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Abstract: A fascinating extension of Pawlak rough set theory to handle uncertainty is multigranulation
roughness, which has been researched by several researchers over dual universes. In light of this, we
proposed a novel optimistic multigranulation roughness of a fuzzy set based on soft binary relations
over dual universes and established two types of approximations of a fuzzy set with respect to forsets
and aftersets of the finite number of soft binary relations in this article. We obtain two sets of fuzzy soft
sets in this way, referred to as the lower approximation and upper approximation with respect to the
aftersets and the foresets, respectively. Next, we look into some of the lower and higher approximations
of the newly multigranulation rough set model’s algebraic properties. Both the roughness and accuracy
measurements were defined. In order to show our suggested model, we first develop a decision-making
algorithm. Then, we give an example from a variety of applications.
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1. Introduction

Set theory is a crucial concept for the study of fundamental mathematics. In classical set theory,
however, a set is determined solely by its elements. That is, the concept of a set is exact. For example,
the set of even integers is exact because every integer is either odd or even. Nevertheless, In our
daily lives, we encounter various problems involving inaccuracies. As an example, young men are
imprecision because we can not classify all youngsters into two different classes: young men and
older men. Thus the youngsters are not exact but a vague concept. The classic set requires precision
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for all mathematics. For this reason, imprecision is essential to computer scientists, mathematicians,
and philosophers interested in the problems of containing uncertainty. There exist many theories to
deal with imprecisions, such as vague set theory, probability theory, intuitionistic FS, and interval
mathematics; these theories have their merits and demerits.

Zadeh [61] invented the concept of an FS, which was the first successful response to vagueness. In
this approach, the sets are established by partial membership, apart from the classical set, where exact
membership is required. It can cope with issues containing ambiguities and resolve DM problems,
which are frequently proper techniques for characterizing ambiguity, but this theory its own set of
problems, as discussed in [33].

It was in 1999 that Molodtsov [33] introduced a new mathematical approach for dealing with
imprecision. This new approach is known as SST, which is devoid of difficulties occurring in existing
theories. SST has more comprehensive practical applications. SST’s first practical applications were
presented by Maji et al. [30, 31], and they also defined several operations and made a theoretical study
on SST. Ali et al. [1] provided some new SS operations and refined the notion of a SS complement.
It is common for SST parameters to be vague words. To solve these problems, A FSS is defined by
Maji et al. [32] as an amalgamation of SS and FS. Real-world DM problems can be solved with FSS.
A problem-solving method is proposed based on FSS theory was discussed by Roy and Maji in [40],
an interval-valued FSS is presented by Yang et al. in [58], and a DM problem is investigated using the
interval-valued FSS. In a recent study, Bhardwaj et al. [6] described an advanced uncertainty measure
that was based on FSS, as well as the application of this measure to DM problems. More applications
of a SS and FS can be found in [12, 13, 51]

RST, proposed by Pawlak in 1982 [37] is another mathematical approaches to deal with problems
that contains imprecision. RST is a typical method to deal with imprecision. It is not a replacement for
classical set theory, Like FST, but rather an integrated part of it. No extra or preliminary data knowledge
is required for RST, like statistical probability, which is the advantage of RST. RST has found many
useful applications. Particularly in the areas of collecting data and artificial intelligence, DM. The RS
technique looks to be of fundamental relevance to cognitive sciences [37, 38]. It appears fundamental
to knowledge creation from databases, pattern recognition, inductive reasoning, and expert systems.
Pawlak’s RST is based on partition or equivalence relation. Due to the fact that it can only handle entire
data, such a partition has limitations for many applications. To handle these problems, the equivalence
relation is replaced by similarity relations, tolerance relations, neighborhood systems, general binary
relations, and others. ST, FS, and RST were merged by Feng et al. [16]. [2, 41] examines the RSS
and SRS, The SBr and knowledge bases approximation of RS was discussed by Li et al. [26]. SRFS
and SFRS were discussed by Meng et al. [34], novel FRS models are presented by Zhang et al. [63]
and applied to MCGDM, using picture FS and RS theory Sahu et al. [49] present a career selection
method for students, a built-in FUCOM-Rough SAW supplier selection model is presented by Durmić
et al. [9]. Dominance Based Rough Set Theory was used by Sharma et al. in their recent study [50]
to select criteria and make hotel decisions, and A rough-MABAC-DoE-based metamodel for iron and
steel supplier selection was developed by Chattopadhyay et al. [7], Fariha et al. [16] presented A
novel decision making method based on rough fuzzy information. Multi-criteria decision-making
methods under soft rough fuzzy knowledge were discussed by Akram et al. [5]. An application of
generalized intuitionistic fuzzy soft sets to renewable energy source selection was discussed by Khan
et al. [22]. FS and RS are combined in [8], Xu et al. [54] discussed FRS model over dual universes.
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Some generalization of FSs and soft sets along with their applications can be seen in [21, 35, 36]
The original RS model depended on a single equivalence relation. In many actual circumstances,

when dealing with data with multiple granulations, this might be problematic. Aiming to deal with
these problems, Qian et al. [39] presented an MGRS model to approximate the subset of a universe
with respect to multi-equivalence relations instead of single-equivalence relations. It establishes a
new study direction in RS in the multi-granulation model. The MGRS has attracted a substantial
number of scholars from all over the world who have considerably contributed to its development
and applications. Depending on the specific ordered and tolerance relations, Xu et al. [56] discussed
two types of MGRSs, [57] incorporates a reference to FMGRS, Multi-granulation rough set from the
crisp to the fuzzy case was defined by Yang et al. [60]. Ali et al. [3] described improved types of
dominance-based MGRS and its applications in conflict analysis problems, Two new MGRS types
were introduced by Xu et al. [55], Neighborhood-based MGRS was discussed by Lin, et al. [27],
Liu et al. [28] discuss regarding MGCRS. According to Kumar et al., [20] an optimistic MGRS-
based classification for medical diagnostics had been proposed. Huang et al. [19] defined intuitionistic
FMGRSs by combining the concepts of MGRS and intuitionistic FS.

There are numerous practical problems, including disease symptoms and drugs used in disease
diagnosis, comprise a diverse universe of objects. The original rough set model deals with the
problems that arise in one universe of objects. In order to solve the problems with the rough set
that exist in the single universe of objects, Regarding the development of the relationship between
the single-universe and dual universe models, Liu [24], Yan et al. [59] introduced a generalised RS
model over dual universes of objects rather than a single universe of objects. Ma and Sun [29],
developed the probabilistic RS across dual universes to quantify knowledge uncertainty, The graded
RS model over dual universes and its characteristics were described by Liu et al. [25], the reduction of
an information system using an SBr-based approximation of a set across dual universes was presented
by Shabir et al. [42], a dual universe FRS based on interval data is presented by Zhang et al. [62],
Wu et al. [53] developed the FR approximation of a set across dual universes, MGRS was presented
over dual universes of objects by Sun et al. [44]. MGRS over dual universe is a well-organized
framework for addressing a variety of DM problems. Moreover, it has grown in popularity among
experts in multiple decision problems, attracts a wide range of theoretical and empirical studies.
Zhang et al. [64] presented PFMGRS over dual universes and how it may be used in mergers and
acquisitions. A decision-theoretic RS over dual universes based on MGFs for DMs and three-way
GDMs was described by Sun et al. [45, 46]. Din et al. [10] recently presented the PMGRFS over dual
universes. Further applications in GDM of MG over dual universes can be found in [47,48]. For steam
turbine fault diagnosis, Zhang et al. [65] presented the FMGRS over two universes, and Tan et al. [52]
demonstrated decision-making with MGRS over two universes and granulation selection.

The concept of MGRS was introduced by Qian et al. in [39] through the utilization of multiple
equivalence relations rhoi on a math f rakU universe. Sun et al. [44], replace multi equivalence relations
ρi, by general binary relation ρi universal U × V, it was the more general from MG, also discussed
OMRGRS and PMGRS over dual universes. On the other hands, Shabir et al. [11, 43], generalized
these notions of MGRS and replace relations by SBr on U×V. It was a very interesting generalization
of multigranulation roughness, but there was an issue that it does not hold some properties like the
lower approximation not contained in upper approximation. Secondly, the roughness of the crisp set
and the result we got two soft sets. The question is how to rank an object. We suggest multigranulation
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roughness of a fuzzy set to address this query. Because of the above study, we present a novel optimistic
MGR of an FS over dual universes.

The major contribution of this study is:

• We extend the notion of MGRS to MGR of FS based on SBrs over two universes to approximate
an FS µ ∈ F(V) by using the aftersets of SBr and approximate an FS γ ∈ F(U) by using foresets
of SBrs. After that, we look into certain algebraic aspects of our suggested model.
• The Accuracy measure are discussed to measure the exactness or roughness of the proposed

MGRFS model.
• Two algorithms are defined for discission-making and discuss an example from an applications

point of view.

The remaining of the article is organised as follows. The fundamental idea of FS, Pawlak RS, MGRSs,
SBr, and FSS is recalled in Section 2. The optimistic multi-granulation roughness of a fuzzy set over
dual universes by two soft binary relation, as well as its fundamental algebraic features and examples,
are presented in Section 3. The optimistic multi-granulation roughness of a fuzzy set over two universes
by multi soft binary relations is presented in Section 4 along with some of their fundamental algebraic
features. The accuracy measurements for the presented optimistic multigranulation fuzzy soft set are
shown in Section 5. We concentrate on algorithms and a few real-world examples of decision-making
problems in Section 6. Finally, we conclude the paper in Section 7.

2. Preliminaries

Basic concepts for the FS, RS, MGRS, SS, SBR, and FSS are presented in this section; these
concepts will all be used in later sections.

Definition 2.1. [61] The set {(w, µ(w)) : For each w ∈ W} is called fuzzy set in W, where µ : W →
[0, 1], where W , ∅ A membership function µ : W → [0, 1] is called as a FS, where W , ∅ set of
objects. Let µ and µ1 be two FS inW. Then µ ≤ µ1 if µ(w) ≤ µ1(w), for all w ∈ W. Moreover, µ = µ1 if
µ ≤ µ1 and µ ≥ µ1. If µ(w) = 1 for all w ∈ W, then the µ is called a whole FS in W. The null FS and
whole FS are usually denoted by 0 and 1 respectively.

Definition 2.2. [61] The intersection and union of two fuzzy sets µ and γ inW are defined as follows:

γ ∩ µ = γ(w) ∧ µ(w),
γ ∪ µ = γ(w) ∨ µ(w),

for all w ∈ W. Where ∧ and ∨ mean minimum andmaximum respectively.

Definition 2.3. [61] The set µα = {w ∈ W : µ(w) ≥ α} is known as the α − cut of a FS µ inW. Where
1 ≥ α ≥ 0.

Example 2.1. Let U = {u1, u2, u3, u4, u5}, and the membership mapping µ : U → [0, 1] defined by
µ = 0.5

u1
+ 0.2

u2
+ 0.1

u3
+ 0.7

u4
+ 1

u5
is called the FS in U.

Let α = 0.3. Then the set µα = {u1, u4, u} is known is α-cut or level set of FS µ in U.

Definition 2.4. [37] The set {w ∈ W | [w]ψ ⊆ M} and {w ∈ W | [w]ψ ∩ M , ∅} is known as the
Pawlak lower, and upper approximations for anyM ⊆ W, we denoted by ψ(M) and ψ(M) respectively,
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where wpsi is the equivalence class of w w.r.t psi and psi is an equivalence relation on W. The set
ψ(M) − ψ(M), is called boundary region ofM. If BNψ(M) = ∅ then we say thatM is definable (exact).

Otherwise,M is rough with respect to ψ.Define the accuracy measure by αψ(M) =
|ψ(M)|

|ψ(M)|
and roughness

measure by αψ(M) = 1 − αψ(M) in order to determine how accurate a setM is.

Qian et al. [39] enlarged the Pawlak RS model into an MGRS model, where the set approximations
are establish by multi equivalence relations.

Definition 2.5. [39] Let ψ̂1, ψ̂2, . . . , ψ̂ j be j equivalence relations on a universal set W and M ⊆ W.
Then the lower approximation and upper approximation ofM are defined as

M∑ j
i=1 ψ̂i

= {w ∈ W | [w]ψ̂i
⊆ M f or some i, 1 ≤ i ≤ j},

M

∑ j
i=1 ψ̂i

= (Mc∑ j
i=1 ψ̂i

)c.

Definition 2.6. [33] A SS over W is defined as a pair (/psi, A) where /psi is a mapping with ψ :→
P(W),W , ∅ finite set, and A ⊆ E(set of parameters).

Definition 2.7. [14] A SS (ψ, A) overW ×W. is called a SBr onW, and we denoted by S Br(W).

Example 2.2. Let U = {u1, u2, u3, u4, u} represents some students and A = {e1, ee} is the set of
perimeters, where e1 represent math and e2 represent computer. Then the mapping ψ : A → P(U)
defined by ψ(e1) = {u1, u4, u5} and ψ(e2) = {u2, u3, u4}, is called soft set over U.

Li et al. [23] present the notion of SBr in a more general form and define a GSBr fromW to V, as
follows.

Definition 2.8. [23] If (ψ, A) is a SS overW ×V, that is ψ : A → P(W ×V), then (ψ, A) is said to be
a SBr (SB-relation) onW ×V. and we denoted by S Br(W,V).

Definition 2.9. [40] Let F(W) be the set of all FS on W , ∅. Then the pair (ψ, A) is known as FSS
overW, where A ⊆ E (set of parameters) and ψ : A→ F(W).

Definition 2.10. [40] Let (ψ1, A), (ψ2, B) be two FSS over a common universe, (ψ1, A) is a FS subset
of (ψ2, B) if B ⊇ A and ψ1(e) is a FS subset of ψ2(e) for each e ∈ A. The FSS (ψ1, A) and (ψ2, B) are
equal if and only if (ψ1, A) is a FS subset of (ψ2, B) and (ψ2, B) is a FS subset of (ψ1, A).

3. Approximation of a fuzzy set based on two soft binary relations

This section examines the optimistic roughness of an FS utilising two SBr from U to V. We then
utilize aftersets and foresets of SBr to approximation an FS of universe V in universe U and an FS of
universe U in universe V, respectively. Because of this, we have two FSS, one for each FS in V(U).

Definition 3.1. Let µ be a FS inV and ψ1 and ψ2, be SBr over U×v The optimistic lower approximation
(OLAP) ψ1 + ψ2

µ

o
and optimistic upper approximation (OUAP) oψ1 + ψ2

µ
, of FS µ w.r.t aftersets of ψ1

and ψ2 are defined as:

ψ1 + ψ2
µ

o
(e)(a) =


∧
{µ(b) : b ∈ (aψ1(e) ∪ aψ2(e)), b ∈ V}, if aψ1(e) ∪ aψ2(e) , ∅

0, otherwise.
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oψ1 + ψ2
µ
(e)(a) =


∨
{µ(b) : b ∈ (aψ1(e) ∩ aψ2(e)), b ∈ V}, if aψ1(e) ∩ aψ2(e) , ∅

0, otherwise.

Where aψ1(e) = {b ∈ V : (a, b) ∈ ψ1(e)}, aψ2(e) = {b ∈ V : (a, b) ∈ ψ2(e)} are aftersets of a for a ∈ U
and e ∈ A.
Obviously, (ψ1 + ψ2

µ

o
, A) and ( oψ1 + ψ2

µ
, A) are two FSS over U.

Definition 3.2. Let γ be a FS in U, and ψ1 and ψ2, be SBr over U×v The optimistic lower approximation
(OLAP) γψ1 + ψ2o

and optimistic upper approximation (OUAP) γψ1 + ψ2
o
, of FS γ w.r.t foresets of ψ1

and ψ2 are defined as:

γψ1 + ψ2o
(e)(b) =


∧
{γ(a) : a ∈ (ψ1(e)(b) ∪ ψ2(e)(b)), a ∈ U}, if ρ1(e)(b) ∪ ψ2(e)(b) , ∅

0, otherwise.

γψ1 + ψ2
o
(e)(b) =


∨
{γ(a) : a ∈ (ψ1(e)(b) ∩ ψ2(e)(b)), a ∈ U}, if ψ1(e)(b) ∩ ψ2(e)(b) , ∅

0, otherwise.

Where ψ1(e)b = {a ∈ U : (a, b) ∈ ψ1(e)}, ψ2(e)b = {a ∈ U : (a, b) ∈ ψ2(e)} are foresets of b for b ∈ V
and e ∈ A.
Obviously, ( γψ1 + ψ2o

, A) and ( γψ1 + ψ2
o
, A) are two FSS over V.

Moreover, ψ1 + ψ2
λ

o
: A → F(U),o ψ1 + ψ2

λ
: A → F(U) and γψ1 + ψ2o

: A → F(V),γ ψ1 + ψ2
o

:
A→ F(V) and we say (U,V, {ψ1, ψ2}) a generalized Soft Approximation Space.

Example 3.1. There are fifteen excellent allrounders who are eligible for the tournament, divided
into the Platinum and Diamond categories. A franchise math f rakXYZ wants to choose one of
these players as their finest all-around player, the Platinum Group players are represented by the
Set U = {a1, a2, a3, a4, a5, a6, a7, a8} and the diamond Group players are represented by the Set
V = {b1, b2, b3, b4, b5, b6, b7}. Suppose A = {e1, e2} is the set of parameters, where e1 stands for the
batsman and e2 for the bowler. Let two distinct coaching teams evaluate and contrast these players
based on how they performed in the various leagues they played in throughout the world, from these
comparisons, we have,

The first-team coaches’ comparison, ψ1 : A→ P(U ×V), is represented by

ψ1(e1) ={(a1, b2), (a1, b3), (a2, b2), (a2, b5), (a3, b4), (a3, b5), (a4, b1), (a4, b3), (a5, b1), (a5, b6), (a7, b4)(a7, b7)},
ψ1(e2) ={(a1, b3), (a1, b6), (a2, b1), (a2, b4), (a3, b1), (a4, b5), (a4, b7), (a5, b2), (a5, b7), (a7, b3), (a7, b6), (a8, b1),

(a8, b7)},

where ψ1(e1) compare the batting performance of players and ψ1(e2) compare the bowling performance
of players.

The second-team of coaches’ comparison, ψ2 : A→ P(U ×V), is represented by

ψ2(e1) ={(a1, b2), (a2, b3), (a2, b5), (a3, b4), (a4, b3), (a4, b5), (a4, b6), (a5, b4), (a6, b7), (a7, b3), (a7, b7)(a8, b2),
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(a8, b5)},
ψ2(e2) ={(a1, b3), (a1, b4), (a2, b3), (a2, b4), (a2, b7), (a3, b1), (a3, b6), (a4, b2), (a4, b4), (a5, b2), (a6, b5), (a7, b6),

(a8, b1), (a8, b3)},

where ψ1(e1) compare the batting performance of players and ψ1(e2) compare the bowling performance
of players.
We obtain two SBrs from U to V from these comparisons. Now the aftersets are

a1ψ1(e1) = {b2, b3}, a1ψ1(e2) = {b3, b6}, a1ψ2(e1) = {b2}, a1ψ2(e2) = {b3, b4}

a2ψ1(e1) = {b2, b5}, a2ψ1(e2) = {b1, b4}, a2ψ2(e1) = {b3, b5}, a2ψ2(e2) = {b3, b4, b7}

a3ψ1(e1) = {b4, b5}, a3ψ1(e2) = {b1}, a3ψ2(e1) = {b4}, a3ψ2(e2) = {b1, b6}

a4ψ1(e1) = {b1, b3}, a4ψ1(e2) = {b5, b7}, a4ψ2(e1) = {b3, b5, b6}, a4ψ2(e2) = {b2, b4}

a5ψ1(e1) = {b1, b6}, a5ψ1(e2) = {b2, b7}, a5ψ2(e1) = {b4}, a5ψ2(e2) = {b2}

a6ψ1(e1) = ∅, a6ψ1(e2) = ∅, a6ψ2(e1) = {b7}, a6ψ2(e2) = {b5}

a7ψ1(e1) = {b4, b7}, a7ψ1(e2) = {b3, b6}, a7ψ2(e1) = {b3, b7}, a7ψ2(e2) = {b6}

a8ψ1(e1) = ∅, a8ψ1(e2) = {b1, b7}, a8ψ2(e1) = {b2, b5}, a8ψ2(e2) = {b1}.

All the players in the diamond group whose batting performance is similar to ai are represented by
aiψ j(e1), and all the players in the diamond group whose bowling performance is similar to ai] are
represented by aiψ j(e2). And foresets are

ψ1(e1)b1 = {a4, a5}, ψ1(e2)b1 = {a2, a3, a8}, ψ2(e1)b1 = ∅, ψ2(e2)b1 = {a3, a8}

ψ1(e1)b2 = {a1, a2}, ψ1(e2)b2 = {a5}, ψ2(e1)b2 = {a8}, ψ2(e2)b2 = {a4, a5}

ψ1(e1)b3 = {a1, a4}, ψ1(e2)b3 = {a7}, ψ2(e1)b3 = {a2, a4, a7}, ψ2(e2)b3 = {a1, a2}

ψ1(e1)b4 = {a7}, ψ1(e2)b4 = {a2}, ψ2(e1)b4 = {a3, a5}, ψ2(e2)b4 = {a1, a4}

ψ1(e1)b5 = {a2, a3}, ψ1(e2)b5 = {a4}, ψ2(e1)b5 = {a2, a4, a8}, ψ2(e2)b5 = {a6}

ψ1(e1)b6 = {a5}, ψ1(e2)b6 = {a1, a7}, ψ2(e1)b6 = {a4}, ψ2(e2)b6 = {a3, a7}

ψ1(e1)b7 = {a7}, ψ1(e2)b7 = {a4, a5, a8}, ψ2(e1)b7 = {a6, a7}, ψ2(e2)b7 = {a2}.

All the players in the platinum group whose batting performance is similar to bi are represented by
ψ j(e1)bi, and all the players in the platinum group whose bowling performance is similar to bi are
represented by ψ j(e2)bi.

Define µ : V→ [0, 1], which represents the preference of the players given by franchise XYZ such that

µ(b1) = 0.9, µ(b2) = 0.8, µ(b3) = 0.4, µ(b4) = 0, µ(b5) = 0.3, µ(b6) = 0.1, µ(b7) = 1 and

define γ : U→ [0, 1], which represents the preference of the players given by franchise XYZ such that

γ(a1) = 0.2, γ(a2) = 1, γ(a3) = 0.5, γ(a4) = 0.9, γ(a5) = 0.6, γ(a6) = 0.7, γ(a7) = 0.1, γ(a8) = 0.3.
Therefore the optimistic lower and upper approximations of µ (with respect to the aftersets of ψ1 and
ψ2) are:
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a1 a2 a3 a4 a5 a6 a7 a8

ψ1 + ψ2
µ

o
(e1) 0.4 0.3 0 0.1 0 1 0 0.3

oψ1 + ψ2
µ
(e1) 0.8 0.3 0 0.4 0 0 1 0

ψ1 + ψ2
µ

o
(e2) 0 0 0.1 0 0.8 0.6 0.1 0.9

oψ1 + ψ2
µ
(e2) 0.4 0 0.9 0 0.8 0 0.1 0.9

Hence, ψ1 + ψ2
µ

o
(ei)(ai) provide the exact degree of the performance of the player ai to µ as a

batsman and bowler and, oψ1 + ψ2
µ
(ei)(ai) provide the possible degree of the performance of the player

ai to µ as a batsman and bowler w.r.t aftersets. And the (OLAP) and (OUAP) of γ (w.r.t the foresets of
ψ1 and ψ2) are:

b1 b2 b3 b4 b5 b6 b7
γψ1 + ψ2o

(e1) 0.6 0.2 0.1 0.1 0.3 0.6 0.1
γψ1 + ψ2

o
(e1) 0 0 0.9 0 1 0 0.1

γψ1 + ψ2o
(e2) 0.3 0.6 0.1 0.2 0.7 0.1 0.3

γψ1 + ψ2
o
(e2) 0.5 0.9 0 0 0 0.1 0

Hence, γψ1 + ψ2o
(ei)(bi) provide the exact degree of the performance of the player bi to γ as a

batsman and bowler and, γψ1 + ψ2
o
(e2)(bi) provide the possible degree of the performance of the player

bi to γ as a batsman and bowler w.r.t foresets.

The following result demonstrates a relationship between our proposed OMGFRS model and
PMGFRS model proposed by Din et al. [10], which reflects that the proposed model is entirely different
from Din et al’s [10] approach.

Proposition 3.1. Let ψ1 and ψ2, be two SBrs U×V, that is ψ1 : A→ P(U×V) and ψ2 : A→ P(U×V)
and µ ∈ F(V). Then the following hold w.r.t the aftersets.

(1) ψ1 + ψ2
µ

o
⊆ ψ1 + ψ2

µ

p

(2) oψ1 + ψ2
µ
⊆ pψ1 + ψ2

µ

(3) ψ1 + ψ2
µc

o
=

(
pψ1 + ψ2

µ)c

(4) oψ1 + ψ2
µc

=

(
ψ1 + ψ2

µ

p

)c
.

Proof. (1) Consider ψ1 + ψ2
µ

o
(e)(a) = ∧{µ(b) : b ∈ aψ1 ∪ aψ2} ≤ ∧{µ(b) : b ∈ aψ1 ∩ aψ2} =

ψ1 + ψ2
µ

p
(e)(a). Hence ψ1 + ψ2

µ

o
⊆ ψ1 + ψ2

µ

p
.

(2) Consider oψ1 + ψ2
µ
(e)(a) = ∨{µ(b) : b ∈ aψ1∩ aψ2} ≤ ∨{µ(b) : b ∈ aψ1∪ aψ2} = pψ1 + ψ2

µ
(e)(a).

Hence oψ1 + ψ2
µ
⊆ pψ1 + ψ2

µ
.

(3) Consider ψ1 + ψ2
µc

o
(e)(a) = ∧{µc(b) : b ∈ aψ1 ∪ aψ2} = ∧{(1 − µ)(b) : b ∈ aψ1 ∪ aψ2}

= 1 − ∨{µc(b) : b ∈ aψ1 ∪ aψ2} = (pψ1 + ψ2
µ
(e)(a))c. Hence ψ1 + ψ2

µc

o
= (pψ1 + ψ2

µ
)c.
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(3) Consider oψ1 + ψ2
µc

(e)(a) = ∨{µc(b) : b ∈ aψ1 ∩ aψ2} = ∨{(1 − µ)(b) : b ∈ aψ1 ∩ aψ2}

= 1 − ∧{µc(b) : b ∈ aψ1 ∩ aψ2} = (ψ1 + ψ2
µ

p
(e)(a))c. Hence oψ1 + ψ2

µc

= (ψ1 + ψ2
µ

p
)c.

�

Proposition 3.2. Let ψ1, and ψ2 be SBrs over U×V, that is ψ1 : A→ P(U×V) and ψ2 : A→ P(U×V)
and γ ∈ F(V). Then the following hold w.r.t the foresets.

(1) γψ1 + ψ2o
⊆ γψ1 + ψ2 p

(2) γψ1 + ψ2
o
⊆ γψ1 + ψ2

p

(3) γc
ψ1 + ψ2o

=
(
γψ1 + ψ2

p)c

(4) γc
ψ1 + ψ2

o
=

(
γψ1 + ψ2 p

)c
.

Proof. The proof is identical to the Proposition 3.1 proof. �

Proposition 3.3. Let ψ1, and ψ2 be SBrs over U×V, that is ψ1 : A→ P(U×V) and ψ2 : A→ P(U×V)
and µ ∈ F(V). Then the following hold w.r.t the aftersets.

(1) ψ1 + ψ2
µ

o
≤ ψ1

µ ∨ ψ2
µ

(2) oψ1 + ψ2
µ
≤ ψ1

µ
∧ ψ2

µ

Proof. (1) Consider, ψ1 + ψ2
µ

o
(e)(a) = ∧{µ(b) : b ∈ (aψ1(e) ∪ aψ2(e))}

≤ (∧{µ(b) : b ∈ aψ1(e)}) ∨ (∧{µ(b) : b ∈ aψ2(e)}) = ψ1
µ(e)(a) ∨ ψ2

µ(e)(a).
Hence ψ1 + ψ2

µ

o
≤ ψ1

µ ∪ ψ2
µ.

(2) Consider, oψ1 + ψ2
µ
(e)(a) = ∨{µ(b) : b ∈ (aψ1(e) ∩ aψ2(e))}

≤ (∨{µ(b) : b ∈ aψ1(e)}) ∧ (∨{µ(b) : b ∈ aψ2(e)}) = ψ1
µ
(e)(a) ∧ ψ2

µ
(e)(a).

Hence oψ1 + ψ2
µ
≤ ψ1

µ
∩ ψ2

µ
.

�

Proposition 3.4. Let ψ1 and ψ2 be SBr over U × v that is ψ1 : A → P(U ×V) and ψ2 : A → P(U ×V)
and γ ∈ F(V). Then the following hold w.r.t the foresets.

(1) γψ1 + ψ2o
≤γ ψ1 ∨

γ ψ2

(2) γψ1 + ψ2
o
≤γ ψ1 ∧

γ ψ2.

Proof. The proof is identical to the Proposition 3.3 proof. �

Here’s an example that proves the converse isn’t true.

Example 3.2. (Example 3.1 is continued). From Example 3.1, we have the following outcomes.

ψ1
µ(e1)(a5) = 0.1

ψ2
µ(e1)(a5) = 0

ψ1
µ
(e1)(a2) = 0.8

ψ2
µ
(e1)(a2) = 0.4.
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Hence,

ψ1 + ψ2
µ

o
(e1)(a5) = 0 � 0.1 = ψ1

µ(e1)(a5) ∨ ψ2
µ(e1)(a5) and

oψ1 + ψ2
µ
(e1)(a2) = 0.3 � 0.4 = ψ1

µ
(e1)(a2) ∧ ψ2

µ(e1)(a2).

And

γψ1(e1)(b2) = 0.2
γψ2(e1)(b2) = 0.3
γψ1(e1)(b2) = 1
γψ2(e1)(b2) = 0.3.

Hence,

γψ1 + ψ2o
(e1)(b1) = 0.2 � 0.3 =γ ψ1(e1)(b1) ∨γ ψ2(e1)(b1) and

γψ1 + ψ2
o
(e1)(b2) = 0 � 0.3 =γ ψ1(e1)(b2) ∧γ ψ2(e1)(b2).

Proposition 3.5. Let ψ1 and ψ2 be SBrs over U×V, that is ψ1 : A→ P(U×V) and ψ2 : A→ P(U×V).
Then the following hold.

(1) ψ1 + ψ2
1
o

= 1 for all e ∈ A if aψ1(e) , ∅ or aψ2(e) , ∅

(2) oψ1 + ψ2
1

= 1 for all e ∈ A if aψ1(e) ∩ aψ2(e) , ∅
(3) ψ1 + ψ2

0
o

= 0 = oψ1 + ψ2
0
.

Proof. (1) Consider, ψ1 + ψ2
1
o
(e)(a) = ∧{1(b) : b ∈ aψ1(e)∪ aψ2(e)} = ∧{1 : b ∈ aψ1(e)∪ aψ2(e)} = 1

because uψ1(e) , ∅ or aψ2(e) , ∅.
(2) Consider, oψ1 + ψ2

1
(e)(a) = ∨{1(b) : b ∈ aψ1(e) ∩ aψ2(e)} = ∨{1 : b ∈ aψ1(e) ∩ aψ2(e)} = 1

because aψ1(e) ∩ aψ2(e) , ∅.
(3) Straightforward.

�

Proposition 3.6. Let ψ1 and ψ2 be SBrs over U×V, that is ψ1 : A→ P(U×V) and ψ2 : A→ P(U×V).
Then the following hold.

(1) 1ψ1 + ψ2o
= 1 for all e ∈ A if ψ1(e)b , ∅ or ψ2(e)b , ∅

(2) 1ψ1 + ψ2
o

= 1 for all e ∈ A if ψ1(e)b ∩ ψ2(e)b , ∅
(3) 0ψ1 + ψ2o

= 0 =0 ψ1 + ψ2
o
.

Proof. The proof is identical to the Proposition 3.5 proof. �

Proposition 3.7. Let ψ1 and ψ2 be SBr over U × v that is ψ1 : A → P(U ×V) and ψ2 : A → P(U ×V)
and µ, µ1, µ2 ∈ F(V). Then the following properties for ψ1 + ψ1

µ

o
, oψ1 + ψ1

µ
hold w.r.t the aftersets.

(1) If µ1 ≤ µ2 then ψ1 + ψ2
µ1

o
≤ ψ1 + ψ2

µ2

o
,

(2) If µ1 ≤ µ2 then oψ1 + ψ2
µ1
≤ oψ1 + ψ2

µ2
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(3) ψ1 + ψ2
µ1∩µ2

o
= ψ1 + ψ2

µ1

o
∩ ψ1 + ψ2

µ2

o
(4) ψ1 + ψ2

µ1∪µ2

o
≥ ψ1 + ψ2

µ1

o
∪ ψ1 + ψ2

µ2

o

(5) oψ1 + ψ2
µ1∪µ2

= oψ1 + ψ2
µ1
∪ oψ1 + ψ2

µ2

(6) oψ1 + ψ2
µ1∩µ2

≤ oψ1 + ψ2
µ1
∩ oψ1 + ψ2

µ2 .

Proof. (1) Since µ1 ≤ µ2 so ψ1 + ψ2
µ1

o
(e)(a) = ∧{µ1(b) : b ∈ aψ1(e) ∪ aψ2(e)} ≤ ∧{µ2(b) : b ∈

aψ1(e) ∪ aψ2(e)} = ψ1 + ψ2
µ2

o
(e)(a). Hence ψ1 + ψ2

µ1

o
≤ ψ1 + ψ2

µ2

o
.

(2) Since µ1 ≤ µ2, so oψ1 + ψ2
µ1(e)(a) = ∨{µ1(b) : b ∈ aψ1(e) ∩ aψ2(e)} ≤ ∨{µ2(b) : b ∈ aψ1(e) ∩

aψ2(e)} =o ψ1 + ψ2
µ2(e)(a). Hence oψ1 + ψ2

µ1
≤µ ψ1 + ψ2

µ2
.

(3) Consider, ψ1 + ψ2
µ1∩µ2

o
(e)(a) = ∧{(µ1 ∧ µ2)(b) : b ∈ aψ1(e) ∪ aψ2(e)} = ∧{µ1(b) ∧ µ2(b) : b ∈

aψ1(e) ∪ aψ2(e)} = (∧{µ1(b) : b ∈ aψ1(e) ∪ aψ2(e)})
∧

(∧{µ2(b) : b ∈ aψ1(e) ∪ aψ2(e)})
= (ψ1 + ψ2

µ1

o
(e)(a))

∧
(ψ1 + ψ2

µ2

o
(e)(a)). Hence, ψ1 + ψ2

µ1∩µ2

o
= ψ1 + ψ2

µ1

o
∩ ψ1 + ψ2

µ2

o
.

(4) Since µ1 ≤ µ1 ∨ µ2 and µ2 ≤ µ1 ∨ µ2. By part (1) ψ1 + ψ2
µ1

o
≤ ψ1 + ψ2

µ1∪µ2

o
and

ψ1 + ψ2
µ2

o
≤ ψ1 + ψ2

µ1∪µ2

o
⇒ ψ1 + ψ2

µ1

o
∪ ψ1 + ψ2

µ2

o
≤ ψ1 + ψ2

µ1∪µ2

o
.

(5) Consider, oψ1 + ψ2
µ1∪µ2(e)(a) = ∨{(µ1 ∨ µ2)(b) : b ∈ aψ1(e) ∩ aψ2(e)} = ∨{µ1(b) ∨ µ2(b) : b ∈

aψ1(e) ∩ aψ2(e)} = {∨{µ1(b) : b ∈ aψ1(e) ∩ aψ2(e)}}
∨
{∨{µ2(b) : b ∈ aψ1(e) ∩ aψ2(e)}}

= { oψ1 + ψ2
µ1(e)(a)}

∨
{ oψ1 + ψ2

µ2(e)(a)}. Hence, oψ1 + ψ2
µ1∪µ2

= oψ1 + ψ2
µ1
∪ oψ1 + ψ2

µ2
.

(6) Since µ1 ≥ µ1 ∧ µ2 and µ2 ≥ µ1 ∧ µ2, we have by part (2) oψ1 + ψ2
µ1
≥ oψ1 + ψ2

µ1∩µ2 and
oψ1 + ψ2

µ2
≥ oψ1 + ψ2

µ1∩µ2
⇒ oψ1 + ψ2

µ1
∩ oψ1 + ψ2

µ2
≥ oψ1 + ψ2

µ1∩µ2
.

�

Proposition 3.8. Let ψ1 and ψ2 be SBr over U ×V that is ψ1 : A→ P(U ×V) and ψ2 : A→ P(U ×V)
and γ, γ1, γ2 ∈ F(U). Then the following properties for γψ1 + ψ1,

γ ψ1 + ψ1 hold w.r.t the foresets

(1) If γ1 ≤ γ2 then γ1ψ1 + ψ2o
≤γ1 ψ1 + ψ2o

,

(2) If γ1 ≤ γ2 then γ1ψ1 + ψ2
o
≤γ2 ψ1 + ψ2

o

(3) γ1∩γ2ψ1 + ψ2o
=γ1 ψ1 + ψ2o

∩γ2 ψ1 + ψ2o
(4) γ1∪γ2ψ1 + ψ2o

≥γ1 ψ1 + ψ2o
∪γ2 ψ1 + ψ2o

(5) γ1∪γ2ψ1 + ψ2
o

=γ1 ψ1 + ψ2
o
∪γ2 ψ1 + ψ2

o

(6) γ1∩γ2ψ1 + ψ2
o
≤γ1 ψ1 + ψ2

o
∩γ2 ψ1 + ψ2

o
.

Proof. The proof is identical to the Proposition 3.7 proof. �

The example that follows shows that, typically, the equivalence does not true to parts (4) and (6) of
Propositions 3.7 and 3.8.

Example 3.3. Suppose U = {a1, a2, a3, a4} and V = {b1, b2, b3, b4} are universes, ψ1 and ψ2 are SBrs
over U ×V, with the following aftersets:

a1ψ1(e1) = {b1, b2, b4}, a1ψ1(e2) = {b2}, a1ψ2(e1) = {b2, b3, b4}, a1ψ2(e2) = {b1}

a2ψ1(e1) = {b2}, a2ψ1(e2) = {b4}, a2ψ2(e1) = {b2}, a2ψ2(e2) = {b2, b4}

a3ψ1(e1) = {b3, b4}, a3ψ1(e2) = {b1}, a3ψ2(e1) = {b4}, a3ψ2(e2) = {b2, b4}

a4ψ1(e1) = ∅, a4ψ1(e2) = {b2}, a4ψ2(e1) = {b2, b3}, a4ψ2(e2) = {b1, b2}.
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And foresets are:

ψ1(e1)b1 = {a1}, ψ1(e2)b1 = {a3}, ψ2(e1)b1 = ∅, ψ2(e2)b1 = {a1, a4}

ψ1(e1)b2 = {a1, a2}, ψ1(e2)b2 = {a1, a4}, ψ2(e1)b2 = {a1, a2, a4}, ψ2(e2)b2 = {a2, a3, a4}

ψ1(e1)b3 = {a3}, ψ1(e2)b3 = ∅, ψ2(e1)b3 = {a1, a4}, ψ2(e2)b3 = ∅

ψ1(e1)b4 = {a1, a3}, ψ1(e2)b4 = {a2}, ψ2(e1)b4 = {a1, a4}, ψ2(e2)b4 = {a2, a3}.

Let µ1, µ2, µ1 ∪ µ2, µ1 ∩ µ2 ∈ F(V) be defined as follows:

b4 b3 b2 b1

µ1 0 0.3 0.7 0.2
µ2 0.6 0 0.5 0.3

µ1 ∪ µ2 0.6 0.3 0.7 0.3
µ1 ∩ µ2 0 0 0.5 0.2

And γ1, γ2, γ1 ∪ γ2, γ1 ∩ γ2 ∈ F(U) are defined as follows:

a4 a3 a2 a1

γ1 0.5 0.3 0.2 0.1
γ2 0 0.3 0 0.5

γ1 ∪ γ2 0.5 0.3 0.2 0.5
γ1 ∩ γ2 0 0.3 0 0.1

Then,

a1 a2 a3 a4

ψ1 + ψ2
µ1

o
(e1) 0 0.7 0 0.3

oψ1 + ψ2
µ1(e1) 0.7 0.7 0 0

ψ1 + ψ2
µ2

o
(e1) 0 0.5 0 0

oψ1 + ψ2
µ2(e1) 0.6 0.5 0.6 0

ψ1 + ψ2
µ1∪µ2

o
(e1) 0.3 0.7 0.3 0.3

oψ1 + ψ2
µ1∩µ2(e1) 0.5 0.5 0 0

And

b1 b2 b3 b4
γ1ψ1 + ψ2o

(e1) 0.1 0.1 0.1 0.1
γ1ψ1 + ψ2

o
(e1) 0 0.2 0 0.1

γ2ψ1 + ψ2o
(e1) 0.5 0 0 0

γ2ψ1 + ψ2
o
(e1) 0 0.5 0 0.5

γ1∪γ2ψ1 + ψ2o
(e1) 0.5 0.2 0.3 0.3

γ1∩γ2ψ1 + ψ2
o
(e1) 0 0.1 0 0.1
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Hence,

ψ1 + ψ2
µ1

o
(e1)(a1) ∨ ψ1 + ψ2

µ2

o
(e1)(a1) = 0 � 0.3 = ψ1 + ψ2

µ1∨µ2

o
(e1)(a1)

oψ1 + ψ2
µ1(e1)(a1) ∧ oψ1 + ψ2

µ2(e1)(a1) = 0.7 ∧ 0.6 = 0.6 � 0.5 = oψ1 + ψ2
µ1∧µ2(e1)(a1).

And

γ1ψ1 + ψ2o
(e1)(b2) ∨ γ2ψ1 + ψ2o

(e1)(b2) = 0.1 ∨ 0 = 0.1 � 0.2 = γ1∨γ2ψ1 + ψ2o
(e1)(b2)

γ1ψ1 + ψ2
o
(e1)(b2) ∧ γ2ψ1 + ψ2

o
(e1)(b1) = 0.2 ∧ 0.5 = 0.2 � 0.1 = γ1∧γ2ψ1 + ψ2

o
(e1)(b2).

The level set or α-cut of the lower approximation ψ1 + ψ2oµ(e) and upper approximation
oψ1 + ψ2

µ
(e). rea defined in the following definitions. Definitions 3.1 and 3.2 represent approximations

as pairs of FSS. We can describe the lower approximation (ψ1 + ψ2
µ

o
(e))α and upper approximation

( oψ1 + ψ2
µ
(e))α, if we associate the FS’s α cut.

Definition 3.3. Let U and V be two non-empty universal sets, and µ ∈ F(V). Let ψ1 and ψ2 be SBrs
over U × V. For any 1 ≥ α > 0, the level set for ψ1 + ψ2

µ

o
and oψ1 + ψ2

µ
of µ are defined, respectively

as follows:

(ψ1 + ψ2
µ

o
(e))α = {a ∈ U : ψ1 + ψ2

µ

o
(e)(a) ≥ α}

(oψ1 + ψ2
µ
(e))α = {a ∈ U :o ψ1 + ψ2

µ
(e)(a) ≥ α}.

Definition 3.4. Let U and V be two non-empty universal aets, and γ ∈ F(U). Let ψ1 and ψ2 be SBr
over U × v. For any 1 ≥ β > 0, the level set for γψ1 + ψ2o

and γψ1 + ψ2
o

of µ are defined, respectively
as follows:

(γψ1 + ψ2o
(e))α = {b ∈ V : γψ1 + ψ2o

(e)(b) ≥ α}

(γψ1 + ψ2
o
(e))α = {b ∈ V : γψ1 + ψ2

o
(e)(b) ≥ α}.

Proposition 3.9. Let ψ1 and ψ2 be SBrs over U × V, µ ∈ F(V) and 1 ≥ α > 0. Then, the following
properties hold w.r.t aftersets:

(1) ψ1 + ψ2
(µα)
o

(e) = (ψ1 + ψ2
µ

o
(e))α

(2) oψ1 + ψ2
(µα)

(e) = (oψ1 + ψ2
µ
(e))α.

Proof. (1) Let µ ∈ F(V) and 1 ≥ α > 0. For the crisp set µα, we have

ψ1 + ψ2
(µα)
o

(e) = {a ∈ U : aψ1 ∪ aψ2 ⊆ µα}

= {a ∈ U : µ(b) ≥ α ∀b ∈ aψ1(e) ∪ aψ2(e), b ∈ V}
= {a ∈ U : ∧{µ(b) ≥ α : b ∈ aψ1(e) ∪ aψ2(e), b ∈ V}}
= (ψ1 + ψ2

µ

o
(e))α.

(2) Let µ ∈ F(V) and 1 ≥ α > 0. For the crisp set µα, we have

oψ1 + ψ2
(µα)

(e) = {a ∈ U : (aψ1 ∩ aψ2) ∩ µα , ∅}
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= {a ∈ U : µ(b) ≥ α ∀b ∈ aψ1(e) ∩ aψ2(e), b ∈ V}
= {a ∈ U : ∨{µ(b) ≥ α : b ∈ aψ1(e) ∩ aψ2(e), b ∈ V}}

= ( oψ1 + ψ2
µ
(e))α.

�

Proposition 3.10. Let ψ1 and ψ2 be SBrs over U × V, γ ∈ F(U) and 1 ≥ α > 0. Then, the following
properties hold w.r.t foresets:

(1) (γα)ψ1 + ψ2o
(e) = (γψ1 + ψ2o

(e))α
(2) (γα)ψ1 + ψ2

o
(e) = ((γψ1 + ψ2

o
(e))α.

Proof. The proof is identical to the Proposition 3.9 proof. �

4. Approximation of a fuzzy set based on multi-soft binary relations

The notion of optimistic multigranulation roughness of a fuzzy set based on two soft binary relations
is generalized in this section to optimistic multigranulation based on multiple SBrs.

Definition 4.1. Let there be two non-empty finite universes: U and V. θ is a family of SBrs that over
U ×V. Hence we say a multigranulation generalised soft approximation space (MGGSAS) across two
universes is (U,V, θ). The multigranulation generalise soft approximation space (MGGSAS) (U,V, θ)
is a generalisation of soft approximation space over dual universes, as is apparent. (U,V, ψ).

Definition 4.2. Let (U,V, θ) be a MGGSAS over two universes and µ be a FS over V. The OLAP∑m
j=1 ψ j

µ

o
and OUAP o∑m

j=1 ψ j
µ
, of FS µ w.r.t aftersets of SBrs (ψ j, A) ∈ θ are given by

m∑
j=1

ψ j

µ

o

(e)(a) =


∧
{µ(b) : b ∈ ∪m

j=1aψ j(e), b ∈ V}, if ∪m
j=1 aψ j(e) , ∅

0, otherwise.

o
m∑

j=1

ψ j

µ

(e)(a) =


∨
{µ(b) : b ∈ ∩m

j=1aψ j(e), b ∈ V}, if ∩m
j=1 aψ j(e) , ∅

0, otherwise .

Where aψ j(e) = {b ∈ V : (a, b) ∈ ψ j(e)}, are aftersets of a for a ∈ U and e ∈ A.
Obviously (

∑m
j=1 ψ j

µ

o
, A) and ( o∑m

j=1 ψ j
µ
, A) are two FSS over U.

Definition 4.3. Let (U,V, θ) be a MGGSAS over dual universes and γ be a FS over U. The OLAP
γ∑m

j=1 ψ j
o

and OUAP γ∑m
j=1 ψ j

o
, of FS γ w.r.t the foresets of SBrs (ψ j, A) ∈ θ are given by

γ
m∑

j=1

ψ j

o

(e)(b) =


∧
{γ(a) : a ∈ ∪m

j=1ψ j(e)(b), a ∈ U}, if ∪m
j=1 ψ j(e)(b) , ∅

0, otherwise.

γ
m∑

j=1

ψ j

o

(e)(b) =


∨
{γ(a) : a ∈ ∩m

j=1ψ j(e)(b), a ∈ U}, if ∩m
j=1 ψ j(e)(b) , ∅

0, otherwise.
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Where ψ j(e)b = {a ∈ U : (a, b) ∈ ψ j(e)} are foresets of b for b ∈ V and e ∈ A.
Obviously, ( γ∑m

j=1 ψ j
o
, A) and ( γ∑m

j=1 ψ j
o
, A) are two FSS over V.

Moreover,
∑m

j=1 ψ j
µ

o
: A → F(U),o

∑m
j=1 ψ j

µ
: A → F(U) and γ∑m

j=1 ψ j
o

: A → F(V),γ
∑m

j=1 ψ j
o

: A →
F(V).

Proposition 4.1. Let (U,V, θ) be MGGSAS over two universes and µ ∈ F(V). Then the following
properties for

∑m
j=1 ψ j

µ

o
,o

∑m
j=1 ψ j

µ
hold w.r.t the aftersets.

(1) ∨m
j=1ψ j

µ ≥
∑m

j=1 ψ j
µ

o

(2) ∧m
j=1ψ j

µ
≥o ∑m

j=1 ψ j
µ
.

Proof. The proof is identical to the Proposition 3.3 proof. �

Proposition 4.2. Let (U,V, θ) be MGGSAS over dual universes and γ ∈ F(U). Then the following
properties for γ∑m

j=1 ψ j
o
,γ

∑m
j=1 ψ j

o
hold w.r.t the foresets.

(1) γ∑m
j=1 ψ j

o
≤ ∨m

i=1
γψ j

(2) γ∑m
j=1 ψ j

o
≤ ∧m

j=1
γψ j.

Proof. The proof is identical to the Proposition 3.3 proof. �

Proposition 4.3. Let (U,V, θ) be MGGSAS over dual universes. Then the following hold w.r.t the
aftersets.

(1)
∑m

j=1 ψ j
1

o
= 1∀e ∈ A if aψ j(e) , ∅ for some j ≤ m

(2) o∑m
j=1 ψ j

1
= 1∀e ∈ A if ∩n

j=1aψ j(e) , ∅

(3)
∑m

j=1 ψ j
0

o
= 0 =o ∑m

j=1 ψ j
0
.

Proof. The proof is identical to theProposition 3.5 proof. �

Proposition 4.4. Let (U,V, θ) be MGGSAS over dual universes. Then the following hold w.r.t the
forersets.

(1) 1∑m
j=1 ψ j

o
= 1 for all e ∈ A if ψ j(e)b , ∅ for some j ≤ m

(2) 1∑m
j=1 ψ j

o
= 1∀e ∈ A, if ∩n

j=1ψ j(e)b , ∅

(3) 0∑m
j=1 ψ j

o
= 0 = 0∑m

j=1 ψ j
o
.

Proof. The Proof is identical to the Proposition 3.5 proof. �

Proposition 4.5. Let (U,V, θ) be a MGGSAS over dual universes and µ, µ1, µ2 ∈ F(V), Then the
following properties for

∑m
j=1 ψ j

µ

o
,o

∑m
j=1 ψ j

µ
hold w.r.t the aftersets.

(1) If µ1 ≤ µ2 then
∑m

j=1 ψ j
µ1

o
≤

∑m
j=1 ψ j

µ2

o
,

(2) If µ1 ≤ µ2 then o∑m
j=1 ψ j

µ1
≤o ∑m

j=1 ψ j
µ2

(3)
∑m

j=1 ψ j
µ1∩µ2

o
=

∑m
j=1 ψ j

µ1

o
∩

∑m
j=1 ψ j

µ2

o
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(4)
∑m

j=1 ψ j
µ1∪µ2

o
≥

∑m
j=1 ψ j

µ1

o
∪

∑m
j=1 ψ j

µ2

o

(5) o∑m
j=1 ψ j

µ1∪µ2
= o∑m

j=1 ψ j
µ1
∪ o∑m

j=1 ψ j
µ2

(6) o∑m
j=1 ψ j

µ1∩µ2
≤ o∑m

j=1 ψ j
µ1
∩ o∑m

j=1 ψ j
µ2

.

Proof. The proof is identical to the Proposition 3.7 proof. �

Proposition 4.6. Let (U,V, θ) be a MGGSAS over dual universes and γ, γ1, γ2 ∈ F(U). Then the
following properties for γ∑m

j=1 ψ j
o
,γ

∑m
j=1 ψ j

o
hold w.r.t the foresets.

(1) If γ1 ≤ γ2 then γ1
∑m

j=1 ψ j
o
≤γ2

∑m
j=1 ψ j

o
,

(2) If γ1 ≤ γ2 then, γ1
∑m

j=1 ψ j
o
≤γ2

∑m
j=1 ψ j

o

(3) γ1∩γ2
∑m

j=1 ψ j
o

=γ1
∑m

j=1 ψ j
o
∩ γ2

∑m
j=1 ψ j

o
(4) γ1∪γ2

∑m
j=1 ψ j

o
≥ γ1

∑m
j=1 ψ j

o
∪ γ2

∑m
j=1 ψ j

o

(5) γ1∪γ2
∑m

j=1 ψ j
o

=γ1
∑m

j=1 ψ j
o
∪ γ2

∑m
j=1 ψ j

o

(6) γ1∩γ2
∑m

j=1 ψ j
o
≤ γ1

∑m
j=1 ψ j

o
∩ γ2

∑m
j=1 ψ j

o
.

Proof. The proof is identical to the Proposition 3.7 proof. �

Proposition 4.7. Let (U,V, θ) be a MGGSAS over dual universes and µ1, µ2, µ3, · · · µn ∈ F(V), and
µn ⊇ · · · ⊇ µ3 ⊇ µ2 ⊇⊆ µ1. Then the following properties hold w.r.t the aftersets.

(1)
∑m

j=1 ψ j
µ1

o
⊆

∑m
j=1 ψ j

µ2

o
⊆

∑m
j=1 ψ j

µ3

o
⊆ · · · ⊆

∑m
j=1 ψ j

µn

o

(2) o∑m
j=1 ψ j

µ1
⊆ o∑m

j=1 ψ j
µ2
⊆ o∑m

j=1 ψ j
µ3
⊆ · · · ⊆ o∑m

j=1 ψ j
µn

.

Proof. Straightforward. �

Proposition 4.8. Let (U,V, θ) be MGGSAS over dual universes and γ1, γ2, γ3, · · · γn ∈ F(U), and γn ⊇

· · · ⊇ γ3 ⊇ γ2 ⊆⊇ γ1. Then the following properties hold w.r.t the foresets.

(1) γ1
∑m

j=1 ψ j
o
⊆γ2

∑m
j=1 ψ j

o
⊆γ3

∑m
j=1 ψ j

o
⊆ · · · ⊆γn

∑m
j=1 ψ j

o

(2) γ1
∑m

j=1 ψ j
o
⊆γ2

∑m
j=1 ψ j

o
⊆γ3

∑m
j=1 ψ j

o
⊆ · · · ⊆γn

∑m
j=1 ψ j

o
.

Proof. Straightforward. �

Definition 4.4. Let (U,V, θ) be a MGGSAS over dual universes, µ ∈ F(V). For any 1 ≥ α ≥ 0, the
level set for

∑m
j=1 ψ j

µ

o
and

∑m
j=1 ψ j

µ
of µ are defined, respectively as follows:

(
m∑

j=1

ψ j

µ

o

(e))α = {a ∈ U :
m∑

j=1

ψ j

µ

o

(e)(a) ≥ α}

(o
m∑

j=1

ψ j

µ

(e))α = {a ∈ U :o
m∑

j=1

ψ j

µ

(e)(a) ≥ α}.

AIMS Mathematics Volume 8, Issue 5, 10303–10328.



10319

Definition 4.5. Let (U,V, θ) be MGGSAS over dual universes, µ ∈ F(U). For any 1 ≥ α ≥ 0, the level
set for γ∑m

j=1 ψ j
o

and γ∑m
j=1 ψ j

o
of µ are defined, respectively as follows:

(γ
m∑

j=1

ψ j

o

(e))α = {b ∈ V : γ
m∑

j=1

ψ j

o

(e)(b) ≥ α}

(γ
m∑

j=1

ψ j

o

(e))α = {b ∈ V : γ
m∑

j=1

ψ j

o

(e)(a) ≥ α}.

Proposition 4.9. Let (U,V, θ) be MGGSAS over dual universes, µ ∈ F(V). For any 1 ≥ α > 0. The
following properties hold w.r.t aftersets:

(1)
∑m

j=1 ψ j
(µα)

o
(e) = (

∑m
j=1 ψ j

µ

o
(e))α

(2) o∑m
j=1 ψ j

(µα)
(e) = (o∑m

j=1 ψ j
µ
(e))α.

Proof. The proof is identical to the Proposition 3.9 proof. �

Proposition 4.10. Let (U,V, θ) be MGGSAS over dual universes, µ ∈ F(V). For any 1 ≥ α > 0. The
following properties hold w.r.t foresets:

(1) (γα)∑m
j=1 ψ j

o
(e) = (γ

∑m
j=1 ψ j

o
(e))α

(2) (γα)∑m
j=1 ψ j

o
(e) = ((γ∑m

j=1 ψ j
o
(e))α.

Proof. The proof is identical to the Proposition 3.9 proof. �

5. Accuracy and rough measures

In this section, we describe the accuracy measurements, rough measure, and example of MGRFS
with respect to aftersets and foresets.

Definition 5.1. Let ψ1 and ψ2 be two SBrs from a non-empty universe U to V and 1 ≥ α ≥ β ≥ 0. Then
the accuracy measures (or Degree of accuracy) of membership µ ∈ F(V), with respect to β, α and w.r.t
aftersets of ψ1, ψ2 are defined as

OA(ψ1 + ψ2
µ(ei))(α,β) =

|(ψ1 + ψ2
µ

o
(ei))α|

|( oψ1 + ψ2
µ
(ei))β|

f or all ei ∈ A

where |.| means the cardinality, where OA, means optimistic accuracy measures. It is obvious that
0 ≤ OA(ψ1 + ψ2

µ(ei))(α,β) ≤ 1. When OA(ψ1 + ψ2
µ(ei))(α,β) = 1, then the fuzzy set µ ∈ F(V) is definable

with respect to aftersets. And the optimistic rough measure are defined as

OR(ψ1 + ψ2
µ(ei))(α,β) =1 − OA(ψ1 + ψ2

µ(ei))(α,β).

Definition 5.2. Let ψ1 and ψ2 be two SBrs from a non-empty universe U to V and 1 ≥ α ≥ β ≥ 0.
The accuracy measures (or Degree of accuracy) of membership γ ∈ F(U), with respect to β, α and w.r.t
foresets of ψ1, ψ2 are defined as

OA(γψ1 + ψ2(ei))(α,β) =
|(γψ1 + ψ2o

(ei))α|

|( γψ1 + ψ2
o
(ei))β|

∀ei ∈ A
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where |.| means the cardinality, where OA, means optimistic accuracy measures. It is obvious that
0 ≤ OA(γψ1 + ψ2(ei))(α,β) ≤ 1. When, OA(γψ1 + ψ2(ei))(α,β) = 1, then the fuzzy set µ ∈ F(V) is definable
with respect to aforesets. And the optimistic rough measure are defined as

OR(γψ1 + ψ2(ei))(α,β) =1 − OA(γψ1 + ψ2(ei))(α,β).

Example 5.1. (Example 3.1 is Continued) Let ψ1 and ψ2 be two SBrs from a non empty universal set
U to V as given in Example 3.1. Then for µ ∈ F(V) defined in Example 3.1 and β = 0.2 and α = 0.4
the α cut sets w.r.t aftersets are as follows respectively.

(ψ1 + ψ2o
µ(e1))0.4 ={a1, a6}

(ψ1 + ψ2o
µ(e2))0.4 ={a5, a6, a7}.

(oψ1 + ψ2
µ
(e1))0.2 ={a1, a2, a4, a7}

(oψ1 + ψ2
µ
(e2))0.2 ={a1, a3, a5, a8}.

Then the accuracy measures for µ ∈ F(V) with respect to β = 0.2 and α = 0.4 and w.r.t aftersets of
SBrs ψ1, ψ2 are calculated as

OA(ψ1 + ψ2
µ(e1))(α,β) =

|(ψ1 + ψ2o
µ(e1))0.4|

|(oψ1 + ψ2
µ
(e1))0.2|

=
2
4

= 0.5,

OA(ψ1 + ψ2
µ(e2))(α,β) =

|(ψ1 + ψ2o
µ(e2))0.4|

|(oψ1 + ψ2
µ
(e2))0.2|

=
3
4

= 0.75.

Hence, OA(ψ1 + ψ2
µ(ei))(α,β) shows the degree to which the FS µ ∈ F(V) is accurate constrained to

the parameters β = 0.2 and α = 0.4 for i = 1, 2 w.r.t aftersets. Similarly for γ ∈ F(U) defined in
Example 3.1, β = 0.2, and α = 0.4. Then α cut sets w.r.t foresets are as follows respectively.

(γψ1 + ψ2o
(e1))0.4 ={b1, b6}

(γψ1 + ψ2o
(e2))0.4 ={b2, b5}.

And

(γψ1 + ψ2
o
(e1))0.2 ={b3, b5}

(γψ1 + ψ2
o
(e2))0.2 ={b1, b2}.

Then the accuracy measures for γ ∈ F(U) with respect to β = 0.2 and α = 0.4 and w.r.t foresets of SBrs
ψ1, ψ2 are calculated as

OA(γψ1 + ψ2(e1))(α,β) =
|(γψ1 + ψ2o

(e1))0.4|

|(γψ1 + ψ2
o
(e1))0.2|

=
2
2

= 1,

OA(γψ1 + ψ2(e2))(α,β) =
|(γψ1 + ψ2o

(e2))0.4|

|(γψ1 + ψ2
o
(e2))0.2|

=
2
2

= 1.

Hence, OA(γψ1 + ψ2(ei))(α,β) shows the degree to which the fuzzy set γ ∈ F(U) is accurate constrained
to the parameters β = 0.2 and α = 0.4 for i = 1, 2 w.r.t foresets.
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Proposition 5.1. Let ψ1 and ψ2 be two SBrs from a non-empty universe U to V, µ ∈ F(V) and 1 ≥ α ≥
β > 0. Then

(1) OA(ψ1 + ψ2
µ(ei))(α,β) increases with the increase in β, if α stands fixed.

(2) OA(ψ1 + ψ2
µ(ei))(α,β) decrease with the increase in α, if β stands fixed.

Proof.

(1) Let α stands fixed and 0 < β1 ≤ β2 ≤ 1. Then we have |(oψ1 + ψ2
µ
(ei))β2 | ≤ |(

oψ1 + ψ2
µ
(ei))β1 |. This

implies that
|(ψ1+ψ2

µ
o
(ei))α |

|(oψ1+ψ2
µ
(ei))β1 |

≤
|(ψ1+ψ2

µ
o
(ei))α |

|(oψ1+ψ2
µ
(ei))β2 |

, that is OA(ψ1 + ψ2
µ(ei))(α,β1) ≤ OA(ψ1 + ψ2

µ(ei))(α,β2).

This shows that OA(ψ1 + ψ2
µ(ei))(α,β) increases with the increase in β∀ei ∈ A.

(2) Let β stands fixed and 0 < α1 ≤ α2 ≤ 1. Then we have |(ψ1 + ψ2
µ

o
(ei))α2 | ≤ |(ψ1 + ψ2

µ

o(ei))α1 |. This

implies that
|(ψ1+ψ2

µ
o
(ei))α2 |

|(oψ1+ψ2
µ
(ei))β |

≤
|(ψ1+ψ2

µ
o
(ei))α1 |

|(oψ1+ψ2
µ
(ei))β |

, that is OA(ψ1 + ψ2
µ(ei))(α2,β) ≤ OA(ψ1 + ψ2

µ(ei))(α1,β).

This shows that OA(ψ1 + ψ2
µ(ei))(α,β) increases with the increase in α∀ei ∈ A.

Proposition 5.2. Let ψ1 and ψ2 be two SBrs from a non-empty universe U to V, γ ∈ F(U) and 1 ≥ α ≥
β > 0. Then

(1) OA(γψ1 + ψ2(ei))(α,β) increases with the increase in β, if α stands fixed.
(2) OA(γψ1 + ψ2(ei))(α,β) decrease with the increase α, if β stands fixed.

Proof. The proof is identical to the Proposition 5.1 proof.

Proposition 5.3. Let ψ1 and ψ2 be SBrs from a non-empty universe U to V, 1 ≥ α ≥ β > 0 and
µ, µ ∈ F(V), with µ ≤ µ. Then the following properties hold w.r.t aftersets.

(1) OA(ψ1 + ψ2
µ(ei))(α,β) ≤ OA(ψ1 + ψ2

µ(ei))(α,β), whenever (oψ1 + ψ2
µ

o)β = (oψ1 + ψ2
µ
)β.

(2) OA(ψ1 + ψ2
µ(ei))(α,β) ≥ OA(ψ1 + ψ2

µ(ei))(α,β), whenever (ψ1 + ψ2
µ

o
)α = (ψ1 + ψ2

µ

o
)α.

Proof.

(1) Let 1 ≥ α ≥ β > 0 and µ, µ ∈ F(V) be such that µ ≤ µ. Then ψ1 + ψ2
µ

o
(ei) ≤ ψ1 + ψ2

µ

o
(ei)),

that is |(ψ1 + ψ2
µ

o
(ei))α| ≤ |(ψ1 + ψ2

µ

o
(ei))α|. This implies that

|(ψ1+ψ2
µ
o
(ei))α |

|(oψ1+ψ2
µ
(ei))β |

≤
|(ψ1+ψ2

µ
o
(ei))α |

|(oψ1+ψ2
µ
(ei))β |

. Hence

OA(ψ1 + ψ
µ
2(ei))(α,β) ≤ OA(ψ1 + ψ

µ
2(ei))(α,β)∀ei ∈ A.

(2) Let 1 ≥ α ≥ β > 0 and µ, µ ∈ F(V) be such that µ ≤ µ. Then oψ1 + ψ2
µ
(ei) ≤ oψ1 + ψ2

µ
(ei),

that is |(oψ1 + ψ2
µ
(ei))β| ≤ |(oψ1 + ψ2

µ
(ei))β|. This implies that

|(ψ1+ψ2
µ
o
(ei))α |

|(oψ1+ψ2
µ
(ei))β |

≥
|(ψ1+ψ2

µ
o
(ei))α |

|(oψ1+ψ2
µ
(ei))β |

. Hence

OA(ψ1 + ψ
µ
2(ei))(α,β) ≥ OA(ψ1 + ψ

µ
2(ei))(α,β)∀ei ∈ A.

Proposition 5.4. Let ψ1 and ψ2 be SBrs from a non-empty universe U to V, 1 ≥ α ≥ β > 0 and
γ, δ ∈ F(U), with δ ≥ γ. Then the following properties hold w.r.t foresets.

(1) OA(γψ1 + ψ2(ei))(α,β) ≤ OA(ψ1 + ψ2
µ(ei))(α,β), whenever (oψ1 + ψ2

µ

o)β = (oψ1 + ψ2
µ
)β.

(2) OA(ψ1 + ψ2
µ(ei))(α,β) ≥ OA(ψ1 + ψ2

µ(ei))(α,β), whenever (ψ1 + ψ2
µ

o
)α = (ψ1 + ψ2

µ

o
)α.

Proof. The proof is identical to the Proposition 5.3 proof.
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6. Decision making

Firstly soft sets were applied in DM problems by Maji et al. [31], but this DM deal with problems
based on a crisp SS to cope with an FSS based on DM problems. FSS can solve the problems of
decision-making in real life. It deals with uncertainties and the vagueness of data. There are several
techniques of using fuzzy soft sets to solve decision-making challenges. Roy and Maji [40] presented
a novel method of object recognition from inaccurate multi-observer data. The limitations in Roy and
Maji [40] are overcome by Feng et al. [17], Hou [18] made use of grey relational analysis to take care
of the issues of problems in making decisions. The DM methods by multi-SBr are proposed in this
section following the FSS theory. The majority of FSS-based approaches to DM have choice values of
“Ck”, therefore it makes sense to choose the objects with the highest choice value as the best option.

There are two closest approximations to universes: the lower and upper approximations. As a
result, we are able to determine the two values

∑n
j=1 ψ j

µ(ei)(al) and
∑n

j=1 ψ j
µ
(ei)(al) that are most closely

related to the afterset to the decision alternative ai ∈ U using the FSLAP and FSUAP of an FS µ ∈ F(V).
To address DM issues based on RFSS, we therefore redefine the choice value Cl for the decision
alternative al of the universe U.
For the proposed model, we present two algorithms, each of which consists of the actions outlined
below.
Algorithm 1: The algorithm for solving a DM problem using aftersets is as follows.

Step 1: Compute the lower MGFSS approximation
∑n

j=1 ψ j
µ and upper MGFSS approximation∑n

j=1 ψ j
µ
, of fuzzy set µ w.r.t aftersets.

Step 2: Compute the sum of lower MGFSS approximation
∑n

i=1(
∑n

j=1 ψ j
µ(ei)(al)) and the sum of

upper MGFSS approximation
∑n

i=1(
∑n

j=1 ψ j
µ
(ei)(al)), corresponding to j w.r.t aftersets.

Step 3: Compute the choice value Cl =
∑n

i=1(
∑n

j=1 ψ j
µ(ei)(al)) +

∑n
i=1(

∑n
j=1 ψ j

µ
(ei)(al)), al ∈ U w.r.t

aftersets.
Step 4: The preferred decision isa

ak ∈ U if Ck = max|U|l=1Cl.

Step 5: The decision that is the worst is ak ∈ U if Ck = min|U|l=1Cl.

Step 6: If k has more than one valve, then any one of ak may be chosen.

Algorithm 2: The following is an algorithm for approaching a DM problem w.r.t foresets.

Step 1: Compute the lower MGFSS approximation γ∑n
j=1 ψ j and upper MGFSS approximation

γ∑n
j=1 ψ j, of fuzzy set γ with respect to foresets.

Step 2: Compute the sum of lower MGFSS approximations
∑n

i=1(γ
∑n

j=1 ψ j(ei)(bl)) and the sum of

upper MGFSS approximation
∑n

i=1(γ
∑n

j=1 ψ j(ei)(bl)), corresponding to j w.r.t foresets.
Step 3: Compute the choice value Cl =

∑n
i=1(γ

∑n
j=1 ψ j(ei)(bl)) +

∑n
i=1(γ

∑n
j=1 ψ j(ei)(bl)), bl ∈ V w.r.t

foresets.
Step 4: The preferred decision is bk ∈ V if Ck = max|V|l=1Cl.

Step 5: The decision that is the worst is bk ∈ V if Ck = min|V|l=1Cl.

Step 6: If k has more than one value, then any one of bk may be chosen.
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An application of the decision-making approach

Example 6.1. (Example 3.1 Continued) Consider the SBrs of Example 3.1 again where a franchise
XYZ wants to pick a best player foreign allrounder for their team from Platinum and Diamond
categories.

Define µ : V→ [0, 1], which represent the preference of the player given by franchise XYZ such that
µ = 0.9

b1
+ 0.8

b2
+ 0.4

b3
+ 0.3

b5
+ 0.1

b6

1
b7
.

And
Define γ : U → [0, 1], which represent the preference of the player given by franchise XYZ such that

γ = 0.2
a1

+ 1
a2

+ 0.5
a3

+ 0.9
a4

+ 0.6
a5

+ 0.7
a6

+ 0.1
a7

+ 0.3
a8
.

Consider Tables 1 and 2 after applying the above algorithms.

Table 1. The optimistic result of the decision algorithm with respect to aftersets.

ψ1 + ψ2
µ

o
(e1) ψ1 + ψ2

µ

o
(e2) oψ1 + ψ2

µ
(e1) oψ1 + ψ2

µ
(e2) Choice value Ck

a1 0.4 0 0.8 0.4 1.6
a2 0.3 0 0.3 0 0.6
a3 0 0.1 0 0.9 1.0
a4 0.1 0 0.4 0 0.5
a5 0 0.8 0 0.8 1.6
a6 1 0.6 0 0 1.6
a7 0 0.1 1 0.1 1.2
a8 0.3 0.9 0 0.9 2.1

Table 2. The optimistic result of the decision algorithm with respect to foresets.
γψ1 + ψ2o

(e1) γψ1 + ψ2o
(e2) γψ1 + ψ2

p
(e1) γψ1 + ψ2

p
(e2) Choice value C

′

k

b1 0.6 0.3 0 0.5 1.6
b2 0.2 0.6 0 0.9 1.7
b3 0.1 0.1 0.9 0 1.1
b4 0.1 0.2 0 0 0.3
b5 0.3 0.7 1 0 2
b6 0.6 0.1 0 0.1 0.8
b7 0.1 0.3 0.1 0 0.5

Here the choice value Cl =
∑n

j=1(
∑n

i=1 ψi
µ(e j)(al)) +

∑n
j=1(

∑n
i=1 ψi

µ
(e j)(al)), al ∈ U w.r.t aftersets and

C
′

l =
∑n

j=1(γ
∑n

i=1 ψi(e j)(bl)) +
∑n

j=1(γ
∑n

i=1 ψi(e j)(bl)), bl ∈ V w.r.t foresets.
From Table 1 it is clear that the maximum choice-value Ck = 2.1 = C8 scored by the player a8 and

the decision is in the favor of selecting the player a8. Moreover, player a4 is ignored. Hence franchise
XYZ will choose the player a8 from the platinum category w.r.t aftersets. Similarly from Table 2 the
maximum choice-value C

′

k = 2 = C
′

5 scored by the player b5 and the decision is in the favor of selecting
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the player b5. Moreove, player b4 is ignored. Hence franchise XYZ will choose the player b5 from the
diamond category w.r.t aforesets.

7. Comparison

In this section, we will analyze the effectiveness of our method comparatively. To deal with
incompleteness and vagueness, an MGRS model is proposed in terms of multiple equivalence relations
by Qian et al. [39], which is better than RS. Xu et al. [57] fostered the model of MGFRS by unifying
MGRS theory and FSs. However, in most of daily life, the satiation decision-making process might
depend on the possibility of two or more universes. Sun and Ma [47] initiated the notion of MGRS
over two universes with good modeling capabilities to overcome this satiation. To make the equivalence
relation more flexible, the conditions had To be relaxed, Shabir et al. [43] presented the MGRS of a
crisp set based on soft binary relations and its application in data classification, and Ayub et al. [4]
introduced SMGRS which is the particular case of MGRS [43]. An FS is better than a crisp set to cope
the uncertainty. Here, we have a novel hybrid model of OPMGFRS by using multi-soft binary relations.
Our suggested model is more capable of capturing the uncertainty because of its parametrization of
binary relations in a multigarnulation environment. Moreover, in our proposed OMGFRS model, we
replace an FS with a crisp set. A crisp set can not address the uncertainty and vagueness in our
actual salutation. The main advantage of this model is to approximate a fuzzy set in universe U(V)
an anther universe V(U), and we acquire a fuzzy with respect to each parameter which is a fuzzy soft
set over V(U). Hence the fuzzy soft set is more capable than the crisp and fuzzy sets of addressing the
uncertainty.

8. Conclusions

The MGR of an FS based on SBr is investigated in this article over dual universes. We first defined
the roughness of an FS with respect to the aftersets and foresets of two SBr, and then we used the
aftersets and foresets to approximate an FS µ ∈ F(V) in universe U, and an FS γ ∈ F(U) in universe
V. From which, we obtained two FSS of U and V, with respect to aftersets and foresets. We also
look into the essential properties of the MGR of an FS. Then we generalized this definition to MGRFS
based on SBr. For this proposed multigranulation roughness, we also define the accuracy and roughness
measures. Moreover, we provided two decision-making algorithms with respect to aftersest and forests,
as well as an example of use in decision-making problems. The vital feature of this method is that it
allows us to approximate a fuzzy set of the universe in another universe, and we can section an object
from a universe and another universe’s information based. Future research will concentrate on how the
proposed method might be used to solve a wider variety of selection problems in different fields like
medical science, social science, and management science.
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