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1. Introduction

In recent years, mathematical epidemic models have been extensively investigated in order to under-
stand the dynamics and control the spreading of various diseases, see for instance [4–7, 11, 13–15, 19,
20, 23–27] and the references therein. Related to this work are the following studies. Zhang et al. [26]
investigated a non-autonomous SIRS epidemic model with a standard incidence rate and distributed
delays of the form

Ṡ (t) = Λ(t) − β(t)
∫ τ

0
p(ξ)I(t − ξ)S (t) dξ − µ1(t)S (t) + γ(t)R(t),

İ(t) = β(t)
∫ τ

0
p(ξ)I(t − ξ)S (t) dξ − (µ2(t) + k(t))I(t),

Ṙ(t) = k(t)I(t) − (µ3(t) + γ(t))R(t),

(1.1)

where S (t), I(t), and R(t) are the numbers of susceptible, infectious, and recovered individuals at time
t, respectively. The distributed delays are used to model the infection mechanisms of some diseases,
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where infected individuals may not be infectious until some time after becoming infected, and that the
infectivity is a function of the duration since infection, up to some maximum duration. Various (time-
dependent) parameters in (1.1) are defined as follows: Λ is the growth (or recruitment) rate of the
population, β is the daily contact rate, that is the average number of contacts per day, µi, for i = 1, 2, 3,
are the instantaneous per capita mortality rates of S -, I-, and R-classes, respectively, γ is the rate that
the recovered individual loses immunity and returns to be susceptible, ξ is a time taken for an infected
individual to become infectious and p(ξ) is the distributed proportion of the population taking time
ξ after being infected to become infectious, τ is the infected period, and k is the recovery rate that
can incorporate basic medical treatment and prevention of the disease. The main result in [26] is that
they obtain two threshold values R⋆ and R⋆, which depend on the parameters of the model, so that the
disease is permanent if R⋆ > 1 while if R⋆ < 1 then the disease extincts. Global behavior of the model
is also studied using the Lyapunov functional method.

Enatsu et al. [3] investigated an autonomous version of (1.1), i.e. Λ, β, µ1, γ, µ2, k, µ3 are constants,
but with a general nonlinear incidence rate and distributed delays of the form

β

∫ τ

0
p(ξ)g(I(t − ξ))S (t) dξ, (1.2)

where the nonlinear function g(I) satisfies

(A1) g(I) is continuous and monotone increasing on [0,∞) with g(0) = 0, and

(A2) g(I)/I is monotone decreasing on (0,∞) with limI→0+ g(I)/I = 1.

Using the Lyapunov functional method, the authors derived the basic reproduction number R0 and
established sufficient conditions of the rate of immunity loss for the global asymptotic stability of an
endemic equilibrium for the model.

To mitigate the impact of the disease, some control and prevention should be included into modeling
the disease. [16, 22] investigated SIR and SIRS epidemic models where the impact of health care
resources especially hospital beds is included, so that the recovery rate is a nonlinear function of I of
the form

k(I, t) = k0 + (k1 − k0)
b(t)

I + b(t)
(0 < k0 ≤ k1, b(t) > 0). (1.3)

Here, according to [22], k1 is the maximum per capita recovery rate when health care resources are
adequate and the number of infected people is low, k0 is the minimum per capita recovery rate due to
the lack of basic clinical resources, and b is a parameter measuring the availability of hospital beds.
Complex dynamics of the models are then derived in those papers.

Based on the above discussions, it is interesting to consider the following general non-autonomous
SIRS epidemic model

Ṡ (t) = Λ(t) − β(t)
∫ τ

0
p(ξ)g(I(t − ξ))S (t) dξ − µ1(t)S (t) + γ(t)R(t),

İ(t) = β(t)
∫ τ

0
p(ξ)g(I(t − ξ))S (t) dξ − (µ2(t) + k(I(t), t))I(t),

Ṙ(t) = k(I(t), t)I(t) − (µ3(t) + γ(t))R(t),

(1.4)
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where S (t), I(t), and R(t) and Λ(t), β(t), µ1(t), γ(t), µ2(t), µ3(t), p(ξ) are the same as explained in (1.1)
and (1.2). In the model (1.4), however, we relax the assumptions (A1), (A2) and also we do not require
the nonlinear recovery rate k(I, t) to have the form (1.3). Namely, for k(I, t), we assume that there are
positive constants k0, k1 such that

k0 ≤ k(I, t) ≤ k1 (1.5)

for all I ≥ 0 and t ≥ 0. For g(I), it is assumed to be continuous, g(I) ≥ 0 on [0,∞), g(0) = 0 and
g(I) > 0 for I > 0, and also that limx→0+(g(x)/x) exists and is positive. Now we define the function

f (I) =

g(I)/I if I > 0,
limx→0+(g(x)/x) if I = 0.

(1.6)

In epidemiology, f is the transmission function of the disease. Observe that f is continuous and
f (I) > 0 on [0,∞). Clearly, g(I) = I f (I), so the incidence rate appearing in (1.4) can be expressed as

β(t)
∫ τ

0
p(ξ) f (I(t − ξ))I(t − ξ)S (t) dξ. (1.7)

Let us mention some specific examples of incidence rates. If f (I) = 1 is constant, then g(I)S = IS is
simply the standard (or bilinear) incidence rate; if f (I) = α3/(1 + α1I), then g(I)S = α3IS/(1 + α1I) is
the saturated incidence rate [2]; if f (I) = α3/(1 + α2I + α1I2), then g(I)S = α3IS/(1 + α2I + α1I2) is
the non-monotone incidence rate [8, 19, 20].

An interesting and important question is whether the results obtained for the continuous-time SIRS
model (1.4) can be extended to the corresponding discrete-time epidemic model. In this work, we
investigate the following discrete-time non-autonomous SIRS epidemic model: For a step size h > 0
and the maximum infectious period m ∈ N, consider

S n+1 = h
(
Λ(n) − β(n)

m∑
j=0

p j f (In− j)In− jS n+1 − µ1(n)S n+1 + γ(n)Rn+1

)
+ S n,

In+1 = h
(
β(n)

m∑
j=0

p j f (In− j)In− jS n+1 − (µ2(n) + k(In, n))In+1

)
+ In,

Rn+1 = h (k(In, n)In+1 − (µ3(n) + γ(n))Rn+1) + Rn,

S j ≥ 0, I j ≥ 0, R j ≥ 0 (−m ≤ j ≤ 0), S 0 > 0, I0 > 0,

(1.8)

where S n, In, and Rn are the numbers of susceptible, infectious, and recovered individuals at time n,
respectively, and p j ≥ 0 ( j = 0, 1, . . . ,m) is the distributed proportion of the population taking time j
to become infectious, and Λ(n), β(n), µ1(n), γ(n), µ2(n), k(In, n), µ3(n) are the discretized values of the
corresponding continuous-time functions explained in (1.1), (1.2), and (1.5). We have obtained (1.8)
from (1.4) by applying Mickens’s nonstandard finite difference discretization (see [10,17,27]; see also
Appendix for a brief introduction). Let us list some known results for (1.8). A global attractivity for
the autonomous version of (1.8) with k = k(n) and a bit more general f is investigated in [17]. In [27],
the threshold conditions are obtained for (1.8) with the non-delay standard incidence rate.
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This paper is organized as follows. In Section 2 we introduce notations and basic results used in
this work. Then we derive the positivity and boundedness of solutions (S n, In,Rn) of (1.8) in Section 3.
In Section 4, a threshold condition is obtained so that the permanence of disease for the model (1.8) is
guaranteed. Then, we derive in Section 5 a threshold condition so that the extinction of the disease for
(1.8) holds. In Section 6, some numerical simulations are presented. Finally, a discussion is given in
Section 7.

2. Notations and preliminaries

Notation. In this work, we denote

• Gn = β(n)
m∑

j=0

p j f (In− j)In− j and Kn = k(In, n).

• Π1(n) = 1 + hµ1(n), Π2(n) = 1 + hµ2(n), and Π3(n) = 1 + h(µ3(n) + γ(n)).

• For a sequence {a(n)}, denote au = lim sup
n→∞

a(n), al = lim inf
n→∞

a(n), aM = sup
n∈N0

a(n), aL = inf
n∈N0

a(n).

Same notations are applied to functions as well, e.g. f M = supI≥0 f (I) and GM = supn∈N0
Gn.

The system (1.8) is said to be permanent if there exist constants li, Li > 0 (i = 1, 2, 3) such that any
solution (S n, In,Rn) satisfies 

l1 ≤ lim inf
n→∞

S n ≤ lim sup
n→∞

S n ≤ L1,

l2 ≤ lim inf
n→∞

In ≤ lim sup
n→∞

In ≤ L2,

l3 ≤ lim inf
n→∞

Rn ≤ lim sup
n→∞

Rn ≤ L3.

(2.1)

On the other hand, (1.8) is said to exhibit extinction provided limn→∞ In = 0 for any solution.
We assume the following conditions for (1.8). First of all, Λ(n), β(n), µ1(n), µ2(n), µ3(n), γ(n) are

bounded and positive for all n ∈ N0,
∑m

j=0 p j = 1, and there are constants k0 > 0, k1 > 0 such that
k0 ≤ K(I, n) ≤ k1 for all I ≥ 0 and n ∈ N0. We list all other assumptions that will be used in this work.

(H1) f ≥ 0 is a bounded continuous function on [0,∞).

(H2) µ1(n) ≤ min{µ2(n), µ3(n)} for all n ∈ N0.

(H3) There exist n0 ∈ N, χ ≥ 1, and 0 < q < 1 such that

N∏
n=n1

1
1 + hµ1(n)

≤ χqN−n1+1 ∀N ≥ n1 ≥ n0.

(H4) There exist λ > 0 and r ∈ N ∪ {0} such that

n1+r∑
n=n1

Λ(n) ≥ λ ∀ n1 ≥ 0.
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The following key result will be used in the study of disease-free states of (1.8) and also employed
repeatedly in the investigation of the permanence and extinction phenomena. The proof is inspired by
Lemma 2 in [21] and Lemma 2.2 in [24].

Lemma 1. Let {a(n)}, {b(n)} be sequences such that a(n) > 0 and 0 < b(n) < 1 for all n ∈ N0. Assume
that au < ∞, bl > 0, and that there exist n0, χ > 0, and q ∈ (0, 1) such that

b(n1)b(n1 + 1) · · · b(n2) ≤ χqn2−n1+1 ∀ n2 ≥ n1 ≥ n0. (2.2)

Let xn be a positive solution to the equation

xn+1 = a(n)b(n) + b(n)xn (n ≥ 0) (2.3)

with initial value x0 ≥ 0. Then the following results hold:

(1) There exist constants x⋆ ≥ 0, x⋆ ≥ 0 depending only upon {a(n)} and {b(n)} such that

lim sup
n→∞

xn = x⋆ and lim inf
n→∞

xn = x⋆,

independent of the initial condition x0. In fact, we have

x⋆ = lim sup
N→∞

N∑
n=n1

a(n)b(n)b(n + 1) · · · b(N), (2.4)

x⋆ = lim inf
N→∞

N∑
n=n1

a(n)b(n)b(n + 1) · · · b(N), (2.5)

for any n1 ≥ n0, and the following estimate holds

x⋆ ≤ au χq
1 − q

. (2.6)

Moreover, each fixed solution of (2.3) is globally uniformly attractive, i.e. if x′n is also a solution
of (2.3) with initial value x′0 ≥ 0, then

lim
n→∞

(xn − x′n) = 0.

(2) Suppose there exist constants a0 > 0 and r ∈ N ∪ {0} such that

n1+r∑
n=n1

a(n) ≥ a0 ∀ n1 ≥ 0. (2.7)

Then x⋆ > 0 and x⋆ > 0.

(3) Suppose yn satisfies
yn+1 ≤ a(n)b(n) + b(n)yn ∀ n ≥ 0.

Then
lim sup

n→∞
yn ≤ x⋆.

If in addition y0 ≤ x0 then yn ≤ xn for all n.
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(4) Suppose zn satisfies
zn+1 ≥ a(n)b(n) + b(n)zn ∀ n ≥ 0.

Then
lim inf

n→∞
zn ≥ x⋆.

If in addition z0 ≥ x0 then zn ≥ xn for all n.

(5) Let {a(n)}, {b(n)} be as above and {b̃(n)} be another sequence satisfying b̃(n) ∈ (0, 1) for all n ∈ N0,
b̃l > 0, and (2.2) holds with b(n), χ, q, n0 replaced by b̃(n), χ, q, ñ0, respectively. Assume also that
there exist constants ε > 0 and N0 ∈ N such that

|b(n) − b̃(n)| < ε ∀ n ≥ N0. (2.8)

Let x̃n be a positive solution of the equation

x̃n+1 = a(n)b̃(n) + b̃(n)x̃n (n ≥ 0).

Then there is a constant C = C(au, x⋆, χ, q) > 0 such that

|x̃⋆ − x⋆| < Cε, |x̃⋆ − x⋆| < Kε,

where according to (1), x̃⋆ = lim supn→∞ x̃n and x̃⋆ = lim infn→∞ x̃n.

(6) For each ε > 0 small, there exist positive integers Nε and Dε such that if n1 ≥ Nε and n2−n1 ≥ Dε,
then

n2∑
n=n1

a(n)b(n) · · · b(n2) > x⋆ − ε.

Proof. (1) For N > n1, it is directly to show that

xN = A(N, n1) + B(N, n1)xn1 ,

yN ≤ A(N, n1) + B(N, n1)yn1 ,

zN ≥ A(N, n1) + B(N, n1)zn1 ,

where A(N, n1) =
∑N−1

n=n1
a(n)b(n)b(n + 1) · · · b(N − 1) and B(N, n1) = b(n1)b(n1 + 1) · · · b(N − 1). For

fixed n1 ≥ n0, we have by assumption (2.2) that

B(N, n1)xn1 = b(n1)b(n1 + 1) · · · b(N − 1)xn1 ≤ χq
N−n1 xn1 → 0 as N → ∞,

and

A(N, n1) ≤ (sup
n≥n1

a(n))
N−1∑
n=n1

b(n)b(n + 1) · · · b(N − 1) ≤ (sup
n≥n1

a(n))
N−1∑
n=n1

χqN−n ≤ (sup
n≥n1

a(n))
χq

1 − q
,

so {A(N, n1)}∞N=n1+1 is bounded. Now limN→∞(xN − A(N, n1)) = limN→∞ B(N, n1)xn1 = 0, it follows by
the boundedness of {A(N, n1)}∞N=n1+1 that

lim sup
N→∞

xN = lim sup
N→∞

A(N, n1) = x⋆, lim inf
N→∞

xN = lim inf
N→∞

A(N, n1) = x⋆
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and the two limits do not depend on n1. This proves the first part and (2.4), (2.5).
For each ε > 0, by taking n1 large enough, we get supn≥n1

a(n) ≤ au + ε, hence

x⋆ ≤ au χq
1 − q

,

proving (2.6).
The last part of (1) is true because

lim
N→∞

(xN − x′N) = lim
N→∞

(xN − A(N, n1)) − lim
N→∞

(x′N − A(N, n1)) = 0.

(3) and (4) immediately follow from the proof of (1). We prove (2). By assumption bl > 0, so there
exist b0 ∈ (0, 1) and N0 ∈ N such that b(n) ≥ b0 for all n ≥ N0. Fix n1 ≥ max{n0,N0}. Then we have for
all N ≥ n1 + r + 1 that

A(N, n1) ≥
N−1∑

n=N−1−r

a(n)b(n)b(n + 1) · · · b(N − 1) ≥
N−1∑

n=N−1−r

a(n)br+1
0 ≥ a0br+1

0 .

Since a0br+1
0 > 0, we have x⋆ ≥ x⋆ = lim infN→∞ A(N, n1) > 0.

(5) Recall the well-known fact* that, for bounded sequences,

max{| lim inf
n→∞

x̃n − lim inf
n→∞

xn|, | lim sup
n→∞

x̃n − lim sup
n→∞

xn|} ≤ lim sup
n→∞

|x̃n − xn|.

So it suffices to show that lim supn→∞ |x̃n − xn| ≤ Cε. For each n, we have

x̃n+1 − xn+1 = (a(n)b̃(n) + b̃(n)x̃n) − (a(n)b(n) + b(n)xn)
= a(n)(b̃(n) − b(n)) + b̃(n)x̃n − b(n)xn + b̃(n)xn − b̃(n)xn

= a(n)(b̃(n) − b(n)) + (b̃(n) − b(n))xn + b̃(n)(x̃n − xn).

By the assumption (2.8), it follows that

|x̃n+1 − xn+1| ≤ ε(a(n) + xn) + b̃(n)|x̃n − xn|.

Note that lim supn→∞ ε(a(n) + xn) ≤ ε(au + x⋆). Using part (3) and (2.6), we have

lim sup
n→∞

|x̃n − xn| ≤ (au + x⋆)
χq

1 − q
ε.

so lim supn→∞ |x̃n − xn| ≤ Cϵ, where C = (au + x⋆)χq/(1 − q) > 0.
(6) We have xn ≤ xM := max xn for all n. For ε > 0, there exists Nε ≥ n0 such that if n ≥ Nε then

xn ≥ x⋆− ε2 . By (2.2), there exists Dε such that if N −n1 ≥ Dε then b(n1)b(n1+1) · · · b(N)xM ≤ ε2 . Now
let n1 ≥ Nε and N ≥ n1 + Dε. Then we have

N−1∑
n=n1

a(n)b(n)b(n + 1) · · · b(N − 1) = xN − b(n1)b(n1 + 1) · · · b(N − 1)xn1 ≥ x⋆ − ε,

as desired. □
*Let c = lim sup |x̃n − xn|, a = lim sup x̃n, b = lim sup xn. By the triangle inequality x̃n ≤ |x̃n − xn|+ xn, we get a ≤ c+ b, similarly, we

also have b ≤ c + a. Thus |a − b| ≤ c. For the other fact, we simply use that lim inf xn = − lim sup(−xn).
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The following elementary result is employed throughout this work.

Lemma 2. The system (1.8) can be expressed as

S n+1 =
hΛ(n) + S n + hγ(n)Rn+1

Π1(n) + hGn
,

In+1 =
In + hGnS n+1

Π2(n) + hKn
,

Rn+1 =
Rn + hKnIn+1

Π3(n)
.

(2.9)

where Π1(n) = 1 + hµ1(n), Π2(n) = 1 + hµ2(n), Kn = k(In, n), and Π3(n) = 1 + h(µ3(n) + γ(n)).

Proof. By (1.8), we have S n+1 = hΛ(n) − hGnS n+1 − hµ1(n)S n+1 + hγ(n)Rn+1 + S n, which directly
leads to the first expression. Similarly, we have In+1 = hGnS n+1 − h(µ2(n) + k(In, n))In+1 + In and
Rn+1 = hk(In, n)In+1 − h(µ3(n) + γ(n))Rn+1 + Rn, so the other two expressions follow. □

3. Positivity and boundedness

We prove the positivity of solutions of (1.8).

Proposition 3. Assume f (I) ≥ 0 for all I ≥ 0. Then every solution of the problem (1.8) is positive, that
is S n > 0, In > 0,Rn > 0 for all n > 0.

Proof. For simplicity, we omit the dependence of Π1, Π2, Π3, γ on n in the following calculations. By
(2.9), one can directly manipulate the identities to obtain

(Π2 + Kn)Π3(Π1 + hGn)S n+1 = (Π2 + Kn)Π3(hΛ + S n) + hγ(Π2 + Kn)Π3Rn+1

= (Π2 + Kn)Π3(hΛ + S n) + hγ(Π2 + Kn)(Rn + KnIn+1)
= (Π2 + Kn)Π3(hΛ + S n) + hγ(Π2 + Kn)Rn + hγKn(In + hGnS n+1)
= (Π2 + Kn)Π3(hΛ + S n) + hγ(Π2 + Kn)Rn + hγKnIn + h2γKnGnS n+1

thus
S n+1 =

(Π2 + Kn)Π3(hΛ + S n) + hγ(Π2 + Kn)Rn + hγKnIn

Π1(Π2 + Kn)Π3 + ((Π2 + Kn)Π3 − hγKn)hGn
.

From the initial condition in (1.8), it is easily seen that G0 ≥ 0 so S 1 > 0. Observe that Πi > 1 for
i = 1, 2, 3 and (Π2 + Kn)Π3 − hγKn > 0. Using (2.9), we also have I1 > 0 and R1 > 0. Applying the
same argument, we obtain Gn,Kn ≥ 0 and so S n+1, In+1,Rn+1 > 0 for all n. □

In this work, we are interested in the extinction and permanence of disease of the model (1.8), so
the asymptotic behaviors of disease-free states of the system is crucial. By definition, a disease-free
state of (1.8) is a solution (S n, In,Rn) where In = 0 for all n ≥ 0. From Lemma 2, the system is reduced
in this case to

S n+1 = hΛ(n)
1

1 + hµ1(n)
+

1
1 + hµ1(n)

S n +
hγ(n)Rn+1

1 + hµ1(n)
, Rn+1 =

Rn

1 + h(µ3(n) + γ(n))
.
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Let N > n1 ≥ n0. By (H2), (H3), and Proposition 3, we have that

hγ(N)RN+1 = hγ(N)

 N∏
n=n1

1
1 + h(µ3(n) + γ(n))

 Rn1

≤

N−1∏
n=n1

1
1 + hµ1(n)

 Rn1 ≤ χq
N−n1Rn1 → 0,

as N → ∞. Similarly, RN → 0. Thus the asymptotic behaviors of the disease-free states of (1.8) are
closely related to the properties of solutions S 0

n of the following equation

S 0
n+1 = hΛ(n)

1
1 + hµ1(n)

+
1

1 + hµ1(n)
S 0

n. (3.1)

The following proposition gives the uniform upper and lower bounds for any positive solution of
(3.1).

Proposition 4. Suppose that (H3) and (H4) hold. Then there exist constants S 0,⋆, S 0
⋆ > 0 such that

S 0
⋆ = lim inf

n→∞
S 0

n ≤ lim sup
n→∞

S 0
n = S 0,⋆,

for any positive solution S 0
n of (3.1) regardless of the initial condition. In fact, we have

S 0,⋆ = lim sup
N→∞

N∑
n=n1

hΛ(n)
(1 + hµ1(n)) · · · (1 + hµ1(N))

, (3.2)

S 0
⋆ = lim inf

N→∞

N∑
n=n1

hΛ(n)
(1 + hµ1(n)) · · · (1 + hµ1(N))

, (3.3)

for all n1 ≥ n0

Proof. Set a(n) = hΛ(n) and b(n) = 1
1+µ1(n) . It is obvious that au < ∞ and bl > 0. Also, the hypotheses

(H3) and (H4) are equivalent to (2.2) and (2.7) in Lemma 1, respectively. Hence, the proof immediately
follows from Lemmas 1(1) and (2). □

The following proposition is a generalized version of the preceding one. It will be used in the proof
of the permanence of disease (Theorem 8).

Proposition 5. Suppose that (H3) and (H4) hold. Let ν ≥ 0 and define µν1 by

µν1(n) := µ1(n) + βM f Mν for all n.

Then there exist constants S ν,⋆, S ν⋆ > 0 such that if S νn is a positive solution of the equation

S νn+1 = hΛ(n)
1

1 + hµν1(n)
+

1
1 + hµν1(n)

S νn, (3.4)

then
S ν⋆ = lim inf

n→∞
S νn ≤ lim sup

n→∞
S νn = S ν,⋆.
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Proof. As in the proof of Proposition 4, choosing a(n) = hΛ(n) and b(n) = 1
1+µν1(n) , and applying (H3)

and (H4), we get the conditions (2.2) and (2.7). By Lemmas 1(1) and (2), the result is true and the
quantities S ν,⋆, S ν⋆ are given by replacing µ1 in the formulas (3.2) and (3.3) with µν1. □

Notice that

S ν,⋆ = lim sup
N→∞

N∑
n=n1

hΛ(n)
(1 + hµν1(n)) · · · (1 + hµν1(N))

, (3.5)

S ν⋆ = lim inf
N→∞

N∑
n=n1

hΛ(n)
(1 + hµν1(n)) · · · (1 + hµν1(N))

. (3.6)

The following result shows that the “total population” of the model (1.8) is bounded above.

Proposition 6. Assume f (I) ≥ 0 for all I ≥ 0 and that (H2), (H3) hold. Then the total population
Tn := S n + In + Rn for (1.8) satisfies

lim sup
n→∞

Tn ≤ S 0,⋆,

where S 0,⋆ is given by (3.2).

Proof. Adding the equations in (1.8), applying the hypothesis (H2), and Proposition 3, we get

Tn+1 = Tn + h (Λ(n) − µ1(n)S n+1 − µ2(n)In+1 − µ3(n)Rn+1)

≤ Tn + h(Λ(n) − µ1(n)Tn+1),

which implies

Tn+1 ≤ hΛ(n)
1

1 + hµ1(n)
+

1
1 + hµ1(n)

Tn.

The desired conclusion now follows from Lemma 1(3) and (H3). □

As a corollary, we obtain the boundedness of solutions (S n, In,Rn) of (1.8).

Corollary 7. Assume f (I) ≥ 0 for all I ≥ 0 and that (H2), (H3) hold. Then

lim sup
n→∞

S n ≤ S 0,⋆, lim sup
n→∞

In ≤ S 0,⋆, lim sup
n→∞

Rn ≤ S 0,⋆.

Proof. Since f ≥ 0, we have by Proposition 3 that S n > 0, In > 0,Rn > 0 for all n > 0. Then, we have
S n ≤ Tn, In ≤ Tn, and Rn ≤ Tn, hence the desired conclusion follows from Proposition 6. □

4. Permanence of disease

Now we prove our first main result.
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Theorem 8. Suppose that (H1)-(H4) hold, and that

R∞ :=
βl f (0)S 0

⋆

µu
2 + k1

> 1, (4.1)

where S 0
⋆ is given by (3.3), βl = lim inf

n→∞
β(n), and µu

2 = lim sup
n→∞

µ2(n). Then the model (1.8) is permanent.

Moreover, we will show that if

βl f (0)S 0
⋆

µu
2 + Ku > 1, (4.2)

where Ku = lim sup
n→∞

Kn ≤ k1, then (1.8) is permanent.

Proof. It suffices to prove the second statement because β
l f (0)S 0

⋆

µu
2+Ku ≥ R∞. Our proof is inspired by [18]

and [14]. By the positivity (Proposition 3) and boundedness of solutions (Corollary 7), it suffices to
prove uniform lower bounds (2.1) for S n, In, and Rn of (1.8).

By the assumption (4.2) and (H1), there exist θ0 > 0 and ε0 > 0 sufficiently small such that

ξ :=
(βl − θ0)(inf I∈[0,ε0] f (I))(S 0

⋆ − θ0)
µu

2 + Ku + θ0
> 1. (4.3)

This also implies βl − θ0 > 0 and S 0
⋆ − θ0 > 0. We also assume Kl − θ0 > 0.

Choose Q0 ∈ N independent of solutions to (1.8) such that

if n ≥ n0 + Q0 then βl − θ0 ≤ β(n) ≤ βu + θ0 and µ2(n) + Kn ≤ µ
u
2 + Ku + θ0. (4.4)

Estimate for S n. There is a constant lS > 0 such that lim inf
n→∞

S n ≥ lS .

Proof of Estimate for S n. By the second estimate in Corollary 7, we can take P0 ∈ N which depend on
solution (S n, In,Rn) so that

if n ≥ n0 + P0 then max
0≤ j≤m
{S (n − j), I(n − j),R(n − j)} ≤ S 0,⋆ + θ0.

Let n > n1 ≥ n0 + max{P0,Q0}. By Proposition 3, we have Rn+1 ≥ 0. Also, β(n)
∑m

j=0 p j f (In− j)In− j ≤

(βu + θ0) f M(S 0,⋆ + θ0) < ∞. Using the first equation in (1.8), we get

S n+1 ≥ h(Λ(n) − (βu + θ0) f M(S 0,⋆ + θ0)S n+1 − µ1(n)S n+1) + S n,

that is
S n+1 ≥ hΛ(n)

1
1 + hµ̃1(n)

+
1

1 + hµ̃1(n)
S n,

where µ̃1(n) = µ1(n) + (βu + θ0) f M(S 0,⋆ + θ0). Applying Lemma 1(4) and Proposition 5, we find that
lim infn→∞ S n ≥ S̃ 0

⋆ > 0 where

S̃ 0
⋆ = lim inf

N→∞

N∑
n=n1

hΛ(n)
(1 + hµ̃1(n)) · · · (1 + hµ̃1(N))

. (4.5)

Estimate for In. There is a constant lI > 0 such that lim inf
n→∞

In ≥ lI .

Proof of Estimate for In. We begin by proving a continuity result for the sum in (3.5) as ν→ 0.
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Claim 1. Let θ0 > 0 be as specified in (4.3). Then there exist ν0, n′0, ρ, depending only on parameters
in (1.8) and θ0 and satisfying

0 < ν0 ≤ ε0, n′0 ≥ n0 +max{m,Q0}, ρ ∈ N,

such that the following statement holds:

if n1 ≥ n′0, N ≥ n1 + ρm then
N∑

n=n1

hΛ(n)
(1 + hµν01 (n)) · · · (1 + hµν01 (N))

> S 0
⋆ − θ0,

where µν01 := µ1 + β
M f Mν0 and S 0

⋆ is given by (3.3).

Proof of Claim 1. First we specify ν0. By (3.6), we have

S ν⋆ = lim inf
N→∞

N∑
n=n1

hΛ(n)
(1 + hµν1(n)) · · · (1 + hµν1(N))

,

and the limit does not depend on n1. We apply Lemma 1(5) with a(n) = hΛ(n), b(n) = 1/(1 + hµ1(n)),
and b̃(n) = 1/(1 + hµν1(n)) and ν > 0. Note that b̃(n) ≥ 1

1+h(µM
1 +β

M f Mν) > 0, where µM
1 = maxn µ1(n), and

b̃(n) ≤ b(n) for all n, so b̃l > 0 and b̃ satisfies (2.2). Also, |b(n) − b̃(n)| ≤ hβM f Mν, so applying Lemma
1(5), there is a constant C > 0 independent of ν such that

|S ν⋆ − S 0
⋆| ≤ ChβM f Mν.

Now we choose ν0 small enough so that ν0 ≤ ε0 and

ChβM f Mν0 <
θ0
2
. (4.6)

Then we have
S ν0⋆ > S 0

⋆ −
θ0
2
.

Now we choose n′0, ρ. By Lemma 1(6), there exist n′0, ρ depending only on the Λ, µ1, f ,m, and θ0,
so that

if n1 ≥ n′0, N ≥ n1 + ρm then
N∑

n=n1

hΛ(n)
(1 + hµν01 (n)) · · · (1 + hµν01 (n2))

> S ν0⋆ −
θ0
2
.

Combining the above two estimates, we obtain the desired result. □

Fix θ0 > 0 and ν0, n′0, ρ as above. Notice that n′0 ≥ n0 + Q0, so according to (4.4) we get

∀ n ≥ n′0 : βl − θ0 ≤ β(n) ≤ βu + θ0, µ2(n) + Kn ≤ µ
u
2 + Ku + θ0. (4.7)

Next, we prove that if In ≤ ν0 on an interval of length at least ρ(m + 1), then S N+1 > S 0
⋆ − θ0, where N

is the right endpoint.
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Claim 2. Let n1 ≥ n′0, N ≥ n1+ρm, and (S n, In,Rn) be a solution of (1.8). Then the following statement
holds. If 0 ≤ In ≤ ν0 for all n ∈ [n1 − m,N], then

S N+1 > S 0
⋆ − θ0. (4.8)

Proof of Claim 2. Since Ip ≤ ν0 on [n1 − m,N], we have for all n ∈ [n1,N] that

Gn = β(n)
m∑

j=0

p j f (In− j)In− j ≤ β
M

m∑
j=0

p j f Mν0 = β
M f Mν0.

This gives using (1.8) that S n+1 ≥ h(Λ(n) − βM f Mν0S n+1 − µ1(n)S n+1) + S n, i.e.

S n+1 ≥ hΛ(n)
1

1 + hµν01 (n)
+

1
1 + hµν01 (n)

S n for n = n1, n1 + 1, . . . ,N.

By induction, it is directly to see that

S N+1 ≥

N∑
n=n1

hΛ(n)
(1 + hµν01 (n)) · · · (1 + hµν01 (N))

+
1

(1 + hµν01 (n1)) · · · (1 + hµν01 (N))
S n1

≥

N∑
n=n1

hΛ(n)
(1 + hµν01 (n)) · · · (1 + hµν01 (N))

,

by the positivity of S n1 . Applying Claim 1, the last term on the right hand side is greater than S 0
⋆ − θ0,

which implies S N+1 > S 0
⋆ − θ0. So the claim is proved. □

In addition to the previous estimate for S N+1, at a right endpoint N, we also have the following
boosting estimate for IN+1.

Claim 3. Let n1 ≥ n′0, N ≥ n1+ρm, and (S n, In,Rn) be a solution of (1.8). Then the following statement
holds. If 0 ≤ In ≤ ν0 for all n ∈ [n1 − m,N], then

IN+1 ≥ κIN , where IN := min
p∈[N−m,N]

Ip, (4.9)

and κ > 1 is the constant given by

κ :=
1 + hξ(µu

2 + Ku + θ)
1 + h(µu

2 + Ku + θ)
. (4.10)

Proof of Claim 3. Observe that κ > 1 because ξ > 1. We can apply Claim 2 to get S N+1 > S 0
⋆ − θ0 and

by (4.7) with that N ≥ n′0, we also have β(N) ≥ βl − θ0. Using (4.3) and that ν0 ≤ ε0, we obtain

β(N) f (IN− j)S N+1 ≥ (βl − θ0)
(

inf
I∈[0,ε0]

f (I)
)

(S 0
⋆ − θ0) = ξ(µu

2 + Ku + θ0)

for j = 0, 1, . . . ,m. Also, noting that µ2(N)+ KN ≤ µ
u
2 + Ku + θ0 by (4.7). Applying Lemma 2, we have

IN+1 =
IN + hβ(N)

∑m
j=0 p j f (IN− j)IN− jS N+1

1 + h(µ2(N) + KN)
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≥
IN + hβ(N)

∑m
j=0 p j f (IN− j)INS N+1

1 + h(µ2(N) + KN)

≥
1 + h

∑m
j=0 p jξ(µu

2 + Ku + θ0)

1 + h(µu
2 + Ku + θ0)

IN

≥ κIN ,

where we have used that
∑m

j=0 p j = 1. □

Claim 4. It is impossible that In ≤ ν0 for all sufficiently large n.

Proof of Claim 4. Suppose on the contrary that there is N0 ≥ n′0 such that In ≤ ν0 for all n ≥ N0. Denote
N1 = N0 + (ρ + 1)m, and define In as in (4.9) above. Since In ≤ ν0 for all n ∈ [N0,N1], we have by
Claim 3 that

IN1+1 ≥ κIN1 .

This implies in particular that IN1+1 = minn∈[N1+1−m,N1+1] In ≥ IN1 because κ > 1. Repeating the
preceding argument with that IN1+1 ≥ IN1 , we get IN1+2 ≥ κIN1+1 ≥ κIN1 . Continuing the argument,
we finally obtain

In ≥ κIN1 for all n ≥ N1 + 1.

This implies
∀ n ≥ N1 + 1 + m : In = min{In−m, . . . , In} ≥ κIN1 .

Let N2 = N1 + 1 + ρm. Since In ≤ ν0 for all n ∈ [N1 + 1 − m,N2] and observe that IN2 ≥ κIN1 ,
it follows by the same argument as above that In ≥ κIN2 ≥ κ

2IN1 for all n ≥ N2 + 1. Repeating the
process, we obtain, for Nl := Nl−1 + 1 + ρm, that

In ≥ κ
lIN1 for all n ≥ Nl + 1.

Recalling κ > 1, so κl → ∞ as l → ∞. Now by selecting l large enough, we get from the above that
there is n > N0 such that In ≥ κ

lIN1 > ν0. This contradicts that In ≤ ν0 for all n ≥ N0. Therefore the
claim is proved. □

After the above preparations, now we can prove the lower estimate for In. According to Claim 4,
there are two possibilities: either

(i) In > ν0 for all n sufficiently large, or

(ii) In oscillates about ν0 for large n.

Obviously, if (i) occurs then the desired estimate follows, namely

lim inf
n→∞

In ≥ ν0.

So assume (ii).
It suffices to prove the following statement. Suppose n1,N are such that N > n1 ≥ n′0 and

In1 ≥ ν0, IN ≥ ν0, and In < ν0 for all n1 < n < N.
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Then

∀ n ∈ (n1,N) : In ≥ lI :=
ν0

(1 + h(µu
2 + Ku + θ0))∆

, ∆ := 1 + (ρ + 1)m. (4.11)

Denote
n2 = n1 + 1 + ∆, n3 = n2 + 1 + ∆, n4 = n3 + 1 + ∆, . . .

Let n > n1, so n − 1 ≥ n1 ≥ n′0. By (4.7), we have µ2(n − 1) + Kn−1 ≤ µ
u
2 + Ku + θ0. Employing the

second identity in Lemma 2 and the positivity of Gn−1, S n, we get

In ≥
In−1

1 + h(µ2(n − 1) + Kn−1)
≥

In−1

1 + h(µu
2 + Ku + θ0)

.

By induction, we have for all p ∈ N satisfying n − p ≥ n1 that

In ≥
In−p

(1 + h(µu
2 + Ku + θ0))p .

Case N ≤ n2. For any n ∈ (n1,N), it follows by taking p = n − n1, which satisfies p ≤ ∆, that

In ≥
In1

(1 + h(µu
2 + Ku + θ0))n−n1

≥
ν0

(1 + h(µu
2 + Ku + θ0))∆

= lI ,

where we have employed the fact that In1 ≥ ν0. Thus in this case (4.11) is true.
Case n2 < N ≤ n3. We use the preceding case on (n1, n2) to conclude that In ≥ lI for all n ∈ (n1, n2].

This implies In2 ≥ lI . We show that In ≥ lI for n ∈ (n2,N] as well. Since In ≤ ν0 on [n1 + 1, n2] and
n2 ≥ (n1 + 1) + (ρ + 1)m, it follows by Claim 3 that

In2+1 ≥ κIn2 ≥ κlI > lI (∵ κ > 1).

If n2 + 1 = N then we are done. Otherwise, we employ that In ≤ ν0 on [n1 + 2, n2 + 1] to continue the
preceding argument and get

In2+2 ≥ κ min
p∈[n2+1−m,n2+1]

Ip ≥ κlI > lI .

By induction, we finally conclude that In ≥ lI for all n ∈ (n2,N] as desired.
Cases that n3 < N ≤ n4 and so on can be proved by the same argument and is omitted.
Now (4.11) is proved hence establishing the desired estimate for In.

Estimate for Rn. There exists a positive constant lR such that lim inf
n→∞

Rn ≥ lR.

Proof of Estimate for Rn. First observe that, from the estimate for In, we get that

∀ n ≥ n′0 : In ≥ lI ,

where lI is given by (4.11). Choose Q′0 > 0 so that

if n ≥ n′0 + Q′0 then µ3(n) + γ(n) ≤ µu
3 + γ

u + θ0, Kn ≥ Kl − θ0.
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Note that Kl − θ0 > 0 according to (4.3). Let n ≥ n′0 +Q′0. Using the third equation of Lemma 2, we get

Rn+1 =
Rn + hKnIn+1

Π3(n)
≥ hlI(Kl − θ0)

1
1 + h(µu

3 + γ
u + θ0)

+
1

1 + h(µu
3 + γ

u + θ0)
Rn. (4.12)

We can apply parts (2) and (4) of Lemma 1 to find that there is a constant lR > 0, independent of
solutions to (1.8) such that

lim inf
n→∞

Rn ≥ lR. (4.13)

This establish the estimate for Rn, therefore it completes the proof of Theorem 8. □

5. Extinction of disease

We prove that under a certain condition the disease of the model (1.8) always extincts.

Theorem 9. Suppose that (H1)-(H4) hold and that

R0 :=
βu(supI∈[0,S 0,⋆] f (I))S 0,⋆

µl
2 + k0

< 1, (5.1)

where S 0,⋆ is given by (3.2), βu = lim sup
n→∞

β(n), and µl
2 = lim inf

n→∞
µ2(n). Then (1.8) exhibits the extinction

of the disease. Moreover, we will show that if

βu(supI∈[0,S 0,⋆] f (I))S 0,⋆

µl
2 + Kl

< 1, (5.2)

where Kl := lim inf
n→∞

Kn ≥ k0, then (1.8) exhibits the extinction of the disease.

Proof of Theorem 9. It suffices to prove the second statement because
βu(supI∈[0,S 0,⋆] f (I))S 0,⋆

µl
2+Kl ≤ R0. We shall

repeatedly employ the results on positivity (Proposition 3) and boundedness of solutions (Proposition
6 and Corollary 7).

By the assumption (5.2) and the continuity of f (H1), we choose θ0 and ε0 > 0 such that

ξ :=
(βu + θ0)(supI∈[0,S 0,⋆+ε0] f (I))(S 0,⋆ + θ0)

µl
2 + Kl − θ0

< 1. (5.3)

Warning! Here and below, for simplicity, the parameters θ0, ε0, ξ, n′0, κ, . . . have been reused and are in
no connection to corresponding ones appeared in the proof of Theorem 8.

Let (S n, In,Rn) be a solution of (1.8). We also choose n′0 > 0 such that if n ≥ n′0 then

β(n) ≤ βu + θ0, µ2(n) + Kn ≥ µ
l
2 + Kl − θ0

and
In ≤ S 0,⋆ + ε0, S n ≤ S 0,⋆ + θ0.
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Now let n ≥ n′0 + m. We observe that

f (In− j) ≤ sup
I∈[0,S 0,⋆+ε0]

f (I), j = 0, 1, . . . ,m.

So Gn = β(n)
m∑

j=0

p j f (In− j)In− j ≤ (βu + θ0)( sup
I∈[0,S 0,⋆+ε0]

f (I))Ĩn, where

Ĩn := max
p∈[n−m,n]

Ip. (5.4)

Applying the second equation in (2.9) and that S n+1 ≤ S 0,⋆ + θ0, we get

In+1 =
In + hGnS n+1

Π2(n) + hKn
≤
Ĩn + h(βu + θ0)(supI∈[0,S 0,⋆+ε0] f (I))Ĩn(S 0,⋆ + θ0)

1 + h(µ2(n) + Kn)

=
1 + hξ(µl

2 + Kl − θ0)
1 + h(µ2(n) + Kn)

Ĩn ≤
1 + hξ(µl

2 + Kl − θ0)

1 + h(µl
2 + Kl − θ0)

Ĩn.

In other words, we now obtain

In+1 ≤ κĨn, (5.5)

where 0 < κ < 1 is the constant given by

κ =
1 + hξ(µl

2 + Kl − θ0)

1 + h(µl
2 + Kl − θ0)

. (5.6)

Employing (5.5), we are going to show that

Ĩn+m+1 ≤ κĨn (5.7)

for all n ≥ n′0 + m.
By (5.5) we have In+1 ≤ κĨn, so Ĩn+1 = maxp∈[n+1−m,n+1] Ip ≤ Ĩn. Then by (5.5) again In+2 ≤ κĨn+1,

hence In+2 ≤ κĨn. Similarly, (5.5) gives In+3 ≤ κĨn+2 and Ĩn+2 = max[n+2−m,n+2] Ip ≤ Ĩn, so In+3 ≤ κĨn.
By induction, we get In+p ≤ κĨn for all p = 1, 2, . . .. Now

Ĩn+m+1 = max{In+1, . . . , In+m+1} ≤ κĨn,

proving (5.7).
We apply the conclusion from (5.7). Setting

N0 = n′0 + m, N j+1 = N j + m + 1, j = 0, 1, 2, . . . ,

we directly get
ĨN j+1 ≤ κĨN j .

Since κ < 1, the sequence {ĨN j} is monotonically decreasing. It is easy to see that ĨN j ≤ κ
jĨN0 , hence

lim
j→∞
ĨN j = 0. (5.8)

Now we prove the extinction of the disease, i.e. limn→∞ In = 0.
Let ε > 0. By (5.8) we can find j such that ĨN j ≤ ε. Now let n ≥ N j. We have n ∈ [Nr−1,Nr) for

some r ≥ j + 1. Then In ≤ ĨNr ≤ ĨN j ≤ ε. Therefore In → 0 as desired. □
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6. Numerical simulations

In this section, the model (1.8) is considered with non-monotone incidence rate

g(I) =
α3I

1 + α2I + α1I2 .

For simplicity, some parameters are fixed as follows: h = 1, m = 2, p0 = 0.2, p1 = 0.3, p2 = 0.5, α3 =

2, α1 = 1, {Λ(n)} = (1, 1.2, 1, 1.2, . . . ), {γ(n)} = (0.3, 0.3, 0.3, . . . ), {µ2(n)} = (0.5, 0.8, 0.5, 0.8, . . . ),
{µ1(n)} = {µ3(n)} = (0.2, 0.4, 0.2, 0.4, . . . ), {β(n)} = (1, 1, 1, . . .). We also impose the following initial
conditions: S j = 3, I j = 1, R j = 0.5 ( j = 0,−1,−2). From the formulas (3.2) and (3.3), we have
S 0,⋆ = S 0

⋆ = 3.2353.
Now, we present the examples and numerical simulations for different α2, k0, k1.

Example 1. Choose α2 = 0.3. We have f (I) = g(I)
I =

2
1+0.3I+I2 . Since f is a decreasing function, we

have f (0) = supI∈[0,S 0,⋆] f (I) = 2. Also βu = βl = 1. We use Kn = k0 + (k1 − k0) 10
In+10 .

(a) If k0 = 8 and k1 = 9, then we get Ku = Kl = 9 and
βu(supI∈[0,S 0,⋆] f (I))S 0,⋆

µl
2+Kl = 0.6811, R0 = 0.7612 < 1.

Figure 1(a) indicates that the disease exhibits extinction.
(b) If k0 = 1 and k1 = 3, we get Ku = 2.9556, Kl = 2.9525, and βl f (0)S 0

⋆

µu
2+Ku = 1.7229, and R∞ =

1.7029 > 1. Figure 1(b) indicates that the disease is permanent.

(a) R0 = 0.7612 < 1.

(b) R∞ = 1.7029 > 1.

Figure 1. Numerical solution (S n, In,Rn) of model (1.8) with g(I) = 2I
1+0.3I+I2 .
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Example 2. Choose α2 = −1. We have f (I) = g(I)
I =

2
1−I+I2 . It is directly to calculate that f (0) = 2 and

supI∈[0,S 0,⋆] f (I) = 2.6667. Again βu = βl = 1. We use Kn = k0 + (k1 − k0) 10
In+10 .

(a) If k0 = 9 and k1 = 10, then we get Ku = Kl = 10,
βu(supI∈[0,S 0,⋆] f (I))S 0,⋆

µl
2+Kl = 0.8217, and R0 =

0.9082 < 1. Figure 2(a) indicates that the disease exhibits extinction.
(b) If k0 = 2 and k1 = 4, we get Ku = 3.9618,Kl = 3.9595, β

l f (0)S 0
⋆

µu
2+Ku = 1.3589, and R∞ = 1.3480 > 1.

Figure 2(b) indicates that the disease is permanent.

(a) R0 = 0.9082 < 1.

(b) R∞ = 1.3480 > 1.

Figure 2. Numerical solution (S n, In,Rn) of model (1.8) with g(I) = 2I
1−I+I2 .

7. Conclusions

In this paper, we investigate the discrete-time non-autonomous SIRS epidemic model (1.8), which is
a discretization by the nonstandard finite difference method of the continuous-time model (1.4). In the
model, a general nonlinear incidence rate with distributed delays is included together with a nonlinear
recovery rate which takes into account the effect of health care resources such as the hospital beds
(1.3). Two threshold parameters R0 and R∞ are obtained so that if R0 < 1 then the disease dies out
while if R∞ > 1 then the disease is permanent.

In the special case of autonomous (1.8), f is a decreasing function, and k a constant, our results
imply that R0 = R∞ =

β f (0)Λ
µ1(µ2+k) , which gives the basic reproduction number of the model. The same

number is reported in Corollary 5.4 of [27] when f = 1. This result is also in line with the known
results for the continuous-time models [12] when f = 1, and [3] when f is decreasing and f (0) = 1.

AIMS Mathematics Volume 8, Issue 4, 9624–9646.



9643

For the non-autonomous model (1.8), we obtain the following corollary. Suppose that, as n → ∞,
we have β(n) → β′, Λ(n) → Λ′, µ1(n) → µ′1, µ2(n) → µ′2, k(n) → k′ (k does not depend on In), and
f = 1. Then we obtain the reproduction number of the model to be R0 = R∞ =

β′S ′

µ′2+k′ , which is the
same number implied by Theorem 4.1 and Theorem 5.1 in [27]. Comparing this result to that from the
continuous-time model in [25,26], we find an improvement because the threshold parameters obtained
in those two papers do not lead to the reproduction number of the model.

A novelty of this paper is that our results are mathematically more tractable (compared e.g. to [27])
so they can be effective tools in practice to help the policy-makers fight the spread of the disease. To
employ the condition (5.2), for example, one can first set the “ultimate” contact rate β∞ and health care
resources K∞ so that the condition is met with βu,Kl replaced by β∞,K∞ (assuming all other parameters
are available and fixed). Then set a certain starting time N0 and control the transmission rate and the
hospital beds to satisfy β(n) ≤ β∞ and Kn ≥ K∞ for all n ≥ N0 onward. It then follows from Theorem
9 that the spreading of the disease will be suppressed eventually.

For further investigations, it is interesting to extend the results of this paper to the model (1.8) where
the transmission function f depends not only on I but also on S , such as the Beddington-DeAngelis
function f (S , I) = S/(1 + m1S + m2I) and the saturated incidence f (S , I) = S/(1 + m1S )(1 + m2I).
It is also interesting to apply the technique in this paper to explore the threshold dynamics for other
non-autonomous models such as a model with vaccination, a model with age structures, multi-strain
diseases, etc.

Another interesting question is the chaotic dynamics of epidemic models with seasonality in the
transmission rate [1, 9]. It was shown in [1] for the classical SIR model that the disease dies out when
R0 < 1, where R0 is the reproduction number, while if R0 > 1 the model admits periodic and aperiodic
patterns together with sensitive dependence on the initial conditions of the solution. The SIR model
with logistic growth rate was explored in [9] and it was shown that the condition R0 < 1 is not sufficient
to guarantee the extinction of the disease due to backward bifurcation and the model exhibits persistent
strange attractors. For our model (1.8), the condition R0 < 1 always implies the elimination of the
disease regardless of the initial infectives. Moreover, for the periodic forced model with f = 1, it was
shown in Corollary 5.3 [27] that if R0 < 1 the disease dies out while it is permanent when R0 > 1,
where R0 is given explicitly by R0 =

∏ω−1
k=0 ( 1+β(k)z∗k

1+µ(k)+γ(k)+α(k) )
1/ω and z∗k is a unique ω-periodic solution of

(3.1). In our work, f is a nonlinear function, so it is an interesting open problem to see whether a
chaotic behavior can happen when R0 > 1 due to the seasonally forced contact rate β.

Appendix

We briefly discuss the basic idea of the nonstandard finite difference (NSFD) method that enables
to get the discrete model (1.8) from the continuous model (1.4). NSFD is a discretization technique
consisting of some rules with the aim to preserve significant properties of the related continuous prob-
lem (such as positivity, boundedness, stability, etc.) and avoid numerical instabilities. The following
rules were proposed by Mickens [10] for constructing a NSFD scheme from a continuous problem:

Rule 1. The orders of the discrete derivatives of the scheme should be equal to the orders of the
corresponding derivatives of the differential equation.

Rule 2. The denominator function for each discrete derivative should, in general, be expressed as a
function of step-size which is more complicated than the conventional one. This rule is not strict and
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in this work, to get (1.8), we choose ϕ(h) = h.
Example. Consider a first-order differential equation of the form

dx
dt
= f (t, x). (7.1)

Conventionally, the discrete derivative for dx/dt in (7.1) is given by

xk+1 − xk

∆t
,

but, in the NSFD scheme, the denominator ∆t is replaced by a denominator function ϕ(h) with the
property

ϕ(h) = h + O(h2) as h→ 0.

Rule 3. Nonlinear terms should, in general, be replaced by nonlocal discrete representations us-
ing more than one mesh point. For example, the nonlinear term x2 can be replaced by a nonlocal
representation evaluated at two mesh points such as xk+1xk or 2x2

k − xk+1xk.
To get (1.8), the incidence rate (1.7) is discretized by β(n)

∑m
j=0 p j f (In− j)In− jS n+1.

Rule 4. Special conditions that hold for the solutions of the differential equations should also hold
for the solutions of the finite difference scheme. An important example is the positivity of solutions
when the solutions represent some physical positive quantities. If the discrete equations allow their
solutions to become negative, then numerical instabilities will occur.

We have shown the basic properties including Propositions 3 and 6.
Rule 5. The finite difference scheme should not introduce extraneous or spurious solutions that do

not correspond to any solution of the corresponding differential equations.

Conflict of interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors would like to thank the reviewers for valuable comments and suggestions which are
tremendously helpful to improve the manuscript. We are thankful for financial support by Science
Achievement Scholarship of Thailand (SAST). We are also supported by the 90th Anniversary of
Chulalongkorn University Fund, Thailand (Ratchadaphiseksomphot Endowment Fund).

References

1. P. G. Barrientos, J. A. Rodrı́guez, A. Ruiz-Herrera, Chaotic dynamics in the seasonally forced SIR
epidemic model, J. Math. Biol., 75 (2017), 1655–1668. https://doi.org/10.1007/s00285-017-1130-
9

2. V. Capasso, G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model,
Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8

AIMS Mathematics Volume 8, Issue 4, 9624–9646.

http://dx.doi.org/https://doi.org/10.1007/s00285-017-1130-9
http://dx.doi.org/https://doi.org/10.1007/s00285-017-1130-9
http://dx.doi.org/https://doi.org/10.1016/0025-5564(78)90006-8


9645

3. T. Enatsu, Y. Nakata, Y. Muroya, Lyapunov functional techniques for the global stability analysis
of a delayed SIRS epidemic model, Nonlinear Anal.: Real World Appl., 13 (2012), 2120–2133.
https://doi.org/10.1016/j.nonrwa.2012.01.007

4. Y. Gu, S. Ullah, M. A. Khan, M. Y. Alshahrani, M. Abohassan, M.B. Riaz, Mathematical modeling
and stability analysis of the COVID-19 with quarantine and isolation, Results Phys., 34 (2022),
105284. https://doi.org/10.1016/j.rinp.2022.105284

5. H. F. Huo, Z. P. Ma, Dynamics of a delayed epidemic model with non-monotonic
incidence rate, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 459–468.
https://doi.org/10.1016/j.cnsns.2009.04.018

6. Z. Jiang, W. Ma, Permanence of a delayed SIR epidemic model with general nonlinear incidence
rate, Math. Meth. Appl. Sci., 38 (2015), 505–516. https://doi.org/10.1002/mma.3083

7. M. A. Khan, A. Atangana, Mathematical modeling and analysis of COVID-19: A study of new
variant Omicron, Phys. A: Stat. Mech. Appl., 599 (2022), 127452.

https://doi.org/10.1016/j.physa.2022.127452

8. M. Lu, J. Huang, S. Ruan, P. Yu, Bifurcation analysis of an SIRS epidemic model with a
generalized nonmonotone and saturated incidence rate, J. Differ. Equ., 267 (2019), 1859–1898.
https://doi.org/10.1016/j.jde.2019.03.005
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