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1. Introduction

Recently fractional calculus has gotten much attention from researchers like traditional calculus.
The mentioned area has the ability to describe real-world phenomena in more excellent ways. Also,
such derivatives have numerous applications in the description of those systems with memory effects.
Due to various applications, the said calculus has been used to investigate various infectious disease
models like in [1–3]. Also, in the field of physics, engineering, and cosmology, fractional calculus
has very well been used. For instance, we refer [4–6]. It has been shown that in many applications,
the use of fractional calculus provides more realistic models than those obtained via classical ordinary
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derivatives. Due to this reason, the study of fractional models has received great attention from many
researchers in the last few years. As the fractional order derivatives have important characteristics
known as the memory effect which ordinary derivatives do not involve. Also, fractional differential
operators are nonlocal as compared to the local behavior of integer derivatives. Recently researchers
have published some very important results in this regard like [7, 8]. Also, authors [9] have published
some new results on the numerical scheme for fractional order SEIR epidemic of measles. Here it is
remarked that some authors have discussed the geometry of fractional order derivatives. For instance,
authors [10] have suggested a geometric interpretation of the fractional derivatives which is based
on modern differential geometry and the geometry of jet bundles. In fact, the fractional differential
operators are definite integrals that create the complete accumulation or spectrum of the function on
whose these applications include the corresponding integer-order counterpart of a special case. In
the same way, authors [11] have given the definition of the geometric interpretation of gradient of
order (0, 1]. In this way, they have suggested some geometric interpretations of the differentiability of
real order.

Different problems under the concept of fractional calculus have been studied for the existing theory
and stability analysis. One of the important areas is devoted to investigating hybrid problems under
the aforesaid concepts. In this regard, different problems under boundary and initial conditions have
been studied by using nonlinear analysis and tools of advanced functional analysis. In the present time
class of fractional differential equations devoted to the quadratic perturbation of nonlinear differential
equations (called hybrid differential equations) has attracted much attention from researchers. This is
due to the fact that they include several dynamical systems as special cases. For instance, Dhage and
Lakshmikantham [12] discussed the existence theory of the following problem of hybrid differential
equations

d
dt

[ u(t)
f (t, u(t))

]
= g(t, u(t)), a.e.t ∈ [t0, t0 + a],

where
f ∈ C([t0, t0 + a] × R,R \ {0}), and g ∈ C([t0, t0 + a] × R,R).

They used hybrid fixed point theory to establish the existence of solutions to the proposed problems.
In the same way, Dhage and Jadhav [13] studied the existence and uniqueness results for the ordinary
first-order hybrid differential equation with perturbation of second type given by

d
dt

[
u(t) − f (t, u(t))

]
= g(t, u(t)), a.e.t ∈ [t0, t0 + a],

u(t0) = u0,

where f , g ∈ C([t0, t0 + a] × R,R). Motivated from the mentioned mentioned work, Lu et al. [14]
studied the following class of FHDEs by replacing the ordinary derivative by Caputo fractional type
with 0 < σ ≤ 1 as

cDσ
[
u(t) − f (t, u(t))

]
= g(t, u(t)), a.e.t ∈ [t0, t0 + a],

u(t0) = u0.

They used the hybrid fixed point theory of Dhage to study the existence and uniqueness of the solution
to the mentioned problem.
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In the last few years, hybrid fixed point theory has been used to study different problems of
hybrid nature for the existence theory in [15–18]. Also, using the aforementioned tools, authors
have established various results devoted to existence theory for different boundary value problems
of HFDEs in [19–23]. Also, some authors have studied integral-type FHDEs in [24, 25]. Authors [26]
have studied a system of FHDEs of thermostats type by using a fixed point approach. Furthermore,
authors [27] have investigated a class of FHDEs under mixed-type hybrid integral boundary conditions.
In the same way authors in [28–32] have used the tools of nonlinear functional analysis for studying
various problems and systems of HFDEs. Here, we remark that authors [33] established a review
of the analytical solutions for some generalized classes. In the same line, a class of HFDEs has
also been considered in [34]. Authors in [35–37] have studied different boundary value problems
of fractional order using topological degree theory for the existence theory. Here it should be kept in
mind that a hybrid system is a dynamic system that interacts with continuous and discrete dynamics.
For, example, the novel multiplex engineering systems involve numerous kinds of process and abstract
decision-making units that present the image of various systems simultaneously exhibiting continuous
and discrete time dynamics (see details in [38]). Further, the applications of hybrid systems can be
found in embedded control systems also (see [39]).

The existence theory of solutions to nonlinear problems is an important area of research in the
current scenario. Because the said theory predicts the existence of a solution to a dynamic problem
whether it has a solution or not. Usually, for the said theory fixed point theory has been used
very well. But fixed point theory needs strong compact conditions which restricted its use in some
situations. Also, to deal HFDEs, Dhage established some hybrid-type fixed point theorems to study
the existence and uniqueness of the solution to the mentioned problems. However, it also needs the
same strong compact conditions. To relax, the criteria and replace strong compact conditions with
some weaker compactness, the degree theory has been introduced. It has a sophisticated tool to be
used to investigate numerous nonlinear problems of integral, differential, and difference equations for
their corresponding solution. The mentioned theory has been used very well for usual problems of
fractional order equations. However, in the case of HFDEs, it has not been used properly. For some
important contributions by using degree theory to study various problems in fractional calculus, we
refer few papers as [40–43].

In this work, we study a more general class of nonlinear boundary value problems (BVPs) consisting
of a more general class of nth order S-HFDEs) together subject to nonlinear boundary conditions.
Also, we choose the general case in which the nonlinear functions involved depend on the non-
integer order derivatives. Further, necessary conditions required for the uniqueness of a solution to
the proposed problem, we implement Caratheódory conditions along with techniques of measure of
non-compactness and degree theory. Some new and interesting results are developed. Also, a result
devoted to U-H stability is derived for the considered problem. Our proposed problem is stated as

cDϑ
[ cDωu(t) −

∑m
1 Iβihi(t, u(t),Dρu(t))

f (t, u(t),Dρu(t))

]
= g(t, u(t), Iγu(t)), t ∈ I = [0, 1]

u(0) = ψ1(u(η)), u′(0) = 0, u′′(0) = 0, ...., u(n−1)(0) = 0, u(1) = ψ2(u(η)),
(1.1)

where 0 < ϑ ≤ 1, n − 1 < ω, βi, γ ≤ n, n − 2 < ρ ≤ n − 1 with n ≥ 2, 0 < η < 1, the functions
f : I × R × R → R − {0}, hi : I × R × R → R (i = 1, 2, ....,m) and g : I × R × R → R satisfy the
Caratheódory conditions. Moreover, ψ1, ψ2 : R → R are nonlinear functions. Also, the notation cD
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denotes the Caputo fractional order derivative and I represents fractional integral. Here, we use the
tools mentioned in [44–46] to establish a detailed analysis of the considered problem. Also, stability is
an important aspect of qualitative theory. In this regard, U-H stability analysis has also considered for
some problems of HFDEs. For instance, see [47, 48].

The present article is organized as: Section 1 is devoted to the introduction. Section 2 is related to
basic results from fractional calculus and degree theory. Section 3 is devoted to the first part of our
main results. Section 4 is related to the second part of our main results. The section is consisted of
applications to verify our results. Section 6 is devoted to a brief conclusion.

2. Fundamental results

Here it should be kept in mind that we have used the following basic definitions from [1, 2] of
fractional order derivative and integration.

Definition 2.1. If ϑ > 0, then the fractional order integration of a function u ∈ L1([0, 1]) is given by

Iϑ0+u(t) =
1

Γ(ω)

∫ t

0
(t − s)ω−1u(s)ds.

Definition 2.2. The fractional derivative in Caputo sense of a function u over the interval [0, 1] is
defined as

cDϑu(t) =
1

Γ(m − ϑ)

∫ t

0
(t − s)n−ϑ−1θ(n)(s)ds,

where n − 1 = [ϑ].

Theorem 2.3. The solution of

Iϑ[cDϑu(t)] = y(t), n − 1 < ϑ ≤ n,

is derived as
Iϑ[cDϑu(t)] = y(t) + Citn−1,

for arbitrary Ci ∈ R, i = 0, 1, 2, . . . , n − 1 = [ϑ].

Let E = {u ∈ C(I) :c Dω−1u ∈ C(I)} is Banach space under the norm ‖u‖ρ = max
0≤t≤1
|u(t)| + max

0≤t≤1
|cDρu|.

Let P represents family of all bounded sub sets of E, then we define the following measure of
non-compactness.

Definition 2.4. [44] The measure due to non-compactness µ : P → R+ is Kuratowski measure which
is defined as

µ(S) = inf {% > 0 where S ∈ P such that diametero f S ≤ %} .

Definition 2.5. [25] If T1,T2 : E → E are µ-Lipschtiz with constants C and C
′

respectively, then
T1 + T2 : E→ E is µ-Lipschitz with constant C + C

′

.

Definition 2.6. [25] If T1 : S→ E is compact, then T1 is µ-Lipschitz with constant C = 0.

Definition 2.7. [25] If T1 : S→ E is Lipschitz with constant C, then T1 is µ-Lipschitz with the same
constant C.
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We need the given theorem.

Theorem 2.8. [25] Let T : E→ E be µ-condensing and

S = {u ∈ E : with λ ∈ [0, 1] as u = λTu}.

If S is a bounded set in E, so we can find r > 0, such that S ⊂ Dr(0), then the degree

deg(I − λT,Dr(0), 0) = 1, for all λ ∈ [0, 1].

Thus T has at least one fixed point and the set of the fixed points of T lies in Dr(0).

3. Existence theory

Here, we derive first part of our main results.

Lemma 3.1. The solution of (1.1) can be described as

u(t) = IωΨ(t, u(t),c Dρu(t)) +

m∑
1

Iω−βihi(t, u(t),c Dρu(t)) + ψ1(u(η))+

Iω f (t, u(t),c Dρ−1u(t))
Iω f (1, u(1),c Dρu(1))

(
ψ2(u(η)) − ψ1(u(η)) − IωΨ(1, u(1),c Dρu(1))−

Iω f (1, u(1),c Dρu(1)) −
m∑
1

Iω+βihi(1, u(1),c Dρu(1)),

(3.1)

such that
Ψ(t, u(t),c Dρu(t)) = f (t, u(t),c Dρu(t))Iϑg(t, u(t), Iγu(t)),

Iωψ(1, u(1),c Dρu(1)), Iω f (1, u(1),c Dρu(1))

represent value of integral

IωΨ(t, u(t),c Dρu(t)), Iω f (1, u(1),c Dρu(1))

at t = 1 and Iω+βihi(1, u(1),c Dρu(1)) denotes the value of the integral Iω+βihi(t, u(t),c Dρu(t)) at t = 1,
for i = 1, 2, 3, ...m.

Proof. On using Iϑ at both sides of (1.1), one has

cDωu(t) −
m∑
1

Iβihi(t, u(t),c Dρu(t)) = f (t, u(t),c Dρu(t))Iϑg(t, u(t), Iγu(t))

+ C0 f (t, u(t),c Dρu(t)) = Ψ(t, u(t),c Dρu(t)) + C0 f (t, u(t),c Dρu(t)).

Hence, we obtain

cDωu(t) =

m∑
1

Iβihi(t, u(t),c Dρu(t)) + Ψ(t, u(t),c Dρu(t)) + C0 f (t, u(t),c Dρu(t)).
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Using Iω and the semi group property of integrals, one has

u(t) =

m∑
1

Iω+βihi(t, u(t),c Dρu(t)) + IωΨ(t, u(t),c Dρu(t)) + C0Iω f (t, u(t),c Dρu(t))

+ C1 + C2t + · · · + Cntn−1.

Taking jth order ordinary derivative, one has

u j(t) =
∑

Iω+βi− jhi(t, u(t),c Dρu(t)) + Iω− jΨ(t, u(t),c Dρu(t))+

C0Iω− j f (t, u(t),c Dρu(t)) +

n∑
1

Ci
i!ti− j

(i − j + 1)!
.

Also, u′(0) = 0, u′′(0) = 0, ..., un−1(0) = 0 yield C2 = 0, C3 = 0, ....,Cn = 0. Thus

u(t) =

m∑
1

Iω+βihi(t, u(t),c Dρu(t)) + IωΨ(t, u(t),c Dρu(t))+

C0Iω f (t, u(t),c Dρu(t)) + C1.

(3.2)

Further u(0) = ψ1(u(η)) yields C1 = ψ1(u(η)) and using u(1) = ψ2(u(η)), one has

ψ2(u(η)) = u(1) = IωΨ(1, u(1),c Dρu(1)) +

m∑
1

Iω+βihi(1, u(1),c Dρu(1))

+ C0Iω f (1, u(1),c Dρu(1)) + ψ1(u(η)),

which implies

[ψ2(u(η)) − ψ1(u(η)) − IωΨ(1, u(1),c Dρu(1)) −
m∑
1

Iω+βihi(1, u(1),c Dρu(1))]

= C0Iω f (1, u(1),c Dρu(1)).

Hence, we get the given result

C0 =

[
ψ2(u(η)) − ψ1(u(η)) − IωΨ(1, u(1),c Dρu(1)) −

∑m
1 Iω+βih(1, u(1),c Dρu(1))]

Iω f (1, u(1),c Dρu(1))
.

Hence, (3.2) becomes

u(t) = IωΨ(t, u(t),c Dρu(t)) +

m∑
1

Iω+βihi(t, u(t),c Dρu(t)) +
Iω f (t, u(t),c Dρu(t))

Iω f (1, u(1),c Dρu(1))
×(

ψ2(u(η)) − IωΨ(1, u(1),c Dρu(1)) − Iω f (1, u(1),c Dρu(1)) + ψ1(u(η))−
m∑
1

Iω−βihi(1, u(1),c Dρu(1))) = IωΨ(t, u(t),c Dρu(t)) +

m∑
1

Iω+βihi(t, u(t),c Dρu(t))

+ ψ1(u(η)) +
Iω f (t, u(t),c Dρu(t))

Iω f (1, u(1),c Dρu(1))
(
ψ2(u(η)) − ψ1(u(η)) − IωΨ(1, u(1),c Dρu(1))

− Iω f (1, u(1),c Dρu(1)) −
m∑
1

Iω+βihi(1, u(1),c Dρu(1))),
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which can be rewritten as

u(t) = IωΨ(t, u(t),c Dρu(t)) +

m∑
1

Iω+βihi(t, u(t),c Dρu(t)) + ψ1(u(η))+

Iω f (t, u(t),c Dρu(t))
Iω f (1, u(1),c Dρu(1))

(
ψ2(u(η)) − ψ1(u(η)) − IωΨ(1, u(1),c Dρu(1))−

Iω f (1, u(1),c Dρu(1)) −
m∑
1

Iω+βihi(1, u(1),c Dρu(1))).

(3.3)

�

From (3.3), it follows that

cDρu(t) = Iω−ρΨ(t, u(t),c Dρu(t)) +

m∑
1

Iω+βi−ρhi(t, u(t),c Dρu(t))

+
Iω−ρ f (t, u(t),c Dρu(t))
Iω f (1, u(1),c Dρu(1))

(
ψ2(u(η)) − ψ1(u(η)).

(3.4)

Let define A, B,C : E→ E by A = Ā + ψ1(u(η)), C = (ψ2(u(η)) − ψ1(u(η))) − C̄, where

(Āu)(t) = IωΨ(t, u(t),c Dρu(t)) +

m∑
1

Iω+βihi(t, u(t),c Dρu(t)),

(Bu)(t) =
Iω f (t, u(t),c Dρu(t))

Iω f (1, u(1),c Dρu(1))
,

(C̄u)(t) = IωΨ(1, u(1),c Dρu(1)) + Iω f (1, u(1),c Dρu(1))+
m∑
1

Iω+βihi(1, u(1),c Dρu(1))),

(3.5)

then (3.3) takes the form of the operator equation

u(t) = Au(t) + Bu(t)Cu(t) = Tu(t), t ∈ I, (3.6)

and fixed points of the operator Eq (3.6) are solutions of the BVP (1.1). Further, from (3.4), it follows
that

cDρ(Āu)(t) = Iω−ρΨ(t, u(t),c Dρu(t)) +

m∑
1

Iω+βi−ρhi(t, u(t),c Dρu(t)),

cDρ(Bu)(t) =
Iω−ρ f (t, u(t),c Dρu(t))
Iω f (1, u(1),c Dρu(1))

,

cDρ(C̄u)(t) = 0.

(3.7)
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Using (3.5), and (3.7), we obtain

|(Āu)(t)| ≤ |IωΨ(t, u(t),c Dρu(t))| +
m∑
1

|Iω+βihi(t, u(t),c Dρu(t))|,

|cDρ(Āu)| ≤ |Iω−ρΨ(t, u(t),c Dρu(t))| +
m∑
1

|Iω+βi−ρhi(t, u(t),c Dρu(t))|,

|(Bu)(t)| ≤
|Iω f (t, u(t),c Dρu(t))|
|Iω f (1, u(1),c Dρu(1))|

, |cDρ(Bu)(t)| ≤
|Iω−ρ f (t, u(t),c Dρu(t))|
|Iω f (1, u(1),c Dρu(1))|

,

|(C̄u)(t)| = |IωΨ(1, u(1),c Dρu(1))| + |Iω f (1, u(1),c Dρu(1))|

+

m∑
1

|Iω+βihi(1, u(1),c Dω−1u(1)))|, |cDρ(C̄u)(t)| = 0.

(3.8)

The following data depended results need to be hold to establish our main results.

(H1) f , hi, g fulfill the criteria of Caratheódory conditions.
(H2) For constants τ1, τ2, d1, d2, c1, c2, one has

|ψi(u1(t)) − ψi(u2(t))| ≤ τi|u1 − u2|, i = 1, 2
|ψi(u)| ≤ ci|u| + di, i = 1, 2.

(H3) Let we have continuous mappings θi, µ, δ : I→ R, with 0 < ξ, λ, such that for u ∈ E that

|hi(t, u(t),c Dρu(t))| ≤ |θi(t)|(‖u‖ + ‖cDρu‖) + ξ = |θi(t)|‖u‖ρ + ξ,

| f (t, u(t),c Dρu(t))| ≤ |µ(t)|(‖u‖ + ‖cDρu‖) + λ = |µ(t)|‖u‖ρ + λ,

|g(t, u(t), Iγu(t))| ≤ δ(t).

(H4) There exists τi > 0, such that for u1, u2 ∈ E,

| f (t, u1(t),c Dρu1(t)) − f (t, u2(t),c Dρu2(t))| ≤ µ0‖u1 − u2‖ρ,

|hi(t, u1(t),c Dρu1(t)) − hi(t, u2(t),c Dρu2(t))| ≤ θi‖u1 − u2‖ρ,

|g(t, u1(t), (t)) − g(t, u2(t), Iγu2(t))| ≤ δ0‖u1 − u2‖,

|ψi(u1(t)) − ψi(u2(t))| ≤ τi|u1 − u2|, i = 1, 2,

where

µ0 = max
t∈I

µ(t), δ0 = max
t∈I

δ(t), θi = max
t∈I
|θi(t)|, i = 1, 2, 3, · · · ,m.
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Under the hypothesis (H3), we have the following relation

|Ψ(t, u(t),c Dρu(t))| ≤
δ0

Γ(ϑ + 1)
(µ0‖u‖ρ + λ),

|IωΨ(t, u(t),c Dρu(t))| ≤
δ0

Γ(ω + 1)Γ(ϑ + 1)
(µ0‖u‖ρ + λ),

|Iω−ρΨ(t, u(t),c Dρu(t))| ≤
δ0

Γ(ω − ρ + 1)Γ(ϑ + 1)
(µ0‖u‖ρ + λ),

|Iω f (t, u(t),c Dρu(t))| ≤
1

Γ(ω + 1)
(µ0‖u‖ρ + λ),

|Iω+βihi(t, u(t),c Dρu(t))| ≤
1

Γ(ω + βi + 1)
(θi‖u‖ρ + ξ),

|Iω+βi−ρhi(t, u(t),c Dρu(t))| ≤
1

Γ(ω + βi − ρ + 1)
(θi‖u‖ρ + ξ).

(3.9)

Using (3.8), and (3.9) together with the hypothesis H2,H3, we obtain the following relations

|(Āu)(t)| ≤
δ0(µ0‖u‖ρ + λ)

Γ(ϑ + 1)Γ(ω + 1)
+

m∑
1

(θi‖u‖ρ + ξ)
Γ(ω + βi + 1)

,

|cDρ(Āu)| ≤
δ0(µ0‖u‖ρ + λ)

Γ(ϑ + 1)Γ(ω − ρ + 1)
+

m∑
1

(θi‖u‖ρ + ξ)
Γ(ω + βi − ρ + 1)

,

|(Bu)(t)| ≤
(µ0‖u‖ρ + λ)
ΛΓ(ω + 1)

, |cDρ(Bu)(t)| ≤
(µ0‖u‖ρ + λ)

ΛΓ(ω − ρ + 1)
,

|(C̄u)(t) ≤
δ0(µ0||u||ρ + λ)

Γ(ω + 1)Γ(ϑ + 1)
+

m∑
1

(θi‖u||ρ + ξ)
Γ(ω + βi + 1)

,

|cDρ(C̄u)(t)| = 0,

(3.10)

where Λ = |IωΨ(1, u(1),c Dρu(1)). Thus, under the hypothesis H4, we have the following relation

|Iϑg(t, u1(t), Iγu1(t)) − Iϑg(t, u2(t), Iγu2(t))| ≤
ρ0

Γ(ϑ + 1)
‖u1 − u2‖,

|Ψ(t, u1(t),c Dρu1(t)) − Ψ(t, u2(t),c Dρu2(t))| ≤
(δµ + ρ0(‖u‖ρ + λ))

Γ(ϑ + 1)
‖u1 − u2‖ρ.

(3.11)

Further, we have

IωΨ(t1, u(t1),c Dρu(t1)) − IωΨ(t2, u(t2),c Dρu(t2)) =

1
Γ(ω)

[ ∫ t1

0
(t1 − s)ω−1Ψ(s, u(s),c Dρu(s))ds −

∫ t2

0
(t2 − s)ω−1Ψ(s, u(s),c Dρu(s))ds

]
=

1
Γ(ω)

[ ∫ t1

0
((t1 − s)ω−1 − (t2 − s)ω−1)Ψ(s, u(s),c Dρu(s)ds+∫ t2

t1
((t2 − s)ω−1 − (t2 − s)ω−1)Ψ(s, u(s),c Dρu(s))ds

]
.
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Thus, one has

|IωΨ(1t, u(t1),c Dρu(t1)) − IωΨ(t2, u(t2),c Dρu(t2))| ≤
‖Ψ(s, u(s),c Dρu(s)‖

Γ(ω + 1)
(
2(t2 − t1)ω + tω1 − tω2

)
,

which in view of (3.9) implies that

|IωΨ(t1, u(t1),c Dρu(t1)) − IωΨ(t2, u(t2),c Dρu(t2))| ≤
δ0(µ0‖u‖ρ + λ)

Γ(ϑ + 1)Γ(ω + 1)
(
2(t2 − t1)ω + tω1 − tω2

)
.

(3.12)

Similarly, in view of (3.9), we obtain

|Iω−ρΨ(t1, u(t1),c Dρu(t1)) − Iω−ρΨ(t2, u(t2),c Dρu(t2))| ≤
δ0(µ0‖u‖ρ + λ)

Γ(ϑ + 1)Γ(ω − ρ)
(
2(t2 − t1)ω−ρ + tω−ρ1 − tω−ρ2

)
,

(3.13)

|Iω+βihi(t1, u(t1),c Dρu(t1)) − Iω+βihi(t2, u(t2),c Dρu(t2))| ≤
(θi‖u‖ρ + ξ)

Γ(ω + βi + 1)
(
2(t2 − t1)ω+βi + tω+βi

1 − tω+βi
2

)
,

(3.14)

|Iω+βi−ρhi(t1, u(t1),c Dρu(t1)) − Iω+βi−ρhi(t2, u(t2),c Dρu(t2))| ≤
(θi‖u‖ρ + ξ)

Γ(ω + βi − ρ + 1)
(
2(t2 − t1)ω+βi−ρ + tω+βi−ρ

1 − tω+βi−ρ
2

)
,

(3.15)

|Iω f (t1, u(t1),c Dρu(t1)) − Iω f (t2, u(t2),c Dρu(t2))| ≤
((µ0‖u‖ρ + λ)

Γ(ω + 1)
(
2(t2 − t1)ω + tω1 − tω2

)
,

(3.16)

|Iω−ρ f (t1, u(t1),c Dρu(t1)) − Iω−ρ f (t2, u(t2),c Dρu(t2))| ≤
((µ0‖u‖ρ + λ)
Γ(ω − ρ + 1)

(
2(t2 − t1)ω−ρ + tω−ρ1 − tω−ρ2

)
.

(3.17)

Hence, it follows that

|Au1(t) − Au2(t)| ≤
1

Γ(ω + 1)
|Ψ(t, u1(t),Dρu1(t)) − Ψ(t, u2(t),Dρu2(t))|+

m∑
1

|hi(t, u1(t),Dρu1(t)) − hi(t, u2(t),Dρu2(t))|
Γ(ω + βi + 1)

+ |ψ1(u1)(η) − ψ1(u2)(η)|,

which in view (3.11), and H4 implies that

|Au1(t) − Au2(t)| ≤
(δµ + ρ0(‖u‖ρ + λ)
Γ(ω + 1)Γ(ϑ + 1)

‖u1 − u2‖ρ +

m∑
1

|θi|‖u1 − u2‖ρ

Γ(ω + βi + 1)
+ τ1‖u1 − u2‖

≤
( (δµ + ρ0(‖u‖ρ + λ)

Γ(ω + 1)Γ(ϑ + 1)
+

m∑
1

|θi|

Γ(ω + βi + 1)
+ τ1

)
‖u1 − u2‖ρ.

(3.18)
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In addition, we have

|DρAu1(t) − DρAu2(t)| ≤ Iω−ρ|Ψ(t, u1(t),Dρu1(t)) − Ψ(t, u2(t),Dρu2)(t)|+
m∑
1

Iω+βi−ρ|(hi(t, u1(t),Dρu1(t)) − hi(t, u2(t),Dρu2(t))|,

which in view (3.11), and H4 implies that

|DρAu1(t) − DρAu2(t)| ≤
(δµ + ρ0(‖u‖ρ + λ)

Γ(ω − ρ + 1)Γ(ϑ + 1)
‖u1 − u2‖ρ +

m∑
1

|θi|‖u1 − u2‖ρ

Γ(ω + βi − ρ + 1)

=
( (δµ + ρ0(‖u‖ρ + λ)
Γ(ω − ρ + 1)Γ(ϑ + 1)

+

m∑
1

|θi|

Γ(ω + βi − ρ + 1)
)
‖u1 − u2‖ρ.

(3.19)

From (3.23), and (3.19), it follows that

‖Au1(t) − Au2(t)‖ρ ≤
( (δµ + ρ0(‖u‖ρ + λ)

Γ(ϑ + 1)
(

1
Γ(ω + 1)

+
1

Γ(ω − ρ + 1)
)

+

m∑
1

(
|θi|

Γ(ω + βi + 1)
+

|θi|

Γ(ω + βi − ρ + 1)
) + τ1

)
‖u1 − u2‖ρ = κ1‖u1 − u2‖ρ,

(3.20)

where κ1 =
(δµ+ρ0(‖u‖ρ+λ)

Γ(ϑ+1) ( 1
Γ(ω+1) + 1

Γ(ω−ρ+1) ) +
∑m

1 ( |θi |

Γ(ω+βi+1) + |θi |

Γ(ω+βi−ρ+1) ) + τ1. Now

|Bu1(t) − Bu2(t)| ≤
Iω|( f (t, u1(t),Dρu1(t)) − f (t, u2(t),Dρu2(t))

Λ
,

|DρBu1(t) − DρBu2(t)| ≤
Iω−ρ|( f (t, u1(t),Dρu1(t)) − f (t, u2(t),Dρu2(t))|

Λ
,

using H4 yields

|Bu1(t) − Bu2(t)| ≤
µ‖u1 − u2‖

ΛΓ(ω + 1)
,

|DρBu1(t) − DρBu2(t)| ≤
µ‖u1 − u2‖

ΛΓ(ω − ρ + 1)
.

Hence, it follows that

‖Bu1 − Bu2‖ρ ≤
µ

Λ
(

1
Γ(ω + 1)

+
1

Γ(ω − ρ + 1)
)‖u1 − u2‖ρ = κ2‖u1 − u2‖ρ, (3.21)

whereκ2 =
µ

Λ
( 1

Γ(ω+1) + 1
Γ(ω−ρ+1) ).

|Cu1(t) − Cu2(t)| ≤ |ψ2(u1) − ψ2(u2)| + |ψ1(u1) − ψ1(u2)| + |IωΨ(1, u1(1),Dρu1(1))
− IωΨ(1, u1(1),Dρu1(1))| + |Iω f (1, u1(1),Dρu1(1)) − Iω f (1, u1(1),Dρu1(1))|+

m∑
1

|Iω+βihi(1, u1(1),Dρu1(1)) − Iω+βihi(1, u1(1),Dρu1(1))|.
(3.22)

AIMS Mathematics Volume 8, Issue 4, 9740–9760.



9751

Using(3.11), and H4, we obtain

|Cu1(t) − Cu2(t)| ≤ (τ1 + τ2)|u1 − u2| +
(δµ + ρ0(‖u‖ρ + λ)
Γ(ω + 1)Γ(ϑ + 1)

‖u1 − u2‖ρ+

µ0

Γ(w + 1)
‖u1 − u2‖ρ +

m∑
1

θi‖u1 − u2‖ρ

Γ(ω + βi + 1)
≤

( (δµ + ρ0(‖u‖ρ + λ)
Γ(ω + 1)Γ(ϑ + 1)

+

µ0

Γ(w + 1)
+

m∑
1

|θi|

Γ(ω + βi + 1)
+ τ1 + τ2

)
‖u1 − u2‖ρ = κ3‖u1 − u2‖ρ,

(3.23)

where κ3 =
(δµ+ρ0(‖u‖ρ+λ)
Γ(ω+1)Γ(ϑ+1) +

µ0
Γ(w+1) +

∑m
1

|θi |

Γ(ω+βi+1) + τ1 + τ2.

Theorem 3.2. Under the hypothesis H1–H3, the operator Ā is compact and satisfies the following
growth condition ‖Āu‖ρ ≤ ∆1‖u‖ρ + ∆2, where

∆1 =
δ0µ0

Γ(ϑ + 1)
(

1
Γ(ω + 1)

+
1

Γ(ω − ρ + 1)
) +

m∑
1

(
θi

Γ(ω + βi + 1)
+

θi

Γ(ω + βi − ρ + 1)
), (3.24)

and

∆2 =
δ0λ

Γ(ϑ + 1)
(

1
Γ(ω + 1)

+
1

Γ(ω − ρ + 1)
) +

m∑
1

(
ξ

Γ(ω + βi + 1)
+

ξ

Γ(ω + β1 − ρ + 1)
). (3.25)

Proof. Here (Āu)(t) = IωΨ(t, u(t),c Dρu(t)) +
∑m

1 Iω+βihi(t, u(t),c Dρu(t)), clearly, Ā is continuous on E.
Now, for u ∈ E, using (3.10), we have

‖Āu‖ρ = ‖Āu‖ + ‖cDρĀu‖ ≤
δ0(µ0‖u‖ρ + λ)

Γ(ϑ + 1)
(

1
Γ(ω + 1)

+
1

Γ(ω − ρ + 1)
)+

m∑
1

(θi‖u‖ρ + ξ))(
1

Γ(ω + βi + 1)
+

1
Γ(ω + βi − ρ + 1)

) =

( δ0µ0

Γ(ϑ + 1)
(

1
Γ(ω + 1)

+
1

Γ(ω − ρ + 1)
) +

m∑
1

(
θi

Γ(ω + βi + 1)
+

θi

Γ(ω + βi − ρ + 1)
)
)
‖u‖ρ

+
δ0λ

Γ(ϑ + 1)
(

1
Γ(ω + 1)

+
1

Γ(ω − ρ + 1)
) +

m∑
1

(
ξ

Γ(ω + βi + 1)
+

ξ

Γ(ω + β1 − ρ + 1)
).

Hence
‖Au‖ρ ≤ ∆1‖u‖ρ + ∆2. (3.26)

(3.26) yields that Ā is uniformly bounded for bounded set on E. Let, t1 < t2 ∈ I, and consider

|Ā(u)t2 − Ā(u)t1| + |(cDρĀu)t2 − (cDρĀu)t1| ≤

|IωΨ(t1, u(t1),c Dρu(t1)) − IωΨ(t2, u(t2),c Dρu(t2))|

+

m∑
1

|Iω+βihi(t1, u(t1),c Dρu(t1) − Iω+βihi(t2, u(t2),c Dρu(t2)|.
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In view of (3.12), and (3.14), we obtain

|Ā(u)t2 − Ā(u)t1| ≤

δ0
Γ(ϑ+1) (µ0‖u‖ρ + λ)

Γ(ω + 1)
(
2(t2 − t1)ω + tω1 − tω2

)
+

m∑
1

(θi‖u‖ρ + ξ)
Γ(ω + βi + 1)

(
2(t2 − t1)ω+βi + tω+βi

1 − tω+βi
2

)
, ,

(3.27)

in view of (3.13), and (3.15), we obtain

|cDρĀ(u)t2 −
c DρĀ(u)t1| ≤ |Iω−ρΨ(t1, u(t1),c Dρu(t1)) − Iω−ρΨ(t2, u(t2),c Dρu(t2))|+

m∑
1

|Iω+βi−ρhi(t1, u(t1),c Dρu(t1) − Iω+βi−ρhi(t2, u(t2),c Dρu(t2)|

≤

δ0
Γ(ϑ+1) (µ0‖u‖ρ + λ)

Γ(ω − ρ)
(
2(t2 − t1)ω−ρ + tω−ρ1 − tω−ρ2

)
+

m∑
1

(θi‖u‖ρ + ξ)
Γ(ω + βi − ρ + 1)

(
2(t2 − t1)ω+βi−ρ + tω+βi−ρ

1 − tω+βi−ρ
2

)
.

(3.28)

From (3.27) and (3.28), it follows that

‖Ā(u)t2 − Ā(u)t1‖ρ = ‖Ā(u)t2 − Ā(u)t1‖ + ‖(cDρĀu)t2 − (cDρĀu)t1‖ → 0 as t1 → t2. (3.29)

Thus Ā is equi continuous, and by Arzelá- Ascoli theorem Ā is relatively compact. Hence, Ā is µ-
Lipschtiz with constant 0. �

Lemma 3.3. Under the hypothesis H1–H3, the operator A is µ-Lipschtiz with constant τ1 and satisfes
the following growth condition

‖Au‖ρ ≤ (∆1 + c1)‖u‖ρ + (∆2 + d1). (3.30)

Proof. By H2, the operator ψ1(η) is µ-Lipschtiz with constant τ1 and by Lemma (3.2), the operator Ā is
µ-Lipschtiz with constant 0. Hence, the operator A = Ā+ψ1(η) is µ-Lipschtiz with constant τ1. Since,
‖Āu‖ρ ≤ ∆1‖u‖ρ + ∆2 by Lemma (3.2), it follows that ‖Au‖ρ ≤ (∆1 + c1)‖u‖ρ + (∆2 + d1). �

Lemma 3.4. Under the hypothesis H1–H3, the operator B is continuous and compact.

Proof. Here, (Bu)(t) =
Iω f (t,u(t),cDρu(t))

Iω f (1,u(1),cDρu(1)) . Clearly, B is continuous on E and bounded as

|(Bu)(t)| = |
|Iω f (t, u(t),c Dρu(t))|

Λ
≤ 1. (3.31)

For equi-continuity, choose t1 < t2 ∈ I, and consider

|B(u)t2 − B(u)t1| + |(cDρBu)t2 − (cDρBu)t1| ≤

|Iω f (t2, u(t2),c Dρu(t2)) − Iω f (t1, u(t1),c Dρu(t1))|
Λ

.
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In view of (3.16) , we obtain

|B(u)t2 − B(u)t1| ≤
((µ0‖u‖ρ + λ)
Γ(ω + 1)Λ

(
2(t2 − t1)ω + tω1 − tω2

)
, (3.32)

in view of (3.17), we obtain

|cDρB(u)t2 −
c DρB(u)t1| ≤

((µ0‖u‖ρ + λ)
Γ(ω − ρ + 1)Λ

(
2(t2 − t1)ω−ρ + tω−ρ1 − tω−ρ2

)
. (3.33)

From (3.32) and (3.33), it follows that

‖B(u)t2 − B(u)t1‖ρ = ‖B(u)t2 − B(u)t1‖ + ‖(cDρBu)t2 − (cDρBu)t1‖ → 0 as t1 → t2. (3.34)

Therefore, B is equi continuous. Therefore, using Arzelá- Ascoli theorem, B is compact. �

Lemma 3.5. Under the hypothesis H1–H3, the operator C̄ is compact and satisfies the following growth
condition

‖C̄u‖ρ ≤ ∆3‖u‖ρ + ∆4, (3.35)

where

∆3 =
δ0µ0

Γ(ω + 1)Γ(ϑ + 1)
+

µ0

Γ(ω + 1)
+

m∑
1

(
θi

Γω + βi + 1
),

and

∆4 =
λδ0

Γ(ω + 1)Γ(ϑ + 1)
+

λ

Γ(ω + 1)
+

m∑
1

ξ

Γ(ω + βi + 1)
.

Proof. The continuity of C̄ follows from the definition of C̄. In addition, we have

|C̄u(t)| ≤ |IωΨ(1, u(1),c Dρu(1))| + |Iω f (1, u(1),c Dρu(1))| +
m∑
1

|Iω+βihi(1, u(1),c Dρu(1)))|

which is in view of (3.9) implies that

|C̄u(t)| ≤
δ0(µ0‖u‖ρ + λ)

Γ(ω + 1)Γ(ϑ + 1)
+

1
Γ(ω + 1)

(µ0‖u‖ρ + λ) +

m∑
1

(θi‖u‖ρ + ξ)
Γ(ω + βi + 1)

.

Hence, it follows that

‖C̄(u)‖ρ ≤
δ0(µ0‖u‖ρ + λ)

Γ(ω + 1)Γ(ϑ + 1)
+

1
Γ(ω + 1)

(µ0‖u‖ρ + λ) +

m∑
1

(θi‖u‖ρ + ξ)
Γ(ω + βi + 1)

. (3.36)

The equi-continuity of C̄ follows from the fact that

|C̄(u)t2 − C̄(u)t1| = 0, for all t1, t2 ∈ I.

Hence, C̄ is compact and it follows that C̄ is µ-Lipschtiz with constant 0. �
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Lemma 3.6. Under the hypothesis H1–H3, the operator C is µ-Lipschtiz with constant τ and satisfies
the following growth condition

‖Cu‖ρ ≤ (∆3 + c1)‖u‖ρ + (∆4 + d1). (3.37)

Proof. Define F(u) = ψ2(u(η)) − ψ1(u(η)), for u1, u2 ∈ E, consider

|F(u2)t − F(u1)t| ≤ |ψ1(u2(η)) − ψ1(u1(η))| + |ψ2(u2(η)) − ψ2(u1(η))|,

which in view of H2 implies that

|F(u2)t − F(u1)t| ≤ (τ1 + τ2)‖u2 − u1‖ = τ‖u2 − u1‖,

τ = τ1 + τ2. Since C = (ψ2(u(η)) − ψ1(u(η))) − C̄ = F(u) − C̄ and by Lemma 3.5 C̄ is µ-Lipschtiz with
constant 0. Hence, C is µ-Lipschtiz with constant τ. Further, ‖C̄u‖ρ ≤ ∆3‖u‖ρ + ∆4 by Lemma 3.5, it
follows that

‖Cu‖ρ ≤ (∆3 + c1)‖u‖ρ + (∆4 + d1). (3.38)

�

Choose the parameters such that ∆1 + ∆3 + 2c1 + c2 < 1. Choose R ≥ max{τ1 + τ, ∆2+∆4+2d1+d2
1−(∆1+∆3+2c1+c2) }.

Define S = {u ∈ E : ‖u‖ρ ≤ R}, then S is closed, convex and bounded subset of E.

Theorem 3.7. Under the assumptions (H1)–(H3), the system (3.6) has at least one solution u ∈ E
provided ∆1 + ∆3 + 2c1 + c2 < 1.

Proof. By Lemma 3.3, the operator A is µ-Lipschitz with constant τ1. Using Lemma 3.6, the operator
C is µ-Lipschitz with constant τ. By Lemma 3.4, the operator B is compact. Now for v ∈ S and u ∈ E,
consider the equation u = Au + BvCu, which implies that

‖u‖ρ ≤ ‖Au||ρ + ‖By‖ρ‖Cu‖ρ.

Using (3.30), (3.31) and (3.37), we obtain

‖u‖ρ ≤ (∆1 + c1)‖u‖ρ + (∆2 + d1) + (∆3 + c1 + c2)‖u‖ρ + (∆4 + d1 + d2).

That implies
(1 − (∆1 + ∆3 + 2c1 + c2))‖u‖ρ ≤ (∆2 + ∆4 + 2d1 + d2).

Hence, it follows that

‖u‖ρ ≤
∆2 + ∆4 + 2d1 + d2

(1 − (∆1 + ∆3 + 2c1 + c2)
≤ R

which implies that u ∈ S . Further we have M = ‖Bu‖ρ = 1 and R ≥ τ1 + τ. Finally from above, we
conclude that (3.6) has at least one solution u ∈ E. �

Theorem 3.8. Under the assumptions (H1)–(H4), the system (3.6) has a unique solution in S provided
that

κ1 + κ2((∆3 + c1)R + (∆4 + d1)) + k3 < 1. (3.39)
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Proof. For u1, u2 ∈ S, Consider

‖T (u2) − T (u1)‖ρ = ‖Au2 + Bu2Cu2 − (Au1 + Bu1Cu1)‖ρ ≤
‖Au2 − Au1‖ρ + ‖Cu1‖ρ‖Bu2 − Bu1‖ρ + ‖Bu2‖ρ‖Cu2 −Cu1‖ρ.

(3.40)

By (3.20), (3.21), and (3.23), we have

‖Au2 − A(u1)‖ρ ≤ κ1‖u1 − u2‖ρ,

‖Bu2 − B(u1)‖ρ ≤ κ2‖u1 − u2‖ρ,

‖Cu2 − C(u1)‖ρ ≤ κ3‖u1 − u2‖ρ.

(3.41)

Using (3.41) in (3.40), we obtain

‖Tu2 − Tu1‖ρ ≤ κ1‖u1 − u2‖ρ + ‖Cu1‖ρκ2‖u1 − u2‖ρ + κ3‖u1 − u2‖ρ‖Bu2‖ρ

which in view of (3.31), and (3.38) implies that

‖Tu2 − Tu1‖ρ ≤κ1‖u1 − u2‖ρ + ((∆3 + c1)‖u‖ρ + (∆4 + d1))κ2‖u1 − u2‖ρ+

κ3‖u1 − u2‖ρ.

Further, the above relation implies that

‖Tu1 − Tu2‖ρ ≤ (κ1 + κ2((∆3 + c1)‖u‖ρ + (∆4 + d1)) + k3)‖u1 − u2‖ρ

≤ (κ1 + κ2((∆3 + c1)R + (∆4 + d1)) + k3)‖u1 − u2‖ρ,
(3.42)

and uniqueness follows by the Banach contraction principle. �

4. Ulam Hyers stability

U-H stability result is developed for (1.1). For detail introduction and results of U-H stability, we
refer [47, 48].

Definition 4.1. The problem (3.6) is said to be U-H stable, if there exists a constant ζ > 0, such that
for a given ϕ > 0, and for each solution u of the inequality

‖u − (Au + BuCu)‖ρ < ϕ, (4.1)

there exists a solution ū(t) of (3.6). Then one has

ū(t) = Aū(t) + Bū(t)Cū(t),

such that
‖u − ū‖ρ < ϕζ.

Theorem 4.2. Under the assumptions (H2) and (H4), the problem (1.1) is U-H stable provided
k + k1 < 1.
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Proof. Let u ∈ E satisfies the inequality (4.1), and ū ∈ E be a solution of (1.1) which satisfies the
Eq (3.6). Consider

‖u − ū‖ρ = ‖u − (Aū + BūCū)‖ρ ≤ ‖u − (Au + BuCu)‖ρ
+ ‖(Au + BuCu) − (Aū + BūCū)‖ρ < ϕ + ‖Tu − Tū‖ρ.

(4.2)

Now using (3.42) and (4.1), we obtain

‖u − ū‖ρ ≤ϕ + (κ1 + κ2((∆3 + c1)R + (∆4 + d1)) + k3)‖u1 − u2‖ρ

= ϕ + K‖u1 − u2‖ρ,
(4.3)

where K = κ1 + κ2((∆3 + c1)R + (∆4 + d1)) + k3. Hence, it follows that

‖u − ū‖ρ < ϕζ, where ζ =
1

1 − K
.

�

5. Illustrative application

Here, we present an application to demonstrate our results.

Example 5.1. Consider the following problem by taking n = 2 as

cD0.5
[ cD1.5u(t) −

∑m
1 I1.5hi(t, u(t),c D1.5u(t))

f (t, u(t),c D1.5u(t))

]
= g(t, u(t), I1.5u(t)), t ∈ I = [0, 1],

u(0) = ψ1(u(0.5)), u′(0) = 0, u(1) = ψ2(u(0.5)).
(5.1)

Consider

hi(t, u(t),c D1.5u(t)) =
sin |u(t)| + sin |cD1.5u(t)|

100 + t2 ,

f (t, u(t),c D1.5u(t)) =
sin |u(t)| +

√
|cD1.5u(t)|

50 + e−t2
,

g(t, u(t), I1.5u(t)) =

√
|u(t)| + I1.5u(t)

150 + t
,

ψ1(u(0.5)) =
sin |u(0.5)|

50
, ψ2(u(0.5) =

sin |u(0.5)|
50

.

It is easy to show that the conditions of Theorem 3.2 and 3.8 are satisfied. Therefore, the given
problem (5.1) has at least one solution. Further, the solution uniqueness condition also holds. Also,
one can obviously verified the condition of U-H stability given in Theorem 4.2.

6. Conclusions

In this manuscript, a nonlinear problem of S-HFDEs has been investigated by using a sophisticated
tool known as topological degree theory. We have used a degree of non-compactness along with

AIMS Mathematics Volume 8, Issue 4, 9740–9760.
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Caratheódory condition to establish appropriate results for the qualitative theory. Usually, fixed point
theory involves strong compact conditions which require more restrictions on the nonlinear operators.
Therefore, to replace the strong compact condition with some weaker compact condition, the proposed
degree theory is a powerful tool. The concerned tool has the ability to relax the criteria and hence
can be applied to large numbers of nonlinear problems of differential and integral equations. On the
other hand, stability is an important consequence of nonlinear analysis. Therefore, a result based on
U-H concepts for stability has been established. Finally, to verify our obtained results, we have given
an illustrative problem. In the future, the degree theory will be applied in hybrid problems of fractal-
fractional differential equations which have the ability to describe complex and irregular geometry in
more diligent ways. Also, the mentioned degree theory has not yet been used in dealing with non-
singular type hybrid fractional differential equations. Therefore, the aforesaid area will be our next
target.
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