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1. Introduction

Mathematical rationale and set theory are believed to be the pillars of modern mathematics.
Indeed, together they constitute the language bridging in nearly every branch of science. In actual
fact, the prompt expansion and growth of science has set in motion an imperative requisite for the
advancement of mathematical modeling based upon modern set theories. While describing a (crisp)
set, a characteristic function is attached to that set. Taking the impact of uncertainty factor into account,
Zadeh [1] gave the conception of fuzzy sets by attaching a membership function with each member
of the classical set. Later, Zadeh [2] proposed similarity relations and fuzzy orderings. Zadeh [3]
presented applications to approximate reasoning by floating the idea of a linguistic variable.

Following the footsteps of Zadeh, numerous theories and approaches treating uncertainty,
imprecision and vagueness have been proposed so far. Atanassov [4,5] originated a modernistic class of
sets: intuitionistic fuzzy sets (IFSs), as extension of fuzzy sets. Feng et al. [6] unveiled Lexicographic
orders of IF values and established relationships between them. Pythagorean fuzzy set (PFS), initiated
by Yager [7–9] is further expansion of IFSs. Peng et al. [10, 11] further studied results for PFSs
and corresponding soft sets with applications. Guleria and Bajaj [12] coined matrix representation
of PFSSs. Naeem et al. [13, 14] studied Pythagorean fuzzy soft multi-criteria group decision making
(MCGDM) methods. Naeem et al. [15] originated Pythagorean m-polar fuzzy sets (PmFSs) and their
utilizations. In PmFSs, contrary to PFSs, elements may appear multiple times with the possibility
of identical or different membership grades. Naeem et al. [16] studied the topological structure on
PmFSs and in [17] explored many interesting features of PmFSs. Riaz et al. [18] established weighted
aggregation operators for PmFSs.

Since IFSs and PFSs are widely used in numerous fields like decision making, market prediction,
pattern recognition, forecasting, business and commerce analysis, medical diagnosis, speech
recognition, logic programming etc., so comparison measures of these sets perform a significant
part in contemporary research areas. Many researchers, like [19–22] etc., worked on choice making
techniques inclusive of comparison measures. Akram et al. [23] discussed the urban quality of life
through the MULTIMOORA method with 2-tuple linguistic Fermatean fuzzy sets. Liu et al. [24]
focused on the variation coefficient similarity measures and their applications to medical diagnosis
and pattern recognition. An aggregate operator-based approach to cancer therapy assessment had
been developed by Kausar et al. [25]. Pan et al. [26] proposed a quaternion model of PFSs and its
distance measure. Akram et al. [27] extended the ELECTRE method for m-polar fuzzy N-soft sets
and discussed their applications in the selection of rehabilitation centers. Khan et al. [28] defined the
divergence measures for circular IFSs and discussed their applications to pattern recognition, multi-
period medical diagnosis and MCDM problems. The ELECTRE-I method for hesitant PFSs and their
applications to risk evaluation were focused [29]. Akram et al. [30] proposed complex PFSs and their
applications to MCDM problems.

The role of multipolar statistics is gaining momentum, especially in making large scale decisions
related to capital investment, therapeutic analysis and pattern recognition etc. In making far reaching
decisions, we have to think time and again to reach at some conclusion.

The purpose of this article is to investigate some comparison measures for PmFSs in order to
quantify uncertain information. The aims include studying the basic properties and numerical examples
of the proposed comparison measures. Also, to discuss the applications of comparison measures for
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PmFSs in robotics and movie recommender systems.
To attain the purpose, we propose similarity, distance, and correlation measures along with their

leading characteristics. The mathematical results of the examples support the notion that the developed
comparison measures are well suited to multipolar statistics. Three algorithms based on similarity,
distance and correlation measures are discussed to configure robotics and the movie recommender
system.

The remnant part of the article is sorted out as pursues. In Section 2, we discuss several
fundamentals that are necessary to comprehend the next ideas. In Section 3, we propose three
comparison measures with associated properties: a similarity measure, a distance measure and a
correlation measure. We define the entropy measure for PmFS with the assistance of similarity measure
in the same section. Section 4 consists of three algorithms based on the suggested comparison measures
and applied them on artificial intelligence and demonstrated that all the measures yield the same
optimal choice. Section 5 deals with another practical usage of the suggested comparison measures in
the machine learning technique of movie recommending system. We conclude the paper in Section 6.

2. Preliminaries

In this section, we discuss some fundamentals that are necessary to comprehend the next ideas. The
definitions of fuzzy sets, PFSs, PmFSs and their basic operations are mentioned.

Definition 2.1. [1] Presume that X , ϕ is a universe. A fuzzy set A in X is given as

A = {< ω, µA(ω) >: ω ∈ X},

where µA : X → [0, 1] is the membership function of A.

Definition 2.2. [7] A Pythagorean fuzzy set, abbreviated as PFS, is a family of the form

P =
{
< ω, µP(ω), νP(ω) >: ω ∈ X

}
,

where µP(ω), νP(ω) ∈ [0, 1] such that 0 ≤ µ2
P(ω) + ν2

P(ω) ≤ 1. These maps are called correspondingly
the association and non-association grades of ω ∈ X to the set P.

Definition 2.3. [15] A Pythagorean m-polar fuzzy set (PmFS) P is typified by the maps µ(i)
P (affiliation

grades) and ν(i)
P (dissociation degrees) giving members of X to [0, 1] such that 0 ≤

(
µ(i)

P (ω)
)2
+(

ν(i)
P (ω)

)2
≤ 1, for all i.

A PmFS is commonly expressed in different ways as

P =
{〈
ω,
((
µ(1)

P (ω), ν(1)
P (ω)

)
, · · · ,

(
µ(m)

P (ω), ν(m)
P (ω)

))〉}
=

{
ω((

µ(1)
P (ω), ν(1)

P (ω)
)
, · · · ,

(
µ(m)

P (ω), ν(m)
P (ω)

))}

=

{
ω((

µ(i)
P (ω), ν(i)

P (ω)
))}m

i=1

.

The tabulator array of P is produced by Table 1 if the size of X is r.
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Table 1. Tabulatory array of P.

P (1) (2) · · · (m)
ω1

(
µ(1)

P (ω1), ν(1)
P (ω1)

) (
µ(2)

P (ω1), ν(2)
P (ω1)

)
· · ·

(
µ(m)

P (ω1), ν(m)
P (ω1)

)
ω2

(
µ(1)

P (ω2), ν(1)
P (ω2)

) (
µ(2)

P (ω2), ν(2)
P (ω2)

)
· · ·

(
µ(m)

P (ω2), ν(m)
P (ω2)

)
...

...
...

. . .
...

ωr
(
µ(1)

P (ωr), ν
(1)
P (ωr)

) (
µ(2)

P (ωr), ν
(2)
P (ωr)

)
· · ·

(
µ(m)

P (ωr), ν
(m)
P (ωr)

)
The corresponding matrix format is

P =


(
µ(1)

P (ω1), ν(1)
P (ω1)

) (
µ(2)

P (ω1), ν(2)
P (ω1)

)
· · ·
(
µ(m)

P (ω1), ν(m)
P (ω1)

)(
µ(1)

P (ω2), ν(1)
P (ω2)

) (
µ(2)

P (ω2), ν(2)
P (ω2)

)
· · ·
(
µ(m)

P (ω2), ν(m)
P (ω2)

)
...

...
. . .

...(
µ(1)

P (ωr), ν
(1)
P (ωr)

) (
µ(2)

P (ωr), ν
(2)
P (ωr)

)
· · ·
(
µ(m)

P (ωr), ν
(m)
P (ωr)

)
 .

This matrix of size r × m is titled as PmF matrix. The aggregate of all PmFSs defined over X is
designated as PmFS (X).

Definition 2.4. [15] A PmFS P1 is called a subset of the PmFS P2, written P1 ⊆ P2 if µ(i)
P1

(ω) ≤ µ(i)
P2

(ω)
and ν(i)

P1
(ω) ≥ ν(i)

P2
(ω), for all ω ∈ X and all i.

P1 and P2 are said to be equal if and only if P1 ⊆ P2 ⊆ P1.

3. Comparison measures for PmFS

The similarity, distance and correlation measures are the three comparison metrics for PmFS that are
presented in this section. We present illustrative instances for these metrics and prove their necessary
properties for them.

3.1. Similarity measure for PmFSs

This section is devoted to outlining a PmFSs similarity metric and some of its key features.

Definition 3.1. A measure S im, given by the mapping S im : PmFS (X)× PmFS (X)→ [0, 1], is called
a similarity measure if the following axioms hold:

(1) S im(P1, P2) ∈ [0, 1];
(2) S im(P1, P2) = 1⇔ P1 = P2;
(3) S im(P1, P2) = S im(P2, P1);
(4) If P1 ⊆ P2 ⊆ P3, then S im(P1, P3) ≤ S im(P1, P2) and S im(P1, P3) ≤ S im(P2, P3),

where P1, P2, P3 ∈ PmFS (X).

Definition 3.2. Let X = {ωi : i = 1, · · · , n}. The mapping between PmFS P1 =

{
ωi

(µ( j)
P1

(ωi),ν
( j)
P1

(ωi))
: ωi ∈ X

}
and P2 =

{
ωi

(µ( j)
P2

(ωi),ν
( j)
P2

(ωi))
: ωi ∈ X

}
comprising membership and non-membership functions defined over

the finite universe X = {ωi : i = 1, 2, · · · , n} may be defined as

S im(P1, P2) =
< P1, P2 >

∥P1∥∥P2∥
,
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where

< P1, P2 > =

m∑
j=1

{ n∑
i=1

(
µ

( j)
P1

(ωi)µ
( j)
P2

(ωi) + ν
( j)
P1

(ωi)ν
( j)
P2

(ωi)
)}
,

∥P1∥ =

√√ m∑
j=1

{ n∑
i=1

((
µ

( j)
P1

(ωi)
)2
+
(
ν

( j)
P1

(ωi)
)2)}
,

∥P2∥ =

√√ m∑
j=1

{ n∑
i=1

((
µ

( j)
P2

(ωi)
)2
+
(
ν

( j)
P2

(ωi)
)2)}
.

Proposition 3.1. The metric in Definition 3.2 complies with the following criteria:

(1) 0 ≤ S im(P1, P2) ≤ 1.
(2) S im(P1, P2) = 1⇔ P1 = P2.
(3) S im(P1, P2) = S im(P2, P1).

Proof. The first and third requirements are clear-cut. Assume S im(P1, P2) has a value of 1. Following
that, we have for all conceivable values of i and j,

< P1, P2 >

∥P1∥∥P2∥
= 1,

which in turn yields µ( j)
P1

(ωi) = µ
( j)
P2

(ωi) and ν( j)
P1

(ωi) = ν
( j)
P2

(ωi). Hence, P1 = P2.
Conversely, assume that P1 = P2. Thus, for all i and j, we have µ( j)

P1
(ωi) = µ

( j)
P2

(ωi) and ν( j)
P1

(ωi) =
ν

( j)
P2

(ωi). Thus,

< P1, P2 > =

m∑
j=1

{ n∑
i=1

(
µ

( j)
P1

(ωi)µ
( j)
P2

(ωi) + ν
( j)
P1

(ωi)ν
( j)
P2

(ωi)
)}

=

m∑
j=1

{ n∑
i=1

((
µ

( j)
P1

(ωi)
)2
+
(
ν

( j)
P1

(ωi)
)2)}

= ∥P1∥
2 = ∥P1∥∥P2∥,

therefore,

S im(P1, P2) =
< P1, P2 >

∥P1∥∥P2∥
= 1.

Proposition 3.2. If P1, P2 and P3 are PmFSs defined over X such that P1 ⊆ P2 ⊆ P3, then,
S im(P1, P3) ≤ S im(P1, P2) and S im(P1, P3) ≤ S im(P2, P3).

Proof. Straightforward.

Proposition 3.3. The metric in Definition 3.2 is a similarity measure for PmFSs.

Proof. The proof is straightforward by Propositions 3.1 and 3.2.
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Example 3.1. Consider the PmFSs

P1 =

{
ω1

(0.71, 0.29), (0.69, 0.53)
,

ω2

(0.53, 0.41), (0.16, 0.91)

}
,

P2 =

{
ω1

(0.54, 0.37), (0.17, 0.12)
,

ω2

(0.48, 0.47), (0.51, 0.51)

}
defined over the crisp set X = {ω1, ω2}. Then,

< P1, P2 > =

2∑
j=1

{ 2∑
i=1

(
µ

( j)
P1

(ωi)µ
( j)
P2

(ωi) + ν
( j)
P1

(ωi)ν
( j)
P2

(ωi)
)}

= (0.71)(0.54) + (0.29)(0.37) + (0.69)(0.17) + · · · + (0.91)(0.51)
= 1.6644,

∥P1∥ =

√√√ 2∑
j=1

{ 2∑
i=1

((
µ

( j)
P1

(ωi)
)2
+
(
ν

( j)
P1

(ωi)
)2)}
=
√

(0.71)2 + (0.29)2 + · · · + (0.91)2 = 1.6272,

∥P2∥ =

√√√ 2∑
j=1

{ 2∑
i=1

((
µ

( j)
P2

(ωi)
)2
+
(
ν

( j)
P2

(ωi)
)2)}
=
√

(0.54)2 + (0.37)2 + · · · + (0.51)2 = 1.2014,

and hence
S im(P1, P2) =

< P1, P2 >

∥P1∥∥P2∥
= 0.8514.

Definition 3.3. The angle θP1,P2 defined by θP1,P2 = arccos
(
<P1,P2>
∥P1∥∥P2∥

)
is called the angle of similarity

between the PmFSs P1 and P2.

Example 3.2. For P1 and P2, cited in Example 3.1, we have

θP1,P2 = arccos
(< P1, P2 >

∥P1∥∥P2∥

)
= arccos(0.8514) = 31◦38′.

Remark 3.1. By multipolarizing the supplied PFS in accordance with the given PmFS, we first convert
the given PFS to PmFS in order to compare the two. The idea is demonstrated by the next example.

Example 3.3. Consider the PmFS

P1 =

{
ω1

(0.53, 0.40), (0.21, 0.23)
,

ω2

(0.35, 0.47), (0.99, 0.03)
,

ω3

(0.08, 0.38), (0.57, 0.61)

}
and a PFS

P =
{

ω1

(0.81, 0.29)
,

ω2

(0.61, 0.34)
,

ω3

(0.60, 0.12)

}
defined over X = {ω1, ω2, ω3}. We convert the PFS P to a P2FS (and refer to the resulting set as P2) to
make it compatible with P1 as the unit of comparison.

P2 =

{
ω1

(0.81, 0.29), (0.81, 0.29)
,

ω2

(0.61, 0.34), (0.61, 0.34)
,

ω3

(0.60, 0.12), (0.60, 0.12)

}
.
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Now,

< P1, P2 > =

2∑
j=1

{ 3∑
i=1

(
µ

( j)
P1

(ωi)µ
( j)
P2

(ωi) + ν
( j)
P1

(ωi)ν
( j)
P2

(ωi)
)}

= (0.53)(0.81) + (0.40)(0.29) + (0.21)(0.81) + · · · + (0.57)(0.60)
= 2.2783,

∥P1∥ =

√√√ 2∑
j=1

{ 3∑
i=1

((
µ

( j)
P1

(ωi)
)2
+
(
ν

( j)
P1

(ωi)
)2)}
=
√

(0.53)2 + (0.40)2 + · · · + (0.61)2 = 1.6462,

∥P2∥ =

√√√ 2∑
j=1

{ 3∑
i=1

((
µ

( j)
P2

(ωi)
)2
+
(
ν

( j)
P2

(ωi)
)2)}
=
√

(0.81)2 + (0.29)2 + · · · + (0.12)2 = 1.7901,

and hence
S im(P1, P2) =

< P1, P2 >

∥P1∥∥P2∥
= 0.7731.

Proposition 3.4. P is a crisp set⇔ S im(P, Pc) = 1.

Proof. The evidence is provided by the fact that a crisp set possesses the form

P =
{
ωα

(0, 1)
,
ωβ

(1, 0)

}
for all acceptable α and β values.

Example 3.4. Consider the PmFSs

P1 =


(0.52, 0.31) (0.47, 0.12) (0.36, 0.71)
(0.16, 0.45) (0.28, 0.14) (0.39, 0.60)
(0.02, 0.99) (0.87, 0.26) (0.83, 0.01)

 ,

P2 =


(0.57, 0.25) (0.52, 0.12) (0.40, 0.54)
(0.25, 0.41) (0.33, 0.09) (0.40, 0.48)
(0.14, 0.58) (0.88, 0.21) (0.85, 0.01)

 ,
and

P3 =


(0.61, 0.20) (0.57, 0.09) (0.56, 0.31)
(0.34, 0.36) (0.54, 0.01) (0.55, 0.22)
(0.17, 0.52) (0.89, 0.18) (0.89, 0.01)

 ,
so that P1 ⊆ P2 ⊆ P3. Here,

S im(P1, P2) = 0.9741,
S im(P2, P3) = 0.9687,
S im(P1, P3) = 0.9109.

As a result, Proposition 3.2’s findings are corroborated.
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Definition 3.4. Two PmFSs P1 and P2 are said to be λ-similar, written P1 ≈
λ P2, if and only if

S im(P1, P2) ≥ λ for some 0 < λ < 1.

We observe from Example 3.4 that S im(P1, P2) ≥ 0.95 and S im(P2, P3) ≥ 0.95, but S im(P1, P3) ≱
0.95, i.e., P1 ≈

0.95 P2 and P2 ≈
0.95 P3, but P1 ≈

0.95 P3 is untrue. It implies that the transitive property
of a relation does not follow the being λ-similar.

Proposition 3.5. Being λ-similar is a relation, not an equivalence relation.

Definition 3.5. The similarity between a PmFS and its complement gives entropy of PmFS, that is,
E(P) = S im(P, Pc). It is directed from definition that E(P) = E(Pc).

Definition 3.6. P1 is referred to as being less fuzzy than P2 for two PmFSs, P1 and P2, if and only if
E(P1) ≤ E(P2).

Example 3.5. For P1 and P2 given in Example 3.4, we have E(P1) = 0.4697 and E(P2) = 0.5425, so
P1 is less fuzzy than P2.

3.2. Distance measure for PmFSs

A distance measure for PmFSs and some of its key features are presented in this subsection. Some
numerical examples are provided for illustration.

Definition 3.7. Let P1, P2 ∈ PmFS (X). If all of the following conditions are satisfied, a measure Dm

provided by the mapping Dm : PmFS (X) × PmFS (X) → [0, 1] is referred to as a distance measure, if
the following axioms hold:

(1) Dm(P1, P2) ∈ [0, 1].
(2) Dm(P1, P2) = 0⇔ P1 = P2.
(3) Dm(P1, P2) = Dm(P2, P1).
(4) If P1, P2 and P3 be three PmFSs defined over X, then Dm(P1, P2) + Dm(P2, P3) ≥ Dm(P1, P3).

Definition 3.8. The mapping between PmFSs P1 =

{
ωi

(µ( j)
P1

(ωi),ν
( j)
P1

(ωi))
: ωi ∈ X

}
and P2 =

{
ωi

(µ( j)
P2

(ωi),ν
( j)
P2

(ωi))
:

ωi ∈ X
}

comprising membership and non-membership functions defined over the finite universe X =

{ωi : i = 1, 2, · · · , n} may be defined as

Dm(P1, P2) =
1

2mn

m∑
j=1

{ n∑
i=1

{∣∣∣∣(µ( j)
P1

(ωi)
)2
−
(
µ

( j)
P2

(ωi)
)2∣∣∣∣ + ∣∣∣∣(ν( j)

P1
(ωi)
)2
−
(
ν

( j)
P2

(ωi)
)2∣∣∣∣}}.

Proposition 3.6. The specifications in Definition 3.7 are satisfied by the mapping Dm provided in
Definition 3.8.

Proof. Straightforward.

Proposition 3.7. The metric in Definition 3.7 is a distance measure for PmFSs.

Proof. The proof comes just after Proposition 3.6.
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Example 3.6. As seen in Example 3.1, the distance between PmFSs is

Dm(P1, P2) =
1

2(2)(2)

2∑
j=1

{ 2∑
i=1

{∣∣∣∣(µ( j)
P1

(ωi)
)2
−
(
µ

( j)
P2

(ωi)
)2∣∣∣∣ + ∣∣∣∣(ν( j)

P1
(ωi)
)2
−
(
ν

( j)
P2

(ωi)
)2∣∣∣∣}}

=
1
8

{∣∣∣∣0.712 − 0.542
∣∣∣∣ + ∣∣∣∣0.292 − 0.372

∣∣∣∣ + · · · + ∣∣∣∣0.912 − 0.512
∣∣∣∣}

= 0.2346.

Remark 3.2. For finding the distance measure between a PFS and a PmFS, we proceed like
Example 3.3.

Proposition 3.8. P is a crisp set⇔ Dm(P, Pc) = 1.

Proof. The demonstration follows from the fact that a crisp set has the shape

P =
{
ωα

(0, 1)
,
ωβ

(1, 0)

}
for all acceptable α and β values.

Proposition 3.9. If P1, P2 and P3 are PmFSs defined over X such that P1 ⊆ P2 ⊆ P3, then Dm(P1, P2) ≤
Dm(P1, P3) and Dm(P2, P3) ≤ Dm(P1, P3).

Proof. Since P1 ⊆ P2 ⊆ P3, so µ( j)
P1

(ωi) ≤ µ
( j)
P2

(ωi) ≤ µ
( j)
P3

(ωi) and ν( j)
P1

(ωi) ≥ ν
( j)
P2

(ωi) ≥ ν
( j)
P3

(ωi) for all i
and j.

Now, by definition

Dm(P1, P2) =
1

2mn

m∑
j=1

{ n∑
i=1

{∣∣∣∣(µ( j)
P1

(ωi)
)2
−
(
µ

( j)
P2

(ωi)
)2∣∣∣∣ + ∣∣∣∣(ν( j)

P1
(ωi)
)2
−
(
ν

( j)
P2

(ωi)
)2∣∣∣∣}}

=
1

2mn

m∑
j=1

{ n∑
i=1

{(
µ

( j)
P2

(ωi)
)2
−
(
µ

( j)
P1

(ωi)
)2
+
(
ν

( j)
P1

(ωi)
)2
−
(
ν

( j)
P2

(ωi)
)2}}
,

Dm(P1, P3) =
1

2mn

m∑
j=1

{ n∑
i=1

{∣∣∣∣(µ( j)
P1

(ωi)
)2
−
(
µ

( j)
P3

(ωi)
)2∣∣∣∣ + ∣∣∣∣(ν( j)

P1
(ωi)
)2
−
(
ν

( j)
P3

(ωi)
)2∣∣∣∣}}

=
1

2mn

m∑
j=1

{ n∑
i=1

{(
µ

( j)
P3

(ωi)
)2
−
(
µ

( j)
P1

(ωi)
)2
+
(
ν

( j)
P1

(ωi)
)2
−
(
ν

( j)
P3

(ωi)
)2}}
.

On subtraction, we have

Dm(P1, P3) − Dm(P1, P2) =
1

2mn

m∑
j=1

{ n∑
i=1

{(
µ

( j)
P3

(ωi)
)2
−
(
µ

( j)
P2

(ωi)
)2
+
(
ν

( j)
P2

(ωi)
)2
−
(
ν

( j)
P3

(ωi)
)2}}
≥ 0

⇒ Dm(P1, P2) ≤ Dm(P1, P3).

Analogously, the other result might also be proven.
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Example 3.7. The PmFSs mentioned in Example 3.4 have

Dm(P1, P2) = 0.0760,
Dm(P2, P3) = 0.0700,
Dm(P1, P3) = 0.1461.

As a result, Proposition 3.9’s findings are corroborated.

3.3. Correlation measure for PmFSs

The correlation measure for PmFSs is suggested in this subsection, along with some of its key
features.

Definition 3.9. Take P1, P2 ∈ PmFS (X). A measure Cor(P1, P2), given by the mapping Cor :
PmFS (X) × PmFS (X)→ [0, 1], is called a correlation measure if

(1) Cor(P1, P2) ∈ [0, 1].
(2) Cor(P1, P2) = 1⇔ P1 = P2.
(3) Cor(P1, P2) = Cor(P2, P1).

Definition 3.10. Let X = {ωi : i = 1, · · · , n}. The mapping between PmFSs P1 =

{
ωi

(µ( j)
P1

(ωi),ν
( j)
P1

(ωi))
: ωi ∈

X
}

and P2 =

{
ωi

(µ( j)
P2

(ωi),ν
( j)
P2

(ωi))
: ωi ∈ X

}
comprising membership and non-membership functions defined

over the finite universe X = {ωi : i = 1, 2, · · · , n} may be defined as

Cor(P1, P2) =
η(P1, P2)

{
η(P1, P1) + η(P2, P2)

}
2η(P1, P1)η(P2, P2)

,

where

η(P1, P2) =
m∑

j=1

{ n∑
i=1

(
µ

( j)
P1

(ωi)µ
( j)
P2

(ωi)
) 3

2 +
(
ν

( j)
P1

(ωi)ν
( j)
P2

(ωi)
) 3

2
}
,

η(P1, P1) =
m∑

j=1

{ n∑
i=1

(
µ

( j)
P1

(ωi)
)3
+
(
ν

( j)
P1

(ωi)
)3}
,

η(P2, P2) =
m∑

j=1

{ n∑
i=1

(
µ

( j)
P2

(ωi)
)3
+
(
ν

( j)
P2

(ωi)
)3}
.

Proposition 3.10. The mapping Cor(P1, P2) specified in Definition 3.10 complies with Definition 3.9
specifications.

Proof. Here, we demonstrate part (2). (1) and (3) come naturally from the definition. Assume that

Cor(P1, P2) =1⇒
η(P1, P2)

{
η(P1, P1) + η(P2, P2)

}
2η(P1, P1)η(P2, P2)

= 1

⇒η(P1, P2)
{
η(P1, P1) + η(P2, P2)

}
= 2η(P1, P1)η(P2, P2)

⇒η(P1, P1)
{
η(P1, P2) − η(P2, P2)

}
+ η(P2, P2)

{
η(P1, P2) − η(P1, P1)

}
= 0.
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In general, the final equation makes sense if

η(P1, P2) − η(P2, P2) = 0

and
η(P1, P2) − η(P1, P1) = 0,

i.e., if
η(P1, P2) = η(P1, P1) = η(P2, P2).

Now,

η(P1, P2) = η(P1, P1)

⇒

m∑
j=1

{ n∑
i=1

(
µ

( j)
P1

(ωi)µ
( j)
P2

(ωi)
) 3

2 +
(
ν

( j)
P1

(ωi)ν
( j)
P2

(ωi)
) 3

2
}
=

m∑
j=1

{ n∑
i=1

(
µ

( j)
P1

(ωi)
)3
+
(
ν

( j)
P1

(ωi)
)3}

⇒
(
µ

( j)
P1

(ωi)µ
( j)
P2

(ωi)
) 3

2 +
(
ν

( j)
P1

(ωi)ν
( j)
P2

(ωi)
) 3

2 =
(
µ

( j)
P1

(ωi)
)3
+
(
ν

( j)
P1

(ωi)
)3

⇒
(
µ

( j)
P1

(ωi)
) 3

2
{(
µ

( j)
P2

(ωi)
) 3

2
−
(
µ

( j)
P1

(ωi)
) 3

2
}
+
(
ν

( j)
P1

(ωi)
) 3

2
{(
ν

( j)
P2

(ωi)
) 3

2
−
(
ν

( j)
P1

(ωi)
) 3

2
}
= 0

⇒
(
µ

( j)
P2

(ωi)
) 3

2
−
(
µ

( j)
P1

(ωi)
) 3

2
= 0 &

(
ν

( j)
P2

(ωi)
) 3

2
−
(
ν

( j)
P1

(ωi)
) 3

2
= 0

⇒µ
( j)
P2

(ωi) = µ
( j)
P1

(ωi) & ν( j)
P2

(ωi) = ν
( j)
P1

(ωi)

⇒P1 = P2.

Conversely, suppose that P1 = P2, then

Cor(P1, P2) =
η(P1, P2)

{
η(P1, P1) + η(P2, P2)

}
2η(P1, P1)η(P2, P2)

=
η(P1, P1)

{
η(P1, P1) + η(P1, P1)

}
2η(P1, P1)η(P1, P1)

=
2η2(P1, P1)
2η2(P1, P1)

= 1.

Proposition 3.11. The metric in Definition 3.10 is a correlation measure for PmFSs.

Proof. The proof comes just after Proposition 3.10.

Example 3.8. The following formula is used to compute the correlation measure between the PmFSs
in Example 3.1:

η(P1, P2) =
2∑

j=1

{ 2∑
i=1

(
µ

( j)
P1

(ωi)µ
( j)
P2

(ωi)
) 3

2 +
(
ν

( j)
P1

(ωi)ν
( j)
P2

(ωi)
) 3

2
}

= (0.71 × 0.54)
3
2 + (0.29 × 0.37)

3
2 + · · · + (0.91 × 0.51)

3
2

= 0.8811,
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η(P1, P1) =
2∑

j=1

{ 2∑
i=1

(
µ

( j)
P1

(ωi)
)3
+
(
ν

( j)
P1

(ωi)
)3}

= (0.71)3 + (0.29)3 + · · · + (0.91)3

= 1.8352,

η(P2, P2) =
2∑

j=1

{ 2∑
i=1

(
µ

( j)
P2

(ωi)
)3
+
(
ν

( j)
P2

(ωi)
)3}

= (0.54)3 + (0.37)3 + · · · + (0.51)3

= 0.6945.

Hence,

Cor(P1, P2) =
η(P1, P2)

{
η(P1, P1) + η(P2, P2)

}
2η(P1, P1)η(P2, P2)

=
0.8811(1.8352 + 0.6945)

2(1.8352)(0.6945)
= 0.8744.

Remark 3.3. We follow Example 3.3 to determine the correlation measure between a PFS and a PmFS.

4. Application of proposed comparison measures in robotics

The human intellect mostly comprises usage of variables having values from fuzzy sets that led to
the underpinning for perception of a morphological variable-a variable whose values are words instead
of numbers. There are situations, mainly including decision-making problems (like sales analysis
and trends, business, medical therapeutic analysis, marketing & advertising etc.), the representation
merely using lingual variables by means of membership grades does not suffice. There is possibility
of existence of a non-void complement. IFS may be successfully employed in this perspective as
an appropriate technique. But in real life, there arise situations in which each element has different
membership values and of course non-membership values too. In such state of affairs, PmFS is more
adequate. Since PmFSs give users more flexibility in selecting the values for membership and non-
membership degrees, so they are more appropriate than existing structures. We present PmFS based
application of artificial intelligence for coping with such a situation.

Artificial intelligence (AI), also known as machine intelligence, is a wide-ranging term which
means the usage of computer to model and/or duplicate intelligent performance. AI resembles
with humanoid astuteness processes by means of machines, principally computer systems. Research
in artificial intelligence emphases on development and examination of algorithms that learn and/or
accomplish intelligent behavior with least human involvement. The techniques of artificial intelligence
are successfully applied in robotics, military planning and logistics, e-commerce, voice recognition,
speech recognition, medical diagnosis, computer vision and gaming etc.

Case study: Consider a multi-robot system comprising four patrolling robots deployed for
surveillance in a large area, controlled wirelessly by a single controller (as presented in Figure 1).
The total area is split into four equal parts and allocated to each robot. The robot perambulates in its
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designated territory. Each robot is equipped with necessary feeler/sensors/radars which send necessary
information to the controller who makes decisions in view of radar readings. For example, if the
temperature sensor value in some robot points out an unusual temperature, the controller can amend
the commands that are conveyed to that particular robot e.g. the controller can give directions to that
robot to turn in some particular direction like at an angle of 45◦. Alike is the case with all other sensor
readings.

Figure 1. A multi-agent robotics system.

We initially propose Algorithm 1 as shown below before moving on to the suggested similarity
measure’s practical application. Algorithm 1 presents the MCDM method by which the controller
decides whether the robot is near a fire, obstacle, bump, cliff, or vibration based on readings sent by
the sensors on the robot to controllers. Similarity measures in Algorithm 1 basically find the similarity
between the actual situation reading and the robot sensor’s recorded reading.

Algorithm 1 Similarity measures based algorithm

S-1: Decide on the set of robots R = {R1,R2, · · · ,Ri}.
S-2: Choose the aggregate of situations C = {c1, · · · , c j} and the collection of sensors S =

{s1, s2, · · · , s j}.
S-3: Drive tables of PFS of situations vs sensors & PmFS of robots vs situations.
S-4: Calculate the degree of similarity between robots and scenarios.
S-5: The robot and situations paired with the highest degree of resemblance is the best option.
S-6: Express the outcomes in layman’s language.

Example 4.1. Let R = {Ri : i = 1, · · · , 4} be a system of four robots, C = {ci : i = 1, · · · , 5}, where

c1 = Fire,
c2 = Stumbling block/Obstacle,
c3 = Collision/Bump,
c4 = Cliff,
c5 = Jolt/Vibration,
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be the set of conditions/situations under consideration, and S = {si : i = 1, · · · , 5}, where

s1 = Temperature sensor,
s2 = Ultrasonic sensor,
s3 = Bump sensor,
s4 = Cliff sensor,
s5 = Accelerometer sensor,

be the family of sensors with which every robot is equipped. A single robot may be allocated dissimilar
membership and non-membership values for the above mentioned sensor readings.

Obviously, taking decision on the basis of a single reading would be neither a wise nor justified
decision. This is such a situation in which PmFSs come into picture. The sensor readings from each
robot have to be uninterruptedly observed for a certain span of time, say for two minutes. For example,
if the temperature device in some robot points toward an unusual temperature, it delivers a note to the
controller for some appropriate direction. The controller has to ascertain whether that robot is in truth
encountered an unusual temperature or not. For single-mindedness in taking appropriate decision,
the controller keenly observes the temperature sensor readings for two minutes. Depending on the
persistency of the readings, the controller ascertains the situation.

To comprehend PmFS theory, think about the situation where the robot R1 experiences an unusual
temperature, R2 experiences a collision, R3 faces a jolt and R4 detects an obstacle. Thus, whenever
the temperature sensor encounters an unusual temperature and the accelerometer sensor catches a jolt,
signal is conveyed to the controller and the controller monitors the situation further to get ascertain and
take necessary measures.

Table 2 renders sensor readings. Table 3 shows the sensor readings monitored, after every 40
seconds, for 2 minutes in the format

(
µ( j), ν( j)), j = 1, 2, 3. In Table 4, the similarity measures of each

robot to the situation under consideration are calculated and tabulated.

Table 2. Pythagorean fuzzy set of situations vs sensors.

s1 s2 s3 s4 s5

c1 (0.88, 0.21) (0.45, 0.84) (0.32, 0.84) (0.45, 0.71) (0.32, 0.84)
c2 (0.45, 0.84) (0.89, 0.32) (0.32, 0.84) (0.32, 0.84) (0.45, 0.71)
c3 (0.32, 0.84) (0.77, 0.55) (0.95, 0.31) (0.32, 0.84) (0.32, 0.84)
c4 (0.45, 0.71) (0.45, 0.84) (0.32, 0.84) (0.84, 0.32) (0.32, 0.84)
c5 (0.71, 0.45) (0.32, 0.84) (0.45, 0.71) (0.32, 0.84) (0.89, 0.45)
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Table 3. PmFS of robots vs situations.

s1 s2 s3 s4 s5

(0.84, 0.27) (0.23, 0.86) (0.45, 0.48) (0.37, 0.48) (0.46, 0.85)
R1 (0.45, 0.43) (0.23, 0.79) (0.12, 0.91) (0.29, 0.47) (0.21, 0.84)

(0.31, 0.16) (0.16, 0.80) (0.08, 0.96) (0.28, 0.48) (0.13, 0.92)
(0.27, 0.95) (0.31, 0.95) (0.98, 0.14) (0.22, 0.93) (0.58, 0.80)

R2 (0.26, 0.96) (0.29, 0.92) (0.86, 0.50) (0.22, 0.93) (0.49, 0.86)
(0.22, 0.97) (0.13, 0.97) (0.84, 0.54) (0.15, 0.98) (0.25, 0.96)
(0.77, 0.63) (0.46, 0.86) (0.86, 0.49) (0.71, 0.68) (0.98, 0.21)

R3 (0.58, 0.80) (0.44, 0.89) (0.86, 0.46) (0.59, 0.80) (0.98, 0.18)
(0.54, 0.83) (0.32, 0.92) (0.80, 0.54) (0.58, 0.79) (0.97, 0.24)
(0.54, 0.81) (0.99, 0.12) (0.67, 0.60) (0.51, 0.62) (0.48, 0.83)

R4 (0.41, 0.85) (0.94, 0.30) (0.47, 0.86) (0.22, 0.84) (0.45, 0.88)
(0.39, 0.91) (0.67, 0.68) (0.46, 0.73) (0.20, 0.89) (0.40, 0.86)

Table 4. Similarity measures between robots and situations.

S im(Ri, c j) c1 c2 c3 c4 c5

R1 0.9231 0.7939 0.7474 0.8828 0.8459
R2 0.8071 0.8339 0.9389 0.8262 0.8615
R3 0.8192 0.8197 0.8536 0.8327 0.9477
R4 0.8636 0.9746 0.9354 0.8678 0.8504

The point having the maximum value of the similarity measures yields the location of the robot.
Hence, the robot R1 is near some fire spot, R2 is bumped, R3 experiences jolts/shocks and R4 is near an
obstacle.

Now, we use the suggested distance metric to resolve Example 4.1. But first, we provide the
following proposal for Algorithm 2. Algorithm 2 uses a distance metric to reach a final decision.
The distance between the actual situation measurements and the recorded measurements of the robot
sensor is calculated. The less separation between any specific actual situation measurements, the closer
the robot is.

Algorithm 2 Distance measures based algorithm

S-1: Steps 1–3 are same as in Algorithm 1.
S-4: Calculate the distance between robots & situations.
S-5: The robots & scenarios that are closest together are the best match.
S-6: Present the outcomes in layman’s language.
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Example 4.2. The calculated and tabulated distances between each robot and the situation under
consideration are shown in Table 5.

Table 5. Distance measures between robots and situations.

Dm(Ri, c j) c1 c2 c3 c4 c5

R1 0.1604 0.3370 0.3795 0.2065 0.2758
R2 0.3933 0.3715 0.2154 0.3805 0.3702
R3 0.3892 0.4345 0.3633 0.3830 0.2187
R4 0.3202 0.1338 0.2119 0.2999 0.3599

The point having the minimum value of the distance measures yields the accuracy of the robot.
Hence, the robot R1 is near some fire spot, R2 is bumped, R3 experiences jolts/shocks and R4 is near an
obstacle.

Finally, we use the proposed correlation measure to solve Example 4.1. As we did before, we start
by suggesting the following Algorithm 3. Algorithm 3 uses a correlation measure to reach a final
decision. The correlation between the actual situation measurements and the recorded measurements
of the robot sensor is calculated. The closer they are, the greater the correlation between any specific
actual situation measurements and the robot.

Algorithm 3 Correlation measures based algorithm

S-1: Steps 1–3 are same as in Algorithm 1.
S-4: Calculate the correlation between robots & situations.
S-5: The robots & scenarios pair with the highest correlation measure is the best option.
S-6: Present the outcomes in layman’s language.

Example 4.3. Table 6 contains the computations and tabulations of the correlation measurements of
each robot to the situation under consideration.

Table 6. Correlation measures between robots and situations.

Cor(Ri, c j) c1 c2 c3 c4 c5

R1 0.9275 0.7024 0.6379 0.8347 0.7795
R2 0.7194 0.7512 0.9159 0.7465 0.7868
R3 0.7060 0.6936 0.7613 0.7214 0.9229
R4 0.7617 0.9589 0.9027 0.7816 0.7341

The point having the maximum value of the correlation measures yields the accuracy of the robot.
Hence, the robot R1 is near some fire spot, R2 is bumped, R3 experiences jolts/shocks and R4 is near an
obstacle.

The chart depicting the three comparison measures between Ri and c j is exhibited in Figure 2.
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Figure 2. comparison measures between Ri and c j.

We note that all three of the provided comparison measures produce the same result, confirming the
validity of the offered measures.

5. Application of proposed comparison measures in building movie recommender system

A large class of machine learning processes that make pertinent recommendations to users
are known as recommender systems. Netflix, Amazon, Youtube and other services operate on
recommendation systems, which propose the following movie or product based on the viewer’s prior
activity (often referred to as content-based filtering) or based on the behaviors and preferences of
other users who share your interests (called collaborative filtering). Similar to this, Facebook uses a
recommended system to suggest Facebook individuals you might know offline based on your interests,
activities, career, etc. The material or the individuals who access the content is what recommendation
systems base their recommendations on. A basic overview of the operation of content-based filtering
is shown in Figure 3.

Figure 3. Working of content based filtering: medium.com.
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In this section, we’ll develop a machine learning technique that will recommend movies depending
on a viewer’s preference for a certain film, based on the provided comparison measurements.

There may be many features for lining up the recommended list, e.g., keywords, genres, title,
language, production country, production group, runtime, cast, release date, popularity, vote count and
director etc. Assume that among all of these features, the ones in which we are looking for similarities
to make the following recommendation:

f1 = cast,
f2 = genres,
f3 = keywords, and
f4 = vote count.

A viewer who loves a romantic movie will most likely to watch another romantic movie. Another
spectator might enjoy seeing his favorite actors in the film’s cast. Others may adore films with high
vote counts. Combining all of these traits, our four features that made the cut are sufficient to instruct
our recommendation system.

After using the proposed comparison measures, the next stage is to print the similar movies utilizing
the movie user likes–the last fragment of the project.

We elaborate the notion in the forthcoming example.

Example 5.1. Table 7 shows the readings about a particular viewer, monitored thrice, in the format(
µ( j), ν( j)), j = 1, 2, 3. M1, M2 and M3 is the list of three movies.

Table 7. PmFS of movies vs features.

Movies f1 f2 f3 f4

(0.59, 0.34) (0.21, 0.78) (0.67, 0.25) (0.43, 0.08)
M1 (0.68, 0.54) (0.58, 0.56) (0.28, 0.11) (0.39, 0.34)

(0.82, 0.15) (0.37, 0.09) (0.54, 0.16) (0.28, 0.35)
(0.46, 0.13) (0.33, 0.54) (0.73, 0.26) (0.22, 0.53)

M2 (0.56, 0.69) (0.47, 0.11) (0.72, 0.16) (0.36, 0.11)
(0.21, 0.90) (0.20, 0.22) (0.64, 0.42) (0.51, 0.61)
(0.48, 0.43) (0.35, 0.14) (0.66, 0.19) (0.54, 0.26)

M3 (0.50, 0.56) (0.27, 0.19) (0.82, 0.41) (0.51, 0.38)
(0.45, 0.68) (0.39, 0.57) (0.41, 0.27) (0.24, 0.72)

Table 8 shows the readings about a particular random movie stored in the database based upon the
past activity of the user.

Table 8. PFS of a particular random movie.

Movies f1 f2 f3 f4

M (1, 0) (1, 0) (1, 0) (1, 0)

Table 9 gives values of the proposed comparison measures between the movie Mα (α = 1, 2, 3) and
the movie M taking into account the feature fβ (β = 1, · · · , 4).
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Table 9. Comparison measures between Mα and M.

Comparison measure (M1,M) (M2,M) (M3,M)
Similarity measure (Sim) 0.7586 0.6703 0.7071
Distance measure (Dm) 0.4362 0.4897 0.4764
Correlation measure (Cor) 0.9121 0.7373 0.8408

Hence, the rankings so obtained are given in Table 10 and depicted in Figure 4.

Table 10. Rankings obtained by proposed Comparison measures.

Comparison measure Ranking
Similarity measure (Sim) M1 ≻ M3 ≻ M2

Distance measure (Dm) M1 ≻ M3 ≻ M2

Correlation measure (Cor) M1 ≻ M3 ≻ M2

Figure 4. Rankings of Mα.

In view of above computations, it may be inferred that the movie M1 best matches with the choice
of the viewer. The second choice is M3 and the third one is M2.

Comparison analysis:
PmFSs were defined, and the TOPSIS method was proposed by Naeem et al. [15]. Naeem et al. [17]

focused on PmFS relations and the extension principle for PmFSs. Riaz et al. [18] established weighted
aggregation operators for PmFSs. In all previous studies, there was no work on similarity, distance,
and correlation measures. The problem of judging the robotics from their sensor readings and movie
recommendation systems cannot be solved by previous methods developed for PmFS. Thus, our
method is superior in this regard because no previous method had the ability to solve these issues in
PmFS environment. We also have the advantage of working in the more general PmFSs environment.
This can be seen as: Robots send the message to the controller by means of sensors. It’s not good to
rely on a single reading. The robot sends multiple values after a suitable time interval. These multiple
readings appear to be the PmFVs. In this situation, PFSs are ineffective.

AIMS Mathematics Volume 8, Issue 5, 10357–10378.
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6. Conclusions

In this paper, novel similarity, distance, and correlation measurements in a Pythagorean m-polar
fuzzy environment are proposed along with some of their special characteristics. The suggested
actions improve the methods for determining how similar two PmFSs are. The recommended metrics
range from 0 to 1, eliminating the low similarity grade. The comparison measurements provided
in this paper offer enormous potential for further research from an analytical beyond application
standpoint. The idea may be skillfully used to manipulate uncertainty in a variety of real-world fields,
most notably trade and business analysis, economics, voice recognition, coding theory, marketing,
artificial intelligence, water management problems, image processing, transportation problems, speech
recognition, agri-farming, robotics, pattern recognition, recruitment issues, forecasting and life
sciences. In the future, we will extend the TOPSIS method [14], VIKOR method [21], MULTIMOORA
method [23], ELECTRE method [27], divergence measures [28], and ELECTRE-I approach [29] for
PmFSs.
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