∫ 1

0
Φ−1

1T (α) ·
(
Υ−1

2T (α) ∧ Ψ−1
T (α)

)
dα (5.1)

where Φ−1
1T (α) = exp

(
−

∫ T

0
Ω−1

t (1 − α)dt
)
, Υ−1

2T (α) =
K − Y0

e1T +

√
3σ1T
π

ln
1 − α
α

+ and

Ψ−1
T (α) = Z0

e2T +

√
3σ2T
π

ln
α

1 − α

.
Proof. Similar to the proof of Eqs (4.3)–(4.5) in Theorem 4.1, the inverse uncertainty distributions

of exp
(
−

∫ T

0
rtdt

)
, YT and ZT are exp

(
−Φ−1

T (1 − α)
)
≜ Φ−1

1T (α), YαT ≜ Υ
−1
T (α) and ZαT ≜ Ψ

−1
T (α),

respectively. Due to (K−YT )+ being a decreasing function with respect to YT , by Theorem 2.1, (K−YT )+

has an inverse uncertainty distribution

Υ−1
2T (α) =

(
K − Υ−1

T (1 − α)
)+
.

Following Theorem 2.1, the expression

exp
(
−

∫ T

0
rtdt

)
min

(
(K − YT )+,ZT

)
has an inverse uncertainty distribution

Φ−1
1T (α) ·

(
Υ−1

2T (α) ∧ Ψ−1
T (α)

)
.

Thus according to Theorem 2.1 and Theorem 2.3, the price of the European vulnerable put option is
shown as follows.

fp = E
[
exp

(
−

∫ T

0
rtdt

)
min

(
(K − YT )+,ZT

)]
=

∫ 1

0
Φ−1

1T (α) ·
(
Υ−1

2T (α) ∧ Ψ−1
T (α)

)
dα.

We have completed the proof of this theorem.

6. Numerical results

In this section, we design numerical algorithms to calculate the numerical solutions of the European
vulnerable call option fc and European vulnerable put option fp, respectively.
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6.1. European vulnerable call option

Step 0: Set the values of the corresponding parameters a,m, σ,Y0, e1, σ1,Z0, e2, σ2,T and K.
Step 1: Choose two appropriate N and M values according to the required accuracy; set αi = i/N and
t j = jT/M, i = 1, 2, · · ·N − 1, j = 1, 2, · · · ,M.
Step 2: Set i = 0.
Step 3: Set i = i + 1.
Step 4: Set j = 0.
Step 5: Set j = j + 1.

Step 6: For each αi, determine the value of ∆ =
( √

3σ
π

ln αi
1−αi

)2
+ 4am.

If ∆ > 0, solve the following ordinary differential equation

A1 ln
(√
Ω−1

t j
(1 − αi) − x1

)
+ A2 ln

(√
Ω−1

t j
(1 − αi) − x2

)
= t j + A1 ln(

√
r0 − x1) + A2 ln(

√
r0 − x2)

where

A1 =
−σΦ−1(1 − αi) +

√[
σΦ−1(1 − αi)

]2
+ 4am√[

σΦ−1(1 − αi)
]2
+ 4am

, A2 =
σΦ−1(1 − αi) +

√[
σΦ−1(1 − αi)

]2
+ 4am√[

σΦ−1(1 − αi)
]2
+ 4am

,

x1 =
σΦ−1(1 − αi) −

√[
σΦ−1(1 − αi)

]2
+ 4am

2a
, x2 =

σΦ−1(1 − αi) +
√[
σΦ−1(1 − αi)

]2
+ 4am

2a
.

Else if ∆ = 0, solve the following ordinary differential equation

ln
(√
Ω−1

t j
(1 − αi) −

σΦ−1(1 − αi)
a

)
−

σΦ−1(1 − αi)

a
√
Ω−1

t j
(1 − αi) − σΦ−1(1 − αi)

=
1
2

t j + ln
(
√

r0 −
σΦ−1(1 − αi)

a

)
−

σΦ−1(1 − αi)
a
√

r0 − σΦ−1(1 − αi)
.

Else if ∆ < 0, solve the following ordinary differential equation

−1
a

ln
(
u2 + p

)
−
σΦ−1(1 − αi)

a2√p
arctan

u
√

p

= t j −
1
a

ln

(√r0 −
σΦ−1(1 − αi)

2a

)2

+ p

 − σΦ−1(1 − αi)
a2√p

arctan
√

r0 −
σΦ−1(1−αi)

2a
√

p

where p =

[
σΦ−1(1 − αi)

]2
+ 4am

−4a2 and u =
√
Ω−1

t j
(1 − αi) −

σΦ−1(1 − αi)
2a

.

If j < M, return to Step 5.
Step 7: Calculate the discount rate

exp
(
−

∫ T

0
Ω−1

s (1 − αi)ds
)
→ exp

− T
M

M∑
j=1

Ω−1
t j

(1 − αi)


and

Υ−1
1T (αi) =

(
Υ−1

T (αi) − K
)+
= max

Y0

e1T +

√
3σ1T
π

ln
αi

1 − αi

 − K, 0
 .
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Step 8: It is obvious that

Ψ−1
T (αi) = Z0

e2T +

√
3σ2T
π

ln
αi

1 − αi

 .

Step 9: Calculate

exp
(
−

∫ T

0
Ω−1

s (1 − αi)ds
)

min
(
Υ−1

1T (αi),Ψ−1
T (αi)

)
;

if i < N − 1, return Step 3.

Step 10: fc →
1

N − 1

N−1∑
i=1

exp
(
−

∫ T

0
Ω−1

s (1 − αi)ds
)

min
(
Υ−1

1T (αi),Ψ−1
T (αi)

)
.

Example 6.1. For the European vulnerable call option pricing formula (6), we assume the M =

100,N = 100, a = 0.001,m = 0.002, σ = 5 ∗ 10−5,Y0 = 5, e1 = 0.1, σ1 =
π

10
√

3
,Z0 = 10, e2 = 0.2, σ2 =

π

8
√

3
,T = 5 and K = 3.6. Thus the European vulnerable call option price is fc = 0.49944278.When the

parameters aside from the parameter expiration date T remain unchanged, the relationship between
the price of the European vulnerable call option fc and the expiration date T is as shown in Figure 1.
When all parameters except for the parameter volatilityσ1 remain unchanged, the relationship between
the price of the European vulnerable call option fc and volatility σ1 is as shown in Figure 2. When all
parameters except for the parameter log-drift e1 remain unchanged, the relationship between the price
of the European vulnerable call option fc and the log-drift e1 is as shown in Figure 3.
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Figure 1. fc versus the expiration date T .
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Figure 2. fc versus the volatility σ1.
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Figure 3. fc versus the log-drift e1.

It can be seen in Figure 1 that with the increase of the expiration date T , the price of European
vulnerable call options shows an overall upward trend. When the expiration date T is in the range of
[0, 3], the price changes are not obvious, and the price shows a slow growth trend in the range of [3,
10]. Although the direction of time is deterministic, the trend of expiration T is still a focus of attention.
As can be seen in Figure 2, with the increase of volatility σ1, the price of European vulnerable call
options shows an overall upward trend. When the volatility is in the range of [0, 0.04], the option
price is negative, indicating that the power of the sellers is far greater than that of the buyers. At this
time, the investor should carefully consider the future prospect of this option according to their own
risk preference. In the later period, with the increase of volatility σ1, the option price shows an upward
trend. The slope of the figure represents the vega of the option price, which is the ratio of the change
in the corresponding option price to the change in the volatility of the underlying asset. It can be seen
in the figure that the vega presents a trend of first increasing and then decreasing under the conditions
of this uncertain model. This indicates that the sensitivity of the European vulnerable call option price
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to volatility changes increases first and then decreases. At this time, it is best to frist buy and then sell
the corresponding stock in the form of dynamic hedging, so as to ensure risk neutrality. It can be seen
in Figure 3 that with the increase of log-drift e1, the price of European vulnerable call options shows
an overall upward trend. When investing, investors should combine log-drift e1 and other indicators to
reasonably choose the time to buy and sell.

6.2. European vulnerable put option

The first six steps of the numerical algorithm for European vulnerable put options are the same as
those for the European vulnerable call option.
Step 7: Calculate the discount rate

exp
(
−

∫ T

0
Ω−1

s (1 − αi)ds
)
→ exp

− T
M

M∑
j=1

Ω−1
t j

(1 − αi)


and

Υ−1
2T (αi) =

(
K − Υ−1

T (1 − αi)
)+
= max

K − Y0

e1T +

√
3σ1T
π

ln
1 − αi

αi

 , 0 .
Step 8: It is obvious that

Ψ−1
T (αi) = Z0

e2T +

√
3σ2T
π

ln
αi

1 − αi

 .
Step 9: Calculate

exp
(
−

∫ T

0
Ω−1

s (1 − αi)ds
)

min
(
Υ−1

2T (αi),Ψ−1
T (αi)

)
;

if i < N − 1, return Step 3.

Step 10: fp →
1

N − 1

N−1∑
i=1

exp
(
−

∫ T

0
Ω−1

s (1 − αi)ds
)

min
(
Υ−1

2T (αi),Ψ−1
T (αi)

)
.

Example 6.2. For the European vulnerable put option pricing formula (7), we assume that M =

100,N = 100, a = 0.001,m = 0.002, σ = 5 ∗ 10−5,Y0 = 5, e1 = 0.1, σ1 =
π

10
√

3
,Z0 = 10, e2 = 0.2, σ2 =

π

8
√

3
,T = 5 and K = 3.6. Thus the European vulnerable put option price is fp = 1.3576985. When all

parameters except for the parameter expiration date T remain unchanged, the relationship between the
price of the European vulnerable put option fp and the expiration date T is as shown in Figure 4. When
all parameters except for the parameter volatility σ1 remain unchanged, the relationship between the
price of the European vulnerable put option fp and volatility σ1 is as shown in Figure 5. When all
parameters except for the parameter log-drift e1 remain unchanged, the relationship between the price
of the European vulnerable put option fp and the log-drift e1 is as shown in Figure 6.
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Figure 4. fp versus the expiration date T .
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Figure 5. fp versus the volatility σ1.
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Figure 6. fp versus the log-drift e1.
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It can be seen in Figure 4 that with the increase of the expiration date T , the price of the European
vulnerable put option generally increases first and then decreases. When the expiration date T is in
the range of [0, 1.6], the price gradually increases, and in the range of [1.6, 10], the price gradually
decreases. As can be seen in Figure 5, with the increase of volatility σ1, the price of European
vulnerable put options shows an overall upward trend. When the volatility is in the range of [0, 0.04],
option prices are negative. In the range of [0.04, 0.45], with the increase of volatility σ1, the option
prices show an upward trend. At this time, the vega is not very sensitive to changes in the current
underlying asset, so there is no need to make significant adjustments. It can be seen in Figure 6 that
with the increase of log-drift e1, the price of the European vulnerable put option shows a downward
trend. When investing, investors should combine log-drift e1 and other indicators to reasonably choose
the time to buy and sell.

7. Conclusions

In this paper, first, we obtained the solution in terms of the distribution of the uncertain CIR interest
rate model. Second, we obtained the pricing formulas of the European vulnerable call option and
European vulnerable put option in the model. Finally, according to the the above pricing formulas, the
corresponding numerical algorithms and numerical examples were given to verify them.
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