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1. Introduction

Today, the use of fractional calculus in modeling natural phenomena has caused significant growth
and has been to the attention of researchers in various fields of engineering [1], mathematics [2, 3],
physics [4, 5]. As one of the most prominent features of fractional operators, we can mention their
non-locality. Based on the available results and evidence, modeling by ordinary calculus is not capable
of describing the real behavior of phenomena and is often associated with the error of estimating the
phenomenon [6]. Researchers in the fields of science and engineering have different approaches to the
non-local character of fractional calculus. Physicists’ approach to this issue led to interesting modeling
for physical phenomena such as heat flow, hereditary polarization in dielectrics, viscoelasticity and so
on [7]. Such phenomena were modeled with equations which are influenced by the past values of
one or more variables and were called equation with memory in the literature. On the other hand, we
know that the history of mathematics has always been associated with the generalization of different
concepts, so it is worth mentioning that during the entry of fractional calculus into various fields of
science, some researchers took steps willingly in the field of generalization and introduction of new
fractional operators. We can refer to the fractional operators of Riemann-Liouville (RL), Caputo,
Atangana-Baleanu (AB), Hadamard, fractal fractional, Caputo-Fabrizio, Hilfer, fractional q-derivative,
etc. To get information about some of the works done on the mentioned operators, the reader can refer
to references [8–15]. Certainly, the developments that directly lead to the improvement of human life
are investigated more. As an example, the efforts that have been made recently in the field of modeling
can be mentioned as follows. In Biomath: COVID-19 [16–18], Mump Virus [19], hepatitis B [20, 21],
human liver [22], an immunogenetic tumor model [23]. In thermodynamics and physics, we can refer
to [24–34].

In 2000, Rudolf Hilfer published a book titled Applications of Fractional Calculus in Physics and
presented a new definition of fractional derivative [3]. In this book, he called his new fractional
operator Right-Sided (Left-Sided) Generalized RL derivative. This new derivative, which was often
called from the fractional order ξ ∈ (0, 1) and ν ∈ [0, 1] type, and represented by Dξ,ν, was fractional
operator between the Riemann-Liouville (ν = 0), and Caputo (ν = 1) operators. However, this type of
operator quickly attracted the attention of researchers and is often referred to as Hilfer fractional
derivative. In 2016, Rafal Kamocki presented a new formula of this type of derivative [35]. For more
information about this fractional operator see [36–38]. In the last half century, Sectorial operators
have been widely investigated. In 2002, Francisco Periago and Straub constructed functional calculus
for Almost Sectorial Operators (ASO) [39]. In addition to formulating the analysis of these operators,
they also described its applications in solving differential equations. After that, several articles were
published focusing on providing mild solutions for fractional differential equations using
ASO [40–43].

In 2012 [38], Furati et al. studied the following initial value problemDξ,ν℘(ℓ) = F (ℓ, ℘),
I1−λ℘(k+) = ℘k,

where Dξ,ν is the Hilfer derivative, ℓ > k, ξ ∈ (0, 1), ν ∈ [0, 1], λ = ξ + ν − ξν, and I1−λ is Riemann-
Liouville integral of fraction order 1 − λ.

In 2013 [42], Fang Li, investigated the existence of mild solution to the following problem
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cDξ℘(ℓ) = A℘(ℓ) +F (ℓ, ℘(ℓ), ℘ℓ), ℓ ∈ [0,L],
℘0 = ϕ ∈ Φ,

such that cDξ is the Caputo derivative, ξ ∈ (0, 1),A is an ASO, and ℘ℓ(x) = ℘(ℓ + x) for x ∈ (−∞, 0].
In 2015 [39], Gu and Trujillo, examined the existence of mild solution for the following evolution

problem Dξ,ν℘(ℓ) = G℘(ℓ) +F (ℓ, ℘(ℓ)), ℓ ∈ [0,L],
I(1−ξ)(1−ν)℘(0) = ℘0,

which Dξ,ν is Hilfer fractional derivative of order ξ ∈ [0, 1], ν ∈ (0, 1), G is the infinitesimal generator
of a strongly continuous semigroup of bounded linear operators in Banach space H , and ℘0 ∈H .

In this work, with motivation from the history mentioned above and previous works, especially [42]
and [39], we intend to prepare suitable space for the existence of mild solution for the following
fractional problemD

ξ,ν℘(ℓ) +A℘(ℓ) = F (ℓ, ℘(ℓ), ℘′(ℓ),
∫ ℓ

0
ς(ℓ, s)ϑ(s, ℘(s), ℘′(s))ds), ℓ ∈ (0, L] = L,

I(1−ξ)(1−ν)℘(0) = ℘0,
(1.1)

where Dξ,ν is Hilfer fractional derivative of order ξ ∈ (0, 1), ν ∈ [0, 1], A is an ASO in the Banach
space H having norm ∥ · ∥, F : J ×H ×H →H is a function that will be defined later, I(1−ξ)(1−ν)

is Riemann-Liouville integral of order (1 − ξ)(1 − ν), and ℘0 ∈ H . Here, for the uniqueness of the
solution, it is necessary to consider an initial condition according to the fractional order ξ ∈ (0, 1). We
have considered to be non-zero so that the initial condition is not independent of the type of fractional
derivative. Also, inspired by Podlubny and Heymans’s approach to the physical interpretation of the
initial condition [44], that is, the concept of “inseparable twins”, the two sides of the initial condition
indicate the relationship between two functions that are related to the basic laws of physics. Note that
the fractional integral I(1−ξ)(1−ν)℘(0) = ℘0, remains conserved and constant while ξ, ν varies.

2. Preliminaries

Definition 2.1. [10] The Riemann-Liouville fractional integral of order ξ > 0, defined by

Iξ℘(ℓ) =
1
Γ(ξ)

∫ ℓ

0
(ℓ − r)ξ−1℘(r)dr,

such that ℘ : [0,∞)→ R, and the right side of integral exists.

Definition 2.2. [10] Let 0 < ξ < 1, then the Riemann-Liouville and Caputo fractional derivatives of
order ξ, for a function ℘, are defined as follows respectively

D
ξ℘(ℓ) =

1
Γ(1 − ξ)

d
dℓ

∫ ℓ

0

℘(r)
(ℓ − r)ξ

dr,

and
c
D
ξ℘(ℓ) =

1
Γ(1 − ξ)

∫ ℓ

0

f ′(r)
(ℓ − r)ξ

dr.
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Definition 2.3. [3] Rudolf Hilfer proposed a generalization of the Riemann-Liouville and Caputo
fraction derivative of order 0 < ξ < 1 and type ν which reads as follows

D
ξ,ν℘(ℓ) = Iv(1−ξ) d

dℓ
I1−ν(1−ξ)℘(ℓ).

Here, we recall two important examples of the measure of noncompactness, namely Hausdorff and
Kuratowski.

Definition 2.4. [45] Assume that G be a bounded subset of H , then the Hausdorff and Kuratowski
measure of noncompactness are defined as follows, respectively

µ(G ) = inf
{
q > 0 : G ⊂

z⋃
i=1

Bq(hi) and hi ∈H
}
,

and

µ∗(G ) = inf
{
q > 0 : G ⊂

z⋃
i=1

Mi and sup{∥m − n∥ : m, n ∈ Mi} ≤ q
}
,

such that Bq(hi) represents the balls with centers hi and radius ≤ q. The reader can see these two
measures enjoy some properties in [45–48].

Definition 2.5. [48] Let G be a subset of the Banach space C(L,H ) and G(r) = {g(r) ∈H : g ∈ G},
then we define ∫ ℓ

0
G(r)dr =

{ ∫ ℓ

0
g(r)dr : g ∈ G

}
, ℓ ∈ L.

Definition 2.6. [40] Assume that −1 < a < 0 and 0 < κ < π
2 , then we define a closed linear

operator A : D(A) ⊂ H → H , and we represent the family of these operators by Ψaκ, such that
following statement are hold true:

• σ(A) ⊂ Sκ, which σ(A) is the specturm ofA and Sκ = {z ∈ C − {0} : | arg z| ≤ κ} ∪ {0}.
• ∀λ ∈ (κ, π), there exist positive constant bλ which

∥(z −A)−1∥ ≤ bλ|z|a, ∀z < Sκ.

Then the operatorA is called an almost sectorial operator (ASO).

Definition 2.7. [40] Suppose thatA ∈ Ψaκ, then we define the semigroup {T (ℓ)}ℓ≥0 associated withA,
as follows

T (ℓ) = e−ℓz(A) =
1

2πi

∫
Γµ

e−ℓz(z −A)−1dz, ℓ ∈ S π
2−κ
,

where Γµ = {R+eiµ} ∪ {R+e−iµ}, such that κ < µ < π2 − | arg ℓ|.

Notation 2.1. [49] Throughout this workℜξ(z) denotes the following wright function

ℜξ(z) =
∑
n∈N

(−z)n−1

Γ(1 − ξn)(n − 1)!
, z ∈ C, ξ ∈ (0, 1). (2.1)
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Definition 2.8. Let ℜξ(z) is the same as in (2.1) and ℓ ∈ S π
2−κ

, then we define the following two
operator

Uξ(ℓ) =
∫ ∞

0
ℜξ(z)T (ℓξz)dz, (2.2)

Vξ(ℓ) =
∫ ∞

0
ξzℜξ(z)T (ℓξz)dz. (2.3)

Remark 2.1. [50] The operators defined in (2.2) and (2.3) are linear, bounded and also ∀ℓ ∈ S π
2−κ

the following inequalities hold true
|Uξ(ℓ)| ≤ j1ℓ

−ξ(1+a),

and
|Vξ(ℓ)| ≤ j2ℓ

−ξ(1+a),

such that j1, j2 are constant.

Lemma 2.1. [51] The problem mentioned in (1.1), is equivalent to the following equation

℘(ℓ) =
℘0

Γ(ν(1 − ξ) + ξ)
ℓ(1−ξ)(ν−1) (2.4)

+
1
Γ(ξ)

∫ ℓ

0
(ℓ − s)ξ−1[F (ℓ, ℘(ℓ), ℘′(ℓ),

∫ ℓ

0
ς(ℓ, s)ϑ(s, ℘(s), ℘′(s))

)
− E℘(s)

]
ds, ℓ ∈ L.

For simplicity in writing, we set ℏ(ℓ) =
∫ ℓ

0
ς(ℓ, s)ϑ(s, ℘(s), ℘′(s)), which ℏ(ℓ) is a function in terms of

variable ℓ.

Lemma 2.2. [51] If ℘(ℓ) satisfied in (2.4), then we have

℘(ℓ) = Uξ,ν(ℓ)℘0 +

∫ ℓ

0
V∗ξ(ℓ − s)F

(
ℓ, ℘(ℓ), ℘′(ℓ), ℏ(s))ds, (2.5)

such thatUξ,ν(ℓ) = I(1−ξ)νV∗ξ(ℓ) andV∗ξ(ℓ) = ℓ
ξ−1Vξ(ℓ).

Definition 2.9. The function ℘(ℓ) ∈ C1(L∗,H ) which satisfied in (2.5) is called a mild solution of
the Eq (1.1). Now, according to the definition of mild solution, we define the operator ⅁ : Br(L) →
Br(L) via

⅁℘(ℓ) = Uξ,ν(ℓ)℘0 +

∫ ℓ

0
Vξ(ℓ − s)ξ−1F

(
ℓ, ℘(ℓ), ℘′(ℓ), ℏ(s))ds,

where Br(L) = {m ∈ C1(L,H ) : ∥m∥ ≤ r}.

Theorem 2.1. [40] For each ℓ > 0, the operatorsUξ,ν(ℓ) andVξ(ℓ) are linear, bounded and strongly
continuous. Also these operators satisfy the following inequalities

∥Uξ,ν(ℓ)n∥ ≤ j3
Γ(−ξa)

Γ(ν(1 − ξ) − ξa)
ℓν(1−ξ)−1−ξa∥n∥ and ∥Vξ(ℓ)n∥ ≤ j3ℓ

−1−ξa.

Lemma 2.3. [52] Let G ⊂ C(L,H ) be bounded and continuous, then the following statements are
hold true
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• coG ⊂ C(L,H ) is bounded and equicontinuous.
• ℓ → µ(G(ℓ)) is continuous on L, and ∀ℓ ∈ L, we have

µ(G) = max
ℓ∈L
µ(G(ℓ)), µ

( ∫ ℓ

0
G(r)dr

)
≤

∫ ℓ

0
µ(G(r))dr.

• ∀ϵ > 0, there is a sequence {℘k}
∞
k=1 ⊂ G, such that µ(G) ≤ 2µ({℘k}

∞
k=1).

Lemma 2.4. [53] If for a family of continuous function {℘k}
∞
k=1, there exists f ∈ L1(L,R+), such

that |℘k(ℓ)| ≤ f(ℓ), then µ({℘k(ℓ)}∞k=1) is integrable on L, and

µ
({ ∫ ℓ

0
℘k(r)dr

}∞
k=1

)
≤ 2
∫ ℓ

0
µ({℘k(r)}∞k=1)dr.

3. Main results

In this section, first, four hypotheses are proposed, then we will deduce our main results by proving
two auxiliary theorems.

(B1) ∀ℓ ∈ L∗, the function F (ℓ, ., ., .) : H ×H ×H → H is continuous and ∀℘ ∈ C1(L∗,H ), the
function F (., ℘, ℘′, ℏ) : L∗ →H is strongly measurable.

(B2) There is a function δ ∈ L1(L∗,R+) which

I−aξδ ∈ C1(L∗,H ), and lim ℓ(1+aξ)(1−ν)I−aξδ(ℓ) = 0.

(B3) ∀w ∈ D(Aθ), ∃η > 0, where

sup
ℓ∈L∗

(
ℓ(1+aξ)(1−ν)∥Uξ,ν(ℓ)w∥ + ℓ(1+aξ)(1−ν)

∫ ℓ

0
(ℓ − s)−aξ−1δ(s)ds

)
≤ η,

such that θ > a + 1.
(B4) Let {℘k}

∞
k=1 be a sequence of functions such that are differentiable on L, and ∃ℓ0 ∈ L,

where {℘k(ℓ0)} is convergent. If {℘′k} be uniformly convergent on L, then {℘k} is uniformly
convergent to function ℘ and lim

k→∞
℘′k(ℓ) = ℘

′(ℓ).

Theorem 3.1. Suppose that the conditions (B1 −B3) are hold true and A ∈ Ψaκ. Then the element
of {⅁m : m ∈ Br(L)}, are equicontinuous and ℘0 ∈ D(Aθ), such that θ > a + 1.

Proof. Let m ∈ Br(L) and ℓ1 = 0 < ℓ2 ≤ L, we can write∥∥∥∥⅁m(ℓ2) − ⅁m(0)
∥∥∥∥ = ∥∥∥∥ℓ2(1+ξa)(1−ν)

(
Uξ,ν(ℓ2)℘0 +

∫ ℓ2

0
(ℓ2 − s)ξ−1Vξ(ℓ2 − s)F (s, ℘(s), ℘′(s), ℏ(s)ds

)∥∥∥∥
≤

∥∥∥∥ℓ(1+ξa)(1−ν)2 Uξ,ν(ℓ2)℘0

∥∥∥∥
+
∥∥∥∥ℓ(1+ξa)(1−ν)2

∫ ℓ2

0
(ℓ2 − s)ξ−1Vξ(ℓ2 − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

∥∥∥∥→ 0,

as ℓ2 → 0.
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Suppose this time, 0 < ℓ1 < ℓ2 ≤ L, then∥∥∥∥⅁m(ℓ2) − ⅁m(ℓ1)
∥∥∥∥ = ∥∥∥∥ℓ2(1+ξa)(1−ν)

Uξ,ν(ℓ2)℘0 − ℓ1
(1+ξa)(1−ν)

Uξ,ν(ℓ1)℘0

∥∥∥∥
+
∥∥∥∥ℓ(1+ξa)(1−ν)2

∫ ℓ2

0
(ℓ2 − s)ξ−1Vξ(ℓ2 − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

− ℓ
(1+ξa)(1−ν)
1

∫ ℓ1

0
(ℓ1 − s)ξ−1Vξ(ℓ1 − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

∥∥∥∥.
In view of the triangle inequality, we get∥∥∥∥⅁m(ℓ2) − ⅁m(ℓ1)

∥∥∥∥ = ∥∥∥∥ℓ2(1+ξa)(1−ν)
Uξ,ν(ℓ2)℘0 − ℓ1

(1+ξa)(1−ν)
Uξ,ν(ℓ1)℘0

∥∥∥∥
+
∥∥∥∥ℓ(1+ξa)(1−ν)2

∫ ℓ2

0
(ℓ2 − s)ξ−1Vξ(ℓ2 − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

∥∥∥∥
+
∥∥∥∥ℓ(1+ξa)(1−ν)2

∫ ℓ2

0
(ℓ2 − s)ξ−1Vξ(ℓ2 − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

− ℓ
(1+ξa)(1−ν)
1

∫ ℓ1

0
(ℓ1 − s)ξ−1Vξ(ℓ2 − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

∥∥∥∥
+
∥∥∥∥ℓ(1+ξa)(1−ν)1

∫ ℓ1

0
(ℓ1 − s)ξ−1Vξ(ℓ2 − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

− ℓ
(1+ξa)(1−ν)
1

∫ ℓ1

0
(ℓ1 − s)ξ−1Vξ(ℓ1 − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

∥∥∥∥
:= b1 + b2 + b3 + b4.

Since according to Theorem 2.1,Uξ,ν(ℓ) is strongly continuous, we conclude that b1 → 0, as ℓ2 → ℓ1.
Now, about b2, we have

b2 ≤ j3ℓ
(1+ξa)(1−ν)
2

∫ ℓ2

ℓ1

(ℓ2 − s)−1−ξaδ(s)ds

≤ j3

∣∣∣∣ ∫ ℓ2

0
(ℓ2 − s)−1−ξaδ(s)ds − ℓ(1+ξa)(1−ν)2

∫ ℓ1

0
(ℓ1 − s)−1−ξaδ(s)ds

∣∣∣∣
≤ j3

∫ ℓ1

0

∣∣∣∣ℓ(1+ξa)(1−ν)1 (ℓ1 − s)−1−ξa − ℓ
(1+ξa)(1−ν)
2 (ℓ2 − s)−1−ξa

∣∣∣∣δ(s)ds,

Now, according to the dominated convergence theorem (DCT) and condition B2, we obtain b2 → 0
as ℓ2 → ℓ1. For b3, we have

b3 ≤ j3

∫ ℓ1

0
(ℓ2 − s)−ξ−ξa

∣∣∣ℓ(1+ξa)(1−ν)2 (ℓ2 − s)ξ−1 − ℓ
(1+ξa)(1−ν)
1 (ℓ1 − s)ξ−1

∣∣∣δ(s)ds,

where

(ℓ2 − s)−ξ−ξa
∣∣∣ℓ(1+ξa)(1−ν)2 (ℓ2 − s)ξ−1 − ℓ

(1+ξa)(1−ν)
1 (ℓ1 − s)ξ−1

∣∣∣δ(s)ds

≤ ℓ
(1+ξa)(1−ν)
2 (ℓ2 − s)ξ−1δ(s) + ℓ(1+ξa)(1−ν)1 (ℓ1 − s)ξ−1δ(s)
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≤ 2ℓ(1+ξa)(1−ν)1 (ℓ1 − s)ξ−1δ(s),

but
∫ ℓ1

0
≤ 2ℓ(1+ξa)(1−ν)1 (ℓ1 − s)ξ−1δ(s) exist, namely, b3 → 0, as ℓ2 → ℓ1. Finally, ∀ϵ > 0, for b4, we can

write

b4 =
∥∥∥∥ ∫ ℓ1

0
ℓ

(1+ξa)(1−ν)
1 [Vξ(ℓ2 − s) −Vξ(ℓ1 − s)](ℓ1 − s)ξ−1F (s, ℘(s), ℘′(s), ℏ(s))ds

∥∥∥∥
≤

∫ ℓ1−ϵ

0
ℓ

(1+ξa)(1−ν)
1 ∥Vξ(ℓ2 − s) −Vξ(ℓ1 − s)∥(ℓ1 − s)ξ−1δ(s)

+

∫ ℓ1

ℓ1−ϵ

ℓ
(1+ξa)(1−ν)
1 ∥Vξ(ℓ2 − s) −Vξ(ℓ1 − s)∥(ℓ1 − s)ξ−1δ(s)

≤ ℓ
(1+ξa)(1−ν)
1

∫ ℓ1

0
(ℓ1 − s)ξ−1δ(s)ds sup

s∈[0,ℓ1−ϵ]
∥Vξ(ℓ2 − s) −Vξ(ℓ1 − s)∥

+ j3

∫ ℓ1

ℓ1−ϵ

ℓ
(1+ξa)(1−ν)
1

(
(ℓ2 − s)−ξ−ξa + (ℓ1 − s)−ξ−ξa

)
(ℓ1 − s)ξ−1δ(s)ds

≤ ℓ
(1+ξa)(1−ν)+ξ(1+a)
1

∫ ℓ1

0
(ℓ1 − s)−1−ξaδ(s)ds sup

s∈[0,ℓ1−ϵ]
∥Vξ(ℓ2 − s) −Vξ(ℓ1 − s)∥

+ 2 j3

∫ ℓ1

ℓ1−ϵ

ℓ
(1+ξa)(1−ν)
1 (ℓ1 − s)−1−ξaδ(s)ds.

It follows from the uniformly continuity of the Vξ(ℓ) and limℓ2→ℓ1 b2 = 0, that b4 → 0, as ℓ2 → ℓ1.
And this means the independence of m ∈ Br(L). Therefore, ∥⅁m(ℓ2) − ⅁m(ℓ1)∥ → 0, as ℓ2 → ℓ1.
Thus, {⅁m : m ∈ Br(L)} is equicontinuous.

Theorem 3.2. Suppose that the conditions (B1 −B4) are hold true and A ∈ Ψaκ. Then the element
of {⅁m : m ∈ Br(L)}, are continuous, bounded and ℘0 ∈ D(Aθ), such that θ > a + 1.

Proof. We shall show that ⅁ is a self-mapping on Br(L). To achieve this, we choose m ∈ Br(L), and
put ℘(ℓ) = ℓ−(1+ξa)(1−ν)m(ℓ), Ξ = −(1+ ξa)(1− ν), then we have ℘ ∈ Br(L). Now, assume that ℓ ∈ [0, L]

∥⅁∥ ≤ ∥ℓ(1+ξa)(1−ν)Uξ,ν(ℓ)℘0∥ + ℓ
(1+ξa)(1−ν)

∥∥∥∥ ∫ ℓ

0
(ℓ − s)ξ−1Vξ(ℓ − s)F (s, ℘(s), ℘′(s), ℏ(s))ds

∥∥∥∥.
From B2 and B3, we get

∥⅁∥ ≤ ℓ(1+ξa)(1−ν)∥Uξ,ν(ℓ)℘0∥ + ℓ
(1+ξa)(1−ν)

∫ ℓ

0
(ℓ − s)−ξa−1δ(ℓ)ds

≤ sup
[0,L]
ℓ(1+ξa)(1−ν)

∫ ℓ

0
(ℓ − s)−ξa−1δ(ℓ)ds ≤ η.

Therefore, for each m ∈ Br(L), we have ∥⅁m∥ ≤ η. Now, at this step, we examine the continuity of ⅁
in Br(L). For achieve this, get mk,m ∈ Br(L) such that lim

k→∞
mk = m, namely, lim

k→∞
ℓ−(1+ξa)(1−ν)mk =

ℓ−(1+ξa)(1−ν)m. In view of B1, we have

F (s, ℘k(s), ℘′k(s), ℏk(s)) = F (s, sΞmk,ΞsΞ−1
mk + sΞm′k, sΞℏmk)
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→ F (s, sΞm,ΞsΞ−1
m + sΞm′, sΞℏm),

as k → ∞. By using B2, we deduce that

(ℓ1 − s)−1−ξa|F (s, ℘k(s), ℘′k(s), ℏk(s))| ≤ 2(ℓ1 − s)−ξa(1−ν)δ(s),

which yields that∫ ℓ

0
(ℓ − s)−ξa−1

∥∥∥F (s, ℘k(s), ℘′k(s), ℏk(s)) −F (s, ℘(s), ℘′(s), ℏ(s))
∥∥∥ds→ 0, as k → ∞.

Hence, we get

∥⅁mk − ⅁m∥ ≤ ℓ
(1+ξa)(1−ν)

∥∥∥∥ ∫ ℓ

0
(ℓ − s)ξ−1Vξ(ℓ − s)F (s, ℘k(s), ℘′k(s), ℏk(s)) −F (s, ℘(s), ℘′(s), ℏ(s))ds

∥∥∥∥.
According to Remark 2.1, as k → ∞, we obtain

∥⅁mk − ⅁m∥ ≤ j3ℓ
(1+ξa)(1−ν)

∫ ℓ

0
(ℓ − s)−ξa−1

∥∥∥F (s, ℘k(s), ℘′k(s), ℏk(s)) −F (s, ℘(s), ℘′(s), ℏ(s))
∥∥∥ds→ 0.

Thus, ⅁mk → ⅁m, pointwise on L. Furthermore, it follows from Theorem 3.1 that ⅁mk → ⅁m

uniformly on L, which k → ∞. Hence ⅁ is continuous.

Theorem 3.3. Suppose that the conditions (B1 − B3) are hold true, A ∈ Ψaκ and the
semigroup {T (ℓ)}ℓ≥0 be compact. Then ∀℘0 ∈ D(Aθ) there exists a mild solution of (1.1), in Br(L)
such that θ > a + 1.

Proof. The equicontinuity of semigroup T (ℓ) obtains from the assumption of its compactness.
Furthermore, continuity and boundedness of ⅁ : Br(L) → Br(L) follows from Theorems 3.1 and 3.2.
Thus, ∗⅁ : Br(L) → Br(L) is bounded, continuous and the operators {∗⅁ : m ∈ Br(L)} are
equicontinuous. Define ∗⅁ : Br(L)→ Br(L) via

∗⅁m(ℓ) =∗ ⅁1
m(ℓ) +∗ ⅁2

m(ℓ),

such that

∗⅁
1
m(ℓ) = ℓ(1+ξa)(1−ν)Uξ,ν(ℓ)℘0 = ℓ

(1+ξa)(1−ν)Iν(1−ξ)ℓξ−1Vξ(ℓ)℘0

=
ℓ(1+ξa)(1−ν)

Γ(ν(1 − ξ))

∫ ℓ

0
(ℓ − s)ν(1−ξ)−1sξ−1

∫ ∞

0
ξzℜξ(z)T (ℓξz)dzdℓ

=
ξℓ(1+ξa)(1−ν)

Γ(ν(1 − ξ))

∫ ℓ

0

∫ ∞

0
(ℓ − s)ν(1−ξ)−1sξ−1zℜξ(z)T (ℓξz)dzdℓ,

and

∗⅁
2
m(ℓ) = ℓ(1+ξa)(1−ν)

∫ ℓ

0
(ℓ − s)ξ−1Vξ(ℓ − s)F (s, ℘k(s), ℘′k(s), ℏk(s)).
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Now, we define an operator ∗⅁1
z,Λ on Br(L), such that Λ > 0 and 0 < z < ℓ

∗⅁
1
z,Λm(ℓ) =

ℓ(1+ξa)(1−ν)

Γ(ν(1 − ξ))

∫ ℓ

z

∫ ∞

Λ

(ℓ − s)(1−ξ)ν−1sξ−1zℜξ(z)T (ℓξz)℘0dzdℓ

=
ξℓ(1+ξa)(1−ν)

Γ(ν(1 − ξ))
T (zξΛ)

∫ ℓ

z

∫ ∞

Λ

(ℓ − s)(1−ξ)ν−1sξ−1zℜξ(z)T (ℓξz − zξΛ)℘0dzdℓ.

Since T (zξΛ) is compact, the set {∗⅁1
z,Λm : m ∈ Br(L)} is relatively compact. Furthermore, ∀m ∈

Br(L), we can write

∥∗⅁
1
m(ℓ) −∗ ⅁1

z,Λm(ℓ)∥ ≤ j4

∥∥∥∥ℓ(1+ξa)(1−ν) ∫ ℓ

0

∫ Λ

0
(ℓ − s)(1−ξ)ν−1sξ−1zℜξ(z)T (ℓξz)℘0dzdℓ

∥∥∥∥
+ j4

∥∥∥∥ℓ(1+ξa)(1−ν) ∫ z

0

∫ ∞

Λ

(ℓ − s)(1−ξ)ν−1sξ−1zℜξ(z)T (ℓξz)℘0dzdℓ
∥∥∥∥

≤ j4ℓ
(1+ξa)(1−ν)

∫ ℓ

0

∫ Λ

0
(ℓ − s)(1−ξ)ν−1sξ−1zℜξ(z)s−ξν−ξ∥℘0∥z−a−1dzdℓ

+ j4ℓ
(1+ξa)(1−ν)

∫ z

0

∫ ∞

Λ

(ℓ − s)(1−ξ)ν−1sξ−1zℜξ(z)s−ξa−ξz−a−1∥℘0∥dzdℓ

= j4ℓ
(1+ξa)(1−ν)

∫ ℓ

0
(ℓ − s)(1−ξ)ν−1s−ξa−1∥℘0∥dℓ

∫ Λ

0
z−aℜξ(z)dz

+ j4ℓ
(1+ξa)(1−ν)

∫ z

0
(ℓ − s)(1−ξ)ν−1s−ξa−1∥℘0∥dℓ

∫ ∞

Λ

z−aℜξ(z)dz

≤ j4ℓ
−ξν(1+a)∥℘0∥

∫ Λ

0
z−aℜξ(z)dz

+ j4ℓ
−ξν(1+a)∥℘0∥

∫ z

0
(1 − s)(1−ξ)ν−1s−ξa−1dℓ

∫ ∞

Λ

z−aℜξ(z)dz

→ 0, as z→ 0 and Λ→ 0,

which j4 =
ξ

Γ(ν(1 − ξ))
. Hence, the set {∗⅁1

z,Λm : m ∈ Br(L)} is arbitrarily closed to the set {∗⅁1m(ℓ) :

m ∈ Br(L)}. Thereby, the set {∗⅁1m(ℓ) : m ∈ Br(L)} is relatively compact in H . Now, similar to the
process above, we define the operator ∗⅁2

z,Λm, as follows

∗⅁
2
z,Λm(ℓ) = ξℓ(1+ξa)(1−ν)∫ ℓ−z

0

∫ ∞

Λ

zℜξ(z)(ℓ − s)ξ−1T ((ℓ − s)ξ−1z)F (s, ℘k(s), ℘′k(s), ℏk(s))dzdℓ

= ξℓ(1+ξa)(1−ν)T (zξΛ)∫ ℓ−z

0

∫ ∞

Λ

zℜξ(z)(ℓ − s)ξ−1T ((ℓ − s)ξ−1z − zξΛ)F (s, ℘k(s), ℘′k(s), ℏk(s))dzdℓ,

and, ∀m ∈ Br(L), we find

∥∗⅁
2
m(ℓ) −∗ ⅁2

z,Λm(ℓ)∥
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≤

∥∥∥∥ξℓ(1+ξa)(1−ν) ∫ ℓ

0

∫ Λ

0
zℜξ(z)(ℓ − s)ξ−1T ((ℓ − s)ξ−1z)F (s, ℘k(s), ℘′k(s), ℏk(s))dzdℓ

∥∥∥∥
+
∥∥∥∥ξℓ(1+ξa)(1−ν) ∫ ℓ

ℓ−z

∫ ∞

Λ

zℜξ(z)(ℓ − s)ξ−1T ((ℓ − s)ξ−1z)F (s, ℘k(s), ℘′k(s), ℏk(s))dzdℓ
∥∥∥∥

≤ j0ξℓ
(1+ξa)(1−ν)

( ∫ ℓ

0
(ℓ − s)−ξa−1δ(ℓ)dℓ

∫ Λ

0
z−aℜξ(z)dz

)
+ j0ξℓ

(1+ξa)(1−ν)
( ∫ ℓ

ℓ−z
(ℓ − s)−ξa−1δ(ℓ)dℓ

∫ ∞

0
z−aℜξ(z)dz

)
≤ j0ξℓ

(1+ξa)(1−ν)
( ∫ ℓ

0
(ℓ − s)−ξa−1δ(ℓ)dℓ

∫ Λ

0
z−aℜξ(z)dz

)
+
Γ(1 − a)
Γ(1 − ξa)

j0ξℓ
(1+ξa)(1−ν)

( ∫ ℓ

ℓ−z
(ℓ − s)−ξa−1δ(ℓ)dℓ

)
→ 0, as Λ→ 0.

Hence, the set {∗⅁2
z,Λm : m ∈ Br(L)} is arbitrarily closed to the set {∗⅁2m(ℓ) : m ∈ Br(L)}. Thereby,

the set {∗⅁2m(ℓ) : m ∈ Br(L)} is relatively compact in H . As a result of the Arzela-Ascoli
theorem, {⅁m(ℓ) : m ∈ Br(L)} is relatively compact. Moreover ⅁ is a completely continuous operator.
According to the Schauder fixed point theorem, this operator has at least a fixed point m∗ ∈ Br(L).
Put ℘∗(ℓ) = ℓ(1+ξa)(1−ν)m∗. And this means ℘∗ is a mild solution to the problem mentioned in (1.1).

To continue the work, we need the following hypothesis in the case that the semigroup T (ℓ) is
noncompact.

(B5) For each bounded G1,G2,G3 ⊂H there exist a constant N such that

µ∗
(
F (s,G1,G2,G3)

)
≤ Nµ∗(G1,G2,G3),

which µ∗ is the same as mentioned in Definition 2.4.

Theorem 3.4. Suppose that the conditions (B1 − B5) are hold true, A ∈ Ψaκ and the
semigroup {T (ℓ)}ℓ≥0 is noncompact. Then ∀℘0 ∈ D(Aθ) there exists a mild solution of (1.1), in Br(L)
such that θ > a + 1.

Proof. In Theorems 3.1 and 3.2, we proved that ⅁ : Br(L) → Br(L) is bounded, continuous and
{⅁m : m ∈ Br(L)} is equicontinuous. Moreover, we showed ∃C ⊂ Br(L), such that ⅁ is compact in C.
For each bounded C ⊂ Br(L), put

⅁(1)(C) = ⅁(C), . . . ,⅁(n)(C) = ⅁
(
co(⅁(n−1)(C))

)
, n = 2, 3, . . .

In view of properties of a measure of noncompactness (Lemmas 2.3 and 2.4), we can find a
subsequence {m(1)

n }
∞
n=1 ⊂ C, such that

µ∗
(
⅁(1)(C(ℓ))

)
≤ 2µ∗

(
ℓ(1+ξa)(1−ν)

∫ ℓ

0
(ℓ − s)ξ−1Vξ(ℓ − s)F (s, {sΞm(1)

n (s),ΞsΞ−1
m

(1)
n (s) + sΞm′(1)

n (s),I
m

(1)
n (s)}

∞
n=1)ds

)
≤ 4 j3ℓ

(1+ξa)(1−ν)
( ∫ ℓ

0
(ℓ − s)−ξa−1µ∗(F (s, {sΞm(1)

n (s),ΞsΞ−1
m

(1)
n (s) + sΞm′(1)

n (s),I
m

(1)
n (s)}

∞
n=1))ds

)
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≤ 4 j3Nℓ
(1+ξa)(1−ν)µ∗(C)

( ∫ ℓ

0
(ℓ − s)−ξa−1s−3(1+ξa)(1−ν)ds

)
≤ 4 j3Nℓ

−ξaµ∗(C)
(Γ(−ξa)Γ(−3ξa + (1 + ξa)ν)
Γ(−4ξa + (1 + ξa)ν)

)
.

It follows from the fact that ⅁ is arbitrary

µ∗
(
⅁(1)(C(ℓ))

)
≤ 4 j3Nℓ

−ξaµ∗(C)
(Γ(−ξa)Γ(−3ξa + (1 + ξa)ν)
Γ(−4ξa + (1 + ξa)ν)

)
,

which implies that

µ∗
(
⅁(n)(C(ℓ))

)
≤

(4 j3N)nℓ−nξaΓn(−ξa)Γ(−3ξa + (1 + ξa)ν)
Γ(−(n + 3)ξa + (1 + ξa)ν)

. (3.1)

Put A = 4 j3Nℓ
−ξaΓ(−ξa), Then by rewriting Eq (3.1), we find

(4 j3N)nℓ−nξaΓn(−ξa)Γ(−3ξa + (1 + ξa)ν)
Γ(−(n + 3)ξa + (1 + ξa)ν)

=
AnΓ(−3ξa + (1 + ξa)ν)
Γ(−(n + 3)ξa + (1 + ξa)ν)

.

We can choose x, y ∈ N, so large where 1
x < ξa <

1
x−1 , and n+3

x+1 > 2 for

Γ(
n + 3
x + 1

) < yΓ(−(n + 3)ξa + (1 + ξa)ν) < n,

then, we obtain
AnΓ(−3ξa + (1 + ξa)ν)
Γ(−(n + 3)ξa + (1 + ξa)ν)

≤
AnΓ(−3ξa + (1 + ξa)ν)

Γ(
n + 3
x + 1

)
. (3.2)

By substitution n + 3→ (t + 1)(x + 1), the Eq (3.2) becomes

A(t+1)(x+1)−3Γ(−3ξa + (1 + ξa)ν)
Γ(t + 1)

=
[A(x+1)]t+1A−3Γ(−3ξa + (1 + ξa)ν)

t!
→ 0, as t → ∞.

So, ∃n∗ ∈ N, which

AnΓ(−3ξa + (1 + ξa)ν)
Γ(−(n + 3)ξa + (1 + ξa)ν)

≤
An∗Γ(−3ξa + (1 + ξa)ν)
Γ(−(n∗ + 3)ξa + (1 + ξa)ν)

= £ < 1,

thus, we deduced that
µ∗
(
⅁(n∗)(C(ℓ))

)
≤ £µ∗(C).

⅁(n∗)(C(ℓ)) is equicontinuous and bounded, therefore by Lemma 2.3, we get

µ∗
(
⅁(n∗)(C)

)
= max
ℓ∈L
µ∗
(
⅁(n∗)(C(ℓ))

)
.

Hence,
µ∗
(
⅁n∗(C)

)
≤ £µ∗(C),

such that £ < 1. Similar to what was done in the previous Theorem 3.3, we get G in Br(L),
which ⅁(G) ⊂ G, and ⅁(G) is compact. Thanks to Schauder fixed point theorem, we find a fixed
point m∗ ∈ Br(L) for the operator ⅁. Put ℘∗(ℓ) = ℓ(1+ξa)(1−ν)m∗, and this means ℘∗ is a mild solution to
the problem mentioned in (1.1).
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4. Examples

Example 4.1. Consider the following problemD
7

13 ,
1
2℘(ℓ) +A℘(ℓ) = ℓ

−1
3 cos2(℘(ℓ)) +

℘′(ℓ)
1 + e℘′(ℓ)

,

I(1− 7
13 )(1− 1

2 )℘(0) = ℘0.
(4.1)

In this case put ξ = 7
13 , ν = 1

2 , ℓ ∈ [0, 1] = L, and F
(
ℓ, ℘(ℓ), ℘′(ℓ), ℏ(ℓ)

)
= ℓ

−1
3 cos2(℘(ℓ)) +

℘′(ℓ)
1 + e℘′(ℓ)

.

Set H = Cλ, which λ ∈ (0, 1) and D(A) = {℘ ∈ C2+λ(L) : ℘(0) = 0}, then from [53], we deduce
that ∃w, y > 0, such thatA + w ∈ Ψ

λ
2−1
π
2−y(Cλ(L)). We choose δ(ℓ) = ℓ

−1
3 and

η = sup
[0,1]

(
ℓ(1+

7
13 a)(1−

1
2 )∥U 7

13 ,
1
2
(ℓ)∥
)
+
Γ(− 7a

13 )Γ(1
2 )

Γ(1
2 −

7a
13 )
. (4.2)

Thus, all the desired assumptions (B1 −B4) are correctly established, then according to Theorem 3.3,
problem (4.1) has a mild solution. To better understand this example, we present some graphs for
system (4.1) in Figures 1–3 and numerical result in Table 1.

Figure 1. The graph of ℓ
−1
3 cos2(℘(ℓ)) in Example 4.1.

Figure 2. The graph of ℓ
−1
3 cos2(℘(ℓ)) +

℘′(ℓ)
1 + e℘′(ℓ)

in Example 4.1.
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Figure 3. The graph of ℓ(1+
7

13 a)(1−
1
2 ) for different values of a in Eq (4.2).

Table 1. Numerical results for some functions in Example 4.1.

a=-0.3 a=-0.8
ℓ δ(ℓ) η η

0 0 3.8674 0.2617
0.1 2.1544 0.3808∥U 2

7 ,
1
2
(0.1)∥+3.8674 0.5192∥U 2

7 ,
1
2
(0.1)∥+0.2617

0.2 1.7099 0.5093∥U 2
7 ,

1
2
(0.2)∥+3.8674 0.6325∥U 2

7 ,
1
2
(0.2)∥+0.2617

0.3 1.4938 0.6036∥U 2
7 ,

1
2
(0.3)∥+3.8674 0.7098∥U 2

7 ,
1
2
(0.3)∥+0.2617

0.4 1.3572 0.6810∥U 2
7 ,

1
2
(0.4)∥+3.8674 0.7704∥U 2

7 ,
1
2
(0.4)∥+0.2617

0.5 1.2599 0.7478∥U 2
7 ,

1
2
(0.5)∥+3.8674 0.8209∥U 2

7 ,
1
2
(0.5)∥+0.2617

0.6 1.1856 0.8072∥U 2
7 ,

1
2
(0.6)∥+3.8674 0.8646∥U 2

7 ,
1
2
(0.6)∥+0.2617

0.7 1.1262 0.8611∥U 2
7 ,

1
2
(0.7)∥+3.8674 0.9034∥U 2

7 ,
1
2
(0.7)∥+0.2617

0.8 1.0772 0.9106∥U 2
7 ,

1
2
(0.8)∥+3.8674 0.9384∥U 2

7 ,
1
2
(0.8)∥+0.2617

0.9 1.0357 0.9567∥U 2
7 ,

1
2
(0.9)∥+3.8674 0.9704∥U 2

7 ,
1
2
(0.9)∥+0.2617

1 1 ∥U 2
7 ,

1
2
(1)∥+3.8674 ∥U 2

7 ,
1
2
(1)∥+0.2617

Example 4.2. Consider the following problemD
2
7 ,

1
2℘(ℓ) +A℘(ℓ) = ℓ

−1
7 sin(℘(ℓ)) + tan(℘′(ℓ)),

I(1− 2
7 )(1− 1

2 )℘(0) = ℘0.
(4.3)

In this case put ξ = 2
7 , ν = 1

2 , ℓ ∈ [0, 1] = L, and F
(
ℓ, ℘(ℓ), ℘′(ℓ), ℏ(ℓ)

)
= ℓ

−1
7 sin(℘(ℓ)) + tan(℘′(ℓ)).

Set H = Cλ, which λ ∈ (0, 1) and D(A) = {℘ ∈ C2+λ(L) : ℘(0) = 0}, then from [53], we deduce
that ∃w, y > 0, such thatA + w ∈ Ψ

λ
2−1
π
2−y(Cλ(L)). We choose δ(ℓ) = ℓ

−1
7 and

η = sup
[0,1]

(
ℓ(1+

2
7 a)(1−

1
2 )∥U 2

7 ,
1
2
(ℓ)∥
)
+
Γ(−2a

7 )Γ( 1
2 )

Γ( 1
2 −

2a
7 )
. (4.4)

AIMS Mathematics Volume 8, Issue 5, 10665–10684.



10679

Now, the conditions (B1 − B4) are satisfied and by Theorem 3.3, problem (4.3) has a mild
solution. To better understand this example,we present some graphs for system (4.3) in Figures 4–6
and numerical result in Table 2.

Figure 4. The graph of ℓ
−1
7 sin(℘(ℓ)) in Example 4.2.

Figure 5. The graph of ℓ
−1
7 sin(℘(ℓ)) + tan(℘′(ℓ)) in Example 4.2.

Figure 6. The graph of ℓ(1+
2
7 a)(1−

1
2 ) for different values of a in Eq (4.4).
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Table 2. Numerical results for some functions in Example 4.2.

a=-0.15 a=-0.45
ℓ δ(ℓ) η η

0 0 20.8574 5.4155
0.1 1.3894 0.3010∥U 2

7 ,
1
2
(0.1)∥+20.8574 0.2727∥U 2

7 ,
1
2
(0.1)∥+5.4155

0.2 1.2584 0.4320∥U 2
7 ,

1
2
(0.2)∥+20.8574 0.4033∥U 2

7 ,
1
2
(0.2)∥+5.4155

0.3 1.1876 0.5337∥U 2
7 ,

1
2
(0.3)∥+20.8574 0.5069∥U 2

7 ,
1
2
(0.3)∥+5.4155

0.4 1.1398 0.6201∥U 2
7 ,

1
2
(0.4)∥+20.8574 0.5963∥U 2

7 ,
1
2
(0.4)∥+5.4155

0.5 1.1040 0.6966∥U 2
7 ,

1
2
(0.5)∥+20.8574 0.6763∥U 2

7 ,
1
2
(0.5)∥+5.4155

0.6 1.0757 0.7661∥U 2
7 ,

1
2
(0.6)∥+20.8574 0.7496∥U 2

7 ,
1
2
(0.6)∥+5.4155

0.7 1.0522 0.8302∥U 2
7 ,

1
2
(0.7)∥+20.8574 0.8177∥U 2

7 ,
1
2
(0.7)∥+5.4155

0.8 1.0323 0.8901∥U 2
7 ,

1
2
(0.8)∥+20.8574 0.8817∥U 2

7 ,
1
2
(0.8)∥+5.4155

0.9 1.0151 0.9465∥U 2
7 ,

1
2
(0.9)∥+20.8574 0.9422∥U 2

7 ,
1
2
(0.9)∥+5.4155

1 1 ∥U 2
7 ,

1
2
(1)∥+20.8574 ∥U 2

7 ,
1
2
(1)∥+5.4155

5. Conclusions

In this paper, we showed that for the existence of a mild solution to the desired problem, namely
system (1.1), which involves Hilfer fractional derivative and almost sectorial operator (ASO), the
semigroup {T (ℓ)} need not be compact. We have guaranteed this issue in Theorem 3.4. To perform
this feature, we introduced special conditions (B1 − B5). Krasnoselskii’s fixed point theorem and
Arzela-Ascoli’s theorem were central to our proofs. Although various works have been done with the
almost sectorial operator (ASO), the novelty of our work is in using it in fractional integro-differential
equations of Hilfer type. We provided two examples to illustrate our result. Other researchers can test
our results with other fractional operators and pave the way.
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