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Abstract: In this work, we study the existence of one-sign solutions without signum condition for the
following problem: {

−∆u = λa(x) f (u), x ∈ RN ,

u(x)→ 0, as |x| → +∞,

where N ≥ 3, λ is a real parameter and a ∈ Cα
loc(R

N ,R) for some α ∈ (0, 1) is a weighted function,
f ∈ Cα(R,R), and there exist two constants s2 < 0 < s1, such that f (s1) = f (s2) = f (0) = 0 and
s f (s) > 0 for s ∈ R\{s1, 0, s2}. Furthermore, we consider the exact multiplicity of one-sign solutions
for above problem under more strict hypotheses. We use bifurcation techniques and the approximation
of connected components to prove our main results.
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1. Introduction

Consider the following semilinear elliptic problem{
−∆u = λa(x) f (u), x ∈ RN ,

u(x)→ 0, as |x| → +∞,
(1.1)

where λ is a real parameter, N ≥ 3, and a ∈ Cα
loc(R

N ,R) for some α ∈ (0, 1) is a weighted function
which can be sign-changing and f ∈ Cα(R,R), and f (s)s > 0 for any s , 0. Edelson and Rumbos [1]
have shown that problem (1.1) with f (u) ≡ u has a positive, simple and principal eigenvalue λ1 and
the positive principle eigenfunction φ satisfies the asymptotic decay law lim|x|→+∞ |x|N−2φ1(x) = c for
some constant c(where a satisfied the following condition (A1)). Edelson and Rumbos [1,2] have also
studied the existence of positive solution and the existence of global branches of minimal solutions of
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the problem (1.1) by the Schauder-Tychonoff fixed point theorem and the Dancer global bifurcation
theorems [3]. By using the Rabinowitz global bifurcation method [4], Edelson and Furi [5] have shown
the existence of positive minimal solution of the problem (1.1). In 2017, Dai [6] have established a
global bifurcation result for the problem (1.1).

By [6], set
M(Ω) := {a ∈ Cα

loc(Ω,R) : {x ∈ Ω : a(x) > 0} , ∅}.

For any u ∈ C∞c (Ω) with Ω ⊆ RN , we define

‖u‖1 = (
∫

Ω

|∇u|2dx)1/2.

Denote by D1,2(Ω) the completion of C∞c (Ω) with respect to the norm ‖u‖1. Denote by S (RN) the
set of all measurable real functions defined on RN . Two functions in S (RN) are considered as the
same element of S (RN) when they are equal almost everywhere. Let L2(RN; |a|) =: {u ∈ S (RN) :∫
RN |a|u2dx < +∞}. For u ∈ D1,2(RN), u , 0, define the Rayleigh quotient

R(u) =

∫
RN |∇u|2dx∫
RN au2dx

.

Dai et al. [6] also assumed that a satisfied the following condition:
(A1) Let a ∈ M(RN). Assume that p, P ∈ C(RN ,R) are positive, radially symmetric and satisfies

0 < p(|x|) ≤ a(x) ≤ P(|x|),∀x ∈ RN

and ∫
RN
|x|2−N P(|x|)dx < +∞.

Furthermore, if P satisfies the following more strong condition (with r = |x|)∫ ∞

0
rN−1P(r)dr < +∞. (1.2)

Dai [5] established the following spectrum structure:
Lemma 1.1 (see [6,Theorem 1.1]). Let (A1) hold. Then there exists an orthonormal basis {ϕk}

+∞
1 of

L2(RN; |a|) and a sequence of positive real numbers {λk}
+∞
1 with λk → +∞ as k → +∞, such that

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · ·,


−∆ϕk = λa(x)ϕk, x ∈ RN ,

ϕk ∈ D1,2(RN) ∩C2,α
loc (RN),

ϕk(x)→ 0, as|x| → +∞.

(1.3)

Moreover, one has that
λ1 = min

u,0,u∈D1,2(RN )
R(u) = R(ϕ1)
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and

λk = R(ϕk) = max
u,0,u∈span{ϕ1,···,ϕk−1}

R(u) = min
u,0,u⊥{ϕ1,···,ϕk−1}

R(u) = min
dim W=k,W⊂D1,2(RN )

max
u∈W

R(u).

For k ≥ 2. λ1 is simple and principal eigenvalue. Furthermore, if P satisfies (1.2), λ1 is the unique
positive principal eigenvalue and

lim
|x|→+∞

|x|N−2ϕ1(x) = c

for some constant c.
By the Rabinowitz global bifurcation theorem [2, Theorem 1.3] and the Dancer unilateral global

bifurcation theorem [7, Theorem 2], Dai [6] obtained [6, Theorem 1.3]. The signum condition f (s)s >
0 for s , 0 plays an important role in the [6, Theorem 1.3].

Of course, the natural question is that of what would happen without signum condition for the
problem (1.1). Recently, Dai [8,9] studied the global behavior of the components of positive solutions
for the Schrödinger equation and one-sign solutions for the p-Laplacian without the signum condition,
respectively.

Motivated by the above interesting and important studies, we shall show that the branches
bifurcating from infinity and the trivial solution line for the problem (1.1) are disjoint and the existence
results of radial nodal solutions to problem (1.1) without signum condition.

We now present the following assumptions on f :
(A2) f ∈ C(R,R), and there exist two constants s2 < 0 < s1, such that f (s1) = f (s2) = f (0) = 0 and

s f (s) > 0 for s ∈ R\{s1, 0, s2}.

(A3) There exist two constants γ1 > 0 and γ2 < 0 such that

lim
s→s−1

f (s)
s1 − s

= γ1, lim
s→s+

2

f (s)
s − s2

= γ2.

Let
f0 = lim

|s|→0

f (s)
s
, f∞ = lim

|s|→+∞

f (s)
s
.

The main results of this section are the following interesting results:
Theorem 1.1. Let (A1)–(A3) hold.

(a) If f0, f∞ ∈ (0,∞), then the problem (1.1) has at least two solutions u+
∞ and u−∞ for λ ∈

(min{λ1
f0
, λ1

f∞
},max{λ1

f0
, λ1

f∞
}] such that u+

∞ is positive in RN and u−∞ is negative in RN; the problem (1.1) has
at least four solutions u+

∞ and u−∞, u+
0 and u−0 for λ ∈ (max{λ1

f0
, λ1

f∞
},∞) such that u+

∞, u+
0 are positive in

RN and u−∞, u−0 are negative in RN . Moreover, if P satisfies (1.2), we have that

lim
|x|→+∞

|x|N−2u+
i (x) = ci

1

for all x ∈ RN and some constants ci
1 , 0, where i = 0,∞. Do the same for u−i .

(b) If f0 ∈ (0,∞) and f∞ = ∞, then the problem (1.1) has at least two solutions u+
∞ and u−∞ for

λ ∈ (0, λ1
f0

] such that u+
∞ is positive in RN and u−∞ is negative in RN; the problem (1.1) has at least four

solutions u+
∞ and u−∞, u+

0 and u−0 for λ ∈ (λ1
f0
,∞) such that u+

∞, u+
0 are positive in RN and u−∞, u−0 are

negative in RN . Moreover, if P satisfies (1.2), we have that

lim
|x|→+∞

|x|N−2u+
i (x) = ci

1
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for all x ∈ RN and some constants ci
1 , 0, where i = 0,∞. Do the same for u−i .

(c) If f0 = ∞ and f∞ ∈ (0,∞), then the problem (1.1) has at least two solutions u+
∞ and u−∞ for

λ ∈ (0, λ1
f∞

] such that u+
∞ is positive in RN and u−∞ is negative in RN; the problem (1.1) has at least four

solutions u+
∞ and u−∞, u+

0 and u−0 for λ ∈ ( λ1
f∞
,+∞) such that u+

∞, u+
0 are positive in RN and u−∞, u−0 are

negative in RN . Moreover, if P satisfies (1.2), we have

lim
|x|→+∞

|x|N−2u+
i (x) = ci

1

for all x ∈ RN and some constants ci
1 , 0, where i = 0,∞. Do the same for u−i .

(d) If f0 = ∞ and f∞ = ∞, then the problem (1.1) has at least four solutions u+
∞ and u−∞, u+

0 and
u−0 for λ ∈ (0,∞) such that u+

∞, u+
0 are positive in RN and u−∞, u−0 are negative in RN . Moreover, if P

satisfies (1.2), we have that
lim
|x|→+∞

|x|N−2u+
i (x) = ci

1

for all x ∈ RN and some constants ci
1 , 0, where i = 0,∞. Do the same for u−i .

Furthermore, we can get the exact multiplicity of one-sign solutions for problem (1.1) under more
strict hypotheses.

(A4) f (s) ≡ 0 for any s < [s2, s1], f (s) is C1 with respect to s ∈ [s2, s1], and such that f (s)/s is
decreasing in [0, s1] and is increasing in [s2, 0].

The following are the main results of this section.
Theorem 1.2. Let (A1), (A2) and (A4) hold. Assume that f0 ∈ (0,∞). Then,

(i) the problem (1.1) has exactly two solutions u+(λ, ·) and u−(λ, ·) for λ ∈ (λ1
f0
,+∞), such that

0 < u+(λ, ·) ≤ s1 and s2 ≤ u−(λ, ·) < 0 in RN;
(ii) all one-sign solutions of problem (1.1) lie on two smooth curves

C ν = {(λ, u±(λ, ·)) : λ ∈ (
λ1

f0
,+∞)},

C + and C − join at (λ1/ f0, 0);
(iii) u+(λ, ·)(u−(λ, ·)) is increasing (decreasing) with respect to λ.
(iv) If P satisfies (1.2), we have that

lim
|x|→+∞

|x|N−2u+
1 (x) = c1 and lim

|x|→+∞
|x|N−2u−1 (x) = c2

for all x ∈ RN and some constants c1, c2 , 0.
Theorem 1.3. Let (A1), (A2) and (A4) hold. Assume that f0 = ∞. Then,

(i) the problem (1.1) has exactly two solutions u+(λ, ·) and u−(λ, ·) for λ ∈ (0,+∞), such that 0 <

u+(λ, ·) ≤ s1 and s2 ≤ u−(λ, ·) < 0 in RN;
(ii) all one-sign solutions of problem (1.1) lie on two smooth curves

C ν = {(λ, u±(λ, ·)) : λ ∈ (
λ1

f0
,+∞)},

C + and C − join at (λ1/ f0, 0);
(iii) u+(λ, ·)(u−(λ, ·)) is increasing (decreasing) with respect to λ.
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(iv) If P satisfies (1.2), we have that

lim
|x|→+∞

|x|N−2u+
1 (x) = c1 and lim

|x|→+∞
|x|N−2u−1 (x) = c2

for all x ∈ RN and some constants c1, c2 , 0.
The rest of this paper is arranged as follows: Section 2, provides some preliminaries. In Section 3,

we prove Theorem 1.1, which considers the existence of one-sign solutions for the problem (1.1)
without signum condition. In Section 4, we consider exact multiplicity of one-sign solutions for the
problem (1.1) and give the proof of Theorems 1.2 and 1.3.

2. Preliminaries

Let
E = {u ∈ C(RN ,R) : sup

x∈RN
|u(x)| < +∞}

with the norm
‖u‖ = sup

x∈RN
|u(x)|, for all u ∈ E.

Clearly, E is a Banach space. Let P+ = {u ∈ E|u > 0, for all x ∈ RN} and set P− = −P+ and
P = P+ ∪ P−.

By [6], we can show that u is a one-sign C2+α solution of problem (1.1) if and only if u is a solution
of the operator equation

u = L( f (u)) = λ

∫
RN

ΓN(x − y)a(y) f (u(y))dy, (2.1)

where ΓN(x− y) = 1
N(N−2)ωN

|x− y|2−N , ωN being the volume of the unit ball in RN . Dai [6] also can show
that L : E → E is completely continuous.

Consider the following problem{
−∆u = λa(x)u(x) + g(λ, x, u), x ∈ RN ,

u(x)→ 0, as |x| → +∞.
(2.2)

Suppose g ∈ C(RN × E × R, E) satisfies

lim
|s|→0

g(x, s, λ)
s

= 0 (2.3)

uniformly for x ∈ RN and λ on bounded sets.
Similar the proof of [6, Theorem 1.3], we can obtain that the following result:

Theorem 2.1. Assume that (A1) and (2.3) hold. The pair (λ1, 0) is a bifurcation point of the
problem (2.2) and there are two distinct unbounded continuum C + and C − in R × E of solutions
of the problem (2.2) emanating from (λ1, 0). Moreover, we have

C ν ⊂ ((R × Pν) ∪ {(λ1, 0)}),

where ν ∈ {+,−}.
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By (2.1), Eq (2.2) is equivalent to

u = λLu + H(λ, u) = G(λ, u),

where H(λ, u) = o(‖u‖) at u = 0 uniformly on bounded λ intervals, H(λ, u) = L[g(x, u, λ)]. G(λ, u) :
R × E → E is completely continuous.

In order to prove Theorem 1.1, we also need to establish the unilateral global bifurcation result of
the problem (2.2) from infinity under assumption

lim
s→+∞

g(x, s, λ)
s

= 0 (2.4)

uniformly for x ∈ RN and λ on bounded sets.
By Rabinowitz [10], we have the following theorem.

Theorem 2.2. Let (A1) and (2.4) hold. There exists a connected component D ν of of solutions of the
problem (2.2), containing λ1 × {∞}. Moreover, if Λ ⊂ R is an interval such that Λ\{λ1} doesn’t contain
any other eigenvalue of problem (1.3), and M is a neighborhood of λ1 × {∞} whose projection on R
lies in Λ and whose projection on E is bounded away from 0, then either

1o D ν −M is bounded in R × E in which case D ν −M meets R = {(λ, 0)|λ ∈ R} or
2o D ν −M is unbounded.
If 2o occurs and D ν −M has a bounded projection on R, then D ν −M meets λ j × {∞} for some

j , 1, and ν ∈ {+,−}.
To prove our main results, we need the following results:

Lemma 2.1. (see [9]) Let X be a normal space and let {Cn|n = 1, 2, ...} be a sequence of unbounded
connected subsets of X. Assume that:

(i) there exists z∗ ∈ lim infn→+∞Cn with ‖z∗‖ < +∞;
(ii) for every R > 0,

(
∪+∞

n=1Cn

)
∩ BR is a relatively compact set of X, where

BR = {x ∈ X|‖x‖ ≤ R}.

Then, D := lim supn→∞Cn is unbounded, closed and connected.
In order to treat the problems with non-asymptotic nonlinearity at ∞, we shall need the following

lemmas.
Lemma 2.2. (see [9]) Let (X, ρ) be a metric space. If {Ci}i∈N is a sequence of sets whose limit superior
is L and there exists a homeomorphism T : X → X such that for every R > 0,

(
∪+∞

i=1T (Ci)
)
∩ BR is a

relatively compact set, then for each ε > 0 there exists an m such that for every n > m,Cn ⊂ Vε(L),
where Vε(L) denotes the set of all points p with ρ(p, x) < ε for any x ∈ L.

Now, in order to study the exact multiplicity of one-sign solutions for (1.1), let E = R×E, Φ(λ, u) =

u −G(λ, u) and

S = {(λ, u) ∈ E : Φ(λ, u) = 0, u , 0}
R×E

.

For λ ∈ R and 0 < s < +∞, define an open neighborhood of (λ1, 0) in E as follows:

Bs(λ1, 0) = {(λ, u) ∈ E : ‖u‖ + |λ − λ1| < s}.
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Let E0 be a closed subset of E satisfying E = span{ψ1} ⊕ E0, where ψ1 is an eigenfunction
corresponding to λ1 with ‖ψ1‖ = 1. According to the Hahn-Banach theorem, we have l ∈ E∗ satisfying

l(ψ1) = 1 and E0 = {u ∈ E : l(u) = 0},

where E∗ denotes the dual space of E. For any 0 < ε < +∞ and 0 < η < 1, define

Kε,η = {(λ, u) ∈ E : |λ − λ1| < ε, |l(u)| > η‖u‖}.

Obviously, Kε,η is an open subset of E, Kε,η = K+
ε,η ∪ K−ε,η, with K+

ε,η = {(λ, u) ∈ E : |λ − λ1| < ε, l(u) >
η‖u‖}, K−ε,η = −K+

ε,η, which are disjoint and open in E.
Similar to that of [11, Lemma 6.4.1], we can show the following lemma.

Lemma 2.3. Let η ∈ (0, 1), there is δ0 > 0 such that for each δ : 0 < δ < δ0, it holds that

((S\{(λ1, 0)}) ∩ Bδ(λ1, 0)) ⊆ Kε,η.

And there exist s ∈ R and a unique y ∈ E0 such that

v = sψ1 + y and |s| > η‖v‖

for each (λ, v) ∈ ((S\{(λ1, 0)}) ∩ Bδ(λ1, 0)). Further, λ = λ1 + o(1) and y = o(s) as s → 0 for these
solutions (λ, v).
Remark 2.1. From Lemma 2.3, we can see that D = D+ ∪ D− near (λ1, 0) is given by a curve
(λ(s), u(s)) = (λ1 + o(1), sψ1 + o(s)) for s near 0. Moreover, we can distinguish between two portions
of this curve by s ≥ 0 and s ≤ 0.

3. One-sign solutions without the signum condition

When f0 ∈ (0,∞), let ζ(u) ∈ C(R,R) be such that

f (u) = f0u + ζ(u)

with
lim
|u|→0

ζ(u)
u

= 0.

Let us consider {
−∆u = λa(x) f0u(x) + λa(x)ζ(u), x ∈ RN ,

u(x)→ 0, as |x| → +∞
(3.1)

as a bifurcation problem from the trivial solution u ≡ 0.
Applying Theorem 2.1 to (3.1), we have the following result.

Remark 3.1. There is an unbounded continuum C ν of solutions of the problem (1.1) emanating from
(λ1

f0
, 0), such that C ν ⊂ ((R × Pν) ∪ {(λ1

f0
, 0)}), where ν ∈ {+,−}.

We now analyze the global behavior of C ++ and C −.
Lemma 3.1. Let (A1)–(A3) hold. Then

(i) for (λ, u) ∈ (C + ∪ (C −), we have that s2 < u(x) < s1 for all x ∈ RN;
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(ii) for (λ, u) ∈ (D+ ∪D−), we have that either supx∈RN u(x) > s1 or infx∈RN u(x) < s2.
Proof. Suppose on the contrary that there exists (λ, u) ∈ (C + ∪ C − ∪ D+ ∪ D−) such that either
supx∈RN u(x) = s1 or infx∈RN u(x) = s2.

We only treat the case of supx∈RN u(x) = s1 because the proof for the case of infx∈RN u(x) = s2 can
be given similarly.

We claim that there exists 0 < m < +∞ such that f (s) ≤ m(s1 − s) for any s ∈ [0, s1]. Clearly, the
claim is true for the case of s = 0 or s = s1 by virtue of (A2).

For any ε ∈ (0, γ1), it follows from (A3) that there exists δ > 0, such that

f (s) < (γ1 + ε)(s1 − s)

for any s ∈ (s1 − δ, s1). From (A2), it arrives

max
s∈[0,s1−δ]

f (s)
s1 − s

= ρ > 0.

So, the claim is verified by choosing m = max{ρ, γ1 + ε}.
Now, let us consider the following problem

{
−∆(s1 − u) + λa(x)m(s1 − u) = λa(x)[m(s1 − u) − f (u)], x ∈ RN ,

u(x)→ 0, as |x| → +∞.

It is obvious that f (s) ≤ m(s1 − s) for any s ∈ [0, s1] implies{
−∆(s1 − u) + λa(x)m(s1 − u) ≥ 0, x ∈ RN ,

u(x)→ 0, as |x| → +∞.

The strong maximum principle of [12] implies that s1 > u in RN . This is a contradiction.
Lemma 3.2. Let (A1)–(A3) hold. Then

(
λ1

f0
,∞) ⊆ ProjR(C +), (

λ1

f0
,∞) ⊆ ProjR(C −).

Proof. We show that the projection of C + on R is unbounded. It is sufficient to show that the set
{(λ, u) ∈ C +|λ ∈ [0, d]} is bounded for any fixed d ∈ (0,+∞). Suppose on the contrary that there exists
(λn, un) ∈ C +, n ∈ N, such that λn → µ ≤ d, ‖un‖ → +∞ as n→ +∞. Let vn = un/‖un‖. Then, vn should
be the solutions of problem {

−∆vn = λa(x) f (un)
‖un‖

, x ∈ RN ,

vn(x)→ 0, as |x| → +∞.
(3.2)

By Lemma 3.1 (i), we have that
f (un) ≤ max

s∈[0,s1]
| f (s)|.

By (A2), one can obtain that f (s) ∈ C([0, s1]).
Thus, we can show

lim
n→+∞

f (un)
‖un‖

= 0. (3.3)
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By the compactness of L(.), it follows from (3.2) that vn → v0 ≡ 0 as n → +∞. This contradicts
‖v0‖ = 1.

This together with the fact that C + joins (λ1
f0
, 0) to infinity yields that

(
λ1

f0
,∞) ⊆ ProjR(C +).

Similarly, we can show that

(
λ1

f0
,∞) ⊆ ProjR(C −).

In the following we will investigate the other one-sign solutions of problem (1.1).
When f∞ ∈ (0,∞), let ξ(u) ∈ C(R,R) be such that

f (u) = f∞u + ξ(u)

with
lim
|u|→∞

ξ(u)
u

= 0.

Let us consider {
−∆u = λa(x) f∞u(x) + λa(x)ξ(u), x ∈ RN ,

u(x)→ 0, as |x| → +∞
(3.4)

as a bifurcation problem from infinity. We add the points {(λ,∞)|λ ∈ R} to space R × E.
Applying Theorem 2.2 to (3.4), we have the following result.

Remark 3.2. There exists an unbounded continua D ν of solutions of (1.1), emanating from ( λ1
f∞
,∞),

such that D ν ⊂ ((R × Pν) ∪ {( λ1
f∞
,∞)}), where ν ∈ {+,−}.

We now analyze the global behavior of D++ and D−.
Lemma 3.3. Let (A1)–(A3) hold. Then

(
λ1

f∞
,∞) ⊆ ProjR(D+), (

λ1

f∞
,∞) ⊆ ProjR(D−).

Proof. We show that D ν −M has an unbounded projection on R.
Applying Theorem 2.2 to (3.4), one can obtain that (10) of Theorem 2.2 does not occur by

Lemma 3.1 (ii). So D ν −M is unbounded.
Now, we show that the case of D ν −M meeting λ j × {∞} for some j > 1 is impossible, where λ j

denotes the jth eigenvalue of the problem (1.3). Assume on the contrary that D ν −M meets λ j × {∞}

for some j > 1. So there exists a neighborhood Ñ ⊂ M̃ of λ j × {∞} such that u must change sign for
any (λ, u) ∈ (D ν −M )∩ (Ñ \ (λ j × {∞})), where M̃ is a neighborhood of λ j × {∞} which satisfies the
assumptions of Theorem 2.2, which contradicts D ν ⊂ ((R × Pν) ∪ {( λ1

f∞
,∞)}).

Thus,

(
λ1

f∞
,∞) ⊆ ProjR(D+).

Similarly, we have

(
λ1

f∞
,∞) ⊆ ProjR(D−).
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Now, we give Proof of Theorem 1.1
Proof of Theorem 1.1.

(a) Since problem (1.1) has a unique solution u ≡ 0 for λ ≡ 0, we get

(C + ∪ C − ∪D+ ∪D−) ⊂ {(µ, z) ∈ R × E|µ ≥ 0}.

By Lemmas 3.1–3.3, we conclude the desired results.
We only derive the rate of decay of u+

∞ since the proof for the other case is completely analogous.
By (2.1), we have

u+
∞ = λ

∫
RN

Γn(x − y)a(y) f (u+
∞(y))dy,

where ΓN(x − y) = 1
N(N−2)ωN

|x − y|2−N , ωN being the volume of the unit ball in RN .
By f0, f∞ ∈ (0,∞), there exist some constant % > 0 such that | f (s)| ≤ %|s| for any s ∈ R. Then, we

have that
u+
∞ = λ

∫
RN

Γn(x − y)a(y) f (u+
∞(y))dy ≤ %λ

∫
RN

Γn(x − y)a(y)u+
∞(y)dy.

Since u+
∞ is bounded, one can get u+

∞ ≤ c3 for some constants c3 > 0. By condition (1.2), it follows that∫
RN

a(y)u+
∞(y)dy ≤ c3

∫
RN

P(y)dy ≤ c3

∫ +∞

0
rN−1P(r)dr < +∞. (3.5)

By (3.5), for any ε > 0, there exists a R > 0 such that for all x ∈ RN

|x|N−2
∫

ΩR

ΓN(x − y)a(y)u+
∞(y)dy <

ε

4
,

∫
ΩR

a(y)u+
∞(y)dy <

ε

4cN
(3.6)

and
lim
|x|→+∞

|x|N−2
∫

BR

ΓN(x − y)a(y)u+
∞(y)dy = cN

∫
BR

a(y)u+
∞(y)dy, (3.7)

where ΩR = {y ∈ RN : |y| > R}, BR = {y ∈ RN : |y| < R}.
Furthermore, by (3.6), (3.7), and proof of [6, Theorem 1.1: p. 5948–5949], one can obtain

lim
|x|→+∞

|x|N−2
∫
RN

ΓN(x − y)a(y)u+
∞(y)dy = cN

∫
RN

a(y)u+
∞(y)dy.

where cN = 1
N(N−2)ωN

.
By (3.5), it follows that

lim
|x|→+∞

|x|N−2u+
∞(x) = λ · lim

|x|→+∞
|x|N−2

∫
RN

Γn(x − y)a(y) f (u+
∞(y))dy

≤ λ% · lim
|x|→+∞

|x|N−2
∫
RN

Γn(x − y)a(y)u+
∞(y)dy

≤ cNλ%

∫
RN

a(y)u+
∞(y)dy < ∞.

Therefore, we have that
lim
|x|→+∞

|x|N−2u+
i (x) = ci

1
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for all x ∈ RN and some constants ci
1 , 0, where i = 0,∞. Do the same for u−i .

(b) Inspired by the idea of [13], we define the cut-off function of f as the following

f [n](s) :=


f (s), s ∈ [−n, n],
2n2− f (n)

n (s − n) + f (n), s ∈ (n, 2n),
2n2+ f (−n)

n (s + n) + f (−n), s ∈ (−2n,−n),
ns, s ∈ (−∞,−2n] ∪ [2n,+∞).

We consider the following problem{
−∆u = λa(x) f [n](u), x ∈ RN ,

u(x)→ 0, as |x| → +∞.
(3.8)

Clearly, we can see that limn→+∞ f [n](s) = f (s), ( f [n])0 = f0 and ( f [n])∞ = n.
By Remarks 3.1 and 3.2, there are two distinct unbounded continuum C ν and D ν[n] of solutions

of the problem (3.8) emanating from (λ1
f0
, 0), and (λ1

n ,∞)) respectively, such that they are disjoint,
unbounded in the direction of λ and

C ν ⊂ (R × Pν) ∪ {(
λ1

f0
, 0)},D ν[n] ⊂ (R × Pν) ∪ {(

λ1

n
,∞)},

where ν = +,−.
By Lemma 2.2, one derives that for each ε > 0 there exists an N, such that for n > N, D ν[n] ⊂

Vε(D ν), where D ν = lim supn→+∞D ν[n]. So it achieves

(
λ1

n
,+∞) ⊆ ProjR(D ν[n]) ⊆ ProjRVε(D ν).

It follows (λ1
n + ε,+∞) ⊆ ProjR(D ν). The arbitrariness of ε > 0 and n imply

(0,∞) ⊆ ProjR(D ν).

Similar the proof of Lemma 3.2, we have that

(
λ1

f0
,∞) ⊆ ProjR(C ν).

Similar the proof of (a), we have that

lim
|x|→+∞

|x|N−2u+
i (x) = ci

1

for all x ∈ RN and some constants ci
1 , 0, where i = 0,∞. Do the same for u−i .

(c) Define

f [n](s) :=


ns, s ∈ [−1

n ,
1
n ],[

f ( 2
n ) − 1

]
(ns − 2) + f ( 2

n ), s ∈ (1
n ,

2
n ),

−
[
f (−2

n ) + 1
]

(ns + 2) + f (−2
n ), s ∈ (−2

n ,−
1
n ),

f (s), s ∈ (−∞,−2
n ] ∪ [ 2

n ,+∞).
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We consider the following problem

{
−∆u = λa(x) f [n](u), x ∈ RN ,

u(x)→ 0, as |x| → +∞.
(3.9)

Clearly, we can see that limn→+∞ f [n](s) = f (s), ( f [n])0 = n and ( f [n])∞ = f∞.
By Remarks 3.1 and 3.2, there are two distinct unbounded continuum C ν and D ν[n] of solutions

of the problem (3.9) emanating from (λ1
n , 0), and ( λk

f∞
,∞)) respectively, such that they are disjoint,

unbounded in the direction of λ and

C ν[n] ⊂ (R × Pν) ∪ {(
λ1

n
, 0)},D ν ⊂ (R × Pν) ∪ {(

λ1

f∞
,∞)},

where ν = +,−.
Taking z∗ = (0, 0), and applying Lemma 2.1 again, one derives that C ν = lim supn→+∞ C ν[n] is

unbounded and connected, moreover, z∗ ∈ C ν.

We claim that C ν ∩ (R × Pν) = {(0, 0)}).
Suppose on the contrary that there exists a sequence (λn, un) ∈ C ν \ {(0, 0)} = lim supn→∞ C ν[n] \

{(0, 0)} such that limn→∞ λn = µ , 0 and limn→∞ ‖un‖ = 0. Hence, for any N0 ∈ N, there exists n0 ≥ N0

such that (λn, un) ∈ C ν[n0]. By (3.9), it follows that λn0 = λ1
n for n0 ≥ N0. From the arbitrary of N0, it

implies that n0 → ∞, i.e., µ = 0, which contradicts the assumption of µ , 0.
Lemma 3.1(i) implies that the projection of C +

k,0 on R is unbounded.
Furthermore, we have

(0,∞) ⊆ ProjR(C ν
k,0).

Similar the proof of Lemma 3.3, we have that

(
λ1

f∞
,∞) ⊆ ProjR(D ν).

(d) Similar the proof of (b) and (c), respectively, we have that

(0,∞) ⊆ ProjR(D ν)

and
(0,∞) ⊆ ProjR(C ν).

4. Exact multiplicity of one-sign solutions

To prove Theorems 1.2 and 1.3, by Dai and Han [14], Afrouzi and Rasouli [15], we first give the
definition of linearly stable solution for the problem (1.1). For any φ ∈ E and positive solution u of
problem (1.1), we can calculate that the linearized eigenvalue problem of (1.1) at the direction φ is{

−∆φ − λa(x) f ′(u)φ = µφ, x ∈ RN ,

φ(x)→ 0, as |x| → +∞,
(4.1)

where f ′(u)φ denotes the Fr
′

echet derivative of f about u at the direction φ. A solution u of
problem (1.1) is stable if all eigenvalues of problem (4.1) are positive, otherwise it is unstable. We
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define the Morse index M(u) of u to problem (1.1) to be the number of negative eigenvalues of
problem (4.1). A solution u of problem (1.1) is degenerate if 0 is an eigenvalue of problem (4.1),
otherwise it is non-degenerate. The following lemma is our main stability result for the one-sign
solution.
Lemma 4.1. Under the assumptions of Theorem 1.2 (a), then any positive or negative solution u of
problem (1.1) is stable and non-degenerate, and Morse index M(u) = 0.
Proof. Without loss of generality, let u be a positive solution of problem (1.1), and let (µ1, φ1) be the
corresponding principal eigenpair of problem (4.1) with φ1 > 0 in RN . Notice that u and φ1 satisfy

{
−∆u = λa(x) f (u), x ∈ RN ,

u(x)→ 0, as |x| → +∞
(4.2)

and {
−∆φ1 − λa(x) f ′(u)φ1 = µφ1, x ∈ RN ,

φ1(x)→ 0, as |x| → +∞.
(4.3)

Multiplying the first equation of problem (4.3) by u and the first equation of problem (4.2) by φ1,
subtracting and integrating, we obtain

µ1

∫
RN
φ1udx = λ

∫
RN

a(x)φ1( f (u) − f ′(u)u)dx.

By some simple computations, we can show that it follows from (A4) that f (s)− f ′(s)s ≥ 0 for any
s ≥ 0. Since u > 0 and φ1 > 0 in RN , we have µ1 > 0 and the positive solution u must be stable.
Proof of Theorem 1.2

(a) By Theorem 2.1, we can obtain the problem (1.1) possesses at least two one-sign solutions u+

and u− such that u+ > 0 and u− < 0 in RN . In order to prove exact multiplicity of one-sign solutions
for (1.1). Define F : R × E → R by

F(λ, u) = −∆u − λa(x) f (u).

From Lemma 4.1, we know that any one-sign solution (λ, u) of problem (1.1) is stable. Therefore,
at any one-sign solution (λ∗, u∗) for the problem (1.1), we can apply Implicit Function Theorem to
F(λ, u) = 0, and all the solutions of F(λ, u) = 0 near (λ∗, u∗) are on a curve (λ, u(λ)) with |λ − λ∗| ≤ ε
for some small ε > 0. Furthermore, by virtue of Remark 2.2, the unbounded continua D+ and D− are
all curves.

To complete the proof, it suffices to show that u+(λ, ·)(u−(λ, ·)) is increasing (decreasing) with
respect to λ. We only prove the case of u+(λ, ·). The proof of u−(λ, ·) can be given similarly. Since
u+(λ, ·) is differentiable with respect to λ (as a consequence of Implicit Function Theorem), taking the
derivative of the first equation of problem (4.2) by λ, one can obtain that

− ∆(
du+

dλ
) = λa(x) f ′(u+)

du+

dλ
+ a(x) f ′(u+). (4.4)

Multiplying the first equation of problem (4.4) by u and the first equation of problem (4.2) by du+

dλ ,
subtracting and integrating, we obtain
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∫
RN

[
λa(x)( f ′(u+)u+ − f (u+))

du+

dλ
+ f (u+)u+

]
dx = 0.

(A2) implies f (s)s ≥ 0 for any s ∈ R. So we get ( f ′(u+)u+ − f (u+)) du+

dλ ≤ 0 by (A1). While (A4) shows
that f ′(u+)u+ − f (u+) ≤ 0. Therefore, we have du+

dλ ≥ 0.
Next, we only prove the case of the uniqueness of positive solution of problem (1.1) since the proof

of the uniqueness of negative solution of problem (1.1) is similar. Suppose on the contrary that there
exist two solutions v+

1 and v+
2 corresponding to λwith v+

1 ∈ D+ of the problem (1.1) for λ ∈ (λ1/ f0,+∞).
For ε > 0, take (λ − ε, v+

λ−ε), (λ + ε, v+
λ+ε) ∈ D+, then vλ±ε → v+

1 as ε → 0. By the monotonicity of v+
2

with respect to λ, we get v+
λ−ε ≤ v+

2 ≤ v+
λ+ε. Then v+

2 = v+
1 .

Similar the proof of (a) of Theorem 1.1, we have that

lim
|x|→+∞

|x|N−2u+
1 (x) = c1 and lim

|x|→+∞
|x|N−2u−1 (x) = c2

for all x ∈ RN and some constants c1, c2 , 0.
Proof of Theorem 1.3. By Theorem 4.1 and Lemma 2.1, there is a distinct unbounded continuum
D ν(ν ∈ {+,−}) of solutions of the problem (1.2) emanating from (0, 0). Furthermore, we have that
the problem (1.1) possesses at least two one-sign solutions u+ and u− such that u+ > 0 and u− < 0 in
(0,+∞). In view of the argument of Theorem 1.2, the desired conclusion can be obtained immediately.

5. Conclusions

In this study, we have proved the existence of one-sign solutions without signum condition for the
semilinear elliptic problems (1.1) by the bifurcation techniques and the approximation of connected
components. We also obtained the exact multiplicity of one-sign solutions for the problem (1.1) under
more strict hypotheses. Our fifindings can be applied to further other differential equations with various
other boundary conditions, high dimensional case, and so on as future work.
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