Research article

A study on the existence of numerical and analytical solutions for fractional integrodifferential equations in Hilfer type with simulation

Reny George ${ }^{1,2}$, Seher Melike Aydogan ${ }^{3, *}$, Fethiye Muge Sakar ${ }^{4, *}$, Mehran Ghaderi ${ }^{5}$ and Shahram Rezapour ${ }^{5,6,7, *}$
${ }^{1}$ Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
${ }^{2}$ Department of Mathematics and Computer Science, St. Thomas College, Bhilai, Chhattisgarth 49006, India
${ }^{3}$ Department of Mathematics, Istanbul Technical University, Istanbul, Turkey
${ }^{4}$ Department of Management, Dicle University, Diyarbakir, Turkey
${ }^{5}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
${ }^{6}$ Department of Mathematics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
${ }^{7}$ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

* Correspondence: Email: aydogansm@itu.edu.tr, mugesakar@hotmail.com, rezapourshahram@yahoo.ca.

Abstract

Previous studies have shown that fractional derivative operators have become an integral part of modeling natural and physical phenomena. During the progress and evolution of these operators, it has become clear to researchers that each of these operators has special capacities for investigating phenomena in engineering sciences, physics, biological mathematics, etc. Fixed point theory and its famous contractions have always served as useful tools in these studies. In this regard, in this work, we considered the Hilfer-type fractional operator to study the proposed integrodifferential equation. We have used the capabilities of measure theory and fixed point techniques to provide the required space to guarantee the existence of the solution. The Schauder and Arzela-Ascoli theorems play a fundamental role in the existence of solutions. Finally, we provided two examples with some graphical and numerical simulation to make our results more objective.

Keywords: fractional integrodifferential equation; Hilfer derivative; fixed point; generalized Riemann-Liouville fractional derivative
Mathematics Subject Classification: 34A08, 34A12

1. Introduction

Today, the use of fractional calculus in modeling natural phenomena has caused significant growth and has been to the attention of researchers in various fields of engineering [1], mathematics [2,3], physics [4,5]. As one of the most prominent features of fractional operators, we can mention their non-locality. Based on the available results and evidence, modeling by ordinary calculus is not capable of describing the real behavior of phenomena and is often associated with the error of estimating the phenomenon [6]. Researchers in the fields of science and engineering have different approaches to the non-local character of fractional calculus. Physicists' approach to this issue led to interesting modeling for physical phenomena such as heat flow, hereditary polarization in dielectrics, viscoelasticity and so on [7]. Such phenomena were modeled with equations which are influenced by the past values of one or more variables and were called equation with memory in the literature. On the other hand, we know that the history of mathematics has always been associated with the generalization of different concepts, so it is worth mentioning that during the entry of fractional calculus into various fields of science, some researchers took steps willingly in the field of generalization and introduction of new fractional operators. We can refer to the fractional operators of Riemann-Liouville (RL), Caputo, Atangana-Baleanu (AB), Hadamard, fractal fractional, Caputo-Fabrizio, Hilfer, fractional q-derivative, etc. To get information about some of the works done on the mentioned operators, the reader can refer to references [8-15]. Certainly, the developments that directly lead to the improvement of human life are investigated more. As an example, the efforts that have been made recently in the field of modeling can be mentioned as follows. In Biomath: COVID-19 [16-18], Mump Virus [19], hepatitis B [20, 21], human liver [22], an immunogenetic tumor model [23]. In thermodynamics and physics, we can refer to [24-34].

In 2000, Rudolf Hilfer published a book titled Applications of Fractional Calculus in Physics and presented a new definition of fractional derivative [3]. In this book, he called his new fractional operator Right-Sided (Left-Sided) Generalized RL derivative. This new derivative, which was often called from the fractional order $\xi \in(0,1)$ and $v \in[0,1]$ type, and represented by $\mathfrak{D}^{\xi, v}$, was fractional operator between the Riemann-Liouville ($v=0$), and Caputo ($v=1$) operators. However, this type of operator quickly attracted the attention of researchers and is often referred to as Hilfer fractional derivative. In 2016, Rafal Kamocki presented a new formula of this type of derivative [35]. For more information about this fractional operator see [36-38]. In the last half century, Sectorial operators have been widely investigated. In 2002, Francisco Periago and Straub constructed functional calculus for Almost Sectorial Operators (ASO) [39]. In addition to formulating the analysis of these operators, they also described its applications in solving differential equations. After that, several articles were published focusing on providing mild solutions for fractional differential equations using ASO [40-43].

In 2012 [38], Furati et al. studied the following initial value problem

$$
\left\{\begin{array}{l}
\mathfrak{D}^{\xi, \nu} \mathcal{P}(\ell)=\mathscr{F}(\ell, \wp), \\
I^{1-\ell_{\mathcal{P}}\left(k^{+}\right)=\wp_{k},}
\end{array}\right.
$$

where $\mathfrak{D}^{\xi, v}$ is the Hilfer derivative, $\ell>k, \xi \in(0,1), v \in[0,1], \lambda=\xi+v-\xi v$, and $I^{1-\lambda}$ is RiemannLiouville integral of fraction order $1-\lambda$.

In 2013 [42], Fang Li, investigated the existence of mild solution to the following problem

$$
\left\{\begin{array}{l}
c \mathfrak{D}^{\xi} \wp(\ell)=\mathcal{A} \wp(\ell)+\mathscr{F}\left(\ell, \wp(\ell), \wp_{\ell}\right), \ell \in[0, \mathcal{L}], \\
\wp_{0}=\phi \in \Phi,
\end{array}\right.
$$

such that ${ }^{c} \mathfrak{D}^{\xi}$ is the Caputo derivative, $\xi \in(0,1), \mathcal{A}$ is an ASO, and $\wp_{\ell}(x)=\wp(\ell+x)$ for $x \in(-\infty, 0]$.
In 2015 [39], Gu and Trujillo, examined the existence of mild solution for the following evolution problem

$$
\left\{\begin{array}{l}
\mathfrak{D}^{\xi, v} \wp(\ell)=G \wp(\ell)+\mathscr{F}(\ell, \wp(\ell)), \ell \in[0, \mathcal{L}], \\
I^{(1-\xi)(1-\nu)} \wp(0)=\wp_{0},
\end{array}\right.
$$

which $\mathfrak{D}^{\xi, v}$ is Hilfer fractional derivative of order $\xi \in[0,1], v \in(0,1), G$ is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators in Banach space \mathscr{H}, and $\wp_{0} \in \mathscr{H}$.

In this work, with motivation from the history mentioned above and previous works, especially [42] and [39], we intend to prepare suitable space for the existence of mild solution for the following fractional problem

$$
\left\{\begin{array}{l}
\mathfrak{D}^{\xi, \nu} \wp(\ell)+\mathcal{A} \wp(\ell)=\mathscr{F}\left(\ell, \wp(\ell), \wp^{\prime}(\ell), \int_{0}^{\ell} \varsigma(\ell, s) \vartheta\left(s, \wp(s), \wp^{\prime}(s)\right) d s\right), \ell \in(0, L]=\mathcal{L}, \tag{1.1}\\
I^{(1-\xi)(1-v)} \wp(0)=\wp_{0},
\end{array}\right.
$$

where $\mathfrak{D}^{\xi, v}$ is Hilfer fractional derivative of order $\xi \in(0,1), v \in[0,1], \mathcal{A}$ is an ASO in the Banach space \mathscr{H} having norm $\|\cdot\|, \mathscr{F}: \mathcal{J} \times \mathscr{H} \times \mathscr{H} \rightarrow \mathscr{H}$ is a function that will be defined later, $I^{(1-\xi)(1-v)}$ is Riemann-Liouville integral of order $(1-\xi)(1-v)$, and $\wp_{0} \in \mathscr{H}$. Here, for the uniqueness of the solution, it is necessary to consider an initial condition according to the fractional order $\xi \in(0,1)$. We have considered to be non-zero so that the initial condition is not independent of the type of fractional derivative. Also, inspired by Podlubny and Heymans's approach to the physical interpretation of the initial condition [44], that is, the concept of "inseparable twins", the two sides of the initial condition indicate the relationship between two functions that are related to the basic laws of physics. Note that the fractional integral $I^{(1-\xi)(1-\nu)} \wp(0)=\wp_{0}$, remains conserved and constant while ξ, v varies.

2. Preliminaries

Definition 2.1. [10] The Riemann-Liouville fractional integral of order $\xi>0$, defined by

$$
I^{\xi} \wp(\ell)=\frac{1}{\Gamma(\xi)} \int_{0}^{\ell}(\ell-r)^{\xi-1} \wp(r) d r
$$

such that $\wp:[0, \infty) \rightarrow \mathbb{R}$, and the right side of integral exists.
Definition 2.2. [10] Let $0<\xi<1$, then the Riemann-Liouville and Caputo fractional derivatives of order ξ, for a function \wp, are defined as follows respectively

$$
\mathfrak{D}^{\xi} \wp(\ell)=\frac{1}{\Gamma(1-\xi)} \frac{d}{d \ell} \int_{0}^{\ell} \frac{\wp(r)}{(\ell-r)^{\xi}} d r,
$$

and

$$
{ }^{c} \mathfrak{D}^{\xi} \wp(\ell)=\frac{1}{\Gamma(1-\xi)} \int_{0}^{\ell} \frac{f^{\prime}(r)}{(\ell-r)^{\xi}} d r .
$$

Definition 2.3. [3] Rudolf Hilfer proposed a generalization of the Riemann-Liouville and Caputo fraction derivative of order $0<\xi<1$ and type v which reads as follows

$$
\mathfrak{D}^{\xi, \nu} \wp(\ell)=I^{v(1-\xi)} \frac{d}{d \ell} I^{1-\nu(1-\xi)} \wp(\ell) .
$$

Here, we recall two important examples of the measure of noncompactness, namely Hausdorff and Kuratowski.

Definition 2.4. [45] Assume that \mathscr{G} be a bounded subset of \mathscr{H}, then the Hausdorff and Kuratowski measure of noncompactness are defined as follows, respectively

$$
\boldsymbol{\mu}(\mathscr{G})=\inf \left\{\mathfrak{q}>0: \quad \mathscr{G} \subset \bigcup_{i=1}^{z} \mathcal{B}_{\mathfrak{q}}\left(h_{i}\right) \quad \text { and } \quad h_{i} \in \mathscr{H}\right\},
$$

and

$$
\mu^{*}(\mathscr{G})=\inf \left\{\mathfrak{q}>0: \quad \mathscr{G} \subset \bigcup_{i=1}^{z} \mathcal{M}_{i} \quad \text { and } \quad \sup \left\{\|m-n\|: m, n \in \mathcal{M}_{i}\right\} \leq \mathfrak{q}\right\},
$$

such that $\mathcal{B}_{\mathrm{q}}\left(h_{i}\right)$ represents the balls with centers h_{i} and radius $\leq \mathfrak{q}$. The reader can see these two measures enjoy some properties in [45-48].

Definition 2.5. [48] Let \mathcal{G} be a subset of the Banach space $\mathcal{C}(\mathcal{L}, \mathscr{H})$ and $\mathcal{G}(r)=\{g(r) \in \mathscr{H}: g \in \mathcal{G}\}$, then we define

$$
\int_{0}^{\ell} \mathcal{G}(r) d r=\left\{\int_{0}^{\ell} g(r) d r: g \in \mathcal{G}\right\}, \ell \in \mathcal{L} .
$$

Definition 2.6. [40] Assume that $-1<\mathfrak{a}<0$ and $0<\kappa<\frac{\pi}{2}$, then we define a closed linear operator $\mathcal{A}: \mathcal{D}(\mathcal{A}) \subset \mathscr{H} \rightarrow \mathscr{H}$, and we represent the family of these operators by $\Psi_{\kappa}^{\mathrm{a}}$, such that following statement are hold true:

- $\sigma(\mathcal{A}) \subset \mathcal{S}_{\kappa}$, which $\sigma(\mathcal{A})$ is the specturm of \mathcal{A} and $\mathcal{S}_{\kappa}=\{z \in \mathbb{C}-\{0\}:|\arg z| \leq \boldsymbol{\kappa}\} \cup\{0\}$.
$\bullet \forall \lambda \in(\kappa, \pi)$, there exist positive constant $\mathfrak{b}_{\boldsymbol{\lambda}}$ which

$$
\left\|(z-\mathcal{A})^{-1}\right\| \leq \mathrm{b}_{\lambda}|z|^{\mathrm{a}}, \quad \forall z \notin \mathcal{S}_{\kappa} .
$$

Then the operator \mathcal{A} is called an almost sectorial operator (ASO).
Definition 2.7. [40] Suppose that $\mathcal{A} \in \Psi_{\kappa}^{a}$, then we define the semigroup $\{\mathcal{T}(\ell)\}_{\ell \geq 0}$ associated with \mathcal{A}, as follows

$$
\mathcal{T}(\ell)=e^{-\ell z}(\mathcal{A})=\frac{1}{2 \pi i} \int_{\Gamma_{\mu}} e^{-\ell z}(z-\mathcal{A})^{-1} d z, \ell \in \mathcal{S}_{\frac{\pi}{2}-\kappa}
$$

where $\Gamma_{\mu}=\left\{\mathbb{R}^{+} e^{i \mu}\right\} \cup\left\{\mathbb{R}^{+} e^{-i \mu}\right\}$, such that $\kappa<\mu<\frac{\pi}{2}-|\arg \ell|$.
Notation 2.1. [49] Throughout this work $\mathfrak{R}_{\xi}(z)$ denotes the following wright function

$$
\begin{equation*}
\mathfrak{R}_{\xi}(z)=\sum_{n \in \mathbb{N}} \frac{(-z)^{n-1}}{\Gamma(1-\xi n)(n-1)!}, z \in \mathbb{C}, \xi \in(0,1) \tag{2.1}
\end{equation*}
$$

Definition 2.8. Let $\mathfrak{R}_{\xi}(z)$ is the same as in (2.1) and $\ell \in \mathcal{S}_{\frac{\pi}{2}-\kappa}$, then we define the following two operator

$$
\begin{align*}
\mathcal{U}_{\xi}(\ell) & =\int_{0}^{\infty} \mathfrak{R}_{\xi}(z) \mathcal{T}\left(\ell^{\xi} z\right) d z \tag{2.2}\\
\mathcal{V}_{\xi}(\ell) & =\int_{0}^{\infty} \xi z \mathfrak{R}_{\xi}(z) \mathcal{T}\left(\ell^{\xi} z\right) d z \tag{2.3}
\end{align*}
$$

Remark 2.1. [50] The operators defined in (2.2) and (2.3) are linear, bounded and also $\forall \ell \in \mathcal{S}_{\frac{\pi}{2}-\kappa}$ the following inequalities hold true

$$
\left|\mathcal{U}_{\xi}(\ell)\right| \leq j_{1} \ell^{-\xi(1+a)}
$$

and

$$
\left|\mathcal{V}_{\xi}(\ell)\right| \leq j_{2} \ell^{-\xi(1+a)}
$$

such that j_{1}, j_{2} are constant.
Lemma 2.1. [51] The problem mentioned in (1.1), is equivalent to the following equation

$$
\begin{align*}
\wp(\ell) & =\frac{\wp_{0}}{\Gamma(v(1-\xi)+\xi)} \ell^{(1-\xi)(v-1)} \tag{2.4}\\
& +\frac{1}{\Gamma(\xi)} \int_{0}^{\ell}(\ell-s)^{\xi-1}\left[\mathscr{F}\left(\ell, \wp(\ell), \wp^{\prime}(\ell), \int_{0}^{\ell} \varsigma(\ell, s) \vartheta\left(s, \wp(s), \wp^{\prime}(s)\right)\right)-\mathscr{E} \wp(s)\right] d s, \quad \ell \in \mathcal{L} .
\end{align*}
$$

For simplicity in writing, we set $\hbar(\ell)=\int_{0}^{\ell} \varsigma(\ell, s) \vartheta\left(s, \wp(s), \wp^{\prime}(s)\right)$, which $\hbar(\ell)$ is a function in terms of variable ℓ.

Lemma 2.2. [51] If $\wp(\ell)$ satisfied in (2.4), then we have

$$
\begin{equation*}
\wp(\ell)=\mathcal{U}_{\xi, v}(\ell) \wp_{0}+\int_{0}^{\ell} \mathcal{V}_{\xi}^{*}(\ell-s) \mathscr{F}\left(\ell, \wp(\ell), \wp^{\prime}(\ell), \hbar(s)\right) d s \tag{2.5}
\end{equation*}
$$

such that $\mathcal{U}_{\xi, \nu}(\ell)=\mathcal{I}^{(1-\xi) v} \mathcal{V}_{\xi}^{*}(\ell)$ and $\mathcal{V}_{\xi}^{*}(\ell)=\ell^{\xi-1} \mathcal{V}_{\xi}(\ell)$.
Definition 2.9. The function $\wp(\ell) \in C^{1}\left(\mathcal{L}_{*}, \mathscr{H}\right)$ which satisfied in (2.5) is called a mild solution of the Eq (1.1). Now, according to the definition of mild solution, we define the operator $\partial: \mathcal{B}_{r}(\mathcal{L}) \rightarrow$ $\mathcal{B}_{r}(\mathcal{L})$ via

$$
\partial_{\wp}(\ell)=\mathcal{U}_{\xi, v}(\ell) \wp_{0}+\int_{0}^{\ell} \mathcal{V}_{\xi}(\ell-s)^{\xi-1} \mathscr{F}\left(\ell, \wp(\ell), \wp^{\prime}(\ell), \hbar(s)\right) d s
$$

where $\mathcal{B}_{r}(\mathcal{L})=\left\{\mathfrak{m} \in C^{1}(\mathcal{L}, \mathscr{H}):\|\mathfrak{m}\| \leq r\right\}$.
Theorem 2.1. [40] For each $\ell>0$, the operators $\mathcal{U}_{\xi, v}(\ell)$ and $\mathcal{V}_{\xi}(\ell)$ are linear, bounded and strongly continuous. Also these operators satisfy the following inequalities

$$
\left\|\mathcal{U}_{\xi, v}(\ell) \mathfrak{n}\right\| \leq j_{3} \frac{\Gamma(-\xi \mathfrak{a})}{\Gamma(v(1-\xi)-\xi \mathfrak{a})} \ell^{v(1-\xi)-1-\xi \mathfrak{a}}\|\mathfrak{r}\| \quad \text { and } \quad\left\|\mathcal{V}_{\xi}(\ell) \mathfrak{n}\right\| \leq j_{3} \ell^{-1-\xi \mathfrak{a}}
$$

Lemma 2.3. [52] Let $\mathcal{G} \subset C(\mathcal{L}, \mathscr{H})$ be bounded and continuous, then the following statements are hold true

- $\overline{\operatorname{co}} \mathcal{G} \subset C(\mathcal{L}, \mathscr{H})$ is bounded and equicontinuous.
- $\ell \rightarrow \boldsymbol{\mu}(\mathcal{G}(\ell))$ is continuous on \mathcal{L}, and $\forall \ell \in \mathcal{L}$, we have

$$
\mu(\mathcal{G})=\max _{\ell \in \mathcal{L}} \mu(\mathcal{G}(\ell)), \quad \mu\left(\int_{0}^{\ell} \mathcal{G}(r) d r\right) \leq \int_{0}^{\ell} \mu(\mathcal{G}(r)) d r
$$

- $\forall \epsilon>0$, there is a sequence $\left\{\wp_{k}\right\}_{k=1}^{\infty} \subset \mathcal{G}$, such that $\boldsymbol{\mu}(\mathcal{G}) \leq 2 \boldsymbol{\mu}\left(\left\{\wp_{k}\right\}_{k=1}^{\infty}\right)$.

Lemma 2.4. [53] If for a family of continuous function $\left\{\wp_{k}\right\}_{k=1}^{\infty}$, there exists $\mathfrak{f} \in L^{1}\left(\mathcal{L}, \mathbb{R}^{+}\right)$, such that $\left|\wp_{k}(\ell)\right| \leq f(\ell)$, then $\boldsymbol{\mu}\left(\left\{\wp_{k}(\ell)\right\}_{k=1}^{\infty}\right)$ is integrable on \mathcal{L}, and

$$
\boldsymbol{\mu}\left(\left\{\int_{0}^{\ell} \wp_{k}(r) d r\right\}_{k=1}^{\infty}\right) \leq 2 \int_{0}^{\ell} \boldsymbol{\mu}\left(\left\{\wp_{k}(r)\right\}_{k=1}^{\infty}\right) d r .
$$

3. Main results

In this section, first, four hypotheses are proposed, then we will deduce our main results by proving two auxiliary theorems.
$\left(\mathscr{B}_{1}\right) \forall \ell \in \mathcal{L}_{*}$, the function $\mathscr{F}(\ell, ., .,):. \mathscr{H} \times \mathscr{H} \times \mathscr{H} \rightarrow \mathscr{H}$ is continuous and $\forall \wp \in C^{1}\left(\mathcal{L}_{*}, \mathscr{H}\right)$, the function $\mathscr{F}\left(., \wp, \wp^{\prime}, \hbar\right): \mathcal{L}_{*} \rightarrow \mathscr{H}$ is strongly measurable.
$\left(\mathscr{B}_{2}\right)$ There is a function $\delta \in L^{1}\left(\mathcal{L}_{*}, \mathbb{R}^{+}\right)$which

$$
\mathcal{I}^{-a \xi} \delta \in C^{1}\left(\mathcal{L}_{*}, \mathscr{H}\right), \quad \text { and } \quad \lim \ell^{(1+a \xi)(1-\gamma)} \mathcal{I}^{-a \xi} \delta(\ell)=0
$$

$\left(\mathscr{B}_{3}\right) \forall w \in \mathcal{D}\left(\mathcal{A}^{\theta}\right), \exists \eta>0$, where

$$
\sup _{\ell \in \mathcal{L}_{*}}\left(\ell^{(1+a \xi)(1-v)}\left\|\mathcal{U}_{\xi, v}(\ell) w\right\|+\ell^{(1+a \xi)(1-v)} \int_{0}^{\ell}(\ell-s)^{-a \xi-1} \delta(s) d s\right) \leq \eta,
$$

such that $\theta>\mathfrak{a}+1$.
$\left(\mathscr{B}_{4}\right)$ Let $\left\{\wp_{k}\right\}_{k=1}^{\infty}$ be a sequence of functions such that are differentiable on \mathcal{L}, and $\exists \ell_{0} \in \mathcal{L}$, where $\left\{\wp_{k}\left(\ell_{0}\right)\right\}$ is convergent. If $\left\{\wp_{k}^{\prime}\right\}$ be uniformly convergent on \mathcal{L}, then $\left\{\wp_{k}\right\}$ is uniformly convergent to function \wp and $\lim _{k \rightarrow \infty} \wp_{k}^{\prime}(\ell)=\wp^{\prime}(\ell)$.
Theorem 3.1. Suppose that the conditions $\left(\mathscr{B}_{1}-\mathscr{B}_{3}\right)$ are hold true and $\mathcal{A} \in \Psi_{\kappa^{\prime}}^{a}$. Then the element of $\left\{\mathrm{Dm}: \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$, are equicontinuous and $\wp_{0} \in \mathcal{D}\left(\mathcal{A}^{\theta}\right)$, such that $\theta>\mathfrak{a}+1$.

Proof. Let $\mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})$ and $\ell_{1}=0<\ell_{2} \leq \mathcal{L}$, we can write

$$
\begin{aligned}
\left\|\partial \mathfrak{m}\left(\ell_{2}\right)-\partial \mathfrak{m}(0)\right\| & =\| \ell_{2}^{\left(1+\xi_{u}\right)(1-v)}\left(\mathcal{U}_{\xi, v}\left(\ell_{2}\right) \wp_{0}+\int_{0}^{\ell_{2}}\left(\ell_{2}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{2}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s) d s\right) \|\right. \\
& \leq\left\|\ell_{2}^{(1+\xi)(1-v)} \mathcal{U}_{\xi, v}\left(\ell_{2}\right) \wp_{0}\right\| \\
& +\left\|\ell_{2}^{\left(1+\xi_{a}\right)(1-v)} \int_{0}^{\ell_{2}}\left(\ell_{2}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{2}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s\right\| \rightarrow 0, \\
& \text { as } \quad \ell_{2} \rightarrow 0 .
\end{aligned}
$$

Suppose this time, $0<\ell_{1}<\ell_{2} \leq \mathcal{L}$, then

$$
\begin{aligned}
\left\|\partial \mathfrak{m}\left(\ell_{2}\right)-\partial \mathfrak{m}\left(\ell_{1}\right)\right\| & =\left\|\ell_{2}{ }^{(1+\xi \mathrm{qu})(1-v)} \mathcal{U}_{\xi, v}\left(\ell_{2}\right) \wp_{0}-\ell_{1}{ }^{(1+\xi \mathrm{qu})(1-v)} \mathcal{U}_{\xi, v}\left(\ell_{1}\right) \wp_{0}\right\| \\
& +\| \ell_{2}^{(1+\xi \mathrm{qu})(1-v)} \int_{0}^{\ell_{2}}\left(\ell_{2}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{2}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s \\
& -\ell_{1}^{(1+\xi \mathrm{qu})(1-v)} \int_{0}^{\ell_{1}}\left(\ell_{1}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{1}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s \| .
\end{aligned}
$$

In view of the triangle inequality, we get

$$
\begin{aligned}
& \left\|\operatorname{Dr}\left(\ell_{2}\right)-\operatorname{Dm}\left(\ell_{1}\right)\right\|=\left\|\ell_{2}{ }^{(1+\xi \mathrm{qu}(1-v)} \mathcal{U}_{\xi, v}\left(\ell_{2}\right) \wp_{0}-\ell_{1}{ }^{(1+\xi \mathrm{qu}(1-v)} \mathcal{U}_{\xi, v}\left(\ell_{1}\right) \wp_{0}\right\| \\
& +\left\|\ell_{2}^{(1+\xi a)(1-\nu)} \int_{0}^{\ell_{2}}\left(\ell_{2}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{2}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s\right\| \\
& +\| \ell_{2}^{(1+\xi \mathrm{a})(1-v)} \int_{0}^{\ell_{2}}\left(\ell_{2}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{2}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s \\
& -\ell_{1}^{(1+\xi)(1-v)} \int_{0}^{\ell_{1}}\left(\ell_{1}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{2}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s \| \\
& +\| \ell_{1}^{(1+\xi \mathrm{a})(1-\nu)} \int_{0}^{\ell_{1}}\left(\ell_{1}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{2}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s \\
& -\ell_{1}^{(1+\xi \mathrm{a})(1-\nu)} \int_{0}^{\ell_{1}}\left(\ell_{1}-s\right)^{\xi-1} \mathcal{V}_{\xi}\left(\ell_{1}-s\right) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s \| \\
& :=b_{1}+b_{2}+b_{3}+b_{4} .
\end{aligned}
$$

Since according to Theorem 2.1, $\mathcal{U}_{\xi, \nu}(\ell)$ is strongly continuous, we conclude that $\mathrm{b}_{1} \rightarrow 0$, as $\ell_{2} \rightarrow \ell_{1}$. Now, about \mathfrak{b}_{2}, we have

$$
\begin{aligned}
\mathfrak{b}_{2} & \leq j_{3} \ell_{2}^{(1+\xi \mathrm{a})(1-v)} \int_{\ell_{1}}^{\ell_{2}}\left(\ell_{2}-s\right)^{-1-\xi \mathrm{\xi}} \delta(s) d s \\
& \leq j_{3}\left|\int_{0}^{\ell_{2}}\left(\ell_{2}-s\right)^{-1-\xi_{\mathrm{a}}} \delta(s) d s-\ell_{2}^{(1+\xi \mathrm{\xi a})(1-v)} \int_{0}^{\ell_{1}}\left(\ell_{1}-s\right)^{-1-\xi \mathrm{\xi}} \delta(s) d s\right| \\
& \leq j_{3} \int_{0}^{\ell_{1}} \mid \ell_{1}^{(1+\xi \mathrm{\xi})(1-\nu)}\left(\ell_{1}-s\right)^{-1-\xi \mathrm{a}}-\ell_{2}^{(1+\xi \mathrm{\xi a}(1-\nu)}\left(\ell_{2}-s\right)^{-1-\xi \xi_{a}} \delta(s) d s,
\end{aligned}
$$

Now, according to the dominated convergence theorem (DCT) and condition \mathscr{B}_{2}, we obtain $\mathfrak{b}_{2} \rightarrow 0$ as $\ell_{2} \rightarrow \ell_{1}$. For \mathfrak{b}_{3}, we have

$$
\mathfrak{b}_{3} \leq j_{3} \int_{0}^{\ell_{1}}\left(\ell_{2}-s\right)^{-\xi-\xi_{a}}\left|\ell_{2}^{(1+\xi \mathrm{\xi})(1-v)}\left(\ell_{2}-s\right)^{\xi-1}-\ell_{1}^{(1+\xi \mathrm{\xi})(1-v)}\left(\ell_{1}-s\right)^{\xi-1}\right| \delta(s) d s
$$

where

$$
\begin{aligned}
& \left(\ell_{2}-s\right)^{-\xi-\xi \cdot \xi^{a}}\left|\ell_{2}^{\left(1+\xi_{u}\right)(1-v)}\left(\ell_{2}-s\right)^{\xi-1}-\ell_{1}^{\left(1+\xi_{a}\right)(1-v)}\left(\ell_{1}-s\right)^{\xi-1}\right| \delta(s) d s \\
& \leq \ell_{2}^{\left(1+\xi^{a}\right)(1-v)}\left(\ell_{2}-s\right)^{\xi-1} \delta(s)+\ell_{1}^{\left(1+\xi^{a}\right)(1-v)}\left(\ell_{1}-s\right)^{\xi-1} \delta(s)
\end{aligned}
$$

$$
\leq 2 \ell_{1}^{(1+\xi)(1-\nu)}\left(\ell_{1}-s\right)^{\xi-1} \delta(s)
$$

but $\int_{0}^{\ell_{1}} \leq 2 \ell_{1}^{(1+\xi q)(1-\gamma)}\left(\ell_{1}-s\right)^{\xi-1} \delta(s)$ exist, namely, $\mathfrak{b}_{3} \rightarrow 0$, as $\ell_{2} \rightarrow \ell_{1}$. Finally, $\forall \epsilon>0$, for \mathfrak{b}_{4}, we can write

$$
\begin{aligned}
& \mathfrak{b}_{4}=\left\|\int_{0}^{\ell_{1}} \ell_{1}^{(1+\xi \mathrm{a})(1-v)}\left[\mathcal{V}_{\xi}\left(\ell_{2}-s\right)-\mathcal{V}_{\xi}\left(\ell_{1}-s\right)\right]\left(\ell_{1}-s\right)^{\xi-1} \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s\right\| \\
& \leq \int_{0}^{\ell_{1}-\epsilon} \ell_{1}^{(1+\xi q)(1-v)}\left\|\mathcal{V}_{\xi}\left(\ell_{2}-s\right)-\mathcal{V}_{\xi}\left(\ell_{1}-s\right)\right\|\left(\ell_{1}-s\right)^{\xi-1} \delta(s) \\
& +\int_{\ell_{1}-\epsilon}^{\ell_{1}} \ell_{1}^{(1+\xi \mathrm{Ga})(1-\gamma)}\left\|\mathcal{V}_{\xi}\left(\ell_{2}-s\right)-\mathcal{V}_{\xi}\left(\ell_{1}-s\right)\right\|\left(\ell_{1}-s\right)^{\xi-1} \delta(s) \\
& \leq \ell_{1}^{(1+\xi \mathrm{an})(1-v)} \int_{0}^{\ell_{1}}\left(\ell_{1}-s\right)^{\xi-1} \delta(s) d s \sup _{s \in\left[0, \ell_{1}-\epsilon\right]}\left\|\mathcal{V}_{\xi}\left(\ell_{2}-s\right)-\mathcal{V}_{\xi}\left(\ell_{1}-s\right)\right\| \\
& +j_{3} \int_{\ell_{1}-\epsilon}^{\ell_{1}} \ell_{1}^{(1+\xi \mathrm{a})(1-v)}\left(\left(\ell_{2}-s\right)^{-\xi-\xi \mathrm{q}}+\left(\ell_{1}-s\right)^{-\xi-\xi \mathrm{q}}\right)\left(\ell_{1}-s\right)^{\xi-1} \delta(s) d s \\
& \leq \ell_{1}^{(1+\xi \mathrm{a})(1-v)+\xi(1+\mathrm{a})} \int_{0}^{\ell_{1}}\left(\ell_{1}-s\right)^{-1-\xi \mathrm{g}} \delta(s) d s \sup _{s \in\left[0, \ell_{1}-\epsilon\right]}\left\|\mathcal{V}_{\xi}\left(\ell_{2}-s\right)-\mathcal{V}_{\xi}\left(\ell_{1}-s\right)\right\| \\
& +2 j_{3} \int_{\ell_{1}-\epsilon}^{\ell_{1}} \ell_{1}^{\left(1+\xi_{\mathrm{a}}\right)(1-v)}\left(\ell_{1}-s\right)^{-1-\xi_{\mathrm{a}}} \delta(s) d s .
\end{aligned}
$$

It follows from the uniformly continuity of the $\mathcal{V}_{\xi}(\ell)$ and $\lim _{\ell_{2} \rightarrow \ell_{1}} \mathfrak{b}_{2}=0$, that $\mathfrak{b}_{4} \rightarrow 0$, as $\ell_{2} \rightarrow \ell_{1}$. And this means the independence of $\mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})$. Therefore, $\left\|\operatorname{Dr}\left(\ell_{2}\right)-\operatorname{Dr}\left(\ell_{1}\right)\right\| \rightarrow 0$, as $\ell_{2} \rightarrow \ell_{1}$. Thus, $\left\{\supseteq \mathfrak{m}: \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ is equicontinuous.

Theorem 3.2. Suppose that the conditions $\left(\mathscr{B}_{1}-\mathscr{B}_{4}\right)$ are hold true and $\mathcal{A} \in \Psi_{\kappa^{n}}$. Then the element of $\left\{\mathrm{Dm}: \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$, are continuous, bounded and $\wp_{0} \in \mathcal{D}\left(\mathcal{A}^{\theta}\right)$, such that $\theta>\mathfrak{a}+1$.

Proof. We shall show that ∂ is a self-mapping on $\mathcal{B}_{r}(\mathcal{L})$. To achieve this, we choose $\mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})$, and put $\wp(\ell)=\ell^{-(1+\xi \mathfrak{q})(1-v)} \mathfrak{m}(\ell), \Xi=-(1+\xi \mathfrak{a})(1-v)$, then we have $\wp \in \mathcal{B}_{r}(\mathcal{L})$. Now, assume that $\ell \in[0, L]$

$$
\|\partial\| \leq\left\|\ell^{(1+\xi \mathrm{\xi})(1-v)} \mathcal{U}_{\xi, v}(\ell) \wp_{0}\right\|+\ell^{\left(1+\xi_{\mathrm{a}}\right)(1-v)}\left\|\int_{0}^{\ell}(\ell-s)^{\xi-1} \mathcal{V}_{\xi}(\ell-s) \mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s\right\| .
$$

From \mathscr{B}_{2} and \mathscr{B}_{3}, we get

$$
\begin{aligned}
\|\partial\| & \leq \ell^{(1+\xi \mathrm{\xi a})(1-\nu)}\left\|\mathcal{U}_{\xi, \nu}(\ell) \wp_{0}\right\|+\ell^{(1+\xi \mathrm{\xi a})(1-v)} \int_{0}^{\ell}(\ell-s)^{-\xi_{a}-1} \delta(\ell) d s \\
& \leq \sup _{[0, L]} \ell^{(1+\xi \mathrm{\xi a})(1-\nu)} \int_{0}^{\ell}(\ell-s)^{-\xi a-1} \delta(\ell) d s \leq \eta .
\end{aligned}
$$

Therefore, for each $\mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})$, we have $\|\partial \mathfrak{m}\| \leq \eta$. Now, at this step, we examine the continuity of D in $\mathcal{B}_{r}(\mathcal{L})$. For achieve this, get $\mathfrak{m}_{k}, \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})$ such that $\lim _{k \rightarrow \infty} \mathfrak{m}_{k}=\mathfrak{m}$, namely, $\lim _{k \rightarrow \infty} \ell^{-(1+\xi \mathfrak{\xi})(1-v)} \mathfrak{m}_{k}=$ $\ell^{-\left(1+\xi_{0}\right)(1-\nu)} \mathfrak{m}$. In view of $\mathscr{B}_{\mathbf{1}}$, we have

$$
\mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right)=\mathscr{F}\left(s, s^{\Xi} \mathfrak{m}_{k}, \Xi s^{\Xi-1} \mathfrak{m}_{k}+s^{\Xi} \mathfrak{m}_{k}^{\prime}{ }_{k}, s^{\Xi} \hbar_{\mathfrak{m}_{k}}\right)
$$

$$
\rightarrow \mathscr{F}\left(s, s^{\Xi} \mathfrak{m}, \Xi s^{\Xi-1} \mathfrak{m}+s^{\Xi} \mathfrak{m}^{\prime}, s^{\Xi} \hbar_{\mathfrak{m}}\right),
$$

as $k \rightarrow \infty$. By using \mathscr{B}_{2}, we deduce that

$$
\left(\ell_{1}-s\right)^{-1-\xi_{a}}\left|\mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right)\right| \leq 2\left(\ell_{1}-s\right)^{-\xi_{a}(1-v)} \delta(s),
$$

which yields that

$$
\int_{0}^{\ell}(\ell-s)^{-\xi_{a}-1}\left\|\mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right)-\mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right)\right\| d s \rightarrow 0, \text { as } k \rightarrow \infty .
$$

Hence, we get
$\left\|\mathfrak{m}_{k}-\partial \mathfrak{m}\right\| \leq \ell^{\left(1+\xi_{\mathrm{a}}\right)(1-\nu)}\left\|\int_{0}^{\ell}(\ell-s)^{\xi-1} \mathcal{V}_{\xi}(\ell-s) \mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right)-\mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right) d s\right\|$.
According to Remark 2.1, as $k \rightarrow \infty$, we obtain
$\left\|\partial \mathfrak{m}_{k}-\partial \mathfrak{m}\right\| \leq j_{3} \ell^{\left(1+\xi_{\mathrm{a}}(1-\nu)\right.} \int_{0}^{\ell}(\ell-s)^{-\xi_{a-1}}\left\|\mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right)-\mathscr{F}\left(s, \wp(s), \wp^{\prime}(s), \hbar(s)\right)\right\| d s \rightarrow 0$.
Thus, $\mathrm{Dm}_{k} \rightarrow$ Əm, pointwise on \mathcal{L}. Furthermore, it follows from Theorem 3.1 that $\partial \mathfrak{m}_{k} \rightarrow \supset \mathfrak{m}$ uniformly on \mathcal{L}, which $k \rightarrow \infty$. Hence \supset is continuous.

Theorem 3.3. Suppose that the conditions $\left(\mathscr{B}_{1}-\mathscr{B}_{3}\right)$ are hold true, $\mathcal{A} \in \Psi_{\kappa}^{a}$ and the semigroup $\{\mathcal{T}(\ell)\}_{\ell \geq 0}$ be compact. Then $\forall \wp_{0} \in \mathcal{D}\left(\mathcal{A}^{\theta}\right)$ there exists a mild solution of (1.1), in $\mathcal{B}_{r}(\mathcal{L})$ such that $\theta>\mathfrak{a}+1$.

Proof. The equicontinuity of semigroup $\mathcal{T}(\ell)$ obtains from the assumption of its compactness. Furthermore, continuity and boundedness of $\mathrm{D}: \mathcal{B}_{r}(\mathcal{L}) \rightarrow \mathcal{B}_{r}(\mathcal{L})$ follows from Theorems 3.1 and 3.2. Thus, ${ }_{*} \mathcal{D}: \mathcal{B}_{r}(\mathcal{L}) \rightarrow \mathcal{B}_{r}(\mathcal{L})$ is bounded, continuous and the operators $\left\{{ }_{*} \mathrm{D}: \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ are equicontinuous. Define ${ }_{*} \mathrm{D}: \mathcal{B}_{r}(\mathcal{L}) \rightarrow \mathcal{B}_{r}(\mathcal{L})$ via

$$
{ }_{*} \partial \mathfrak{m}(\ell)={ }_{*} \partial^{1} \mathfrak{m}(\ell)+_{*} \partial^{2} \mathfrak{m}(\ell),
$$

such that

$$
\begin{aligned}
{ }_{*} \partial^{1} \mathfrak{m}(\ell) & =\ell^{(1+\xi \mathrm{\xi})(1-\nu)} \mathcal{U}_{\xi, \nu}(\ell) \wp_{0}=\ell^{(1+\xi \mathrm{\xi})(1-v)} \mathcal{I}^{\nu(1-\xi)} \ell^{\xi-1} \mathcal{V}_{\xi}(\ell) \wp_{0} \\
& =\frac{\ell^{(1+\xi \mathfrak{q})(1-v)}}{\Gamma(v(1-\xi))} \int_{0}^{\ell}(\ell-s)^{\nu(1-\xi)-1} s^{\xi-1} \int_{0}^{\infty} \xi z \mathfrak{R}_{\xi}(z) \mathcal{T}\left(\ell^{\xi} z\right) d z d \ell \\
& =\frac{\xi \ell^{(1+\xi \mathrm{qu}(1-\nu)}}{\Gamma(v(1-\xi))} \int_{0}^{\ell} \int_{0}^{\infty}(\ell-s)^{v(1-\xi)-1} s^{\xi-1} z \mathfrak{R}_{\xi}(z) \mathcal{T}\left(\ell^{\xi} z\right) d z d \ell,
\end{aligned}
$$

and

$$
{ }_{*} \partial^{2} \mathfrak{m}(\ell)=\ell^{(1+\xi \mathrm{q})(1-\nu)} \int_{0}^{\ell}(\ell-s)^{\xi-1} \mathcal{V}_{\xi}(\ell-s) \mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right) .
$$

Now, we define an operator ${ }_{*} \partial_{z, \Lambda}^{1}$ on $\mathcal{B}_{r}(\mathcal{L})$, such that $\Lambda>0$ and $0<z<\ell$

$$
\begin{aligned}
* \partial_{z, \Lambda}^{1} \mathfrak{M}(\ell) & =\frac{\ell^{(1+\xi(\mathrm{q})(1-v)}}{\Gamma(v(1-\xi))} \int_{z}^{\ell} \int_{\Lambda}^{\infty}(\ell-s)^{(1-\xi) \nu-1} s^{\xi-1} z \mathfrak{R}_{\xi}(z) \mathcal{T}\left(\ell^{\xi} z\right) \wp_{0} d z d \ell \\
& =\frac{\xi^{(1+\xi \mathrm{\xi a})(1-v)}}{\Gamma(v(1-\xi))} \mathcal{T}\left(z^{\xi} \Lambda\right) \int_{z}^{\ell} \int_{\Lambda}^{\infty}(\ell-s)^{(1-\xi) v-1} s^{\xi-1} z \mathfrak{R}_{\xi}(z) \mathcal{T}\left(\ell^{\xi} z-z^{\xi} \Lambda\right) \wp_{0} d z d \ell
\end{aligned}
$$

Since $\mathcal{T}\left(z^{\xi} \Lambda\right)$ is compact, the set $\left\{{ }_{*} D_{z, \Lambda}^{1} \mathfrak{m}: \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ is relatively compact. Furthermore, $\forall \mathfrak{m} \in$ $\mathcal{B}_{r}(\mathcal{L})$, we can write

$$
\begin{aligned}
& \left\|_{*} D^{1} \mathfrak{m}(\ell)-_{*} D_{z, \Lambda}^{1} \mathfrak{M}(\ell)\right\| \leq j_{4}\left\|\ell^{(1+\xi \mathrm{Gu})(1-v)} \int_{0}^{\ell} \int_{0}^{\Lambda}(\ell-s)^{(1-\xi) v-1} s^{\xi-1} z \mathfrak{R}_{\xi}(z) \mathcal{T}\left(\ell^{\xi} z\right) \wp_{0} d z d \ell\right\| \\
& +j_{4}\left\|\ell^{(1+\xi)(1-\nu)} \int_{0}^{z} \int_{\Lambda}^{\infty}(\ell-s)^{(1-\xi) \nu-1} s^{\xi-1} z \mathfrak{R}_{\xi}(z) \mathcal{T}\left(\ell^{\xi} z\right) \wp_{0} d z d \ell\right\| \\
& \leq j_{4} \ell^{(1+\xi)(1-\nu)} \int_{0}^{\ell} \int_{0}^{\Lambda}(\ell-s)^{(1-\xi) \nu-1} s^{\xi-1} z \mathfrak{R}_{\xi}(z) s^{-\xi \nu-\xi}\left\|\wp_{0}\right\| z^{-a-1} d z d \ell \\
& +j_{4} \ell^{(1+\xi \imath)(1-v)} \int_{0}^{z} \int_{\Lambda}^{\infty}(\ell-s)^{(1-\xi) v-1} s^{\xi-1} z \mathfrak{R}_{\xi}(z) s^{-\xi a-\xi} z^{-a-1}\left\|\wp_{0}\right\| d z d \ell \\
& =j_{4} \ell^{(1+\xi a)(1-\nu)} \int_{0}^{\ell}(\ell-s)^{(1-\xi) v-1} s^{-\xi a-1}\left\|\wp_{0}\right\| d \ell \int_{0}^{\Lambda} z^{-a} \mathfrak{R}_{\xi}(z) d z \\
& +j_{4} \ell^{(1+\xi \mathrm{\xi})(1-\nu)} \int_{0}^{z}(\ell-s)^{(1-\xi) \nu-1} s^{-\xi a-1}\left\|\wp_{0}\right\| d \ell \int_{\Lambda}^{\infty} z^{-a} \mathfrak{R}_{\xi}(z) d z \\
& \leq j_{4} \ell^{-\xi v(1+\mathrm{a})}\left\|\wp_{0}\right\| \int_{0}^{\Lambda} z^{-\mathrm{a}} \mathfrak{R}_{\xi}(z) d z \\
& +j_{4} \ell^{-\xi v(1+a)}\left\|\wp_{0}\right\| \int_{0}^{z}(1-s)^{(1-\xi) v-1} s^{-\xi a-1} d \ell \int_{\Lambda}^{\infty} z^{-a} \mathfrak{R}_{\xi}(z) d z \\
& \rightarrow 0, \quad \text { as } z \rightarrow 0 \text { and } \Lambda \rightarrow 0,
\end{aligned}
$$

which $j_{4}=\frac{\xi}{\Gamma(v(1-\xi))}$. Hence, the set $\left\{_{*} D_{z, \Lambda}^{1} \mathfrak{m}: \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ is arbitrarily closed to the set $\left\{_{*} D^{1} \mathfrak{m}(\ell)\right.$: $\left.\mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$. Thereby, the set $\left\{_{*} \partial^{1} \mathfrak{m}(\ell): \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ is relatively compact in \mathscr{H}. Now, similar to the process above, we define the operator ${ }_{*} \mathrm{D}_{z, \Lambda}^{2} \mathfrak{m}$, as follows

$$
\begin{aligned}
& { }_{*}^{*} \partial_{z, \Lambda}^{2} \mathfrak{M r}(\ell)=\xi \ell^{(1+\xi a)(1-v)} \\
& \int_{0}^{\ell-z} \int_{\Lambda}^{\infty} z \mathfrak{R}_{\xi}(z)(\ell-s)^{\xi-1} \mathcal{T}\left((\ell-s)^{\xi-1} z\right) \mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right) d z d \ell \\
& =\xi \ell^{(1+\xi)(1-\gamma)} \mathcal{T}\left(z^{\xi} \Lambda\right) \\
& \int_{0}^{\ell-z} \int_{\Lambda}^{\infty} z \mathfrak{R}_{\xi}(z)(\ell-s)^{\xi-1} \mathcal{T}\left((\ell-s)^{\xi-1} z-z^{\xi} \Lambda\right) \mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right) d z d \ell,
\end{aligned}
$$

and, $\forall \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})$, we find

$$
\left\|_{*} \partial^{2} \mathfrak{m}(\ell)-{ }_{*} \partial_{z, \Lambda}^{2} \mathfrak{m}(\ell)\right\|
$$

$$
\begin{aligned}
& \leq\left\|\xi \ell^{(1+\xi \mathfrak{q})(1-v)} \int_{0}^{\ell} \int_{0}^{\Lambda} z \mathfrak{R}_{\xi}(z)(\ell-s)^{\xi-1} \mathcal{T}\left((\ell-s)^{\xi-1} z\right) \mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right) d z d \ell\right\| \\
& +\left\|\xi \ell^{(1+\xi \mathfrak{\xi})(1-v)} \int_{\ell-z}^{\ell} \int_{\Lambda}^{\infty} z \mathfrak{R}_{\xi}(z)(\ell-s)^{\xi-1} \mathcal{T}\left((\ell-s)^{\xi-1} z\right) \mathscr{F}\left(s, \wp_{k}(s), \wp_{k}^{\prime}(s), \hbar_{k}(s)\right) d z d \ell\right\| \\
& \leq j_{0} \xi \ell^{(1+\xi \mathfrak{a})(1-v)}\left(\int_{0}^{\ell}(\ell-s)^{-\xi a-1} \delta(\ell) d \ell \int_{0}^{\Lambda} z^{-a} \mathfrak{R}_{\xi}(z) d z\right) \\
& +j_{0} \xi \ell^{(1+\xi \mathfrak{q u}(1-v)}\left(\int_{\ell-z}^{\ell}(\ell-s)^{-\xi a-1} \delta(\ell) d \ell \int_{0}^{\infty} z^{-a} \mathfrak{R}_{\xi}(z) d z\right) \\
& \leq j_{0} \xi \ell^{(1+\xi \mathfrak{a})(1-v)}\left(\int_{0}^{\ell}(\ell-s)^{-\xi a-1} \delta(\ell) d \ell \int_{0}^{\Lambda} z^{-a} \mathfrak{R}_{\xi}(z) d z\right) \\
& +\frac{\Gamma(1-\mathfrak{a})}{\Gamma(1-\xi \mathfrak{q})} j_{0} \xi \ell^{(1+\xi \mathfrak{q u}(1-v)}\left(\int_{\ell-z}^{\ell}(\ell-s)^{-\xi a-1} \delta(\ell) d \ell\right) \rightarrow 0, \text { as } \Lambda \rightarrow 0 .
\end{aligned}
$$

Hence, the set $\left\{{ }_{*} D_{z, \Lambda}^{2} \mathfrak{m}: \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ is arbitrarily closed to the set $\left\{_{*} D^{2} \mathfrak{m}(\ell): \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$. Thereby, the set $\left\{{ }_{*} D^{2} \mathfrak{m}(\ell): \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ is relatively compact in \mathscr{H}. As a result of the Arzela-Ascoli theorem, $\left\{\mathfrak{m}(\ell): \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ is relatively compact. Moreover ∂ is a completely continuous operator. According to the Schauder fixed point theorem, this operator has at least a fixed point $\mathfrak{m}_{*} \in \mathcal{B}_{r}(\mathcal{L})$. Put $\wp_{*}(\ell)=\ell^{\left(1+\xi_{n}\right)(1-\gamma)} \mathfrak{m}_{*}$. And this means \wp_{*} is a mild solution to the problem mentioned in (1.1).

To continue the work, we need the following hypothesis in the case that the semigroup $\mathcal{T}(\ell)$ is noncompact.
(\mathscr{B}_{5}) For each bounded $\mathscr{G}_{1}, \mathscr{G}_{2}, \mathscr{G}_{3} \subset \mathscr{H}$ there exist a constant \mathcal{N} such that

$$
\mu^{*}\left(\mathscr{F}\left(s, \mathscr{G}_{1}, \mathscr{G}_{2}, \mathscr{G}_{3}\right)\right) \leq \mathcal{N} \mu^{*}\left(\mathscr{G}_{1}, \mathscr{G}_{2}, \mathscr{G}_{3}\right),
$$

which $\boldsymbol{\mu}^{*}$ is the same as mentioned in Definition 2.4.
Theorem 3.4. Suppose that the conditions $\left(\mathscr{B}_{1}-\mathscr{B}_{5}\right)$ are hold true, $\mathcal{A} \in \Psi_{k}^{n}$ and the semigroup $\{\mathcal{T}(\ell)\}_{\ell \geq 0}$ is noncompact. Then $\forall \wp_{0} \in \mathcal{D}\left(\mathcal{A}^{\theta}\right)$ there exists a mild solution of (1.1), in $\mathcal{B}_{r}(\mathcal{L})$ such that $\theta>\mathfrak{a}+1$.

Proof. In Theorems 3.1 and 3.2, we proved that $D: \mathcal{B}_{r}(\mathcal{L}) \rightarrow \mathcal{B}_{r}(\mathcal{L})$ is bounded, continuous and $\left\{D \mathrm{~m}: \mathfrak{m} \in \mathcal{B}_{r}(\mathcal{L})\right\}$ is equicontinuous. Moreover, we showed $\exists C \subset \mathcal{B}_{r}(\mathcal{L})$, such that D is compact in C. For each bounded $\mathcal{C} \subset \mathcal{B}_{r}(\mathcal{L})$, put

$$
\partial^{(1)}(C)=\partial(C), \ldots, \partial^{(n)}(C)=\partial\left(\overline{c o}\left(\partial^{(n-1)}(C)\right)\right), \quad n=2,3, \ldots
$$

In view of properties of a measure of noncompactness (Lemmas 2.3 and 2.4), we can find a subsequence $\left\{\mathfrak{m}_{n}^{(1)}\right\}_{n=1}^{\infty} \subset C$, such that

$$
\begin{aligned}
& \boldsymbol{\mu}^{*}\left(\mathrm{D}^{(1)}(C(\ell))\right) \\
& \leq 2 \boldsymbol{\mu}^{*}\left(\ell^{(1+\xi \mathfrak{\xi})(1-v)} \int_{0}^{\ell}(\ell-s)^{\xi-1} \mathcal{V}_{\xi}(\ell-s) \mathscr{F}\left(s,\left\{s^{\Xi} \mathfrak{m}_{n}^{(1)}(s), \Xi s^{\Xi-1} \mathfrak{m}_{n}^{(1)}(s)+s^{\Xi} \mathfrak{m}_{n}^{\prime(1)}(s), \mathfrak{I}_{\mathbf{m}_{n}^{(1)}}(s)\right\}_{n=1}^{\infty}\right) d s\right) \\
& \leq 4 j_{3} \ell^{(1+\xi \mathrm{\xi u})(1-v)}\left(\int_{0}^{\ell}(\ell-s)^{-\xi a-1} \boldsymbol{\mu}^{*}\left(\mathscr{F}\left(s,\left\{s^{\Xi} \mathfrak{m}_{n}^{(1)}(s), \Xi s^{\Xi-1} \mathfrak{m}_{n}^{(1)}(s)+s^{\Xi} \mathfrak{m}_{n}^{\prime(1)}(s), \mathfrak{I}_{\mathbf{m}_{n}^{(1)}(s)}\right)_{n=1}^{\infty}\right)\right) d s\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq 4 j_{3} \mathcal{N} \ell^{(1+\xi \mathfrak{a})(1-v)} \mu^{*}(C)\left(\int_{0}^{\ell}(\ell-s)^{-\xi \mathfrak{a}-1} s^{-3(1+\xi \mathfrak{q})(1-v)} d s\right) \\
& \leq 4 j_{3} \mathcal{N} \ell^{-\xi \mathfrak{a}} \mu^{*}(C)\left(\frac{\Gamma(-\xi \mathfrak{a}) \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma(-4 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}\right)
\end{aligned}
$$

It follows from the fact that \supset is arbitrary

$$
\mu^{*}\left(\supset^{(1)}(C(\ell))\right) \leq 4 j_{3} \mathcal{N} \ell^{-\xi \mathfrak{a}} \mu^{*}(C)\left(\frac{\Gamma(-\xi \mathfrak{a}) \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma(-4 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}\right)
$$

which implies that

$$
\begin{equation*}
\mu^{*}\left(D^{(n)}(C(\ell))\right) \leq \frac{\left(4 j_{3} \mathcal{N}\right)^{n} \ell^{-n \xi \mathfrak{a}} \Gamma^{n}(-\xi \mathfrak{a}) \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma(-(n+3) \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)} \tag{3.1}
\end{equation*}
$$

Put $\mathbb{A}=4 j_{3} \mathcal{N} \ell^{-\xi a} \Gamma(-\xi \mathfrak{a})$, Then by rewriting Eq (3.1), we find

$$
\frac{\left(4 j_{3} \mathcal{N}\right)^{n} \ell^{-n \xi \mathfrak{a}} \Gamma^{n}(-\xi \mathfrak{a}) \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma(-(n+3) \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}=\frac{\mathbb{A}^{n} \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma(-(n+3) \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}
$$

We can choose $x, y \in \mathbb{N}$, so large where $\frac{1}{x}<\xi \mathfrak{a}<\frac{1}{x-1}$, and $\frac{n+3}{x+1}>2$ for

$$
\Gamma\left(\frac{n+3}{x+1}\right)<y \Gamma(-(n+3) \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)<n
$$

then, we obtain

$$
\begin{equation*}
\frac{\mathbb{A}^{n} \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma(-(n+3) \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)} \leq \frac{\mathbb{A}^{n} \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma\left(\frac{n+3}{x+1}\right)} \tag{3.2}
\end{equation*}
$$

By substitution $n+3 \rightarrow(t+1)(x+1)$, the $\mathrm{Eq}(3.2)$ becomes

$$
\frac{\mathbb{A}^{(t+1)(x+1)-3} \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma(t+1)}=\frac{\left[\mathbb{A}^{(x+1)}\right]^{t+1} \mathbb{A}^{-3} \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{t!} \rightarrow 0, \text { as } t \rightarrow \infty
$$

So, $\exists n_{*} \in \mathbb{N}$, which

$$
\frac{\mathbb{A}^{n} \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma(-(n+3) \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)} \leq \frac{\mathbb{A}^{n_{*}} \Gamma(-3 \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v)}{\Gamma\left(-\left(n_{*}+3\right) \xi \mathfrak{a}+(1+\xi \mathfrak{a}) v\right)}=£<1,
$$

thus, we deduced that

$$
\mu^{*}\left(\partial^{\left(n_{s}\right)}(C(\ell))\right) \leq £ \mu^{*}(C) .
$$

$\partial^{\left(n_{*}\right)}(C(\ell))$ is equicontinuous and bounded, therefore by Lemma 2.3, we get

$$
\mu^{*}\left(\partial^{\left(n_{z}\right)}(C)\right)=\max _{\ell \in \mathcal{L}} \mu^{*}\left(\partial^{\left(n_{*}\right)}(C(\ell))\right) .
$$

Hence,

$$
\mu^{*}\left(\mathrm{D}^{n_{*}}(C)\right) \leq £ \mu^{*}(C),
$$

such that $£<1$. Similar to what was done in the previous Theorem 3.3, we get \mathcal{G} in $\mathcal{B}_{r}(\mathcal{L})$, which $\partial(\mathcal{G}) \subset \mathcal{G}$, and $\partial(\mathcal{G})$ is compact. Thanks to Schauder fixed point theorem, we find a fixed point $\mathfrak{m}_{*} \in \mathcal{B}_{r}(\mathcal{L})$ for the operator D. Put $\wp_{*}(\ell)=\ell^{\left(1+\xi^{\natural}\right)(1-\nu)} \mathfrak{m}_{*}$, and this means \wp_{*} is a mild solution to the problem mentioned in (1.1).

4. Examples

Example 4.1. Consider the following problem

$$
\left\{\begin{array}{l}
\mathfrak{D}^{\frac{7}{13}, \frac{1}{2}} \wp(\ell)+\mathcal{A} \wp(\ell)=\ell^{\frac{-1}{3}} \cos ^{2}(\wp(\ell))+\frac{\wp^{\prime}(\ell)}{1+e^{\wp^{\prime}(\ell)}}, \tag{4.1}\\
I^{\left(1-\frac{7}{13}\right)\left(1-\frac{1}{2}\right)} \wp(0)=\wp_{0} .
\end{array}\right.
$$

In this case put $\xi=\frac{7}{13}, v=\frac{1}{2}, \ell \in[0,1]=\mathcal{L}$, and $\mathscr{F}\left(\ell, \wp(\ell), \wp^{\prime}(\ell), \hbar(\ell)\right)=\ell^{\frac{-1}{3}} \cos ^{2}(\wp(\ell))+\frac{\wp^{\prime}(\ell)}{1+e^{\wp^{\prime}(\ell)}}$. Set $\mathscr{H}=C^{\lambda}$, which $\lambda \in(0,1)$ and $\mathcal{D}(\mathcal{A})=\left\{\wp \in C^{2+\lambda}(\mathcal{L}): \wp(0)=0\right\}$, then from [53], we deduce that $\exists w, y>0$, such that $\mathcal{A}+w \in \Psi_{\frac{\pi}{2}-y}^{\frac{\lambda}{2}-1}\left(C^{\lambda}(\mathcal{L})\right)$. We choose $\delta(\ell)=\ell^{\frac{-1}{3}}$ and

$$
\begin{equation*}
\eta=\sup _{[0,1]}\left(\ell^{\left(1+\frac{7}{13} \mathrm{a}\right)\left(1-\frac{1}{2}\right)}\left\|\mathcal{U}_{\frac{7}{13}, \frac{1}{2}}(\ell)\right\|\right)+\frac{\Gamma\left(-\frac{7 a}{13}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}-\frac{7 a}{13}\right)} . \tag{4.2}
\end{equation*}
$$

Thus, all the desired assumptions $\left(\mathscr{B}_{1}-\mathscr{B}_{4}\right)$ are correctly established, then according to Theorem 3.3, problem (4.1) has a mild solution. To better understand this example, we present some graphs for system (4.1) in Figures 1-3 and numerical result in Table 1.

Figure 1. The graph of $\ell^{-\frac{1}{3}} \cos ^{2}(\wp(\ell))$ in Example 4.1.

Figure 2. The graph of $\ell^{\frac{-1}{3}} \cos ^{2}(\wp(\ell))+\frac{\wp^{\prime}(\ell)}{1+e^{\wp^{\prime}(\ell)}}$ in Example 4.1.

Figure 3. The graph of $\ell^{\left(1+\frac{7}{13}\right)\left(1-\frac{1}{2}\right)}$ for different values of \mathfrak{a} in Eq (4.2).

Table 1. Numerical results for some functions in Example 4.1.

$\mathfrak{a}=-0.3$			$\mathfrak{a}=-0.8$				
ℓ	$\delta(\ell)$	η	η				
0	0	3.8674	0.2617				
0.1	2.1544	$0.3808\left\\|\mathcal{U}_{2}, \frac{1}{2}(0.1)\right\\|+3.8674$	$0.5192\left\|\mid \mathcal{U}_{2}, \frac{1}{2}(0.1) \\|+0.2617\right.$				
0.2	1.7099	$0.5093\left\\|\mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.2)\right\\|+3.8674$	$0.6325\left\|\left\lvert\, \mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.2)\right. \\|+0.2617\right.$				
0.3	1.4938	$0.6036\left\|\left\lvert\, \mathcal{U}_{2, \frac{1}{2}} 10.3\right.\right) \\|+3.8674$	$0.7098 \\| \mid \mathcal{U}_{2}, \frac{1}{2}$ (0.3$) \\|+0.2617$				
0.4	1.3572	$0.6810\left\\|\mathcal{U}_{2, \frac{1}{2}}(0.4)\right\\|+3.8674$	$0.7704\left\\|\mathcal{U}_{2, \frac{1}{2}, 1}(0.4)\right\\|+0.2617$				
0.5	1.2599	$0.7478\left\|\left\lvert\, \mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.5)\right. \\|+3.8674\right.$	$0.8209\left\|\left\lvert\, \mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.5)\right. \\|+0.2617\right.$				
0.6	1.1856	$0.8072\left\|\mid \mathcal{U}_{2}, \frac{1}{2}(0.6) \\|+3.8674\right.$	$0.8646\left\|\mid \mathcal{U}_{2}^{2}, \frac{1}{2}(0.6) \\|+0.2617\right.$				
0.7	1.1262	$0.8611\left\|\left\lvert\, \mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.7)\right. \\|+3.8674\right.$	$0.9034\left\\|\mathcal{U}_{\frac{2}{2}, \frac{1}{2}}(0.7)\right\\|+0.2617$				
0.8	1.0772	$0.9106\left\|\left\lvert\, \mathcal{U}_{\frac{2}{7}, \frac{1}{2}}{ }^{1}(0.8)\right. \\|+3.8674\right.$	$0.9384\left\\|\mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.8)\right\\|+0.2617$				
0.9	1.0357	$\left.0.9567 \\| \mathcal{U}_{2, \frac{1}{2}} 10.9\right) \\|+3.8674$	$0.9704\left\\|\mathcal{U}_{\frac{2}{7}, \frac{1}{2}}^{1}(0.9)\right\\|+0.2617$				
1	1	$\left\\|\mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(1)\right\\|+3.8674$	$\left\\|\mathcal{U}_{\frac{2}{1}, \frac{1}{2}}(1)\right\\|+0.2617$				

Example 4.2. Consider the following problem

$$
\left\{\begin{array}{l}
\mathfrak{D}^{\frac{2}{7}, \frac{1}{2}} \wp(\ell)+\mathcal{A} \wp(\ell)=\ell^{\frac{-1}{7}} \sin (\wp(\ell))+\tan \left(\wp^{\prime}(\ell)\right), \tag{4.3}\\
I^{\left(1-\frac{2}{7}\right)\left(1-\frac{1}{2}\right)} \wp(0)=\wp_{0} .
\end{array}\right.
$$

In this case put $\xi=\frac{2}{7}, v=\frac{1}{2}, \ell \in[0,1]=\mathcal{L}$, and $\mathscr{F}\left(\ell, \wp(\ell), \wp^{\prime}(\ell), \hbar(\ell)\right)=\ell^{\frac{-1}{7}} \sin (\wp(\ell))+\tan \left(\wp^{\prime}(\ell)\right)$. Set $\mathscr{H}=C^{\lambda}$, which $\lambda \in(0,1)$ and $\mathcal{D}(\mathcal{A})=\left\{\wp \in C^{2+\lambda}(\mathcal{L}): \wp(0)=0\right\}$, then from [53], we deduce that $\exists w, y>0$, such that $\mathcal{A}+w \in \Psi_{\frac{\pi}{2}-y}^{\frac{1}{2}-1}\left(C^{\lambda}(\mathcal{L})\right)$. We choose $\delta(\ell)=\ell^{\frac{-1}{7}}$ and

$$
\begin{equation*}
\eta=\sup _{[0,1]}\left(\ell^{\left(1+\frac{2}{7} \mathrm{a}\right)\left(1-\frac{1}{2}\right)}\left\|\mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(\ell)\right\|\right)+\frac{\Gamma\left(-\frac{2 a}{7}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}-\frac{2 a}{7}\right)} . \tag{4.4}
\end{equation*}
$$

Now, the conditions $\left(\mathscr{B}_{1}-\mathscr{B}_{4}\right)$ are satisfied and by Theorem 3.3, problem (4.3) has a mild solution. To better understand this example, we present some graphs for system (4.3) in Figures 4-6 and numerical result in Table 2.

Figure 4. The graph of $\ell^{\frac{-1}{7}} \sin (\wp(\ell))$ in Example 4.2.

Figure 5. The graph of $\ell^{\frac{-1}{7}} \sin (\wp(\ell))+\tan \left(\wp^{\prime}(\ell)\right)$ in Example 4.2.

Figure 6. The graph of $\ell^{\left(1+\frac{2}{7} a\right)\left(1-\frac{1}{2}\right)}$ for different values of \mathfrak{a} in Eq (4.4).

Table 2. Numerical results for some functions in Example 4.2.

$\mathfrak{a}=-0.15$			$\mathfrak{a}=-0.45$				
ℓ	$\delta(\ell)$	η	η				
0	0	20.8574	5.4155				
0.1	1.3894	$0.3010\left\|\left\lvert\, \mathcal{U}_{\frac{2}{2}, \frac{1}{2}}(0.1)\right. \\|+20.8574\right.$	$0.2727\left\\|\mathcal{U}_{\frac{\bar{\nu}}{1}, \frac{1}{2}}(0.1)\right\\|+5.4155$				
0.2	1.2584	$0.4320\left\|\left\lvert\, \mathcal{U}_{\frac{2}{2}, \frac{1}{2}}(0.2)\right. \\|+20.8574\right.$	$0.4033\left\\|\mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.2)\right\\|+5.4155$				
0.3	1.1876	$0.5337\left\|\left\lvert\, \mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.3)\right. \\|+20.8574\right.$	$0.5069\left\|\left\lvert\, \mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.3)\right. \\|+5.4155\right.$				
0.4	1.1398	$0.6201\left\\|\mathcal{U}_{2}, \frac{1}{2}(0.4)\right\\|+20.8574$	$0.5963\left\\|\mathcal{U}^{2}, \frac{1}{2},(0.4)\right\\|+5.4155$				
0.5	1.1040	$0.6966\left\|\left\lvert\, \mathcal{U}_{\frac{2}{2}, \frac{1}{2}}(0.5)\right. \\|+20.8574\right.$	$0.6763\left\|\left\lvert\, \mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.5)\right. \\|+5.4155\right.$				
0.6	1.0757	$0.7661\left\|\left\lvert\, \mathcal{U}_{\frac{2}{2}, \frac{1}{2}}(0.6)\right. \\|+20.8574\right.$	$0.7496\left\|\mid \mathcal{U}_{\substack{1 \\, 2}}^{2}(0.6) \\|+5.4155\right.$				
0.7	1.0522	$0.8302\left\|\left\lvert\, \mathcal{U}_{\frac{2}{2}, \frac{1}{2}}(0.7)\right. \\|+20.8574\right.$	$0.8177\left\\|\mathcal{U}_{\frac{2}{7}, \frac{1}{2}}(0.7)\right\\|+5.4155$				
0.8	1.0323	$0.8901\left\|\mid \mathcal{U}_{2}, \frac{1}{2}(0.8) \\|+20.8574\right.$	$\left.0.8817 \\| \mathcal{U}^{2}, \frac{1}{1}, 2.8\right) \\|+5.4155$				
0.9	1.0151	$0.9465\left\|\left\lvert\, \mathcal{U}_{\frac{2}{2}, \frac{1}{2}}(0.9)\right. \\|+20.8574\right.$	$0.9422\left\|\left\lvert\, \mathcal{U}_{\frac{2}{1}, \frac{1}{2}}(0.9)\right. \\|+5.4155\right.$				
1	1	$\left\\|\mathcal{U}_{\frac{2}{1}, \frac{1}{2}}(1)\right\\|+20.8574$	$\left\\|\mathcal{U}_{\frac{2}{1}, \frac{1}{2}}(1)\right\\|+5.4155$				

5. Conclusions

In this paper, we showed that for the existence of a mild solution to the desired problem, namely system (1.1), which involves Hilfer fractional derivative and almost sectorial operator (ASO), the semigroup $\{\mathcal{T}(\ell)\}$ need not be compact. We have guaranteed this issue in Theorem 3.4. To perform this feature, we introduced special conditions $\left(\mathscr{B}_{1}-\mathscr{B}_{5}\right)$. Krasnoselskii's fixed point theorem and Arzela-Ascoli's theorem were central to our proofs. Although various works have been done with the almost sectorial operator (ASO), the novelty of our work is in using it in fractional integro-differential equations of Hilfer type. We provided two examples to illustrate our result. Other researchers can test our results with other fractional operators and pave the way.

Acknowledgments

This study is supported via funding from Prince Sattam bin Abdulaziz University Project Number (PSAU/2023/R/1444). The fourth and fifth authors would like to thank Azarbaijan Shahid Madani University. The work presented here is supported by Istanbul Technical University Scientific Research Project Coordination Unit. Project Number: TGA-2022-44048. The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.

Conflict of interest

The authors declare no conflict of interest.

References

1. A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, New York: Springer, 1997. http://dx.doi.org/10.1007/978-3-7091-2664-6
2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
3. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives theory and applications, Amsterdam: Gordon and Breach, 1993.
4. B. J. West, P. Grigolini, Applications of fractional calculus in physics, Singapore: World Scientific, 1998.
5. R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
6. R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399-408. http://dx.doi.org/10.1016/S0301-0104(02)00670-5
7. M. Fabrizio, C. Giorgi, V. Pata, A new approach to equations with memory, Arch. Ration. Mech. An., 198 (2010), 189-232. http://dx.doi.org/10.1007/s00205-010-0300-3
8. K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 133 (2018), 1-13. http://dx.doi.org/10.1140/epjp/i2018-11863-9
9. D. Baleanu, S. Rezapour, Z. Saberpour, On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation, Bound. Value Probl., 2019 (2019), 1-17. http://dx.doi.org/10.1186/s13661-019-1194-0
10. L. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
11. M. Houas, Existence of solutions for a coupled system of Caputo-Hadamard type fractional differential equations with Hadamard fractional integral conditions, ATNAA, 5 (2021), 316-329. http://dx.doi.org/10.31197/atnaa. 683278
12. I. Ahmad, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. Ahmed Demba, Stability results for implicit fractional pantograph differential equations via ϕ-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. http://dx.doi.org/10.3390/math8010094
13. T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, $A d v$. Differ. Equ., 2017 (2017), 1-11. http://dx.doi.org/10.1186/s13662-017-1285-0
14. M. I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, J. Funct. Space., 2022 (2022), 4779213. http://dx.doi.org/10.1155/2022/4779213
15. B. Abdellatif, J. Alzabut, M. Ghaderi, S. Rezapour, On a coupled system of fractional $(p, q)-$ differential equation with Lipschitzian matrix in generalized metric space, AIMS Math., 8 (2022), 1566-1591. http://dx.doi.org/10.3934/math. 2023079
16. A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos Soliton. Fract., 141 (2020), 100286. http://dx.doi.org/10.1016/j.chaos.2020.110286
17. A. Alalyani, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J Nonlin. Sci. Num., 2022 (2022), 249100449. http://dx.doi.org/10.1515/ijnsns-2021-0042
18. Y. G. Sanchez, Z. Sabir, L. G. Guirao, Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19), Fractals, 28 (2020), 2040026. http://dx.doi.org/10.1142/s0218348x20400265
19. H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. http://dx.doi.org/10.1016/j.chaos.2021.110668
20. A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complex., 34 (2021), 1301-1323. http://dx.doi.org/10.1007/s11424-021-00530
21. A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005. http://dx.doi.org/10.1088/1402-4896/abfacc
22. D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. http://dx.doi.org/10.1016/j.chaos.2020.109705
23. B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Soliton. Fract., 133 (2020), 109619. http://dx.doi.org/10.1016/j.chaos.2020.109619
24. J. J. Nieto, J. Pimentel, Positive solutions of a fractional thermostat model, Bound. Value Probl., 2013 (2013), 1-11. http://dx.doi.org/10.1186/1687-2770-2013-5
25. M. Bonforte, Y. Sire, J. L. Vazquez, Optimal existence and uniqueness theory for the fractional heat equation, Nonlinear Anal. Theor., 153 (2017), 142-168. http://dx.doi.org/10.1016/j.na.2016.08.027
26. J. Alzabut, A. Selvam, R. Dhineshbabu, S. Tyagi, M. Ghaderi, S. Rezapour, A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality, J. Inequal. Appl., 2022 (2022), 56. http://dx.doi.org/10.1186/s13660-022-02786-0
27. V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, Fields and Media, Berlin: Springer, 2011.
28. B. Ghanbari, Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative, Math. Method. Appl. Sci., 44 (2021), 8759-8774. http://dx.doi.org/10.1002/mma. 7302
29. Q. M. A. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos Soliton. Fract., 40 (2009), 183-189. http://dx.doi.org/10.1016/j.chaos.2007.07.041
30. J. Wang, S. Peng, D. Oregan, Local stable manifold of Langevin differential equations with two fractional derivatives, Adv. Differ. Equ., 2017 (2017), 1-15. http://dx.doi.org/10.1186/s13662-017-1389-6
31. Z. Heydarpour, M. N. Parizi, R. Ghorbnian, M. Ghaderi, S. Rezapour, A. Mosavi, A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction, AIMS Math., 7 (2022), 18253-18279. http://dx.doi.org/10.3934/math. 20221004
32. A. M. Yang, Y. Han, J. Li, W. X. Liu, On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Therm. Sci., 20 (2016), 717721. http://dx.doi.org/10.2298/TSCI16S3717Y
33. R. George, M. Houas, M. Ghaderi, S. Rezapour, S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys., 39 (2022), 105687. http://dx.doi.org/10.1016/j.rinp.2022.105687
34. N. D. Phuong, L. V. C. Hoan, E. Karapinar, J. Singh, H. D. Binh, N. H. Can, Fractional order continuity of a time semi-linear fractional diffusion-wave system, Alex. Eng. J., 59 (2020), 49594968. http://dx.doi.org/10.1016/j.aej.2020.08.054
35. R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comput. Appl. Math., 308 (2016), 39-45. http://dx.doi.org/10.1016/j.cam.2016.05.014
36. J. Wang, Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859. http://dx.doi.org/10.1016/j.amc.2015.05.144
37. R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891-2899. http://dx.doi.org/10.1016/j.aej.2020.01.055
38. K. M. Furati, M. D. Kassim, N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626. http://dx.doi.org/10.1016/j.camwa.2012.01.009
39. H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344-354. http://dx.doi.org/10.1016/j.amc.2014.10.083
40. A. Jaiswal, D. Bahuguna, Hilfer fractional differential equations with almost sectorial operators, Differ. Equ. Dyn. Syst., 2020 (2020), 1-17. http://dx.doi.org/10.1007/s12591-020-00514-y
41. XL. Ding, B. Ahmad, Analytical solutions to fractional evolution equations with almost sectorial operators, Adv. Differ. Equ., 2016 (2016), 1-25. http://dx.doi.org/10.1186/s13662-016-0927-y
42. L. Fang, Mild solutions for abstract fractional differential equations with almost sectorial operators and infinite delay, Adv. Differ. Equ., 2013 (2013), 1-11. http://dx.doi.org/10.1186/1687-1847-2013-327
43. L. Zhang, Y. Zhou, Fractional Cauchy problems with almost sectorial operators, Appl. Math. Comput., 257 (2015), 145-157. http://dx.doi.org/10.1016/j.amc.2014.07.024
44. N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta., 45 (2006), 765-771. http://dx.doi.org/10.1007/s00397-005-0043-5
45. K. Deimling, Nonlinear functional analysis, Berlin: Springer, 1985.
46. H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. Theor., 7 (1983), 1351-1371. http://dx.doi.org/10.1016/0362-546X(83)90006-8
47. V. Lakshmikantham, S. Leela, Nonlinear differential equations in abstract spaces, New York: Pergamon Press, 1969.
48. J. Banas, K. Goebel, Measure of noncompactness in Banach space, New York: Marcel Dekker Inc., 1980.
49. F. Mainardi, P. Paraddisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations, 2007, arXiv: 0704.0320.
50. R. Wang, D. Chen, T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equations, 252 (2012), 202-235. http://dx.doi.org/10.1016/j.jde.2011.08.048
51. H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344-354. http://dx.doi.org/10.1016/j.amc.2014.10.083
52. D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear integral equations in abstract spaces, The Netherlands: Kluwer Acadmic Publishers, 1996.
53. H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. Theor., 4 (1980), 985-999. http://dx.doi.org/10.1016/0362-546X(80)90010-3

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

