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1. Introduction

The concept of quasi convexity is notable one among different types of convexity such as
pseudoconvexity, B-convexity, B−1-convexity, s-convexity, m-convexity, p-convexity etc. [2, 3, 10, 13,
15, 17]. A real valued function f defined over a convex subset A of vector space X is called quasi
convex function if

f (λx + (1 − λ)y) ≤ max{ f (x), f (y)}

for all x ∈ A and λ ∈ [0, 1]. As seen in its definition, while classical convex functions are based
on the sum of function values, it stands on the comparison of function values, thus making it handy
tool, for example, to represent customer preferences in economical applications. Overtime, different
approaches and needs result in different kinds of quasi convexity e.q., harmonically quasi convexity,
ϕ-quasi convexity, γ-quasi convexity, ω-quasi convex functions [5, 11, 20]. A novel one is quasi p-
convexity, which associates quasi convexity and p-convexity .

For a fixed p ∈ (0, 1], p-convex functions are defined on a p-convex set, which is the set that contains
a special type curve x(t) joining any different two points a and b of it, namely, xa,b(t) = at

1
p + b(1− t)

1
p ,

t ∈ [0, 1]. Similarly, the definiton of p-convex function is based on the curves joining these points and
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their images, i.e., a function f defined on a p-convex set A is called p-convex function if

f (xa,b(t)) ≤ x f (a), f (b)(t)

for a, b ∈ A and t ∈ [0, 1].
On the other hand, as in convex functions, the quasi convex funtions are commonly characterized

or given by an inequality. For quasi convex functions, the restatement of some preeminent inequalities
that is given for classical convex functions such as Jensen, Hermite-Hadamard are of interest among
researchers (see [6,7,12] and the references therein). Especially in recent years, the studies on Hermite
Hadamard inequality take vast place in literature [1, 8, 9, 16, 18, 22, 23], which is stated as follows:

Let f be real valued function defined on a real interval [a, b]. If f is convex function, then

f
(
a + b

2

)
≤

1
b − a

b∫
a

f (x)dx ≤
f (a) + f (b)

2
.

This inequality indicates that the average value of a convex function on an interval interpolates between
the image of the arithmetic mean of the points and the arithmetic mean of images of the points.

In this paper, we state the Hermite-Hadamard type inequality and related extensions for quasi p-
convex functions and some applications are given. Results are presented in two subsections. In the
first, the Hermite-Hadamard inequalities for quasi p-convex functions defined on nonnegative numbers,
then, real numbers are stated and a generalization of the inequality is given. In the second, some upper
bounds for left and right sides of the Hermite-Hadamard inequality is obtained for the functions whose
derivative in absolute value is quasi p-convex function. In applications, some inequalities involving
special means and special functions such as digamma and Fresnel integral functions are presented.
Moreover, an upper bound for error in numerical integration of quasi p-convex functions via composite
trapezoid rule is given.

Let us give some essential notations and formal definitions of p-convex set and quasi p-convex
functions. Throughout the paper, R,R+,R

n denote the set of real numbers, the set of nonnegative real
numbers, and n-dimensional Euclidean space, respectively.

Definition 1. [17] Let U be a subset of Rn and 0 < p ≤ 1. U is called p-convex set if

λx + µy ∈ U

for all x, y ∈ U and λ, µ ∈ [0, 1] such that λp + µp = 1.

It is known that any interval of real numbers including zero or accepting zero as a boundary point
is a p-convex set [18].

Definition 2. [21] Let 0 < p ≤ 1 and U ⊆ Rn be a p-convex set. A function f : U → R is called quasi
p-convex function if f provides

f (λx + µy) ≤ max { f (x), f (y)}

for each x, y ∈ U; λ, µ ≥ 0 such that λp + µp = 1.
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Let U ⊆ Rn be a p-convex set. If we define the function f such that

f : U → R , f (x1, x2, . . . , xn) =

n∑
i=1

|kxi|,

for k ∈ R, then f is a quasi p-convex function.
A fundamental characterization of quasi p-convex functions can be given as in the following

theorem:

Theorem 1.1. [21] Let 0 < p < 1. A function f : R+ → R is a quasi p-convex function if and only if f
is an increasing function.

We present Jensen inequality for the quasi p-convex functions, which is needed next.

Theorem 1.2. [21] Let U ⊆ Rn and f : U → R+ be a quasi p-convex function. Let x1, . . . , xm ∈ U
and λ1, . . . , λm ≥ 0 with λp

1 + . . . + λ
p
m = 1. Then

f (λ1x1 + . . . + λmxm) ≤ max{ f (x1), f (x2), . . . , f (xm)}.

2. Main results

2.1. The Hermite-Hadamard inequalities for quasi p-convex functions

In this subsection, the Hermite-Hadamard type inequality for quasi p-convex functions on
nonnegative real numbers is stated. Then its version for the quasi-p-convex fuctions whose domain
is extended to real numbers is obtained. Finally, a generalization of the Hermite-Hadamard inequality
is given such that it is expressed in terms of internal points in the interval.

The following theorem states Hermite-Hadamard type inequality with nonnegative integral bounds.

Theorem 2.1. Let 0 < p < 1 and f : R+ → R+ be an integrable quasi p-convex function. For a, b ∈ R+

with a < b, the following inequality holds

2−1 f (
a + b

2
1
p

)(b − a) ≤

b∫
a

f (x)dx ≤ (b − a) f (b). (2.1)

Proof. It is clear from Theorem 1.1 that f (a) < f (b) for a < b. First we show the right part of the
inequality. By changing variable x = t

1
p b + (1 − t)

1
p a, we have

b∫
a

f (x)dx =
1
p

1∫
0

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt. (2.2)

From the quasi p-convexity of f and the triangle inequality, we can write

b∫
a

f (x)dx ≤
f (b)

p

1∫
0

(
bt

1
p−1
− a (1 − t)

1
p−1

)
dt ≤ f (b)(b − a).
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For the first part of the inequality, from the quasi p-convexity of f , for all x,w > 0, we have

f (
x + w

2
1
p

) ≤ max{ f (x), f (w)}.

Let x = ta + (1 − t)b and w = tb + (1 − t)a for t ∈ [0, 1]. Then

f (
a + b

2
1
p

) ≤ max{ f (ta + (1 − t)b), f ((1 − t)a + tb)}.

Since (1 − t)a + tb < ta + (1 − t)b for t ∈ [0, 1
2 ) and ta + (1 − t)b < (1 − t)a + tb for t ∈ (1

2 , 1],

max{ f (ta + (1 − t)b), f ((1 − t)a + tb)} =


f (ta + (1 − t)b), i f t ∈ [0, 1

2 )

f (tb + (1 − t)a), i f t ∈ ( 1
2 , 1].

Integrating both side and using the fact that

1
2∫

0

f (ta + (1 − t) b) dt =

1∫
1
2

f (tb + (1 − t) a) dt =
1

b − a

b∫
a+b

2

f (x)dx

one can have

f (
a + b

2
1
p

) ≤
2

b − a

b∫
a+b

2

f (x)dx ≤
2

b − a

b∫
a

f (x)dx.

�

Remark 2.2. Similar to the proof of Theorem 2.1, the inequality (2.1) for p = 1 gives the inequality

2−1 f (
a + b

2
) ≤

1
b − a

b∫
a

f (x)dx ≤ max{ f (a), f (b)}

in [6].
Next theorem generalizes the result in Theorem 2.1 by extending integral bounds to all real numbers.

Theorem 2.2. Let 0 < p < 1 and f : R → R+ be an integrable quasi p-convex function. For a, b ∈ R
with a < b, the following inequality holds

2−1 f (
a + b

2
1
p

)(b − a) ≤

b∫
a

f (x)dx
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≤ max{ f (a), f (b)} ×



2a (1 − t∗)
1
p + 2bt

1
p
∗ − (a + b), i f a < b < 0

1
p max{−a, b, bt?

1
p−1
− a

(
1 − t?

) 1
p−1
}, i f a < 0 < b

(a + b) − 2bt
1
p
∗ − 2a (1 − t∗)

1
p , i f 0 < a < b

b i f a = 0

−a i f b = 0

where t? =
(
1 + (−b

a )
p

1−2p
)−1

and t∗ =
(
1 + (b

a )
p

1−p
)−1

.

Proof. The proof of the left part of the inequality is the same as in proof of Theorem 2.1. To show the
right part of the inequality, let us examine the behavior of the function g(t) = (bt

1
p−1
−a (1 − t)

1
p−1) with

respect to signs of a and b in (2.2). There exist three cases:
i) If a < b < 0, g(t) is decreasing function such that g : [0, 1] → [b,−a] and g(t∗) = 0 where

t∗ =
(
1 + ( b

a )
p

1−p
)−1

.
ii) If a < 0 < b, it is seen from the derivative of g that g is unimodal and positive function such that

it takes maximum value at t = 0 or t = 1 or t? =
(
1 + (−b

a )
p

1−2p
)−1

. In case of p = 1
2 the maximum value

of g(t) is max{−a, b}.
iii) If 0 < a < b, g is a increasing function such that g : [0, 1] → [−a, b] and g(t∗) = 0 where

t∗ =
(
1 + ( b

a )
p

1−p
)−1

.
Case i) Let a < b < 0 and f (a) ≤ f (b). Then

b∫
a

f (x)dx =
1
p

1∫
0

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt

≤
1
p

1∫
0

f (t
1
p b + (1 − t)

1
p a)

∣∣∣∣bt
1
p−1
− a (1 − t)

1
p−1

∣∣∣∣ dt

=
1
p

t∗∫
0

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt

+
1
p

1∫
t∗

f (t
1
p b + (1 − t)

1
p a)(a (1 − t)

1
p−1
− bt

1
p−1)dt

= I1 + I2.

Let us study on I1 and I2.

I1 =
1
p

t∗∫
0

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt
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≤
1
p

t∗∫
0

f (b)(bt
1
p−1
− a (1 − t)

1
p−1)dt

= f (b)(bt
1
p
∗ + a (1 − t∗)

1
p − a). (2.3)

I2 =
1
p

1∫
t∗

f (t
1
p b + (1 − t)

1
p a)(a (1 − t)

1
p−1
− bt

1
p−1)dt

≤
1
p

1∫
t∗

f (b)(a (1 − t)
1
p−1
− bt

1
p−1)dt

= f (b)(bt
1
p
∗ + a (1 − t∗)

1
p − b). (2.4)

Consequently, combining (2.3) and (2.4), we have

b∫
a

f (x)dx ≤ f (b)(2bt
1
p
∗ + 2a (1 − t∗)

1
p − (a + b)).

Since the same idea works for the case f (b) < f (a), we have the following result

b∫
a

f (x)dx ≤ f (a)(2bt
1
p
∗ + 2a (1 − t∗)

1
p − (a + b)).

Eventually, we have

b∫
a

f (x)dx ≤ max{ f (a), f (b)}(a(2 (1 − t∗)
1
p − 1) + b(2t

1
p
∗ − 1)).

Case ii) Let a < 0 < b and f (a) ≤ f (b). Then,

b∫
a

f (x)dx =
1
p

1∫
0

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt ≤

1
p

f (b) max{−a, b, g(t?)}.

where t? =
(
1 + (−b

a )
p

1−2p
)−1

. Similarly, the following is obtained for the case f (b) < f (a)

b∫
a

f (x)dx ≤
1
p

f (a) max{−a, b, g(t?)}.

Combining these, we have

b∫
a

f (x)dx ≤
1
p

max{ f (a), f (b)}max{−a, b, g(t?)}.
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Case iii) Assume 0 < a < b and f (a) < f (b). Then
b∫

a

f (x)dx =
1
p

1∫
0

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt

≤
1
p

1∫
0

f (t
1
p b + (1 − t)

1
p a)

∣∣∣∣bt
1
p−1
− a (1 − t)

1
p−1

∣∣∣∣ dt

=
1
p

t∗∫
0

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt

+
1
p

1∫
t∗

f (t
1
p b + (1 − t)

1
p a)(a (1 − t)

1
p−1
− bt

1
p−1)dt

= −I1 − I2.

Making the similar calculations to obtain (2.3) and (2.4), we have

−I1 = −
1
p

t∗∫
0

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt

≤
1
p

t∗∫
0

f (b)(−bt
1
p−1 + a (1 − t)

1
p−1)dt

= f (b)(a − bt
1
p
∗ − a (1 − t∗)

1
p ). (2.5)

−I2 =
1
p

1∫
t∗

f (t
1
p b + (1 − t)

1
p a)(bt

1
p−1
− a (1 − t)

1
p−1)dt

≤
1
p

1∫
t∗

f (b)(bt
1
p−1
− a (1 − t)

1
p−1)dt

= f (b)(b − bt
1
p
∗ − a (1 − t∗)

1
p ). (2.6)

Consequently, combining (2.5) and (2.6), we have
b∫

a

f (x)dx ≤ f (b)((a + b) − 2bt
1
p
∗ − 2a (1 − t∗)

1
p ).

Similarly, the following is obtained for the case f (b) < f (a)
b∫

a

f (x)dx ≤ f (a)((a + b) − 2bt
1
p
∗ − 2a (1 − t∗)

1
p ).
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So, we have
b∫

a

f (x)dx ≤ max{ f (a), f (b)}((a + b) − 2bt
1
p
∗ − 2a (1 − t∗)

1
p ).

The results for the cases a = 0 and b = 0 can be easily obtained from (2.2). �

Although Hermite-Hadamard inequality is originally stated for the end points of the interval in
Theorem 2.1, we try to generalize it also in terms of internal points of the interval as follows.

Theorem 2.3. Let 0 < p < 1 and f : R+→ R+ be quasi p-convex function and [a, b] ⊆ R+. Suppose
that f integrable on [a, b], xi ∈ [a, b] such that x1 < x2 < · · · < xn+1 for i ∈ [1, n + 1], then the following
inequality holds

2−1 f

 x1 + 2(x2 + · · · + xn) + xn+1

(2n)
1
p

 ≤ n∑
k=1

1
xk+1 − xk

∫ xk+1

xk

f (t)dt ≤
n∑

i=1

f (xi+1) .

Proof. Letting a = xi, b = xi+1 in Theorem 2.1, one gets

2−1 f
(

xi + xi+1

2
1
p

)
≤

1
xi+1 − xi

∫ xi+1

xi

f (t)dt ≤ f (xi+1)

for i ∈ [1, n]. Summing up these inequalities side by side, we have

2−1
n∑

i=1

f
(

xi + xi+1

2
1
p

)
≤

n∑
i=1

1
xi+1 − xi

∫ xi+1

xi

f (t)dt ≤
n∑

i=1

f (xi+1) . (2.7)

From Theorem 1.2

f

2−
1
p (x1 + x2) + · · · + 2−

1
p (xn + xn+1)

n
1
p

 ≤ max
{

f
(

x1 + x2

2
1
p

)
, · · · , f

(
xn + xn+1

2
1
p

)}
,

so

f

 x1 + 2(x2 + · · · + xn) + xn+1

(2n)
1
p

 ≤ n∑
i=1

f
(

xi + xi+1

2
1
p

)
. (2.8)

Combining (2.7) and (2.8), we get the desired inequality. �

Corollary 2.4. Let [a, b] ⊆ R+ such that b − a = n where n is a natural number, 0 < p < 1 and let
f : [a, b]→ R+ be quasi p-convex function and integrable on [a, b]. Suppose xi = a + (i − 1) (b−a)

n for
i ∈ [1, n + 1], then the following inequality holds

2−1 f
(

n

(2n)
1
p
(a + b)

)
≤

n
b − a

∫ b

a
f (t)dt ≤

n∑
i=1

f (xi+1) .
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2.2. Some bounds related to Hermite-Hadamard inequalities for the functions whose first derivative
in absolute value is quasi p-convex functions

In this subsection, using two integral identities expressed as lemmas, we determine an upper bound
for the right and left sides of the Hermite-Hadamard inequality for the functions whose derivative in
absolute value is quasi p-convex function. Also we present sharper versions of this bounds.

By using the following lemma, we determine an upper bound for the right side of Hermite-
Hadamard type inequality for the mentioned functions:

Lemma 2.5. [18] Let a, b ∈ R with a < b, 0 < p ≤ 1 and f : [a, b] → R be a differentiable function.
If f ′ ∈ L[a, b], then the following equality holds:

f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

=
1

2p(a − b)

∫ 1

0

[
a + b − 2(t

1
p b + (1 − t)

1
p a)

]
f ′(t

1
p b + (1 − t)

1
p a)

[
t

1
p−1b − (1 − t)

1
p−1a

]
dt.

Theorem 2.6. Let f : R → R be differentiable function such that | f ′| is integrable on [a, b] and quasi
p-convex function on R. Then the following inequality holds:∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ 3
2p(b − a)

(|a| + |b|)2 max{| f ′(a)| , | f ′(b)|}. (2.9)

Proof. From Lemma 2.5, triangle inequality and the quasi p-convexity of | f ′| ,∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

1
2p(b − a)

∫ 1

0

∣∣∣∣a + b − 2(t
1
p b + (1 − t)

1
p a)

∣∣∣∣ ∣∣∣∣t 1
p−1b − (1 − t)

1
p−1a

∣∣∣∣ ∣∣∣∣ f ′(t 1
p b + (1 − t)

1
p a)

∣∣∣∣ dt

≤
1

2p(b − a)

∫ 1

0

∣∣∣∣a + b − 2(t
1
p b + (1 − t)

1
p a)

∣∣∣∣ ∣∣∣∣t 1
p−1b − (1 − t)

1
p−1a

∣∣∣∣ max{| f ′(a)| , | f ′(b)|}dt

≤
3

2p(b − a)
(|a| + |b|) (|a| + |b|) max{| f ′(a)| , | f ′(b)|}.

�

Surely, some sharper versions of inequality (2.9) can be obtained. In the following two theorems,
we present only two versions of them as examples.

Theorem 2.7. Let f : R → R be differentiable function such that | f ′| is integrable on [a, b] and quasi
p-convex function on R. Then the following inequality holds:∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

1
2p(b − a)

max{|g(a)| , |g(b)| , |g(t1)|}max{|h(a)| , |h(b)| , |h(t2)|}max{| f ′(a)| , | f ′(b)|}
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where
g(t) = t

1
p−1b − (1 − t)

1
p−1a and h(t) = a + b − 2(t

1
p b + (1 − t)

1
p a)

and for a , 0,

t1 =

1 +

(∣∣∣∣∣ba
∣∣∣∣∣)

p
1−2p

−1

and t2 =

1 +

(∣∣∣∣∣ba
∣∣∣∣∣)

p
1−p

−1

for a = 0, t1, t2 equal to 0 or 1.

Proof. From Lemma 2.5, as in the proof of Theorem 2.6, we have∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ 1
2p(b − a)

∫ 1

0
|h(t)g(t)|max{| f ′(a)| , | f ′(b)|}dt

where g(t) = t
1
p−1b − (1 − t)

1
p−1a and h(t) = a + b − 2(t

1
p b + (1 − t)

1
p a).

Let a , 0. From the first derivatives of g(t) and h(t), it is seen that according to the values of a, b, p,
these functions are either monotonic functions or unimodal functions, i.e., the functions which has only
one extremum point . So g(t) and h(t) take extremum values at the points t = 0 or t = 1 in common or

t1 =

(
1 +

(
−b
a

) p
1−2p

)−1

and t2 =

(
1 +

(
b
a

) p
1−p

)−1

for proper values of a, b, respectively. Thus

|g(t)| ≤ max{|g(a)| , |g(b)| , |g(t1)|} and |h(t)| ≤ max{|h(a)| , |h(b)| , |h(t2)|}

is derived. For the case a = 0, extremum values are obtained for t = 0, t = 1, which is included in the
inequality above. In a similar way in the proof of Theorem 2.6, by using the quasi p-convexity of | f ′| ,
we get the desired result. �

Theorem 2.8. Let f : R −→ R be differentiable function such that | f ′| is integrable on [a, b] and quasi
p-convex function on R. Then the following inequality holds:∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ max{| f ′(a)| , | f ′(b)|}
b − a

{
a2 + |ab| + b2 +

1
p

B(
1
p
,

1
p

) |ab|
}

where B(x, y) is beta function.

Proof. Let us suppose g(t) and h(t) as in the proof of Theorem 2.7. We have∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ 1
2p(b − a)

∫ 1

0
|h(t)g(t)|max{| f ′(a)| , | f ′(b)|}dt.

Using triangle inequality, we have

|h(t)g(t)| =
∣∣∣∣(ab + b2)t

1
p−1
− (a2 + ab)(1 − t)

1
p−1
− 2b2t

2
p−1

+2ab(t
1
p (1 − t)

1
p−1
− t

1
p−1(1 − t)

1
p ) + 2a2(1 − t)

2
p−1

∣∣∣∣
≤

(
|ab| + b2

)
t

1
p−1 +

(
a2 + |ab|

)
(1 − t)

1
p−1 + 2b2t

2
p−1

+ 2 |ab| (t
1
p (1 − t)

1
p−1 + t

1
p−1(1 − t)

1
p ) + 2a2(1 − t)

2
p−1. (2.10)
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If we multiply (2.10) with max{| f ′(a)| , | f ′(b)|} then expand and integrate on [0, 1] with respect to t, we
get ∫ 1

0
|h(t)g(t)|max{| f ′(a)| , | f ′(b)|}dt ≤

max{| f ′(a)| , | f ′(b)|}
b − a

{
a2 + |ab| + b2 +

1
p

B(
1
p
,

1
p

) |ab|
}
.

�

By means of the following lemma we will determine an upper bound for the left Hermite-Hadamard
type inequality for the functions whose derivative’s absolute value is quasi p-convex function.

Lemma 2.9. [18] Let a, b ∈ R with a < b , f : [a, b] ⊆ R → R be a differentiable function. If
f ′ ∈ L[a, b], then the following equality holds:

f (
a + b

2
) −

1
b − a

∫ b

a
f (x)dx

=
1

p(b − a)

∫ 1

0

[
t

1
p
a + b

2
+ ((1 − t)

1
p − 1)a

]
f ′(t

1
p
a + b

2
+ (1 − t)

1
p a)

[
t

1
p−1 a + b

2
− (1 − t)

1
p−1a

]
dt

+
1

p(b − a)

∫ 1

0

[
b(t

1
p − 1) + (1 − t)

1
p
a + b

2

]
f ′(t

1
p b + (1 − t)

1
p
a + b

2
)
[
t

1
p−1b − (1 − t)

1
p−1 a + b

2

]
dt.

Theorem 2.10. Let a, b be real numbers with a < b and f : R→ R be differentiable function such that
| f ′| is integrable on [a, b] and quasi p-convex function on R. Then the following inequality holds:∣∣∣∣∣ f (

a + b
2

) −
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

1
p(b − a)

(3 |a| + |b|
2

)2

max
{
| f ′(a)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣}

+

(
|a| + 3 |b|

2

)2

max
{
| f ′(b)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣} .

Proof. From Lemma 2.9, triangle inequality and the quasi p-convexity of | f ′| ,∣∣∣∣∣∣ f (
a + b

2
) −

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

1
p(b − a)

∫ 1

0

∣∣∣∣∣t 1
p
a + b

2
+ ((1 − t)

1
p − 1)a

∣∣∣∣∣ ∣∣∣∣∣t 1
p−1 a + b

2
− (1 − t)

1
p−1a

∣∣∣∣∣ ∣∣∣∣∣ f ′(t 1
p
a + b

2
+ (1 − t)

1
p a)

∣∣∣∣∣ dt

+
1

p(b − a)

∫ 1

0

∣∣∣∣∣b(t
1
p − 1) + (1 − t)

1
p
a + b

2

∣∣∣∣∣ ∣∣∣∣∣t 1
p−1b − (1 − t)

1
p−1 a + b

2

∣∣∣∣∣ ∣∣∣∣∣ f ′(t 1
p b + (1 − t)

1
p
a + b

2
)
∣∣∣∣∣ dt

≤
1

p(b − a)

∫ 1

0

(
|a| + |b|

2
+ |a|

)2

max
{
| f ′(a)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣} dt

+
1

p(b − a)

∫ 1

0

(
|a| + |b|

2
+ |b|

)2

max
{
| f ′(b)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣} dt

≤
1

p(b − a)

(3 |a| + |b|
2

)2

max
{
| f ′(a)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣} +

(
|a| + 3 |b|

2

)2

max
{
| f ′(b)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣} .

�
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Corollary 2.11. In the theorem above, if the domain of f is restricted to positive real numbers, then
the following inequality is obtained∣∣∣∣∣∣ f (

a + b
2

) −
1

b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ 1
p(b − a)

(3a + b
2

)2 ∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣ +

(
a + 3b

2

)2

| f ′(b)|
 .

Sharper version of Theorem 2.10 can be obtained by finding maximum values of some expressions
existing inside the right hand side integral in Lemma 2.9.

Theorem 2.12. Let f : R→ R be differentiable function such that | f ′| is integrable on [a, b] and quasi
p-convex function on R. Let

g1(t) = t
1
p
a + b

2
+ ((1 − t)

1
p − 1)a and g2(t) = b(t

1
p − 1) + (1 − t)

1
p
a + b

2

h1(t) = t
1
p−1 a + b

2
− (1 − t)

1
p−1a and h2(t) = t

1
p−1b − (1 − t)

1
p−1 a + b

2
.

Then ∣∣∣∣∣∣ f (
a + b

2
) −

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤ 1
p(b − a)

(
w1(t) max

{
| f ′(a)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣}

+w2(t) max
{
| f ′(b)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣})

where

Ω1(t) = max{|g1(a)| , |g1(b)| , |g1(t1)|}max{|h1(a)| , |h1(b)| , |h1(s1)|},
Ω2(t) = max{|g2(a)| , |g2(b)| , |g2(t2)|}max{|h2(a)| , |h2(b)| , |h2(s2)|}

and for a, b which makes t1,t2, s1, s2 defined,

t1 =

1 +

(
a + b

2a

) p
p−1

−1

, t2 =

1 +

(
a + b

2b

) p
p−1

−1

,

s1 =

1 +

(
a + b

2a

) p
2p−1

−1

, s2 =

1 +

(
a + b

2a

) p
2p−1

−1

for a, b which makes any of t1, t2, s1, s2 undefined, that one will be zero or one.

Proof. When their first derivatives of these functions are investigated, it is seen that g1(t), g2(t), h1(t),
h2(t) with respect to values of a, b are either monotonic functions or unimodal functions on [0, 1],
the maximum values of |g1(t)| , |g2(t)| , |h1(t)| , |h2(t)| are attained at either boundary points of [0, 1] or
extremum points. The extremum points for these functions with respect to values of a, b making the
following values defined are

t1 =

1 +

(
a + b

2a

) p
p−1

−1

, t2 =

1 +

(
a + b

2b

) p
p−1

−1

,
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s1 =

1 +

(
a + b

2a

) p
2p−1

−1

, s2 =

1 +

(
a + b

2a

) p
2p−1

−1

,

respectively.
For the values of a and b that make a+b

2b or a+b
2b negative, these functions will be monotone function.

Therefore for i = 1, 2

|gi(t)| ≤ max{|gi(a)| , |gi(b)| , |gi(ti)|} and |hi(t)| ≤ max{|hi(a)| , |hi(b)| , |hi(si)|}.

From Lemma 2.9, we have∣∣∣∣∣∣ f (
a + b

2
) −

1
b − a

∫ b

a
f (x)dx

∣∣∣∣∣∣
≤

1
p(b − a)

∫ 1

0
|g1(t)| |h1(t)|

∣∣∣∣∣ f ′(t 1
p
a + b

2
+ (1 − t)

1
p a)

∣∣∣∣∣ dt

+
1

p(b − a)

∫ 1

0
|g2(t)| |h2(t)|

∣∣∣∣∣ f ′(t 1
p b + (1 − t)

1
p
a + b

2
)
∣∣∣∣∣ dt

≤
1

p(b − a)

∫ 1

0
max{|g1(a)| , |g1(b)| , |g1(t1)|}max{|h1(a)| , |h1(b)| , |h1(s1)|}

×max
{
| f ′(a)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣} dt

+
1

p(b − a)

∫ 1

0
max{|g2(a)| , |g2(b)| , |g2(t2)|}max{|h2(a)| , |h2(b)| , |h2(s2)|}

×max
{
| f ′(b)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣} dt

≤
1

p(b − a)

(
Ω1(t) max

{
| f ′(a)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣} + Ω2(t) max

{
| f ′(b)| ,

∣∣∣∣∣ f ′(a + b
2

)
∣∣∣∣∣}) .

�

3. Applications

In this section, performing the results, we obtained some inequalities involving special means,
digamma function, Fresnel integral for sinus. In addition, numerical integration of a function whose
derivative’s absolute value is quasi p-convex via composite trapezoid rule is majorized with respect to
chosen points in the interval.

Proposition 3.1. Let a, b > 0 where a < b. Then the following inequality holds:∣∣∣[Mn+1(a, b)]n+1
− [Ln+2(a, b)]n+1

∣∣∣ ≤ 3(n + 1)
2(b − a)

(a + b)2 bn

where the following means are defined in [4, 19], respectively

Ms(a, b) =

(
as + bs

2

) 1
s

and Ls(a, b) =

 a , a = b(
as−bs

s(a−b)

)1/(s−1)
, a , b; s , 0, 1.
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Proof. Using Theorem 2.6 for f (x) = xn+1

n+1 on [a, b] ⊆ R+ that is f ′(x) = xn quasi p-convex from (1.1),
we have ∣∣∣∣∣∣an+1 + bn+1

2
−

bn+2 − an+2

(n + 2)(b − a)

∣∣∣∣∣∣ ≤ 3(n + 1)
2(b − a)

(a + b)2 bn.

Since 0 < p ≤ 1, the desired result is obtained. �

Proposition 3.2. Let a, b > 0 where a < b. Then,∣∣∣∣∣∣∣ [Mn+1(a, b)]n+1
− [Ln+2(a, b)]n+1

3H(a2, b2) + 1
p B( 1

p ,
1
p )G(a2, b2)

∣∣∣∣∣∣∣ ≤ (n + 1)bn

(b − a)

where H(x, y) =
x+
√

xy+y
3 and G(x, y) =

√
xy.

Proof. Using Theorem 2.8 for f (x) = xn+1

n+1 on [a, b] ⊂ [0,∞), we have the desired result. �

Using some of the results, many inequalities related to special functions can be obtained. We will
express only three examples of them in the following propositions.

Proposition 3.3. Let x ≥ 2. Then

2
−x+2

p −1(2x−1 − 1) − γ ≤ Ψ(x)

where Ψ(x) is digamma function, i.e.,

Ψ(x) =
Γ′(x)
Γ(x)

for x > 0 and γ is Euler-Mascheroni constant, that is, γ ≈ 0.5772156649...

Proof. Let x ≥ 2. Then, g(x) = xn (n ∈ R+) is quasi p-convex from Theorem 1.1. Let us consider g(x)
and [a, b] = [t, 1] where t ∈ [0, 1] in Theorem 2.1. Then, the following inequality is obtained

2−
n
p−1(1 + t)n(1 − t) ≤

1 − tn+1

n + 1
.

Dividing both side by 1 − t and integrating both side on [0, 1] with respect to t, we have

2−
n
p−1(2n+1 − 1) ≤

1∫
0

1 − tn+1

1 − t
dt.

By means of the integral representation of digamma function [14], i.e.,

1∫
0

1 − tx−1

1 − t
dt − γ = Ψ(x)

for x > 0, one can write
2−

n
p−1(2n+1 − 1) ≤ Ψ(n + 2) + γ.

The substitution x = n + 2 yields to desired inequality. �
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Proposition 3.4. Let x ∈ [0,
√

π
2 ]. Then,

2−1 sin(
x2

2
2
p

)x ≤ S (x)

where S (x) is the Fresnel integral for sinus, i.e.,

S (x) =

∫ x

0
sin(t2)dt.

Proof. Since f (x) = sin(x2) is quasi p-convex in [0,
√

π
2 ] according to Theorem 1.1, taking f (x) =

sin(x2) in Theorem 2.1, we have the desired result. �

Proposition 3.5. Let 0 < x < 1
2 . Then the following inequality holds:∣∣∣∣∣∣ x sin(x2)

2
− S (x)

∣∣∣∣∣∣ ≤ 3x3 cos(x2).

Proof. Let f (x) = sin(x2) in Theorem 2.6. Then f ′(x) = 2x cos(x2) and it is quasi p-convex function
on [0, 1

2 ] from Theorem 1.1. Let us consider f (x) and [a, b] = [t, 1] where t ∈ [0, 1] in Theorem 2.1.
Then, we get the desired inequality. �

Finally using Theorem 2.6, we can find an upper bound for the error in numerical integration for
the functions whose absolute value of first derivatives are quasi p-convex via composite trapezoid rule.

Let f be an integrable function on [a, b] and P be a partition of the interval [a, b], i.e., P : a = x0 <

x1 < · · · < xn−1 < xn = b and ∆xi+1 = xi+1 − xi. Then

b∫
a

f (x)dx =

n−1∑
k=0

f (xk) + f (xk+1)
2

∆xk+1 + E( f , P) (3.1)

where E( f , P) is called the error of integral with respect to P. There are some ways to estimate an
upper bound for E( f , P). For quasi p-convex functions we suggest the following proposition:

Proposition 3.6. Let f : R → R be differentiable function such that | f ′| be integrable on [a, b] and
quasi p-convex function on R. Suppose that P is a partition of [a, b]. Then the following inequality
holds

|E( f , P)| ≤
3

2p

n−1∑
k=0

(|xk| + |xk+1|)2 max{| f ′(xk)| , | f ′(xk+1)|}.

Proof. Applying Theorem 2.6 on [xk, xk+1], we have

∣∣∣∣∣ f (xk) + f (xk+1)
2

−
1

xk+1 − xk

xk+1∫
xk

f (x)dx

∣∣∣∣∣∣∣∣∣
≤

3
2p(xk+1 − xk)

(|xk| + |xk+1|)2 max{| f ′(xk)| , | f ′(xk+1)|}. (3.2)
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Then using (3.1) and (3.2), we get the desired result as follows:

|E( f , P)| =

∣∣∣∣∣∣∣∣
n−1∑
k=0

f (xk) + f (xk+1)
2

∆xk+1 −

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
n−1∑
k=0

 f (xk) + f (xk+1)
2

∆xk+1 −

xk+1∫
xk

f (x)dx


∣∣∣∣∣∣∣∣∣

≤

n−1∑
k=0

∣∣∣∣∣∣∣∣∣
f (xk) + f (xk+1)

2
∆xk+1 −

xk+1∫
xk

f (x)dx

∣∣∣∣∣∣∣∣∣
=

n−1∑
k=0

∆xk+1

∣∣∣∣∣∣∣∣∣
f (xk) + f (xk+1)

2
−

1
xk+1 − xk

xk+1∫
xk

f (x)dx

∣∣∣∣∣∣∣∣∣ .
�

Corollary 3.7. If f is restricted to R+ in proposition above, then the following inequality holds:

|E( f , P)| ≤
3

2p

n−1∑
k=0

(xk + xk+1)2
| f ′(xk+1)| .

4. Conclusions

In this article, the Hermite-Hadamard inequality and its generalization for quasi p-convex functions
are obtained. In addition, several new inequalities are established for the functions whose first
derivative in absolute value is quasi p-convex, which states some bounds for sides of the Hermite-
Hadamard inequalities. The applications related to some relations involving special means and
some inequalities for special functions including digamma function and Fresnel integral for sinus are
presented. In addiditon, an upper bound for error in numerical integration of quasi p-convex functions
via composite trapezoid rule is given. In the future, more interesting inequalities regarding special
functions can be obtained through different examples of quasi p-convex functions. The introduction of
quasi p-convex functions and their properties for n dimensional case are given in [21]. By making use
of that study, the existence of similar results can be investigated for multiple integrals.
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