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1. Introduction 

For plate structural components that contain holes under the action of external loads, there is often 

a greater stress concentration around the holes. Therefore, accurately calculating the stresses on the 

edge of the holes is playing an important role in evaluating the stability and strengthening of the 

structure. As for the complex variable method proposed by Muskhelishvili [1], it is particularly suitable 

for the previous problems in which the regions can be conformally mapped to circles or rings. 

Haddon [2] used this method to obtain the solution of an infinite plate containing two holes under 

uniaxial tension. Lu et al. [3] applied a conformal transformation in complex function to discuss the 

solution of an elastic plate problem containing two holes with an internal traction along the holes. Zeng 

et al. [4] discussed the stress and tension effect on an elastic infinite plate bounded by two oval holes. 

A closed-form plane strain solution was presented, for stresses and displacements around tunnels, by 

Exadaktylos and Stavropoulos [5]. Abdou et al. [6–8] discussed the stresses and the strains components 

for infinite plates weakened by different curvilinear holes conformally mapped outside the unit circle 

using different conformal mappings.  In the problems of cracks, in the two-dimensional elasticity, there 

are two types of cracks. The first type has a longitudinal crack in the range [−1, 1], and this type 

generates several types of integral equations with singular kernel in one of the forming forms: 

(i) weak singular kernel logarithmic kernel 𝑘(𝑢, 𝑣) = 𝑙𝑛|𝑢 − 𝑣| , and Carleman function 𝑘(𝑢, 𝑣) =
|𝑢 − 𝑣|−𝛼, 0<α<1. 

(ii) For the kernel 𝑘(𝑢, 𝑣) =
1

(𝑢−𝑣)𝑚 at 𝑚 = 1, we have Cauchy kernel, strong kernel at 𝑚 = 2 and 

super strong kernel at 𝑚 > 2.  

These types of equations can be solved using different analytic or numerical methods. Zachariah 

et al. [9] investigated the application of Aramid/Carbon fiber reinforced polymer hybrid thin laminate 

in enhancing static and dynamic transverse loading behavior. Gonenli and Das [10] presented the effect 

of cracks on free vibration response for circular and annular thin plates. Lal et al. [11] studied the effect 

of various discontinuities like voids, soft inclusions and hard inclusions of the mixed-mode stress 

intensity factor, crack growth and energy release rate of an edge crack isotropic plate under different 

loading by various numerical examples. More information for the solution of singular integral equation 

with Cauchy kernel can be found in the works of Badr [12], Duruk et al. [13] and Abdou et al. [14,15]. 

The second type, is represented by an elastic plate with a curvilinear hole, in the complex plane in the 

theory of elasticity, the curvilinear hole can be transformed inside or outside the unit circle or in the 

half plane. In this case the potential functions are called Gaursat functions. 

Muskhelishvili [1] solved the problem of stretching an infinite plate weakened by an elliptic hole 

by using the transformation. 

𝑧 = 𝑐(𝜁 + 𝑚𝜁−1).                                   (1.1) 

This transformation conformally maps the infinite domain bounded internally by an elliptic onto 

the domain outside the unit circle |ζ| = 1 in the ζ − plane. 

In this paper, we focused the problem where an infinite plate weakened by two different holes, 

see Figure 1. 
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Figure 1. Two different holes in an infinite plate. 

In this paper, we use a new mapping function in the fundamental problems of an infinite plate 

with two arbitrary different holes. Moreover, an analytical stress solution for an elastic infinite plate 

with two such holes, which is subjected to a uniform tension and external forces, is derived using a 

complex variable method. In addition, as a new study, we consider different materials to obtain its 

Gaursat functions with fixed time. Then, we discuss and investigate the change of stress components 

of an infinite plate under uniform tension and external forces for variant time. 

2. Gaursat functions and stress components 

Consider the conformal mapping 

𝑧 =  𝑤(𝜁) =  𝐴 +
𝐵

𝜁
+

Cζ

1−𝑛1𝜁
+

Dζ

1−𝑛2𝜁
 ,    |𝜁| < 1, (𝑛1 ≠  𝑛2 ),             (2.2) 

where A, B, C, and D are complex constants. 

The conformal mapping (2.2) transforms the two holes into the interior of a unit circle. In addition, 

this form is considered a more general and comprehensive form than what was studied in the 

paper [16]. Moreover, the mapping (2.2) satisfies the condition (𝑤(0), 𝑤 (
1

𝑛1
) , 𝑤 (

1

𝑛2
))  ≠ 0, inside 

the unit circle by taking 𝐵 = 0, 𝐶 = 0, 𝐷 = 0, respectively. 

Abodu and Basseem [16], take the first and second fundamental problems of potential functions 

with time effects in the form 

κΦ1(z, t) − 𝑧
∂Φ1(z,t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

∂𝑧
− Ψ1(𝑧, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑓(𝑧, 𝑡),                      (2.3) 

where, for the first fundamental problem κ = −1, 𝑓(𝑧, 𝑡), there is a given function of stresses. While, 

for the second fundamental problem κ =
𝜆+3𝜇

𝜆+𝜇
> 1, 𝜆 =

𝐸𝜈

(1+𝜈)(1−2𝜈)
  and 𝜇 = 𝐺 =

𝐸

2(1+𝜈)
  are called 

Lame's constants, 𝐸  is the Young's modulus and G is the modulus of shear. In this case, 𝑓 (𝑧, 𝑡) 

represents the strain function. 

In this case, the two complex functions Φ1(𝑧, 𝑡) and Ψ1(𝑧, 𝑡) take the formations (Abdou and 

Basseem [16]) 
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Φ1(𝑧, 𝑡) = −
𝑅𝑥(𝑡)+𝑖𝑅𝑦(𝑡)

2𝜋(1+𝜅)
ln 𝜁 + 𝜁Γ(𝑡) + Φ(𝜁, 𝑡),                    (2.4)  

Ψ1(𝑧, 𝑡) = −
𝜅(𝑅𝑥(𝑡)−𝑖𝑅𝑦(𝑡))

2𝜋(1+𝜅)
ln 𝜁 + 𝜁Γ∗(𝑡) + Ψ(𝜁, 𝑡), (0 ≤ 𝑡 < 1).          (2.5) 

Here {𝑅𝑥(𝑡), 𝑅𝑦(𝑡)} are the components of the resultant vector of all external forces in time 

acting on the boundary, {Γ(t), Γ∗(𝑡)}  are complex functions in time, the two complex functions 

{Ψ(𝜁, 𝑡), Φ(𝜁, 𝑡)} are analytic and called Gaursat functions. 

In this case, the stress components take the forms 

𝜎𝑥𝑥 = 𝑅𝑒 [2
∂Φ(𝜁,𝑡)

𝜕𝑧
− 𝑧̅

∂2Φ(𝑧,𝑡)

𝜕𝑧2 +
𝜕Ψ(𝑧,𝑡)

𝜕𝑧
],                       (2.5) 

𝜎𝑦𝑦 = 𝑅𝑒 [2
∂Φ(𝜁,𝑡)

𝜕𝑧
+ 𝑧̅

∂2Φ(𝑧,𝑡)

𝜕𝑧2 +
𝜕Ψ(𝑧,𝑡)

𝜕𝑧
],                       (2.6) 

and 

𝜎𝑥𝑦 = 𝐼𝑚 [𝑧̅
∂2Φ(𝑧,𝑡)

𝜕𝑧2 −
𝜕Ψ(𝑧,𝑡)

𝜕𝑧
].                             (2.7) 

3. Conformal mapping and special cases 

3.1. Conformal mapping 

The parametric equations are obtained from Eq (2.2) as 𝑥 =  Re(𝑧) and y =  Im(𝑧). For 

different {n1, n2} and {A, B, C, D}, we get the following new shapes 

3.2. Special cases 

(i) Figures 2 and 3 describe the conformal mapping (2.2) for different real values of n1, n2, A, B, C and 

D. We also notice that the figures are symmetrical around 𝑥 and 𝑦 axes. 

 

Figure 2. n1  =  0.4,  n2  =  0.1; A =  5.00, B = 1.00, C =  1.53, D =  −6.03. 
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Figure 3. n1  =  0.6, n2  =  0.1; A =  5.00, B = 1.00, C =  0.24, D =  −5.443. 

(ii) For n1  = n2  =  0, A =  0,  we get Z =  (C +  D)ζ +  Bζ−1  which is discussed in 

Muskelishvilis [1]. 

(iii) By taking A =  0, B =  1  and n1C + n2D =  −1 + n1n2  where (n1  + n2)  =  C + D,  the 

boundary curvilinear holes degenerate into a circular cut having strong pole. This singularity can be 

removed by taking(n1  + n2)  <  C +  D, see Figures 4 and 5. If n1  =  0 or n2  =  0, see Figures 6 

and 7. 

 

Figure 4. n1  =  0.6, n2  =  0.3; A =  0.00, B = 1.00, C =  −2.13, D =  3.03. 
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Figure 5. n1 =  0.6, n2  =  0.3;  A = 0.00, B =  1.00, C =  −2.213, D =  3.073. 

 

Figure 6. n1 =  0.0, n2 = 0.2;  A =  0.00, B = 1.00, C =  −4.8, D =  5.0. 

 

Figure 7. n1 =  0.2, n2  =  0.0;  A = 0.00, B =  1.00, C =  −5.5, D =  5.0. 

(iv) Taking  n2  =  0 , A =  0 , C +  D =  n1B  and let m =  −
n1D

B
 , we get z = B

 ζ−1+mζ

1− n1ζ
 , see 
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Figures 8 and 9. 

 

Figure 8. n1  =  0.1,  n2  =  0.0;  A =  0.00, B = 1.00, C = 7.1, D =  −7. 

 

Figure 9. n1  =  0.3, n2  =  0.0;  A =  0.00, B = 1.00, C =  −
11

30
, D =  

2

3
. 

(v) In all previous shapes, symmetric about x-axis, the constants are real. While when it is complex, 

the shapes are anomalous, see Figures 10–13. 
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Figure10. n1 = 0.352, n2 = 0.3;  A =  0.947 + 2.84i, B =  1, C =  −6.58 +  22.4i,

D =  6.289 − 24.376i. 

 

Figure 11. n1  =  0.3, n2  =  0.5;  A =  13.3i, B = 0.7, C =  1.6 − 18.3i, D =  −1.2 +  5.9i. 

 

Figure 12. n1=0.352, n2=0.2i; A=-4.26i, B=1, C=1.164+0.66i, D=0.088+3.8i. 
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Figure 13. n1  =  0.7 + 0.07i, n2  =  0.02 + 0.5i;  A = −0.11 −  1.843i, B = 0.7,

C =  1.43 + 1.94i, D =  −0.719 +  0.616i. 

4. Method of solution 

Using the transformation mapping of Eq (1.2), then Eq (2.3) is transformed into an integro-

differential equation in complex position and time, which has anomaly Cauchy kernel in the imaginary 

plane, then applying the complex variable method with the residue theorems to obtain a closed 

expression for Gaursat functions. 

For this, consider 

𝑤(𝜁)

𝑤′(𝜁)
 =  𝜉1(𝜁)  + 𝜉2(𝜁)  +  𝜚(𝜁)                              (4.8) 

where {𝜉1(𝜁), 𝜉2(𝜁)} are singular parts and 𝜚(𝜁) is a regular function, in which 

𝜉𝑖  =  
ℎ𝑖

1−𝑛𝑖𝜁
, 𝑖 =  1, 2                                    (4.9) 

where 

ℎ𝑖  =  
(𝛼 + 𝛽𝑛𝑖 + 𝛾𝑛𝑖

2 + 𝜂𝑛𝑖
3)(1 − 𝑛𝑖 𝑛𝑗)

2
 (1 − 𝑛𝑖

2)
2

χ𝑖(𝑛𝑖 − 𝑛𝑗 )
, {𝑖, 𝑗} =  {1, 2}, 𝑖 ≠ 𝑗,            (4.10) 

𝜒𝑖  =  (1 − 𝑛𝑖𝑛𝑗) (1 −  𝑛𝑖
2) (2𝛼𝑛𝑖

2  +  𝛽𝑛𝑖  −  
𝜂

𝑛𝑖
) − 

(α +  β𝑛𝑖
2  +  γ𝑛𝑖  +  η)(2𝑛𝑖

2𝑛𝑗  −  𝑛𝑖  −  𝑛𝑗),                       (4.11) 

and 

𝛼 =  𝐴𝑛1𝑛2, 𝛽 =  −𝐴(𝑛1  +  𝑛2)  + 𝑛1𝑛2𝐵 −  𝑛2𝐶 − 𝑛1𝐷, 

𝛾 =  𝐴 −  (𝑛1  + 𝑛2)𝐵 +  𝐶 +  𝐷, 𝜂 =  𝐵.                       (4.12) 

Using Eqs (4.8), (2.4) and (2.5) in Eq (1.2), we get 
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𝜅Φ(𝜁, 𝑡)  − (𝜉1  +  𝜉2)
𝜕Φ(𝜁,𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝜁
 −  Ψ∗(𝜁, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =  𝑓∗(𝜁, 𝑡),                   (4.13) 

where 

Ψ∗(𝜁, 𝑡)  =  Ψ(𝜁, 𝑡)  + 𝜚(𝜁)̅̅ ̅̅ ̅̅  
𝜕Φ(𝜁,𝑡)

𝜕𝜁
,                          (4.14) 

𝑓∗(𝜁, 𝑡)  =  𝑓 (𝜁, 𝑡)  +  𝜅𝜁Γ( 𝑡)  +  
Γ∗( 𝑡)̅̅ ̅̅ ̅̅ ̅̅

𝜁
 +  (𝜉1  +  𝜉2  +  𝜚)N (𝜁, 𝑡),            (4.15) 

and 

𝑁 (𝜁, 𝑡) =  Γ( 𝑡)̅̅ ̅̅ ̅̅  −  
R𝑥(𝜁,𝑡)− 𝑖𝑅𝑦(𝜁,𝑡)

2𝜋(1 + 𝜅)
 𝜁, |𝜁|  <  1.                    (4.16) 

Equation (4.13) represents singular equations of the first and second fundamental problems that 

can be solved using Cauchy method. For this, multiply Eq (4.13) by 
1

2𝜋𝑖(𝜁−𝜎)
 and integrate it with 

respect to σ on ϖ. So, we have 

𝜅Φ(𝜁, 𝑡) − 
𝑛1ℎ1𝑏1(𝑡)

1 − 𝑛1𝜁
− 

𝑛2ℎ2𝑏2(𝑡)

1 − 𝑛2𝜁 
=  𝐴(𝜁, 𝑡)  −  𝜅𝜁𝛤(𝑡)  +

 𝑛1ℎ1𝑁 (
1

𝑛1
 ,𝑡)

1 − 𝑛1𝜁 
+

 𝑛2ℎ2𝑁 (
1

𝑛2
 ,𝑡)

1 − 𝑛2𝜁 
,   (4.17) 

where 

1

2𝜋𝑖
∮

𝑓 (𝜎,𝑡)

𝜁 − 𝜎 𝜛
 𝑑𝜎 =  𝐴(𝜁, 𝑡),                              (4.18) 

and 

1

2𝜋𝑖
∮

[𝜉1(𝜎) + 𝜉2(𝜎)]
𝜕𝛷(𝜎,𝑡)

𝜕𝜎

̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜁 − 𝜎𝜛
 𝑑𝜎 =  

𝑛1ℎ1𝑏1(𝑡)

1 − 𝑛1𝜁
 +  

𝑛2ℎ2𝑏2(𝑡)

1 − 𝑛2𝜁
,                 (4.19) 

where 𝑏1(𝑡) and 𝑏2(𝑡) are complex functions that will be determined, such that 𝑏1(0) = 𝑏2(0) =  0. 

Differentiate (4.17) with respect to 𝜁 and using the result of 
𝜕𝛷(ζ,𝑡)

𝜕ζ

̅̅ ̅̅ ̅̅ ̅
 in (4.19), we get 

(
𝜕𝐴(𝜁, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝜁
)

𝜁= 
1
𝑛𝑖

− 𝜅Γ(𝑡)̅̅ ̅̅ ̅̅ +
𝑛𝑖

2ℎ𝑖𝑁 (
1
𝑛𝑖

 , 𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(1 − 𝑛𝑖
2)2

+

𝑛𝑗
2 ℎ𝑗𝑁 (

1
𝑛𝑗

, 𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(1 − 𝑛𝑖𝑛𝑗)
2 +

𝑛𝑖
2ℎ𝑖𝑏𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(1 − 𝑛𝑖
2)2

+
𝑛𝑗

2ℎ𝑗𝑏𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(1 − 𝑛𝑖𝑛𝑗)
2 = 𝑘𝑏𝑖(𝑡), 

{𝑖, 𝑗} =  {1, 2}, 𝑖 ≠  𝑗.                               (4.20) 

Solving for 𝑏𝑖(𝑡)  and 𝑏𝑖(𝑡)̅̅ ̅̅ ̅̅  , 𝑖 =  {1, 2} , then substitute the results in (4.19), so that Φ(𝜁, 𝑡)  is 

completely determined. The second Gaursat function can be obtained where 

Ψ(𝜁, 𝑡)  =  𝜅Φ(𝜁, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅  −  (𝜉1 +  𝜉2 +  𝜚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
𝜕Φ(𝜁,𝑡)

𝜕𝜁
 −  𝑓∗(𝜁, 𝑡),            (4.21) 

Equations (4.17) and (4.21) represent the Gaursat functions. After obtaining it, the stresses components 

of Eqs (2.5) and (2.6) can be determined. 
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5. Applications 

In this section, the numerical results and tables were computed using Maple 2022.1 software, 

Version 15, March 2022, Windows, 10, 8 G RAM, 64-bi. 

(5.i) The first fundamental problem for an infinite plate under the effect of uniform tensile stresses: 

Assume an elastic plate of thickness h and having two holes such that the components of the resultant 

external forces 𝑋(𝑥, 𝑡) = 𝑌(𝑦, 𝑡) = 0, (∀𝑡 ∈ [0,1), 𝜅 = −1.  Assume stresses tensile Γ(𝑡) =
𝑃(𝑡)

4
 

and Γ∗(𝑡) =  − 
𝑃 (𝑡)

2
 𝑒−2𝑖𝜃 , where 𝑃(𝑡) =  

 1+𝑡

4(1−𝑡)
, 𝑡 < 1, 𝜃 =  

𝜋

4
 and the known function of 

stress𝑓 (𝑧, 𝑡) =  0. Under the above assumptions, we have the first fundamental problem in the absence 

of the stress function 𝑓(𝑧, 𝑡) = 0. In this case, the problem represents an infinite plate stretched at 

infinity by the application of uniform tensile stress of intensity 𝑃 (𝑡) making an angle 𝜃 with the x-

axis. The plate is weakened by curvilinear holes which are free from stresses. The following 

Figures 14–19 represent the stress components with a time variant where n1  =  0.1 and n2  =  0.6 

in Eq (2.2). 

 

Figure 14. Stress components where 𝑡 = 0.1. 

 

Figure 15. Stress components where 𝑡 = 0.3. 
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Figure 16. Stress components where 𝑡 = 0.5. 

 

Figure 17. Stress components where 𝑡 = 0.7. 

 

Figure 18. Stress components where 𝑡 = 0.8. 
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Figure 19. Stress components where 𝑡 = 0.9. 

(5.ii) For 𝜅 = −1, X(x, t) = Y(y, t) = Γ(t) = Γ∗(𝑡) = 0, 𝑓(𝑧, 𝑡) = 𝑧𝑃(𝑡)  and 𝑃(𝑡) =
1+𝑡

4(1−𝑡)
, 

𝑡 < 1, we have the first fundamental problem and the stress function 𝑓(𝑧, 𝑡) takes the variable form 

in position and time and the pressure is variable in time only. In this case, we have an infinite plate 

that is weakened by curvilinear holes, when there are no external forces and the edges of holes are 

subject to a uniform pressure. The stress ratio 
𝜎𝑥𝑥

𝜎𝑦𝑦
, is shown by the following Figures 20 and 21 for 

variant 𝑡 and θ. 

 

Figure 20. Stress ratio where n1  =  0.4, n2  = 0.1. 
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Figure 21. Stress ratio where n1  =  0.6, n2  = 0.1. 

(5.iii) When increasing κ =
𝜆+3𝜇

𝜆+𝜇
> 1, 𝜆 and 𝜇 are called Lame's constants, and for different 

materials with fixed time, 𝑡 =  0.3, in the presence of external forces 𝑋 = 900 unit, 𝑌 = 750 unit 

and 𝛤(𝑡)  =  𝛤∗(𝑡)  =  𝑓 (𝑧, 𝑡) =  0, we have the second fundamental problem in the absence of strain 

function. In this case, the absolute values of Gaursat functions at time 𝑡 = 0.3 are shown by Table 1. 

Table 1. |Φ(𝜁, 0.3)|  and |Ψ(𝜁, 0.3)|  where 𝑋 =  900 𝑢𝑛𝑖𝑡, 𝑌 =  750 𝑢𝑛𝑖𝑡, Γ =
Γ∗  = 0, 𝑛1  =  0.6, 𝑛2  =  0.1, 𝐴 =  5.00, 𝐵 =  1.00, 𝐶 =  0.24  and 𝐷 =  −5.443 

where |. | = √𝑅𝑒2(. ) + 𝐼𝑚2(. ). 

Material name 𝐸 (𝐺𝑃𝑎) 𝜈 𝜅 𝜃 |Φ| |Ψ| 

Lead 13-15 0.44 1.239 

0 

22/35 

66/35 

22/7 

22/5 

198/35 

44/7 

26.97980821 

17.93291537 

9.943618450 

8.696292743 

10.08031449 

18.22009620 

26.97858407 

19.39650117 

90.33109568 

148.4923859 

41.73803367 

146.3944312 

124.3672333 

19.26310140 

Copper 121-130 0.35 1.64 

0 

22/35 

66/35 

22/7 

22/5 

198/35 

44/7 

17.13329406 

11.41190680 

6.335287463 

5.533946715 

6.402571164 

11.55685907 

17.13265384 

16.57564982 

79.52754127 

126.0476143 

35.40707464 

124.8312640 

101.2446494 

16.49154699 

Iron 204-212 0.3 1.8 

0 

22/35 

66/35 

22/7 

22/5 

198/35 

44/7 

14.68592663 

9.787359429 

5.434980103 

4.745875368 

5.487971518 

9.902615855 

14.68541084 

15.65936561 

75.76579721 

118.8661378 

33.38591745 

117.8636508 

94.38228069 

15.58745606 
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(5.iv) Taking the iron material, 𝜅 = 1.8, in the presence of external forces 𝑋(𝑧, 𝑡) = 900𝑒𝑡, 

𝑌 (𝑧, 𝑡) =  750𝑒𝑡  and Γ =  Γ∗  =  𝑓 =  0 .The application describes the second fundamental 

problem when the external forces are variable in time, while the tensions Γ, Γ∗ 𝑎𝑛𝑑 the strain function 

𝑓(z,t) are absent, for all values of time. The absolute values of Gaursat functions with time variant are 

shown by Table 2. 

Table 2. |Φ(𝜁, 𝑡)|  and |Ψ(𝜁, 𝑡)|  where 𝑋 =  900𝑒𝑡 , 𝑌 =  750𝑒𝑡 , Γ = Γ∗ = 0, 𝑛 =

0.3, 𝐵 = 1, 𝐴 =  𝑛𝐵, 𝐶 −  𝐴𝑛 =  0.7 and 𝜅 =  1.8. 

𝑡 𝛩 |Φ(𝜁, 𝑡)| |Ψ(𝜁, 𝑡)| 

0.007 

0 

22/35 

66/35 

22/7 

22/5 

198/35 

44/7 

14.78839018 

9.855645727 

5.472899900 

4.778987287 

5.526261035 

9.971706292 

14.78787078 

15.76862084 

76.29441435 

119.6954655 

33.61885064 

118.6859842 

95.04078480 

15.69620957 

0.07 

0 

22/35 

66/35 

22/7 

22/5 

198/35 

44/7 

15.74333793 

10.49206569 

5.826307769 

5.087586339 

5.883114656 

10.61562077 

15.74278500 

16.78686616 

81.22106147 

127.4246988 

35.78975941 

126.3500310 

101.1779628 

16.70977899 

0.7 

0 

22/35 

66/35 

22/7 

22/5 

198/35 

44/7 

29.43445432 

19.61643901 

10.89312766 

9.511980772 

10.99933638 

19.84744316 

22.84416758 

31.38548174 

151.8545580 

238.2389611 

66.91414762 

236.2297138 

189.1668806 

31.24135608 

6. Discussion and conclusions 

From the above results and discussion we can establish the following: 

(1) The transformation mapping of two holes 𝑧 =  𝑤(𝜁) =  𝐴 +
𝐵

𝜁
+

Cζ

1−𝑛1𝜁
+

Dζ

1−𝑛2𝜁
,  |𝜁| < 1 

transforms the curvilinear two holes into the domain inside the unit circle under the conditions 𝑤(0),

𝑤 (
1

𝑛1
) , 𝑤 (

1

𝑛2
) ≠ 0. 

(2) The engineering benefit of using the mapping transform function comes from its various forms 

when handling holes. This mapping function deals with famous shapes of tunnels and studying stresses 

around it, see Exadaktylos et al. [5, 17]. 

(3) The positive values of stresses means that they act as a tension forces, while its negative values 

means the stresses act as a pressure forces. 

(4) From Figures 14–19, we deduce that 𝑚𝑎𝑥 𝜎𝑥𝑥 = −𝑚𝑖𝑛𝜎𝑦𝑦 and stress components increase with 

time. 
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(5) When the vertical stress on the 𝑦 − axis takes its maximum value and displays the treatments of 

the internal resistance of the body (such as rocks for example), while the vertical stress, on the 𝑥 −
axis, is small according to the 𝑦 − axis. At this point, it is best to treat the problem in points determined 

by the angles that give 
𝜎𝑥𝑥

𝜎𝑦𝑦
 to its minimum values in a certain time, see Figures 20 and 21. 

(6) Time effect: Figure 22, illustrates the stresses by varying the time for arbitrary value of θ. In this 

situation we infer that the stresses rapidly rise with time and that the maximum time must be lower 

than one unit. 

 

Figure 22. Stresses components with time effect where n1  =  0.6, n2  = 0.1, 𝜃 =
3𝜋

8
. 

Among the difficulties that we faced while conducting this research, include the following: 

(1) How to obtain Gaursat functions in the presence of a magnetic field. We have set this research as a 

future study. 

(2) We believe that there are a lot of applications in real life beside crack problems in tunnels or caves. 

In biomathematics, they can be used to treat leaf holes caused by pests and to protect plants. Therefore, 

as a future study, we can use Gaursat functions as a mathematical model for healing and treating burns 

and wounds. 
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