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Abstract: Leaf brown spot, caused by fungi, is a terrible plant disease, and it can significantly reduce 

the quality and quantity of rice. In this paper, we developed the model based on leaf brown spot disease 

development and considered a preventive treatment using botanical fungicide. In addition, we develop 

a model with suitable optimal control strategies. The result shows disease-free equilibrium is 

asymptotically stable when 𝑅0 > 1. In contrast, the endemic equilibrium is asymptotically stable when 

𝑅0 > 1. The obtained optimal control to can reduce the number of infected plants compared to that 

without control. In addition, the analytical results were confirmed by numerical simulations of the 

occurrence of the theoretical results. 
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1. Introduction 

Rice is a staple food for human consumption, especially Asians. Therefore, the production, 

consumption, and commerce of rice mostly occur in Asia. However, only 6% of rice is exported, and 

the remainder is consumed within the country. Unfortunately, sometimes the rice production does not 

meet the domestic demand since rice plants are infected with diseases. Brown spot disease is quite 
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common that decreases the rice yield. It is caused by the spread of fungus called Bipolaris oryzae 

(Helminthosporium oryzae Breda de Haan.). 

Every stage of the rice plant's life cycle makes it susceptible to numerous plant diseases. Diseases 

have the potential to lower rice crop production overall and in terms of quality. It is generally 

recognized that the pathogen can harm plants throughout several phases of storage, seed germination 

and seedling establishment, growth, and reproductive phase. One of fungal diseases infects rice is 

brown spot disease. Brown spot disease is a plant disease caused by a fungus that can reduce rice yield 

from around 4% to 52%. The disease disperses by letting the spore flow along with the wind and falls 

into the spikelet or seed. Consequently, the rice is damaged. Besides, the disease also leaves spots on 

rice seeds and causes low yield. In addition, if the infected seed is planted, the paddy field will be 

infected. The disease can be transmitted through seed and air, which are called seed-borne, and air-

borne. Moreover, the fungus can live in the uncared field and poor soil. This means that the disease 

can invade the paddy field if it is not eradicated. Based on the problem, farmers need to control the 

disease by applying chemical substance, for example fungicide [1]. However, the chemical affects the 

environment and humans. Therefore, the strategy of controlling the spreading of disease is necessary. 

Fungicide is a chemical that is used to restrain the growth of fungus spores. However, the 

fungicide not only affects the fungus spores but also affects agriculture products. There are three types 

of fungicide including: chemical fungicide, botanical fungicide, and biocontrol fungicide [8]. Since 

the chemical fungicide affects the environment and is poisonous to humans, fungicide containing 

natural extract such as botanical and biocontrol fungicide should be used. In the sense of fungus 

elimination, the botanical fungicide has higher performance than biocontrol fungicide. The 

mathematical model is a tool that can describe the spreading of disease that leads to the disease control 

strategy [9–12]. For example, the epidemiology mathematical model which considers the botanical 

fungicide is developed for controlling plant disease and preventive treatments of plants [7,13]. 

The SIR model [18–20], which has three compartment subclasses: susceptible, infected, and 

removed, is the general form of the epidemiological model. Mckendrick [21] proposed a fundamental 

model of SIR transmission in 1927. Song and Takeuchi used natural birth and death rates to study 

population dynamics. The plant population is separated into five compartments: susceptible, exposed, 

infected, post-infectious (removed), and protected with curative and preventive therapy, according to 

a mathematical model created and examined by Savary et al. [22]. The SIP model, or maize plant 

disease model, was presented by Windarto et al. [4]. 

In SIX model [2] studies the dynamics of susceptible plant population infected plant population 

pathogen population which in the actual situation that plants must be protected from fungus. This 

research selected the SIX model as a base for development using the real situation. Then, SIXP model 

was developed to match the situation we are interested in by adding protected plant populations 

denoted by P. After that, we analyzed the stability of the model developed for leaf brown spot disease 

with a standard incidence rate [15]. Then, we discussed the optimal control of fungicide to prevent the 

spread. Some numerical examples compare SIX model and SIXP model. 

2. Materials and methods 

The proposed model is particularly well suited for describing diseases such as two infections in 

leaf brown spot disease and analysis the proposed model. 
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2.1. The proposed model 

The proposed model is developed based on the SIX model [2], which is the mathematical model 

of the spreading of leaf brown spot disease in rice. We consider the effect of leaf brown spot disease 

on the rice population dynamics and add the rice population stage that are retreated with the botanical 

fungicide to protect them from the disease. 

In this model, there are two types of population including plant population and pathogen 

population X. The plant population is classified into three categories: susceptible plant populations S, 

infected plant populations I, and protected plant populations P. The interaction between all populations 

is shown in Figure 1. 

 

Figure 1. Flow chart of dynamical transmission of brown spot disease. 

The compartment model can be written as the following system: 

𝑑𝑆

𝑑𝑡
= 𝜅 − 𝜋𝑆(𝑡) + 𝛿𝑃(𝑡) − (𝑅𝑥𝑋(𝑡) + 𝑅𝑐𝐼(𝑡))

𝑆(𝑡)

𝑆(𝑡)+𝐼(𝑡)
− 𝜇𝑆(𝑡),    (1) 

𝑑𝐼

𝑑𝑡
= (𝑅𝑥𝑋(𝑡) + 𝑅𝑐𝐼(𝑡))

𝑆(𝑡)

𝑆(𝑡)+𝐼(𝑡)
−

𝐼(𝑡)

𝑖
− 𝜇𝐼(𝑡),        (2) 

𝑑𝑋

𝑑𝑡
= 𝜎𝐼(𝑡) − 𝜀𝑋(𝑡),              (3) 

𝑑𝑃

𝑑𝑡
= 𝜋𝑆(𝑡) − 𝛿𝑃(𝑡) − 𝜇𝑃(𝑡).            (4) 

The feasible region of the system in Eqs (1)–(4) is 

𝛺 = {(𝑆, 𝐼, 𝑋, 𝑃) ∈ 𝑅4, 𝑆, 𝐼, 𝑋, 𝑃 ≥ 0, 𝑆 + 𝐼 + 𝑋 + 𝑃 ≤
𝜅

𝜇
}. 

The parameters in Eqs (1)–(4) are positive. The meaning of the parameters is presented in Table 1. 
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Table 1. Variables and parameters of the model. 

Notation Meaning Unit 

  Planted rate of susceptible NSites day-1 

Rx Rate of primary infection day-1 

Rc Rate of secondary infection day-1 


 Natural death rate day-1 

1/i Death rate caused by infection day-1 

σ Growth rate of pathogen population day-1 
  Death rate of pathogen day-1 
  The effectiveness of botanical fungicides day-1 

  Rate of damage to the fungicide given to the plant day-1 

2.2. Analysis of the model 

The proposed model gives two equilibrium points, namely pathogen-free equilibrium (𝐸0) and 

pathogen equilibrium (𝐸1). The notation of pathogen-free equilibrium point is expressed by 

𝐸0(𝑆𝑐
0, 𝐼𝑐

0, 𝑋𝑐
0, 𝑃𝑐

0) = 𝐸0 (
𝜅(𝛿+𝜇)

𝜇(𝛿+𝜇+𝜋)
, 0,0,

𝜅𝜋

𝜇(𝛿+𝜇+𝜋)
).     (5) 

Another equilibrium point is 𝐸1(𝑆𝑐
∗, 𝐼𝑐

∗, 𝑋𝑐
∗, 𝑃𝑐

∗), which is pathogen equilibrium, where 

𝑆𝑐
∗ =

𝜅(𝛿 + 𝜇)

(𝜇𝛿 + 𝜇𝜋 + 𝜇2) + (𝜇 +
1
𝑖
) (𝛿 + 𝜇) (

𝑖𝑅𝑥𝜎 + 𝑅𝑐𝜀𝑖
𝜀(𝜇𝑖 + 1)

− 1)
, 

𝐼𝑐
∗ =

𝜅(𝛿 + 𝜇) (
𝑖𝑅𝑥𝜎 + 𝑅𝑐𝜀𝑖
𝜀(𝜇𝑖 + 1)

− 1)

(𝜇𝛿 + 𝜇𝜋 + 𝜇2) + (𝜇 +
1
𝑖
) (𝛿 + 𝜇) (

𝑖𝑅𝑥𝜎 + 𝑅𝑐𝜀𝑖
𝜀(𝜇𝑖 + 1)

− 1)
, 

𝑋𝑐
∗ =

𝜎𝜅(𝛿 + 𝜇) (
𝑖𝑅𝑥𝜎 + 𝑅𝑐𝜀𝑖
𝜀(𝜇𝑖 + 1)

− 1)

𝜀 [(𝜇𝛿 + 𝜇𝜋 + 𝜇2) + (𝜇 +
1
𝑖
) (𝛿 + 𝜇) (

𝑖𝑅𝑥𝜎 + 𝑅𝑐𝜀𝑖
𝜀(𝜇𝑖 + 1)

− 1)]
, 

𝑃𝑐
∗ =

𝜋𝜅

(𝜇𝛿+𝜇𝜋+𝜇2)+(𝜇+
1

𝑖
)(𝛿+𝜇)(

𝑖𝑅𝑥𝜎+𝑅𝑐𝜀𝑖

𝜀(𝜇𝑖+1)
−1)

.      (6) 

2.2.1. Basic reproduction number 

The basic reproduction number (𝑅0) is the number of secondarily infected plants that infect from 

only one initial infected plant. The value of 𝑅0 can calculates by the technique of Van Den Driessche 

and Watmough [16] 

𝐹𝑉−1 =

[
 
 
 
 
0 0 0 0

0
𝜀𝑅𝑐+𝜎𝑅𝑥

𝜀(𝜇+
1

𝑖
)

𝑅𝑥

𝜀
0

0 0 0 0
0 0 0 0]

 
 
 
 

.        (7) 

The dominant eigen value gives us 𝑅0, 
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𝑅0 =
𝑖𝑅𝑥𝜎+𝑅𝑐𝜀𝑖

𝜀(𝜇𝑖+1)
.         (8) 

2.2.2. Stability analysis 

The systems of equations from model could determine the stability of their equilibrium points. 

By substituting all parameters in the systems and found all equilibrium points. Then, linearizing 

the system at each equilibrium point and considering the stability of the system at the point. 

Theorem 2.1. The pathogen-free equilibrium 𝐸0(
𝜅(𝛿+𝜇)

𝜇(𝛿+𝜇+𝜋)
, 0,0,

𝜅𝜋

𝜇(𝛿+𝜇+𝜋)
)  of the system (1)–(4) is 

locally asymptotically stable when the basic reproduction number is less than one, and otherwise is 

unstable. 

Proof. To show that the system of Eqs (1)–(4) is locally asymptotically stable, the Jacobian matrix is 

used to evaluate the pathogen-free equilibrium 
0E as shown by 

𝐽(𝐸0) =
|
|

−𝜋 − 𝜇 − 𝜆 −𝑅𝑐 −𝑅𝑥 𝛿

0 𝑅𝑐 − (
1

𝑖
+ 𝜇) − 𝜆 𝑅𝑥 0

0 𝜎 −𝜀 − 𝜆 0
𝜋 0 0 −𝜇 − 𝛿 − 𝜆

|
|
. 

The eigenvalues of 𝐽(𝐸0)  are obtained by solving 𝑑𝑒𝑡( 𝐽(𝐸0) − 𝜆𝐼) = 0 . We receive the 

eigenvalues of 𝐽(𝐸0) from the following characteristic equation 

(𝜆 + 𝜋 + 𝜇)(𝜆 + 𝜇 + 𝛿) [(𝜆 − 𝑅𝑐 +
1

𝑖
+ 𝜇) (𝜆 + 𝜀) − 𝜎𝑅𝑥] − 𝜋 [−𝜎𝑅𝑥𝛿 + (𝜆 + 𝜀)𝛿 (𝜆 − 𝑅𝑐 +

1

𝑖
+ 𝜇)] = 0, 

(𝜆 + 𝑎)(𝜆 + 𝑏)[(𝜆 − 𝑅𝑐 + 𝑐)(𝜆 + 𝜀) − 𝜎𝑅𝑥] − 𝜋[−𝜎𝑅𝑥𝛿 + (𝜆 + 𝜀)𝛿(𝜆 − 𝑅𝑐 + 𝑐)] = 0, 

−𝜎𝑅𝑥[(𝜆 + 𝑎)(𝜆 + 𝑏) − 𝜋𝛿] + (𝜆 − 𝑅𝑐 + 𝑐)(𝜆 + 𝜀)[(𝜆 + 𝑎)(𝜆 + 𝑏) − 𝜋𝛿] = 0, 

[(𝜆 + 𝑎)(𝜆 + 𝑏) − 𝜋𝛿][(𝜆 − 𝑅𝑐 + 𝑐)(𝜆 + 𝜀) − 𝜎𝑅𝑥] = 0, 

(𝜆2 + 𝜆𝑎 + 𝜆𝑏 + 𝑎𝑏 − 𝜋𝛿)[(𝜆 − 𝑅𝑐 + 𝑐)(𝜆 + 𝜀) − 𝜎𝑅𝑥] = 0, 

(𝜆2 + 𝜆(𝑎 + 𝑏) + 𝑎𝑏 − 𝜋𝛿)[𝜆2 + 𝜆(𝑐 + 𝜀 − 𝑅𝑐) + (𝜀𝑐 − 𝜀𝑅𝑐 − 𝜎𝑅𝑥)] = 0, 

where 

𝑎 = 𝜋 + 𝜇, 𝑏 = 𝛿 + 𝜇, 𝑐 =
1

𝑖
+ 𝜇. 

The eigenvalues of the Jacobian matrix for the pathogen-free equilibrium can be computed as 

𝑃1(𝜆1,2) =
−(𝑎 + 𝑏) ± √(𝑎 + 𝑏)2 − 4(𝑎𝑏 − 𝜋𝛿)

2
; 𝜆1 = −(𝜋 + 𝜇), 𝜆2 = −(𝛿 + 𝜇), 

𝑃2(𝜆3,4) =
−(𝑐 + 𝜀 − 𝑅𝑐) ± √(𝑐 + 𝜀 − 𝑅𝑐)

2 − 4(𝜀𝑐 − 𝜀𝑅𝑐 − 𝜎𝑅𝑥)

2
; 𝜆3 = −(

1

𝑖
+ 𝜇), 

𝜆4 = −𝜀 + 𝑅𝑐 . 

It is obvious that all these eigenvalues are negative when  >Rc. 

By using the Routh-Hurwitz theorem [17], all eigenvalues are negative or complex eigenvalues 
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with negative real part if and only if 𝑅0 =
(𝑅𝑥𝜎𝑖+𝑅𝑐𝜀𝑖)

𝜀(1+𝜇𝑖)
< 1. Thus, the pathogen-free equilibrium point 

is locally asymptotically stable when the basic reproduction number is less than one. 

Global stability of pathogen-free equilibrium is present in Theorem 2.2. 

Theorem 2.2. The pathogen-free equilibrium 𝐸0 is globally asymptotically stable if 𝑅0 > 1, when 𝐼 =
0. 

Proof. Let V  is the Lyapunov function defined by 

𝑉(𝑆, 𝐼, 𝑃) = 𝑔 (
𝑆

𝑆𝑐
0) + 𝐼 + 𝑔 (

𝑃

𝑃𝑐
0), 

where, 𝑔(𝑥) = 𝑥 − 1 − 𝑙𝑛 𝑥 , which is positive function. Since I=0, X=0 then 𝑉 ≥ 0 . We want to 

clarify that 𝑉 is a positive function on the domain Ω. 

The derivative of V  respect to time evaluated at the solution of model in Eqs (1)–(4) is derived by 

𝑉̇ = (1 −
𝑆𝑐

0

𝑆
) 𝑆̇ + 𝐼̇ + (1 −

𝑃𝑐
0

𝑃
) 𝑃̇ 

= (1 −
𝑆𝑐

0

𝑆
) (𝜅 − 𝜋𝑆 + 𝛿𝑃 − (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆

𝑆 + 𝐼
− 𝜇𝑆) + (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆

𝑆 + 𝐼
− (

𝐼

𝑖
+ 𝜇𝐼) 

+(1 −
𝑃𝑐

0

𝑃
) (𝜋𝑆 − 𝛿𝑃 − 𝜇𝑃) 

= 𝜅 (1 −
𝑆𝑐

0

𝑆
) + 𝜋𝑆0 −

𝛿𝑃𝑆𝑐
0

𝑆
+ (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆𝑐
0

𝑆 + 𝐼
− 𝜇𝑆 + 𝜇𝑆𝑐

0 − (
𝐼

𝑖
+ 𝜇𝐼) −

𝜋𝑆𝑃𝑐
0

𝑃
+ 𝛿𝑃𝑐

0 − 𝜇𝑃 

+𝜇𝑃𝑐
0 

= 𝜅 (1 −
𝑆𝑐

0

𝑆
) + 𝜋𝑆0 −

(𝜋𝑆 − 𝜇𝑃)𝑆𝑐
0

𝑆
+ (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆𝑐
0

𝑆 + 𝐼
− 𝜇𝑆 + 𝜇𝑆𝑐

0 − (
𝐼

𝑖
+ 𝜇𝐼) −

𝑃(𝛿 + 𝜇)𝑃𝑐
0

𝑃
 

+𝛿𝑃𝑐
0 − 𝜇𝑃 + 𝜇𝑃𝑐

0 

= 𝜅 (1 −
𝑆𝑐

0

𝑆
) +

𝜇𝑃𝑆𝑐
0

𝑆
+ (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆𝑐
0

𝑆 + 𝐼
− 𝜇𝑆 + 𝜇𝑆𝑐

0 − (
𝐼

𝑖
+ 𝜇𝐼) − 𝜇𝑃 

= 𝜅 (1 −
𝑆𝑐

0

𝑆
) +

𝜋𝑆𝜇𝑆𝑐
0

(𝛿 + 𝜇)𝑆
+ (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆𝑐
0

𝑆 + 𝐼
− 𝜇𝑆 + 𝜇𝑆𝑐

0 − (
𝐼

𝑖
+ 𝜇𝐼) − 𝜇𝑃 

= 𝜅 (1 −
𝑆𝑐

0

𝑆
) + 𝜇𝑆0 (1 +

𝜋

(𝛿 + 𝜇)
) + (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆𝑐
0

𝑆 + 𝐼
− (

𝐼

𝑖
+ 𝜇𝐼) − 𝜇(𝑃 + 𝑆) 

= 𝜅 (1 −
𝑆𝑐

0

𝑆
) + 𝜇𝑆𝑐

0 (
(𝛿 + 𝜇 + 𝜋)

(𝛿 + 𝜇)
) + (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆𝑐
0

𝑆 + 𝐼
− (

𝐼

𝑖
+ 𝜇𝐼) − 𝜇 (

𝜋𝑆

(𝛿 + 𝜇)
+ 𝑆) 
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=
𝜇𝑆𝑐

0(𝛿 + 𝜇 + 𝜋)

(𝛿 + 𝜇)
(2 −

𝑆𝑐
0

𝑆
) + (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆𝑐
0

𝑆 + 𝐼
− (

𝐼

𝑖
+ 𝜇𝐼) − 𝜇𝑆 (

(𝛿 + 𝜇 + 𝜋)

(𝛿 + 𝜇)
) 

=
𝜇𝑆𝑐

0(𝛿 + 𝜇 + 𝜋)

(𝛿 + 𝜇)
(2 −

𝑆𝑐
0

𝑆
−

𝑆

𝑆𝑐
0) + (

1

𝑖
+ 𝜇)𝐼 (𝑖(

𝑅𝑥𝑋 + 𝑅𝑐𝐼

(𝜇𝑖 + 1)𝐼
)

𝑆𝑐
0

𝑆 + 𝐼
− 1) 

=
𝜇𝑆𝑐

0(𝛿 + 𝜇 + 𝜋)

(𝛿 + 𝜇)
(2 −

𝑆𝑐
0

𝑆
−

𝑆

𝑆𝑐
0) + (

1

𝑖
+ 𝜇)𝐼 (𝑖(

𝑅𝑥
𝜎𝐼
𝜀 + 𝑅𝑐𝐼

(𝜇𝑖 + 1)𝐼
)

𝑆𝑐
0

𝑆 + 𝐼
− 1) 

=
𝜇𝑆𝑐

0(𝛿 + 𝜇 + 𝜋)

(𝛿 + 𝜇)
(2 −

𝑆𝑐
0

𝑆
−

𝑆

𝑆𝑐
0) + (

1

𝑖
+ 𝜇)𝐼 (𝑖(

𝑅𝑥𝜎 + 𝜀𝑅𝑐

𝜀(𝜇𝑖 + 1)
)

𝑆𝑐
0

𝑆 + 𝐼
− 1) 

=
𝜇𝑆𝑐

0(𝛿 + 𝜇 + 𝜋)

(𝛿 + 𝜇)
(2 −

𝑆𝑐
0

𝑆
−

𝑆

𝑆𝑐
0) + (

1

𝑖
+ 𝜇) 𝐼 (

𝑅0𝑆𝑐
0

𝑆 + 𝐼
− 1). 

From the relation between arithmetic and geometric means 2 −
𝑆0

𝑆
−

𝑆

𝑆0 < 0. 

Considering the second term, in the case that 𝑅0=1, we have 𝑉̇ < 0 if and only if I=0. 

From Eq (3), 𝐼(𝑡) = 0 causes X→ 0 as 𝑡 → ∞. Then, by using X(t)=0 in Eq (1), we find 𝑆(𝑡) →
𝜅(𝛿+𝜇)

𝜇(𝛿+𝜇+𝜋)
 as 𝑡 → ∞. 

In addition, when 𝑅0 < 1, we obtain 𝑉̇ < 0 if and only if 

𝑆 + 𝐼 =
𝜅(𝛿 + 𝜇)

𝜇(𝛿 + 𝜇 + 𝜋)
 

or 𝐼 = 0, which is the largest compact invariant set of Eqs (1)–(4). Then, by using LaSalle’s invariant 

principle, we can conclude that every solution of the mathematical model in Eqs (1)–(4) with an initial 

value in Ω tends to the pathogen-free equilibrium. 

The stability of the pathogen equilibrium is presented in Theorem 3. 

Theorem 2.3. If 𝑅0 > 1, the pathogen equilibrium 𝐸1 is locally asymptotic stable 

Proof. Let 𝐽(𝐸1) be the Jacobian matrix in Eqs (1)–(4) derived from the pathogen equilibrium 𝐸1 is 

expressed by 

( )

( )

( ) ( )

( )

( )

( )

( ) ( )

( )

*

2 2

*

2 2

1
0

0 0

0

x c c c c x c c x c c c c c c x c

c c c c c c
c c c c

x c c c c x c c x c c c cc c x c

c c c c c c
c c c c

R X R I S R X R I R X R I S R S R S

S I S I S IS I S I

R X R I S R X R I R X R I SR S R S

iS I S I S IS I S I

   

 

  



        

     
   

       

     
   

+ + +
− − − − − −

+ + ++ +

+ + +
− + − − − −

+ + ++ +

− −

0

0   

=

− − −

 

and 

𝐸1 = (𝑆𝑐
∗, 𝑆𝑐

∗(𝑅0 − 1),
𝜎𝑆𝑐

∗(𝑅0−1)

𝜀
,
𝜋𝑆𝑐

∗

𝑏
), 
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where 

𝑆𝑐
∗ =

𝜅𝑏

𝑑+𝑏𝑐(𝑅0−1)
, 𝑏 = 𝛿 + 𝜇, 𝑐 =

1

𝑖
+ 𝜇, 𝑑 = [𝜇𝛿 + 𝜇𝜋 + 𝜇2], 𝑅0 =

(𝑅𝑥𝜎𝑖+𝑅𝑐𝜀𝑖)

𝜀(1+𝜇𝑖)
. 

Eigenvalues of 𝐽(𝐸1) satisfy the following characteristic equation 

𝑎0𝜆
4 + 𝑎1𝜆

3 + 𝑎2𝜆
2 + 𝑎3𝜆 + 𝑎4 = 0, 

where 

𝑎1 = 𝑎 + 𝑏 + 𝑞 + 𝜀 +
𝑅𝑥𝜎

𝜀𝑅0
, 

𝑎2 = 𝑎𝜀 + 𝑏𝜀 + 𝑞𝜀 + 𝑞𝑏 + 𝑑 +
𝑞𝑎

𝑅0
+

𝑐𝑞

𝑅0

[𝑅0 − 1] +
𝑏𝑅𝑥𝜎

𝜀𝑅0
+

𝑎𝑅𝑥𝜎

𝜀𝑅0
, 

𝑎3 = 𝑑𝜀 + 𝑞𝜀𝑏 +
𝑞𝑎𝜀

𝑅0
+

𝑐𝑞𝑏

𝑅0

[𝑅0 − 1] +
𝑐𝑞𝜀

𝑅0

[𝑅0 − 1] +
𝑞𝑎𝑏

𝑅0
+

𝑑𝑅𝑥𝜎

𝜀𝑅0
, 

𝑎4 =
𝑞𝜀𝑑

𝑅0
+

𝑞𝜀𝑏𝑐

𝑅0

[𝑅0 − 1]. 

where 

𝑎 = 𝜋 + 𝜇, 𝑏 = 𝛿 + 𝜇, 𝑐 =
1

𝑖
+ 𝜇, 𝑑 = [𝜇𝛿 + 𝜇𝜋 + 𝜇2], 

𝑞 =
(𝑅𝑥𝜎 + 𝑅𝑐𝜀)

𝜀

[𝑅0 − 1]

𝑅0
, 𝑅0 =

(𝑅𝑥𝜎𝑖 + 𝑅𝑐𝜀𝑖)

𝜀(1 + 𝜇𝑖)
. 

The eigenvalues have a negative real part, so the equilibrium point is stable with the conditions 

below: 

𝑎1, 𝑎3, 𝑎4 > 0, 𝑎1𝑎2 − 𝑎3 > 0, 𝑎1𝑎2𝑎3 − 𝑎3𝑎3 − 𝑎1𝑎1𝑎4 > 0, 

which are related to the condition of Routh Hurwitz. Thus, the pathogen equilibrium point is stable 

when 𝑅0 =
(𝑅𝑥𝜎𝑖+𝑅𝑐𝜀𝑖)

𝜀(1+𝜇𝑖)
> 1. 

At endemic equilibrium point [14] in theorem we use of compound matrix theorem in order to 

address dynamics stability issues that arose from the solution of nonlinear differential equations. 

Theorem 2.4. Assume that 𝑅0 > 1 and   > Rc, the pathogen equilibrium 𝐸1  is globally asymptotic 

stable. 

Proof. We prove the global asymptotic stability of the model (1)–(4) with endemic equilibrium point, 

we consider the non-linear equations in the model (1)–(4) for which the Jacobian matrix at disease-

endemic equilibrium points is: 

𝐽(𝐸1) =

[
 
 
 
 
 
(𝑅𝑥𝑋𝑐

∗+𝑅𝑐𝐼𝑐
∗)𝑆𝑐

∗

(𝑆𝑐
∗+𝐼𝑐

∗)2
−

(𝑅𝑥𝑋𝑐
∗+𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗+𝐼𝑐

∗)
− 𝜇 − 𝜋

(𝑅𝑥𝑋𝑐
∗+𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗+𝐼𝑐

∗)2
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗+𝐼𝑐

∗ −
𝑅𝑥𝑆𝑐

∗

𝑆𝑐
∗+𝐼𝑐

∗ 𝛿

−
(𝑅𝑥𝑋𝑐

∗+𝑅𝑐𝐼𝑐
∗)𝑆𝑐

∗

(𝑆𝑐
∗+𝐼𝑐

∗)2
+

(𝑅𝑥𝑋𝑐
∗+𝑅𝑐𝐼

∗)

𝑆𝑐
∗+𝐼𝑐

∗

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗+𝐼𝑐

∗ −
1

𝑖
− 𝜇 −

(𝑅𝑥𝑋𝑐
∗+𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗+𝐼𝑐

∗)2
𝑅𝑥𝑆𝑐

∗

𝑆𝑐
∗+𝐼𝑐

∗ 0

0 𝜎 −𝜀 0
𝜋 0 0 −𝛿 − 𝜇]

 
 
 
 
 

.(9) 

Furthermore, the general form of third additive compound matrix
1

J , is given by 
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𝐽|1| = [

𝑗11 + 𝑗22 + 𝑗33 𝑗34 −𝑗24 𝑗14

𝑗43 𝑗11 + 𝑗22 + 𝑗44 𝑗23 −𝑗13

−𝑗42 𝑗32 𝑗11 + 𝑗33 + 𝑗44 𝑗12

𝑗41 −𝑗31 𝑗21 𝑗22 + 𝑗33 + 𝑗44

],   (10) 

where 

𝑗11 + 𝑗22 + 𝑗33 = (−2𝜇 − 𝜋 − 𝜀 −
1

𝑖
−

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
+

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
) , 

𝑗11 + 𝑗22 + 𝑗44 = (−3𝜇 − 𝜋 − 𝛿 −
1

𝑖
−

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
+

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
) , 

𝑗11 + 𝑗33 + 𝑗44 = (−2𝜇 − 𝛿 − 𝜀 − 𝜋 −
(𝑅𝑥𝑋𝑐

∗ + 𝑅𝑐𝐼𝑐
∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
+

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
) , 

𝑗22 + 𝑗33 + 𝑗44 = (−2𝜇 −
1

𝑖
− 𝛿 − 𝜀 −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
+

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
). 

From matrices (9) and (10) implies that 

𝐽|1| =

[
 
 
 
 
 
 
−𝑗11 0 0 𝛿

0 −𝑗22
𝑅𝑥𝑆𝑐

∗

𝑆𝑐
∗+𝐼𝑐

∗

𝑅𝑥𝑆𝑐
∗

𝑆𝑐
∗+𝐼𝑐

∗

0 𝜎 −𝑗33
(𝑅𝑥𝑋𝑐

∗+𝑅𝑐𝐼𝑐
∗)𝑆𝑐

∗

(𝑆𝑐
∗+𝐼𝑐

∗)2
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗+𝐼𝑐

∗

𝜋 0 −
(𝑅𝑥𝑋𝑐

∗+𝑅𝑐𝐼𝑐
∗)𝑆𝑐

∗

(𝑆𝑐
∗+𝐼𝑐

∗)2
+

(𝑅𝑥𝑋𝑐
∗+𝑅𝑐𝐼

∗)

𝑆𝑐
∗+𝐼𝑐

∗ −𝑗44 ]
 
 
 
 
 
 

,   (11) 

where 

−𝑗11 = −(2𝜇 + 𝜋 + 𝜀 +
1

𝑖
+

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
) , 

−𝑗22 = −(3𝜇 + 𝜋 + 𝛿 +
1

𝑖
+

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
) , 

−𝑗33 = −(2𝜇 + 𝜀 + 𝜋 + 𝛿 +
(𝑅𝑥𝑋𝑐

∗ + 𝑅𝑐𝐼𝑐
∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
−

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
) , 

−𝑗44 = −(2𝜇 +
1

𝑖
+ 𝛿 + 𝜀 +

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
). 

Consider 𝑃(𝜒) = 𝑑𝑖𝑎𝑔{𝑃(𝑡), 𝑋(𝑡), 𝐼(𝑡), 𝑆(𝑡)}, the inverse of 𝑃(𝜒)is given as 

𝑃−1(𝜒) = 𝑑𝑖𝑎𝑔 {
1

𝑃(𝑡)
,

1

𝑋(𝑡)
,

1

𝐼(𝑡)
,

1

𝑆(𝑡)
}, 

the derivative with respect to time is 
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𝑃𝑓(𝜒) = 𝑑𝑖𝑎𝑔 {𝑃
•
(𝑡), 𝑋

•
(𝑡), 𝐼

•
(𝑡), 𝑆

•
(𝑡)}, 

while 

𝑃𝑓𝑃
−1 = 𝑑𝑖𝑎𝑔 {

𝑃
•
(𝑡)

𝑃(𝑡)
,
𝑋
•
(𝑡)

𝑋(𝑡)
,
𝐼
•
(𝑡)

𝐼(𝑡)
,
𝑆
•
(𝑡)

𝑆(𝑡)
}, 

and 

𝑃𝐽|1|𝑃−1 =

[
 
 
 
 
 
 
 
 
 −𝑗11 0 0

𝛿𝑃𝑐
∗

𝑆𝑐
∗

0 −𝑗22

𝑋𝑐
∗𝑅𝑥𝑆𝑐

∗

𝐼𝑐
∗(𝑆𝑐

∗ + 𝐼𝑐
∗)

𝑋𝑐
∗𝑅𝑥𝑆𝑐

∗

𝑆𝑐
∗(𝑆𝑐

∗ + 𝐼𝑐
∗)

0
𝜎𝐼𝑐

∗

𝑋𝑐
∗

−𝑗33

𝐼𝑐
∗

𝑆𝑐
∗
(
(𝑅𝑥𝑋𝑐

∗ + 𝑅𝑐𝐼𝑐
∗)𝑆𝑐

∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
)

𝜋𝑆𝑐
∗

𝑃𝑐
∗

0
𝑆𝑐

∗

𝐼𝑐
∗
[
(𝑅𝑥𝑋𝑐

∗ + 𝑅𝑐𝐼𝑐
∗)𝐼𝑐

∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
] −𝑗44

]
 
 
 
 
 
 
 
 
 

. 

So that 

𝑀 = 𝑃𝑓𝑃
−1 + 𝑃𝐽|1|𝑃−1, 

𝑀 =

[
 
 
 
 
 
 
 
 
 
𝑃̇(𝑡)

𝑃(𝑡)
− 𝑗11 0 0

𝛿𝑃𝑐
∗

𝑆𝑐
∗

0
𝑋̇(𝑡)

𝑋(𝑡)
− 𝑗22

𝑋𝑐
∗𝑅𝑥𝑆𝑐

∗

𝐼𝑐
∗(𝑆𝑐

∗ + 𝐼𝑐
∗)

𝑋𝑐
∗𝑅𝑥𝑆𝑐

∗

𝑆𝑐
∗(𝑆𝑐

∗ + 𝐼𝑐
∗)

0
𝜎𝐼𝑐

∗

𝑋𝑐
∗

𝐼(̇𝑡)

𝐼(𝑡)
− 𝑗33

𝐼𝑐
∗

𝑆𝑐
∗
(
(𝑅𝑥𝑋𝑐

∗ + 𝑅𝑐𝐼𝑐
∗)𝑆𝑐

∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
)

𝜋𝑆𝑐
∗

𝑃𝑐
∗

0
𝑆𝑐

∗

𝐼𝑐
∗
[
(𝑅𝑥𝑋𝑐

∗ + 𝑅𝑐𝐼𝑐
∗)𝐼𝑐

∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
]

𝑆̇(𝑡)

𝑆(𝑡)
− 𝑗44

]
 
 
 
 
 
 
 
 
 

. 

From the system of equation, we obtain 

𝛿𝑃𝑐
∗

𝑆𝑐
∗

=
𝑆̇(𝑡)

𝑆(𝑡)
−

𝜅

𝑆
+ 𝜋 +

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
+ 𝜇,

𝜎𝐼𝑐
∗

𝑋𝑐
∗

=
𝑋̇(𝑡)

𝑋(𝑡)
+ 𝜀,

𝜋𝑆𝑐
∗

𝑃𝑐
∗

=
𝑃̇(𝑡)

𝑃(𝑡)
+ 𝛿 + 𝜇. 

Now, consequently we are to find ℎ̄𝑖(𝑡), 𝑖 = 1,2,3,4, by assuming that ijM are the entries of matrix 

𝑀, such that 

ℎ̄1(𝑡) = 𝑀11 + ∑ |𝑀1𝑗|

4

𝑗≠1∧𝑗=2

, 

ℎ̄1(𝑡) =
𝑃̇(𝑡)

𝑃(𝑡)
− (2𝜇 + 𝜋 + 𝜀 +

1

𝑖
+

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗) + |
𝛿𝑃𝑐

∗

𝑆𝑐
∗ |, 

ℎ̄1(𝑡) =
𝑃̇(𝑡)

𝑃(𝑡)
− (2𝜇 + 𝜋 + 𝜀 +

1

𝑖
) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
+

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝛿𝑃𝑐

∗

𝑆𝑐
∗ , 
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ℎ̄1(𝑡) =
𝑃̇(𝑡)

𝑃(𝑡)
− (2𝜇 + 𝜋 + 𝜀 +

1

𝑖
) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
+

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑆̇(𝑡)

𝑆(𝑡)
−

𝜅

𝑆
+ 𝜋 +

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
+ 𝜇, 

ℎ̄1(𝑡) =
𝑃̇(𝑡)

𝑃(𝑡)
+

𝑆̇(𝑡)

𝑆(𝑡)
− (𝜇 +

1

𝑖
+

𝜅

𝑆𝑐
∗) − 𝜀 +

𝑅𝑐

𝑅0

, 

ℎ̄1(𝑡) ≤
𝑃̇(𝑡)

𝑃(𝑡)
+

𝑆̇(𝑡)

𝑆(𝑡)
− (𝜇 +

1

𝑖
+ 𝜀). 

ℎ̄2(𝑡) = 𝑀22 + ∑ |𝑀2𝑗|
4
𝑗=1∧𝑗≠2 , 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (3𝜇 + 𝜋 + 𝛿 +

1

𝑖
+

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗) + |
𝑋𝑐

∗𝑅𝑥𝑆𝑐
∗

𝐼𝑐
∗(𝑆𝑐

∗ + 𝐼𝑐
∗)

| + |
𝑋𝑐

∗𝑅𝑥𝑆𝑐
∗

𝑆𝑐
∗(𝑆𝑐

∗ + 𝐼𝑐
∗)

|, 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (3𝜇 + 𝜋 + 𝛿 +

1

𝑖
) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑐𝑆𝑐

∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑋𝑐

∗𝑅𝑥𝑆𝑐
∗

𝐼𝑐
∗(𝑆𝑐

∗ + 𝐼𝑐
∗)

+
𝑋𝑐

∗𝑅𝑥𝐼𝑐
∗

𝐼𝑐
∗(𝑆𝑐

∗ + 𝐼𝑐
∗)

, 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (3𝜇 + 𝜋 + 𝛿 +

1

𝑖
) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑐𝑆𝑐

∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑋𝑐

∗𝑅𝑥

𝐼𝑐
∗ [

𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)
+

𝐼𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)
], 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (3𝜇 + 𝜋 + 𝛿 +

1

𝑖
) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑐𝑆𝑐

∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑋𝑐

∗𝑅𝑥

𝐼𝑐
∗ , 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (3𝜇 + 𝜋 + 𝛿 +

1

𝑖
) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑐𝑆𝑐

∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +

𝜎𝑆𝑐
∗(𝑅0 − 1)

𝜀
𝑅𝑥

𝑆𝑐
∗(𝑅0 − 1)

, 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (3𝜇 + 𝜋 + 𝛿 +

1

𝑖
) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑐𝑆𝑐

∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑥𝜎

𝜀

(𝑆𝑐
∗ + 𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
, 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (3𝜇 + 𝜋 + 𝛿 +

1

𝑖
) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑐𝑆𝑐

∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑥𝜎𝑆𝑐

∗

𝜀(𝑆𝑐
∗ + 𝐼𝑐

∗)
+

𝑅𝑥𝜎𝐼𝑐
∗

𝜀(𝑆𝑐
∗ + 𝐼𝑐

∗)
, 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (2𝜇 + 𝜋 + 𝛿) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑥𝜎𝐼𝑐

∗

𝜀(𝑆𝑐
∗ + 𝐼𝑐

∗)
+

𝑅𝑥𝜎 + 𝜀𝑅𝑐

𝜀𝑅0

−
1

𝑖
− 𝜇, 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (2𝜇 + 𝜋 + 𝛿) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝑅𝑥𝑋𝑐

∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)
, 

ℎ̄2(𝑡) =
𝑋̇(𝑡)

𝑋(𝑡)
− (2𝜇 + 𝜋 + 𝛿 +

𝑅𝑐𝐼𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗), 

ℎ̄2(𝑡) ≤
𝑋̇(𝑡)

𝑋(𝑡)
− (2𝜇 + 𝜋 + 𝛿). 

ℎ̄3(𝑡) = 𝑀33 + ∑ |𝑀3𝑗|

4

𝑗=1∧𝑗≠3

, 

ℎ̄3(𝑡) =
𝐼̇(𝑡)

𝐼(𝑡)
− (2𝜇 + 𝜀 + 𝜋 + 𝛿 +

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)

(𝑆𝑐
∗ + 𝐼𝑐

∗)
−

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
) + |

𝜎𝐼𝑐
∗

𝑋𝑐
∗ | + |

𝐼𝑐
∗

𝑆𝑐
∗ (

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗)|, 



9613 

AIMS Mathematics  Volume 8, Issue 4, 9602–9623. 

ℎ̄3(𝑡) =
𝐼̇(𝑡)

𝐼(𝑡)
− (2𝜇 + 𝜀 + 𝜋 + 𝛿) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝐼𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
+

𝜎𝐼𝑐
∗

𝑋𝑐
∗ + (

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝐼𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
−

𝑅𝑐𝐼𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗), 

ℎ̄3(𝑡) =
𝐼̇(𝑡)

𝐼(𝑡)
− (2𝜇 + 𝜀 + 𝜋 + 𝛿) +

𝜎𝐼𝑐
∗

𝑋𝑐
∗ −

𝑅𝑐𝐼𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗

𝐼̇(𝑡)

𝐼(𝑡)
, 

ℎ̄3(𝑡) =
𝐼̇(𝑡)

𝐼(𝑡)
− (2𝜇 + 𝜀 + 𝜋 + 𝛿) +

𝑋̇(𝑡)

𝑋(𝑡)
+ 𝜀 −

𝑅𝑐𝐼𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗, 

ℎ̄3(𝑡) =
𝐼̇(𝑡)

𝐼(𝑡)
+

𝑋̇(𝑡)

𝑋(𝑡)
− (2𝜇 + 𝜋 + 𝛿 +

𝑅𝑐𝐼𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗), 

ℎ̄3(𝑡) ≤
𝐼̇(𝑡)

𝐼(𝑡)
+

𝑋̇(𝑡)

𝑋(𝑡)
− (2𝜇 + 𝜋 + 𝛿). 

ℎ̄4(𝑡) = 𝑀44 + ∑ |𝑀4𝑗|

4

𝑗=1∧𝑗≠3

 

ℎ̄4(𝑡) =
𝑆̇(𝑡)

𝑆(𝑡)
− (2𝜇 +

1

𝑖
+ 𝛿 + 𝜀 +

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
−

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗) + |
𝜋𝑆𝑐

∗

𝑃𝑐
∗ | + |

𝑆𝑐
∗

𝐼𝑐
∗ [

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝐼𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
]|, 

ℎ̄4(𝑡) =
𝑆̇(𝑡)

𝑆(𝑡)
− (2𝜇 +

1

𝑖
+ 𝛿 + 𝜀) −

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝑆𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
+

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗ +
𝜋𝑆𝑐

∗

𝑃𝑐
∗ +

𝑆𝑐
∗

𝐼𝑐
∗ [

(𝑅𝑥𝑋𝑐
∗ + 𝑅𝑐𝐼𝑐

∗)𝐼𝑐
∗

(𝑆𝑐
∗ + 𝐼𝑐

∗)2
], 

ℎ̄4(𝑡) =
𝑆̇(𝑡)

𝑆(𝑡)
− (2𝜇 +

1

𝑖
+ 𝛿 + 𝜀) +

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
+

𝜋𝑆𝑐
∗

𝑃𝑐
∗
, 

ℎ̄4(𝑡) =
𝑆̇(𝑡)

𝑆(𝑡)
− (2𝜇 +

1

𝑖
+ 𝛿 + 𝜀) +

𝑅𝑐𝑆𝑐
∗

𝑆𝑐
∗ + 𝐼𝑐

∗
+

𝑃̇(𝑡)

𝑃(𝑡)
+ 𝛿 + 𝜇, 

ℎ̄4(𝑡) =
𝑆̇(𝑡)

𝑆(𝑡)
+

𝑃̇(𝑡)

𝑃(𝑡)
− (𝜇 +

1

𝑖
) − 𝜀 +

𝑅𝑐

𝑅0
, 

ℎ̄4(𝑡) ≤
𝑆̇(𝑡)

𝑆(𝑡)
+

𝑃̇(𝑡)

𝑃(𝑡)
− (𝜇 +

1

𝑖
+ 𝜀). 

Now, in ℜ
4
 we assume a vector (𝑚1, 𝑚2, 𝑚3, 𝑚4) . The Lozinskii measure ℓ(𝑀)  is defined as 

ℓ(𝑀) = ℎ̄𝑖(𝑡), 𝑖 = 1,2,3,4. The integration of the Lozinskii measure ℓ(𝑀) and taking the limits as 

𝑡 → ∞ lead to the following equations. 

𝑔1 = 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫ ℎ̄1

𝑡

0
(𝑡)𝑑𝑡 ≤

1

𝑡
𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫

𝑃̇(𝑡)

𝑃(𝑡)
+

𝑆̇(𝑡)

𝑆(𝑡)
− (𝜇 +

1

𝑖
+ 𝜀)

𝑡

0
𝑑𝑡 < − (𝜇 +

1

𝑖
+ 𝜀),(12) 

𝑔2 = 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫ ℎ̄2

𝑡

0
(𝑡)𝑑𝑡 ≤

1

𝑡
𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫

𝑋̇(𝑡)

𝑋(𝑡)
− (2𝜇 + 𝜋 + 𝛿)

𝑡

0
𝑑𝑡 < −(2𝜇 + 𝜋 + 𝛿), (13) 

𝑔3 = 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫ ℎ̄3

𝑡

0
(𝑡)𝑑𝑡 ≤

1

𝑡
𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫

𝐼̇(𝑡)

𝐼(𝑡)
+

𝑋̇(𝑡)

𝑋(𝑡)
− (2𝜇 + 𝜋 + 𝛿)

𝑡

0
𝑑𝑡 < −(2𝜇 + 𝜋 + 𝛿),(14) 

𝑔4 = 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫ ℎ̄4

𝑡

0
(𝑡)𝑑𝑡 ≤

1

𝑡
𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫

𝑆(̇𝑡)

𝑆(𝑡)
+

𝑃̇(𝑡)

𝑃(𝑡)
− (𝜇 +

1

𝑖
+ 𝜀)

𝑡

0
𝑑𝑡 < − (𝜇 +

1

𝑖
+ 𝜀). (15) 

Now, the combination of inequalities from Eqs (12)–(15) and by the assumption  > Rc, we can 

assert that 
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𝑔 = 𝑙𝑖𝑚
𝑡→0

𝑠𝑢𝑝 𝑠𝑢𝑝
1

𝑡
∫ ℓ(𝑀)

𝑡

0

𝑑𝑡 < 0. 

The system containing only four non-linear equations of model Eqs (1)–(4) is globally 

asymptotically stable around its interior equilibrium(𝑆𝑐
∗, 𝐼𝑐

∗, 𝑋𝑐
∗, 𝑃𝑐

∗). 

2.3. Sensitivity analysis 

The basic parameters are carried on the sensitivity analysis. They are checked and identified the 

parameter that can impact the basic reproduction number. The sensitivity analysis is informed that each 

parameter's significance is disease transmission for control the spread of brown disease on leaf brown 

disease. The explicit expression of 𝑅0 is given by 

𝑅0 =
(𝑅𝑥𝜎𝑖 + 𝑅𝑐𝜀𝑖)

𝜀(1 + 𝜇𝑖)
. 

Definition 2.1. The normalized forward sensitivity index of a variable, u, that depends differentiable 

on a parameter, p, is defined as: 

𝜓𝑝
𝑢 = (

𝜕𝑢

𝜕𝑝
) (

𝑝

𝑢
). 

The sensitivity indices of the basic reproductive number calculate by used parameters of endemic 

equilibrium point that are shown in Table 2 [2]. 

Table 2. Sensitivity indices table. 

Notation Biological meaning Value 

Rx Rate of primary infection 0.1890 

Rc Rate of secondary infection 0.8110 

  Natural death rate -0.1362 

i  Death rate of infect 0.8638 

σ Growth rate of the pathogen population 0.1890 

 Death rate of pathogen -0.1890  

To consider the relationship between the primary infection (Rx) and the rate of and death rate of 

pathogen ( ), it was found that the basic reproductive number will increase when Rx increased at the 

tiny   as shown in Figure 2a. 

To consider the relationship between the rate of secondary infection (Rc) and the growth rate of 

pathogen (σ), it was found that the basic reproductive number will increase when Rc and σ increased 

as shown in Figure 2b. 

To consider the relationship between the rate of secondary infection (Rc) and the primary infection 

(Rx), it was found that the basic reproductive number will increase when Rc increases. Despite the 

increase of Rx, the value of 𝑅0 marginally increased as shown in Figure 2c. 

To consider the relationship between the natural death rate (μ) and rate of secondary infection 

(Rc), it was found that the basic reproductive number will increase when Rc and increased at the tiny μ 


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as shown in Figure 2d. 

 

Figure 2. Sensitivity analysis of different parameters. 

2.4. Optimal control proble 

The spreading of leaf brown spot disease is controlled by using the botanical fungicide. The goal 

is to decrease the amount of infected rice. Therefore, Pontryagin’s principle, shown below, is used to 

control the number of rice [5,8,10]: 

𝐽(𝑢) = ∫ [𝐴0𝐼(𝑡) + 𝐴1𝑢
2(𝑡)]

𝑡𝑓

𝑡0

𝑑𝑡. 

Where 𝑡𝑓 is the final time, 𝐴0 is balancing constant coefficients of the infected plant while 𝐴1 is 

weight coefficients for control measure and variable 𝑢(𝑡)  is the control variable of the preventive 

treatment. With the objective function 𝐽(𝑢). The goal is to find the optimal control 𝑢∗(𝑡) such that: 

𝐽(𝑢∗) = 𝑚𝑖𝑛{𝐽(𝑢)}. 

The state variable for the model 
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𝑥(𝑡) = [

𝑆(𝑡)

𝐼(𝑡)

𝑋(𝑡)

𝑃(𝑡)

], 

and the constraint: 

𝑑𝑆

𝑑𝑡
= 𝜅 − 𝑢𝜋𝑆 + 𝛿𝑃 − (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆

𝑆 + 𝐼
− 𝜇𝑆, 

𝑑𝐼

𝑑𝑡
= (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆

𝑆 + 𝐼
− 𝜇𝐼 −

𝐼

𝑖
, 

𝑑𝑋

𝑑𝑡
= 𝜎𝐼 − 𝜀𝑋, 

𝑑𝑃

𝑑𝑡
= 𝑢𝜋𝑆 − 𝛿𝑃 − 𝜇𝑃. 

The system should satisfy the condition: 

0 ≤ 𝑢(𝑡) ≤ 1,0 ≤ 𝑡 ≤ 𝑡𝑓 , 𝑆(0) = 𝑆0 > 0, 𝐼(0) = 𝐼0 ≥ 0, 𝑋(0) = 𝑋0 ≥ 0, 𝑃(0) = 𝑃0 ≥ 0. 

We define Hamiltonian function as 𝐻 = 𝑓(𝑥, 𝑢, 𝑡) + 𝜆′𝑔(𝑥, 𝑢, 𝑡), which equivalent to: 

𝐻 = 𝐴0𝐼(𝑡) + 𝐴1𝑢
2(𝑡) + 𝜆1 (𝜅 − 𝑢𝜋𝑆 + 𝛿𝑃 − (𝑅𝑥𝑋 + 𝑅𝑐𝐼)

𝑆

𝑆 + 𝐼
− 𝜇𝑆) 

+𝜆2 ((𝑅𝑥𝑋 + 𝑅𝑐𝐼)
𝑆

𝑆 + 𝐼
− 𝜇𝐼 −

𝐼

𝑖
) + 𝜆3(𝜎𝐼 − 𝜀𝑋) + 𝜆4(𝑢𝜋𝑆 − 𝛿𝑃 − 𝜇𝑃), 

where 𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡) are the co-state variable or the Lagrange multiplier of the optimization 

problem. The necessary conditions that an optimal control is archived, it must satisfy the following 

Pontryagin’s principle: 

•State equation: 

𝑆
•

=
𝜕𝐻

𝜕𝜆
•

1

= 𝜅 − 𝑢𝜋𝑆 + 𝛿𝑃 − (𝑅𝑥𝑋 + 𝑅𝑐𝐼)
𝑆

𝑆 + 𝐼
− 𝜇𝑆, 

𝐼
•

=
𝜕𝐻

𝜕𝜆
•

2

= (𝑅𝑥𝑋 + 𝑅𝑐𝐼)
𝑆

𝑆 + 𝐼
− 𝜇𝐼 −

𝐼

𝑖
, 

𝑋
•

=
𝜕𝐻

𝜕𝜆
•

3

= 𝜎𝐼 − 𝜀𝑋, 

𝑃
•

=
𝜕𝐻

𝜕𝜆
•

4

= 𝑢𝜋𝑆 − 𝛿𝑃 − 𝜇𝑃. 

•Co-state equation: 

𝜆
•

1 = −
𝜕𝐻

𝜕𝑆
= 𝜆1 (𝑢𝜋 +

(𝑅𝑥𝑋 + 𝑅𝑐𝐼)

(𝑆 + 𝐼)
−

(𝑅𝑥𝑋 + 𝑅𝑐𝐼)𝑆

(𝑆 + 𝐼)2
+ 𝜇) − 𝜆2 (

(𝑅𝑥𝑋 + 𝑅𝑐𝐼)

(𝑆 + 𝐼)
−

(𝑅𝑥𝑋 + 𝑅𝑐𝐼)𝑆

(𝑆 + 𝐼)2
) − 𝜆4𝑢𝜋, 
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𝜆
•

2 = −
𝜕𝐻

𝜕𝐼
= −𝐴0 − 𝜆1 (

(𝑅𝑥𝑋 + 𝑅𝑐𝐼)𝑆

(𝑆 + 𝐼)2
−

𝑅𝑐𝑆

(𝑆 + 𝐼)
) + 𝜆2 (

(𝑅𝑥𝑋 + 𝑅𝑐𝐼)𝑆

(𝑆 + 𝐼)2
−

𝑅𝑐𝑆

(𝑆 + 𝐼)2
+ 𝜇 +

1

𝑖
) − 𝜆3𝜎, 

𝜆
•

3 = −
𝜕𝐻

𝜕𝑋
= (𝜆1 − 𝜆2) (

𝑅𝑥𝑆

𝑆 + 𝐼
) + 𝜆3𝜀, 

𝜆
•

4 = −
𝜕𝐻

𝜕𝑃
= 𝜆4(𝛿 + 𝜇) − 𝜆1𝛿. 

•Transversality conditions: 

𝜆1(𝑡𝑓) = 𝜆2(𝑡𝑓) = 𝜆3(𝑡𝑓) = 𝜆4(𝑡𝑓) = 0, 

for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 

•Stationer condition 

𝜕𝐻

𝜕𝑢
= 0, 

then 

𝑢 =
(𝜆1 − 𝜆4)𝜋𝑆

2𝐴1
. 

Since 0 ≤ 𝑢(𝑡) ≤ 1, then we get: 

𝑢 = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,
(𝜆1 − 𝜆4)𝜋𝑆

2𝐴1
) , 1}, 

as the optimal control of the system. 

3. Results 

In this section, we present some numerical simulations to ensure the analytic results by 

considering the pathogen-free and pathogen condition. For simulation that uses pathogen-free situation, 

the initial conditions using for calculation are denoted as S(0)=200, I(0)=400, X(0)=400, P(0)=0 and 

 >Rc. Here, the proposed model is simulated from initial time to 140 days. The models were simulated 

by RK4 method with step size 0.01 which guaranteed the stability of the numerical solutions. The 

parameters and initial data in each case of simulation were shown in Table 3. There were two results 

of the simulation. The first results showed the dynamic model for pathogen-free. The second results 

showed dynamics model for the pathogen, was shown in Figures 3 and 4 respectively. 

In case of the disease-free condition, the basic reproductive number is not greater than one that 

gives the disease-free equilibrium (𝐸0), which is local asymptotically stable. The model is used the 

basic reproductive number about 0.8684. The simulation was shown the number of infectious, 

pathogen and susceptible sites decreased but the protected plant increased. The solution converges to 

the disease-free state, which means the infection and pathogen tend to zero when there is appropriate 

time as shown in Figure 3. 
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Table 3. Parameters values used in numerical simulation. 

Notation Biological meaning Valu R0<1 Value R0>1 Unit References 

  Planted rate of susceptible 10 10 NSites day-1 [2] 

Rx Rate of primary infection 0.05 0.4 day-1 [2] 

Rc Rate of secondary infection 0.05 0.1 day-1 [2] 


 Natural death rate 0.0083 0.0083 day-1 [2] 

1/i Death rate of infect 1/19 1/19 day-1 [6] 

σ Growth rate of the pathogen  0.0072 0.0072 day-1 [3] 

 Death rate of pathogen 0.1236 0.1236 day-1 [4] 

 The effective of botanical fungicides 0.1 0.1 day-1 [8] 

 
The rate of damage to the botanical 

fungicide given to the plant host 
0.001 0.001 day-1 [8] 

 

Figure 3. Brown spot disease dynamics model for pathogen-free condition 0 0.8684R = . 

The model is used the basic reproductive number about 2.0236 in case of endemic condition, 

which is greater than one. So, it leads to the endemic equilibrium (𝐸1) giving the global asymptotically 

stable when 𝑅0  is greater than 1. The simulation was shown that the infectious, pathogen and 

susceptible sites converged to the endemic equilibrium steady state when there is a suitable long time 

while the number of the protected plant increased. The solution curve tends to the endemic equilibrium 

as shown in Figure 4. 






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Figure 4. Brown spot disease dynamics model for pathogen condition 0 2.0236R = . 

In Figures 5 and 6, the result of susceptible plant with control is lower than that without control 

because the susceptible site is moved to the protected site as shown in Figure 5. In the same way, the 

result of infected plant with control is lower than in case of without control because the infected site 

was protected by botanical fungicide as shown in Figure 6. Therefore, these results can be interpreted 

that the botanical fungicide can reduce the spread of leaf brown spot disease. 

 

Figure 5. Variation in susceptible plant with control and without control. 
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Figure 6. Variation in infected plant with control and without control. 

In Figure 7 show the proportion of fungicide used to protect plant from fungi. Here we choose 

𝐴0 = 2, 𝐴1 = 5 using optimal control requires to maintain the control at 100% for 119 days before 

dropping to its lower bound. it appears that in the presence of fungicide control, susceptible plant and 

protected plant will grow more than without fungicide control. 

 

Figure 7. Variation of control fungicide with respect to time. 

4. Discussion 

In this paper, we have presented and analyzed a differential system of the SIXP model. The model 

has two equilibrium points. The disease-free equilibrium (𝐸0) and endemic equilibrium (𝐸1). It is found 
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that 𝑅0 < 1the disease-free equilibrium is locally asymptotically stable as guaranteed by Theorem 2.1. 

The Lyapunov function theory is used for disease-free equilibrium that is globally asymptotically stable 

if 𝑅0 < 1 the as guaranteed by Theorem 2.2. The epidemic equilibrium of the model is locally 

asymptotically stable when 𝑅0 > 1 as guaranteed by Theorem 2.3. The Lozinskii measure and additive 

compound Metrix Theorem is used to address dynamics stability issues that arose from the solution of 

nonlinear differential equations. If 𝑅0 > 1, the endemic equilibrium is globally asymptotic stable as 

guaranteed by Theorem 2.4. 

5. Conclusions 

As a result, we discovered that the numerical simulation results verified the analytical findings of 

the propagation of the leaf brown spot disease in rice with standard incidence rate. The occurrence of 

brown spot illnesses in rice can be represented by the developed model. The endemic equilibrium and 

the disease-free equilibrium are the two equilibrium points in the SIXP models. Constructing a suitable 

Lyapunov function is observed that the global asymptotic stability of the disease-free equilibrium 

depends on the basic reproduction number (𝑅0). If 𝑅0 < 1the, then the endemic equilibrium is globally 

asymptotically stable by using the estimate of the Lozinskii measure applied to the systems. The 

sensitivity indices of the reproductive number and endemic equilibrium are determined and optimal 

control strategy. Parameters in the model illustrate that to reduce the spreading of leaf brown spot 

disease, the parameters Rc, Rx, i, σ must be reduced. In practice, botanical fungicide is one factor that 

can reduce the value of Rc, Rx, i, σ. The control plots we developed indicate that the site of susceptible 

and infected decreased in the optimality system. The results show that the modified model by 

considering the botanical fungicide can reduce the spreading of leaf brown spot disease. In addition, 

the numerical simulations were also to support the theoretical hypothesis and approach epidemic 

control. The study results suggest that the botanical fungicide can reduce the spreading of leaf brown 

spot disease. 
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