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1. Introduction

Fractional calculus is primarily concerned with fractional integration and differentiation operations.
It is an outstanding approach to situations where existing local operators are incapable of producing
effective results, as it has been observed that the fractional order models are better matched with
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the real data than the classical integer-order derivatives [10, 25]. The theory of fractional-order
calculus was initially studied and further explored in the 18th and 19th centuries. One of the distinct
features of fractional derivatives is their capacity to provide a pertinent and practical choice to model
important physical problems. Many physical applications are not correctly modeled using the local
differential operators. Therefore, the theory of the fractional-order derivative has attracted the attention
of applied mathematicians to use fractional differential equations (FDEs) as a powerful tool in various
areas, particularly in the fields of physics and engineering [11, 47]. Fractional-order differential
equations hold a strong foothold in some major domains, particularly in control theory [35], diffusion
problems [55], control relaxation processes and viscous fluid flow [47], signal processing [45],
dynamics ( [34, 56]) and bio-engineering [39]. In addition, fractional-order models applied in micro-
grids [14] are used in wireless networks [67]. Similarly, in fractional calculus, fractional-order models
provide unprecedented significance in studying the dynamics of biological systems [7, 60]. Kilbas et
al. addressed the theory of fractional differential equations and their applications [33].

Fractional derivative operators (FDOs) are significantly relevant to real data analysis, which has
drawn great attention from various mathematicians and modelers in the applied sciences. A variety
of fractional operators are widely used in the literature, although few of them are comparatively
more common, including Riemann-Liouville, Hadamard, Weyl, ( [50, 53]), Caputo [22], and Jumarie
( [28, 29]). The kernel of the most commonly used fractional operators namely Caputo and Riemann-
Liouville contains singularity, and hence, they may not always be able to express the non-locality
of real-world situations properly. Thus, new fractional derivatives with nonsingular kernels have
been defined in order to accurately model the nonlocal systems. Although fractional derivatives with
singularity have many advantages, they are still not applicable in many situations. For example, the
Caputo derivative requires higher regularity conditions for differentiation, and this is only classified
for distinguishable functions. In the case of the Riemann-Liouville derivative, the constant refers to a
non-zero value. The fractional-order Jumarie derivative will not exist if the function is discontinuous
at the origin [8]. Researchers are investigating some more efficient fractional operators. To overcome
the challenge of singularity and to find efficient and robust modeling results in recent years, a more
efficient fractional-order Caputo-Fabrizio derivative has been introduced with the non-singular kernel
by Caputo and Fabrizio. It is considered a constructive approach with the fact of transforming to
integer power using Laplace transformation, therefore for some cases, we can easily calculate the
exact solution [13]. The analysis of fractional operators and some of their new properties have been
discussed in [51]. Major properties of the Caputo-Fabrizio derivative are presented in [36] and the
progress of this newly introduced fractional operator is discussed in ( [12, 57]). To study more
applications, we refer to ( [21, 58, 59, 61–66]). In contrast to ordinary integer derivatives, fractional-
order derivatives have gained popularity in recent years as effective solutions to difficult problems. [26]
proclaim that uncertain fractional-order Caputo derivatives produce outstanding outcomes in real
financial markets. As experimental investigations and the relevant sensitivity analyses justified the
author’s claims. In another study [37], a novel uncertain fractional currency model is successfully
developed and the Mittag-Leffler function is used to calculate the solution of the fractional differential
equation using the Caputo derivative. The monotonicity theorem for UFDEs in the sense of Caputo
is the central subject of the research [27]. A unique uncertain fractional order mean-reverting model
is provided with a floating interest rate that better reflects the actual uncertain financial market. In
order to determine the optimal solutions for a class of nonlinear programming problems, a fractional
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order mathematical model with the steepest descent path is given in [18]. A research [42] has
developed an efficient numerical method, the iterative reproducing kernel algorithm, to generate
numerical solutions to the fractional order Bernoulli and Riccati differential equations while taking
the Caputo-Fabrizio derivative into account. Besides this, a method for solving fractional Volterra
partial integro-differential equations utilizing the Caputo-Fabrizio fractional derivative is presented
in [15] as a new, effective approach. Using the Legendre-Gauss-Lobatto quadrature rule in combination
with unique operational matrices, an effective technique is produced. Similarly, the exponential Euler
difference form for fractional differential equations in the Caputo-Fabrizio sense with variable lags is
established in [65]. The study demonstrates that the developed difference form falls within the umbrella
of implicit Euler differences, and to resolve this implicit difference, the fractional PECE technique
is then presented. Furthermore, to solve a group of cubic and quadratic logistic equations with
Caputo-Fabrizio fractional order derivatives in Hilbert space, a modified replicating kernel approach
is presented in [16]. While analyzing the population growth model, the effects of the fractional
order Caputo-Fabrizio are investigated in comparison to the conventional Caputo derivatives. The
findings demonstrate that utilizing the novel Caputo Fabrizio derivative, the proposed sophisticated
technique has numerous benefits in terms of stability. In another study [52], cylindrical geometry is
used to explore the unsteady fractional advection-diffusion equation. The fractional order model of
advection-diffusion employs the Caputo-Fabrizio time-fractional derivative. In order to deal with a
class of fuzzy fractional differential equations containing the Caputo-Fabrizio derivative, an improved
numerical-analytical method is proposed in [23]. The outcomes demonstrate the precision and high
caliber of the suggested approach, particularly in nonlinear situations. With the help of the Caputo-
Fabrizio operator, the analytic-approximate solutions for the fractional Volterra integro-differential
equations are examined in [64]. The analysis of the derived solutions shows that the methodology
is suitable to handle numerous physical problems in the Caputo-Fabrizio sense. In [54] fractional
order derivatives such as Captuo-Fabrizio, Caputo, and conformable fractions have been employed
with the cubic B-spline approach to approximate polynomial solutions for fractional Painleve and
Bagley-Torvik equations. Moreover, in [19], study has investigated the complex behaviour of the
COVID-19 Omicron version using Caputo-Fabrizio fractional operators. The existence and singularity
of the model’s system of solutions have been discussed. Further, a numerical technique is developed
by incorporating an exponential law kernel for the study and dynamical transmission of the virus. The
outcome of the research showed that the fractional model of COVID-19 is reliable.

In further fractional literature, multiple major studies have been made by incorporating Caputo-
Fabrizio models. In this context, a fractional-order reaction–diffusion model named the Allen Cahn
model has been studied under Atangana-Baleanu and Caputo-Fabrizio fractional derivatives [46]. The
effectiveness of the proposed numerical solutions of these modified models has been extended by
utilizing the Crank-Nicholson scheme. Moreover, the Caputo-Fabrizio advection-diffusion equation
is investigated in the half-plane using the Laplace transform in [40]. The particular solution of the
diffusion process is computed against the Dirichlet problem. Similarly, basic and efficient solutions
to the Cauchy and Dirichlet problems with the Caputo-Fabrizio derivative for a heat conduction
equation are investigated on a line segment in [9]. A nonlinear differential equation with the
Caputo-Fabrizio operator in Banach spaces is investigated in [30] using the Banach contraction
mapping principle, and further favorable conditions for its solution have been presented. Likewise,
a fractional-order schistosomiasis disease model is analyzed with the help of an exponential law
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kernel as well as the Mittag-Leffler kernel in Liouville-Caputo sense [61]. Numerical simulations
of the fractional SIR model with the Caputo-Fabrizio derivative are formulated in [62] using an
iterative scheme with Laplace transform. Besides this, with the help of fractional operators, mainly
Caputo-Fabrizio and Atangana-Baleanu a malarian model has been investigated in [3]. In [49], a
fractional mathematical model is investigated numerically through the Genocchi collocation technique
using the Caputo-Fabrizio fractional derivative. A nonlinear fractional order model of COVID-19 has
been investigated by incorporating the Caputo-Fabrizio fractional derivative due to the significance of
modeling and regulating the COVID-19 pandemic in [44]. [31] considers the Mittag-Leffler kernel and
the exponential decay kernel to investigate the Korteweg-de Vries-Burgers (KdV-B) partial differential
equation (PDE) involving nonlocal operators. The existence of the solution of the KdV-B PDE for both
fractional operators is proven using fixed point theorems of -type z contraction; further, the modified
double Laplace transform is used to construct a series solution. In [32], the modified coupled Korteweg-
de Vries equation is studied along with the fractional order derivatives of Caputo and Caputo-Fabrizio
with a time variable. The proposed model explains the nonlinear evolution of the waves caused by
modest dispersion effects. Additionally, it has been found that the coupled system generates a wave
solution that reveals the evolution of shock waves due to the steeping influence on temporal evolution.
A viscous thermal Maxwell model utilizing the Caputo-Fabrizio derivative is studied in [1]. More
specifically, they worked on fluidic-thermal transport via micro-tube when magnetic and electric fields
were present. In this study, it has been claimed that the model’s efficiency could be controlled by
adjusting the fractional-order of the Caputo-Fabrizio operator.

Constructing numerical and analytical solutions for FDEs is a difficult task for many
mathematicians. Many physical problems involving fractional models do not have existing exact
solutions, so numerous researchers developed a keen interest in developing numerical solutions for
fractional-order differential equations. A new scheme called, Adams-Bashforth with the Caputo-
Fabrizio operator is constructed in [48] which consists of three steps to solve both fractional nonlinear
and linear differential equations. Also, it has various applications in solving fractional-order chaotic
systems. A fractional-order Caputo-Fabrizio derivative is used to analyze the surface waver model [5].
Researchers have proven the validity of the fixed point theorem for the solution of the modified system,
and further, a particular solution for this system is derived with the help of the iterative method.
The Caputo-Fabrizio fractional-order Fokker-Planck equation is numerically solved using the “Ritz
method” in [20]. Further, the coefficients of basis functions are obtained by solving a nonlinear
algebraic system. [51] also derives the Legendre operational matrix based on Caputo-Fabrizio using
the Tau method.

The study [4] presents the fractional mass-spring-damper system with Caputo and Caputo-Fabrizio
derivatives. [41] discusses the fractional dynamics of oxygen diffusion using the Laplace homotopy
method, and the Caputo-Fabrizio-Caputo and Liouville-Caputo operators are used to investigate the
equation of oxygen dispersion across tissues. In addition, to visualize the useful application of
the proposed scheme, they compared it with conventional methods. The Modified-Caputo-Fabrizio
derivative is proposed in [63] to calculate the solution of fractional-order differential equations.
Analytical solutions based on the homotopy analysis method (HAM) and the multi-step homotopy
analysis method (MHAM) are explored. In [24] authors developed the fractional Euler method with
the order of convergence one, to solve differential equations with fractional-order Caputo-Fabrizio
operator and solve the HIV model using the proposed method. In [25] trapezoidal scheme is
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devised to find an efficient solution to the fractional differential equation using the Caputo-Fabrizio
operator with convergence order two further, the stability and convergence of the derived method
are analyzed. Motivated by this study, we developed Simpson’s 1/3 method for solving fractional
order differential equations with the Caputo-Fabrizio derivative with an order of accuracy of four
in this paper. According to the authors’ knowledge, there is no work on solving Caputo-Fabrizio
fractional differential equations with Simpson’s 1/3 method. The advantage of the proposed fractional
Simpson’s 1/3 method is that it has greater accuracy than existing methods and is easy to implement.

The following structure describes how this article is set up. In order to solve differential equations
of fractional order, Section 2 presents a novel numerical method based on Simpson’s 1/3 rule and
incorporates the Caputo-Fabrizio derivative. Section 3 discusses the constructed scheme’s convergence
and stability. Numerical tests in Section 4 are provided to confirm the reliability of our generated
method.

2. Simpson’s 1/3 rule for Caputo-Fabrizio fractional derivative

In 2015, Caputo and Fabrizio succeeded in introducing the fractional order derivative Caputo-
Fabrizio by replacing the singular kernel (z − ζ)−α with e( −α(z−ζ)

1−α ) in the Caputo derivative [13]. For
z ∈ H1(a, b), 0 < α < 1, the α th–order Caputo-Fabrizio fractional derivative and its corresponding
integral of z(ζ), represented by CFDαz(ζ) and CFIαz(ζ) respectively are defined by

CFDαz(ζ) :=
1

1 − α

∫ t

a
exp[−

α

1 − α
(ζ − δ)]ż(δ)dδ. (2.1)

CFIαz(ζ) := (1 − α)z(ζ) + α

∫ ζ

a
z(δ)dδ. (2.2)

In this section, we construct the fractional Simpson’s 1/3 scheme to find out the solution to Caputo-
Fabrizio fractional differential equations. The 1/3 Simpson rule is a closed scheme of numerical
integration that approximates integration function with a quadratic polynomial. Taking into account,
the following α order fractional differential equation{

CFDαz(ζ) = g(z(ζ)), a < ζ < b < ∞,
z(a) = z0,

(2.3)

whereas g refers to a continuous vector function that successfully fulfills the Lipschitz condition

|g(z(ζ1)) − g(z(ζ2))| ≤ L‖z(ζ1) − z(ζ2)‖, L > 0. (2.4)

Applying Caputo-Fabrizio fractional integral operator on Eq (2.3) and using Proposition 3 in [2], we
get

z(ζ) = z0 +CF Iαg(z(ζ)), a < ζ < b < ∞,

Equation (2.2) yields

z(ζ) = z0 + (1 − α)g(z(ζ)) + α

∫ ζ

a
g(z(s))ds. (2.5)
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Theorem 2.1. [36] Let us suppose we have a continuous function g : [0,T ] × R → R with 0 < α <

1, T > 0 that meets the Lipschitz condition (2.4). The initial value problem (2.3) has a unique solution
on C[0,T ] for any given (γα + λαT )L < 1, whereγα =

2(1−α)
(2−α)M(α) , λα = 2α

(2−α)M(α) .

First, we will use a second-degree polynomial P2 to approximate the integral function g in Eq (2.5),
and the function will be evaluated at ζ0, ζ1, and ζ2, with ζ0 < ζ1 < ζ2. The interval is divided into two
subintervals such as ζ1 − ζ0 = ζ2 − ζ1 = τ, for a total width of 2τ.The formula for an interpolant with a
second-degree polynomial is given as follows:

I2g(z(ζ)) =

∫ b

a
g(z(ζ))dζ ≈

∫ ζ2

ζ0

P2(z(ζ))dζ,

this gives

I2g(z(ζ)) =

∫ ζ2

ζ0

[ (ζ − ζ1)(ζ − ζ2)
(ζ0 − ζ1)(ζ0 − ζ2)

g(z(ζ0)) +
(ζ − ζ0)(ζ − ζ2)

(ζ1 − ζ0)(ζ1 − ζ2)
g(z(ζ1)) +

(ζ − ζ0)(ζ − ζ1)
(ζ2 − ζ0)(ζ2 − ζ1)

g(z(ζ2))
]
dζ.

Integrating the interpolant’s first term, as we have, τ =
ζ2−ζ0

2 and substituting “ζ = s + ζ0”, gives us∫ ζ2

ζ0

(ζ − ζ1)(ζ − ζ2)
(ζ0 − ζ1)(ζ0 − ζ2)

dζ =
1

2τ2

∫ ζ0+2τ

ζ0

(ζ − ζ1)(ζ − ζ2)dζ

=
1

2τ2

∫ 2τ

0
(s + ζ0 − ζ2)(s + ζ0 − ζ1)ds

=
1

2τ2

∫ 2τ

0
(s − 2τ)(s − τ)ds

=
1

2τ2

∫ 2τ

0
[s2 − 3τs + 2τ2]ds

=

( 1
2τ2

)(2τ3

3

)
=
τ

3
.

After simplifying the rest of the terms, we have

I2(g) =
τ

3

[
g(z(ζ0)) + 4g(z(ζ1)) + g(z(ζ2))

]
. (2.6)

Using Eq (2.5), we get

z(ζn) = z0 + (1 − α)g(z(ζn)) +
τ

3

[
g(z(ζ0)) + 4g(z(ζ1)) + g(z(ζ2))

]
, n = 0, 1, 2.

The accuracy of the numerical integration can be considerably enhanced by subdividing the integration
interval into smaller intervals and applying the quadrature rule to each pair of sub-intervals. For this,
we divide [a, b] interval into n sub-intervals. This method is applicable when we have two adjacent
sub-intervals at the same time. So, for even integer n ≥ 2, we define

τ =
b − a

n
, tk = a + kτ, k = 0, 1, 2, ..., n.
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Applying Simpson’s 1/3 rule to the sub-intervals [ζ2k, ζ2(k+1)], k = 0, 1, 2, ..., n−2
2 gives

In(g) =

∫ ζ2

ζ0

g(z(ζ))dζ +

∫ ζ4

ζ2

g(z(ζ))dζ + ... +

∫ ζn

ζn−2

g(z(ζ))dζ

=

n−2
2∑

k=0

∫ ζ2k+2

ζ2k

g(z(ζ))dζ

=

n−2
2∑

k=0

(
τ

3
[g(z(ζ2k)) + 4g(z(ζ2k+1)) + g(z(ζ2k+2))]

)
.

Using Eq (2.5), we get the following Simpson’s 1/3 rule for the Caputo-Fabrizio fractional differential
equation (2.3):

zn+1 = ζ0 + (1 − α)g(zn+1) + α
τ

3

[
g(z(ζ0)) + 4

n∑
i=2,4,6

g(z(ζi)) + 2
n−1∑

j=1,3,5

g(z(ζ j)) + g(z(ζn+1))
]
, n = 0, 1, 2, 3, ...,N − 1. (2.7)

We refer zn as the approximate solution of z(ζn), then scheme (2.7) can be written as

zn+1 = ζ0 + (1 − α)g(zn+1) + ατ

n+1∑
k=0

akg(zk), n = 0, 1, 2, 3, ...,N − 1, (2.8)

where the weights ak of fractional Simpson’s 1/3 rule are given as follows:

ak =


1/3, k = 0,
2/3, k = 1, 3, 5, ...,
4/3, k = 2, 4, 6, ...
1/3, k = n + 1.

3. Critically analyzing the convergence and stability of the proposed scheme

In this section, we investigate the proposed numerical systems’ convergence and stability. The
symbol C denotes any general constant. To start with, we’ll estimate the error.

Lemma 3.1. Take into account g(z(ζ)) ∈ C4([a, b]), such that∣∣∣∣∣ ∫ ζn+1

ζ0

g(z(s))ds − ατ
n+1∑
j=0

a jg(ζ j)
∣∣∣∣∣ ≤ Cτ4,

where C =
(b−a) f (4)(δ)

180 , τ = b−a
N , and ζk = a + τk, k = 0, 1, ..., n + 1 on [a, b].

Proof. The integrand function will be expanded about the midpoint ζ1 of the interval.

g(z(ζ)) = g(z1) + (ζ − ζ1)g(1)(z1) +
(ζ − ζ1)2

2!
g(2)(z1) +

(ζ − ζ1)3

3!
g(3)(z1) +

(ζ − ζ1)4

4!
g(4)(δ(ζ)),

where δ ∈ [ζ1, ζ], integrating the above equation, we get
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∫ b

a
g(z(ζ))dζ =

∫ ζ1+τ

ζ1−τ

[
g(z1) + (ζ − ζ1)g(1)(z1) +

(ζ − ζ1)2

2!
g(2)(z1) +

(ζ − ζ1)3

3!
g(3)(z1)

+
(ζ − ζ1)4

4!
g(4)(δ(ζ))

]
dt

= 2τg(z1) + 0.g(1)(z1) +
2τ3

2 · 3
g(2)(z1) + 0.g(3)(z1) +

2τ5

5 · 4!
g(4)(δ1),

we arrive ∫ b

a
g(z(ζ))dζ = 2τg(z1) +

τ3

3
g(2)(z1) +

τ5

60
g(4)(δ1), δ1 ∈ [a, b]. (3.1)

Similarly, using Taylor’s series, expand the function about t1 at the endpoints of the interval

g(z0) = g(z1) − τg(1)(z1) +
τ2

2!
g(2)(z1) −

τ3

3!
g(3)(z1) +

τ4

4!
g(4)(δ2),

g(z2) = g(z1) + τg(1)(z1) +
τ2

2!
g(2)(z1) +

τ3

3!
g(3)(z1) +

τ4

4!
g(4)(δ3).

The above expressions for g(z0) and g(z2) are substituted into Eq (2.6) to get

I =
τ

3

[
6g(z(ζ1)) + τ2g(2)(z1) +

τ4

4!
(g(4)(δ2) + g(4)(δ3))

]
. (3.2)

Let for a ≤ δ ≤ b, g4(δ) = max |(g(4)(δ(ζ)))|. Subtracting Eq (3.2) from Eq (3.1), we found the following
integration error

E ∼ g(4)(δ)(
τ5

60
−
τ5

36
) = −

τ5

90
g(4)(δ). (3.3)

Hence, the error for composite Simpson’s 1/3 rule is

En(g) = I(g) − In(g) = −

n−2
2∑

k=0

τ5

90
g(4)(δk) for some δk ∈ [ζ2k, ζ2k+2]

= −
τ5

90
(
n
2

)(
2
n

)

n−2
2∑

k=0

g(4)(δk)

= −
τ5

180
ng(4)(δ), δ ∈ [a, b],

putting n = b−a
τ

generates

En(g) = −

[ (b − a)g(4)(δ)
180

]
τ4, δ ∈ [a, b]. (3.4)

Hence
|En(g)| ≤ Cτ4.

�
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Theorem 3.2. Conditional stability exists for the newly constructed fractional numerical approach
(2.8).

Proof. In order to prove the aforementioned statement, we use the technique of perturbation and
perturb z0 and zn (n = 0, 1, 2..., k + 1) by z̃0 and z̃n. This process transforms our numerical scheme
in the following way:

zn+1 + z̃n+1 = z0 + z̃0 + (1 − α)g(zn+1 + z̃n+1) + ατ

n+1∑
k=0

akg(zk + z̃k). (3.5)

From Eqs (2.8) and (3.5) we have

z̃n+1 = z̃0 + (1 − α)[(g(zn+1 + z̃n+1) − g(zn+1))] + ατ

n+1∑
k=0

ak[g(zk + z̃k) − g(zk)].

Using the triangle inequality and the Lipschitz condition with the fact that |ak| < 1, we arrive

‖̃zn+1‖ =

∥∥∥∥∥∥∥̃z0 + (1 − α + ατ)[g(zn+1 + z̃n+1) − g(zn+1)] + ατ

n∑
k=0

ak[g(zk + z̃k) − g(zk)]

∥∥∥∥∥∥∥
‖̃zn+1‖ ≤ ‖̃z0‖ + (1 − α + ατ)‖g(zn+1 + z̃n+1) − g(zn+1)‖ + ατ

n∑
k=0

‖g(zk + z̃k) − g(zk)‖

‖̃zn+1‖ ≤ ‖̃z0‖ + (1 − α + ατ)L‖̃zn+1‖ + ατL
n∑

k=0

‖̃zk‖

‖̃zn+1‖ − (1 − α + ατ)L‖̃zn+1‖ ≤ ‖̃z0‖ + ατL
n∑

k=0

‖̃zk‖

(1 − (1 − α + ατ)L)‖̃zn+1‖ ≤ ‖̃z0‖ + ατL
n∑

k=0

‖̃zk‖

For all permissible variables α, τ, L with (1 − α + ατ)L < 1, we have

‖̃zn+1‖ ≤ g(τ, α)‖̃z0‖ + ατLg(τ, α)
n∑

k=0

‖̃zk‖,

where
g(τ, α) =

1
1 − (1 − α + ατ)L

. (3.6)

There is a constant Cτ for each sufficient τ

1 < g(τ, α) < Cτ.

Therefore,

‖̃zn+1‖ ≤ Cτ‖̃z0‖ + CτατL
n∑

k=0

‖̃zk‖.

Now using the Gröwnwall inequality [17], we have

‖̃zn+1‖ ≤ C‖̃z0‖.

�
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Theorem 3.3. The newly constructed fractional numerical approach is conditionally convergent of
order 4, that is (2.8).

‖z(ζn+1) − zn+1‖ ≤ Ĉτ4.

Proof. To demonstrate convergence, take into account the difference between the actual and
approximate solution.

z(ζn+1) − zn+1 = (1 − α)(g(z(ζn+1)) − g(zn+1)) + α

∫ ζn+1

0
g(z(ζk)dζ − τ

n+1∑
k=0

akg(zk)


= (1 − α)(g(z(ζn+1)) − g(zn+1)) + α

∫ ζn+1

0
g(z(ζk)dζ − τ

n+1∑
k=0

akg(z(ζk))


+ατ

n+1∑
k=0

ak[g(z(ζk)) − g(zk)].

Applying triangle inequality, Lipschitz condition, and Lemma 3.1,

‖z(ζn+1) − zn+1‖ ≤ (1 − α)L‖z(ζn+1) − zn+1‖ + αCτ4 + ατL
n+1∑
k=0

ak‖z(ζk) − zk‖

= (1 − α + ατ)L‖z(ζn+1) − zn+1‖ + αCτ4 + ατL
n∑

k=0

ak‖z(ζk) − zk‖

using the fact 0 ≤ ak < 1, for all the permissible parameters α, τ, L such that (1 − α + ατ)L < 1, we
have

‖z(ζn+1) − zn+1‖ ≤ g(τ, α)αCτ4 + ατLg(τ, α)
n∑

k=0

‖z(ζk) − zk‖,

where g(τ, α) is given in Eq (3.6), by using the Gröwnwall inequality, we have

‖z(ζn+1) − zn+1‖ ≤ Ĉτ4,

where Ĉ = αCCτ. �

4. Numerical experimentation

In order to demonstrate the usefulness and coherence of the suggested numerical scheme, examples
are provided in this section. In these instances, L2 − norm is used to calculate the error.

ε(τ) =

√√
τ

N−1∑
n=1

|z(ζn) − zn|
2, (4.1)

where zn is the numerical solution and z(ζn) shows the exact solution. The order is computed using

O = log2(ε(2τ)/ε(τ)).
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4.1. Example 1

Consider the fractional Caputo-Fabrizio differential equation shown below with z(0) = 0.

CF D
4
5 z(ζ) =

5
8

e−4ζ −
5
8

+
5
2
ζ, ζ ∈ [a, b].

The exact solution is z(ζ) = ζ2. With the derived numerical scheme (2.8) we solve this problem for
a = 0, b = 1. Comparison for α = 0.8 and τ = 1/100 between the solutions of the newly developed
scheme and the exact solution is shown in Figure 1. We check the order of convergence by varying the
step size from τ = 1/10 to 1/10000. In Table 1, we identify the error for α = 4/5, and it can be seen
that error decreases with lowering the step size. We can examine the convergence rate from Table 1
which is compatible with our theoretical results.

ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y
(ξ

)

0

0.2

0.4

0.6

0.8

1
α =0.8

Numerical Solution

Exact Solution

Figure 1. Comparison of exact solution and numerical solution for α = 4/5, τ = 1/100.

Table 1. The convergence order and errors when α = 4/5.

τ E(τ) order (O)
1/10 1.8595 ×10−2

1/100 1.8188 ×10−3 3.3539
1/1000 1.8322×10−4 3.3112
1/10000 1.8337×10−5 3.3207

4.2. Example 2

Consider another fractional Caputo-Fabrizio fractional equation with initial condition z(0) = 0.

CF D0.5z(ζ) = 6ζ2 − 18ζ + 19 − 19 exp(−ζ), ζ ∈ [0, 1].

z(ζ) = ζ3 − 3
2ζ

2 + 1
2ζ is the exact solution. Figure 2 shows the comparison of the exact and approximate

solution profiles obtained at α = 0.5 and τ = 1/100. We calculated the error and evaluated the
convergence order by decreasing the time step size from τ = 1/10 to 1/10000. Table 2 lists the error
for fractional-order α = 0.5, we can see that as the step size decreases, the error decreases. From
Table 2, we can note that our numerical experiments are consistent with the theoretical analysis.
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Figure 2. Comparison of exact solution and numerical solution for α = 0.5, τ = 1/100.

Table 2. The errors and convergence order when α = 0.5.

τ E(τ) order (O)
1/10 3.1692 ×10−3

1/100 8.7282 ×10−5 5.1823
1/1000 7.800×10−6 3.4839
1/10000 7.8345×10−7 3.3157

4.3. Example 3

Consider another fractional Caputo-Fabrizio fractional equation with initial condition z(0) = 1.

CF Dαz(ζ) = z(ζ) − h(ζ), ζ ∈ [0, 1],

where

h(ζ) = α exp(ζ)
(
−1 + exp(

ζ

−1 + α
)
)
.

z(ζ) = ζ exp(ζ) is the exact solution. The comparison of the exact and approximate solution profiles
is depicted in Figure 3 at α = 0.5 and τ = 1/100. The error and evaluated the convergence order by
decreasing the time step size from τ = 1/10 to 1/10000 is presented in Table 3 for fractional-order
α = 0.5.

Table 3. The convergence order and errors when α = 0.5.

τ E(τ) order (O)
1/10 1.8307 ×10−1

1/100 6.1131 ×10−3 4.9043
1/1000 5.9410×10−4 3.3631
1/10000 5.9238×10−5 3.3261
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Figure 3. Comparison of exact solution and numerical solution for α = 0.5, τ = 1/100.

4.4. Example 4

Consider another fractional Caputo-Fabrizio fractional equation with initial condition z(0) = 1.

CF Dαz(ζ) = 2z(ζ) + g(ζ), ζ ∈ [0, 1],

where

g(ζ) =
(α − α2 − 1) exp( αζ

α−1 ) − (1 + 2α(−1 + α))(−1 + 2αζ) − α((1 − 3α + 4α2) cos(ζ) + α sin(ζ))
α + 2α2(α − 1)

.

The exact solution is z(ζ) = ζ + cos(ζ). Table 4 shows the error and evaluated the convergence order
by decreasing the time step size from τ = 1/10 to 1/10000 for fractional-order α = 0.9. Figure 4
compares the exact and approximated solutions for alpha = 0.9 and tau = 1/1000.

Table 4. The convergence order and errors when α = 0.9.

τ E(τ) order (O)
1/10 2.6850 ×10−1

1/100 1.0907 ×10−2 4.6215
1/1000 6.9686×10−4 3.9682
1/10000 6.5394×10−7 3.4136
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Figure 4. Comparison of exact solution and numerical solution for α = 0.9, τ = 1/1000.
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4.5. Example 5: fractional order Malthusian growth model

Taking into consideration the fractional order Malthusian growth model
CF DαP(ζ) = κP(ζ), 0 < α ≤ 1,

where P(ζ) denotes the population at time ζ and κ is a positive constant. The exact solution is

P(ζ) =
P(0)

1 + κ(α − 1)
exp(

ακζ

1 + κ(α − 1)
).

Figure 5 depicts the population for different values of fractional-order 0 < α ≤ 1, with P(0) = 1 and
κ = 1 for both approximate solution and exact solution. Figure 6 compares the exact and approximate
solutions. Error and convergence order is given in Table 5.
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Figure 5. Comparison of the exact solution and numerical solution.
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Figure 6. Comparison of the exact solution and numerical solution for α = 0.9, τ = 0.005.
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Table 5. The convergence order and errors when α = 0.9.

τ E(τ) order (O)
1/10 1.7694
1/100 1.9222 ×10−1 3.2024
1/1000 2.0803×10−2 3.2078
1/10000 3.1529×10−3 2.7220

4.6. Example 6: fractional order blood alcohol model

Taking the fractional order blood alcohol model for 0 < α, β ≤ 1{ CF DαA(ζ) = −kα1 A(ζ),
CF DαB(ζ) = kβ1A(ζ) − kβ2B(ζ).

where k1, k2 are constants in the positive range and A(ζ) indicates the amount of alcohol in the
stomach, B(ζ) represents the amount of alcohol in the blood, The actual solution is

A(ζ) =
A(0)

1 + kα1 (α − 1)
exp(

−αkα1 ζ
1 + kα1 (α − 1)

),

B(ζ) =
A(0)kβ1

(kβ2β − kα1α) + kα1 kβ2(β − α)

β + kα1 (β − α)
1 + kα1 (α − 1)

exp(
−αkα1 ζ

1 + kα1 (α − 1)
) −

β

1 + kβ2(1 − β)
exp(

−βkβ2ζ

1 + kβ2(1 − β)
)

 .
The approximate solution of the fractional alcohol model for various fractional-order values of

0 < α, β ≤ 1, with A(0) = 245.8769, B(0) = 0 and k1 = 0.109456, k2 = 0.017727 is given in Figure 7.
Moreover, a comparison between the estimated result and the actual data is presented in Figure 8 [38].
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Figure 7. Comparison of the exact solution and numerical solution.
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Figure 8. Blood alcohol level real data versus theoretical model.
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4.7. Example 7: fractional order logistic model

Consider the fractional order logistic model [6]{
CF Dαy(ζ) = y(ζ).[1 − y(ζ)], 0 < α ≤ 1,
y(0) = y0.

The exact solution is [43]
y(ζ) − y2(ζ)
(1 − y(ζ))2/α =

y0 − y2
0

(1 − y0)2/α .e
ζ .

Figures 9 plots the solution of Caputo-Fabrizio and Caputo logistic function with y(0) = 1/2.
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Figure 9. Comparison of solution to the Caputo-Fabrizio and Caputo logistic differential
equation for α = 0.95.

5. Conclusions

In this paper, we present a numerical technique to solve fractional differential equations precisely
to the fourth order. It takes into account the Caputo-Fabrizio derivative with a non-singular kernel for
fractional-order α. The fractional differential equations are approximated numerically using Simpson’s
1/3 rule. Theoretical simulations show that, under the given circumstances, the suggested system is
conditionally stable and convergent. Finally, we draw the conclusion that the evidence shows that the
numerical and analytical outcomes are generally in good accord.
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58. M. Yavuz, N. Özdemir, European vanilla option pricing model of fractional order without singular
kernel, Fractal Fract., 2 (2018), 3. http://doi.org/10.3390/fractalfract2010003
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63. H. Yépez-Martı́nez, J. F. Gómez-Aguilar, A new modified definition of Caputo-Fabrizio fractional-
order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), J.
Comput. Appl. Math., 346 (2019), 247–260. http://doi.org/10.1016/j.cam.2018.07.023

64. F. Youbi, S. Momani, S. Hasan, M. Al-Smadi, Effective numerical technique for nonlinear Caputo-
Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space, Alex. Eng. J.,
61 (2022), 1778–1786. http://doi.org/10.1016/j.aej.2021.06.086

65. T. Zhang, Y. Li, Exponential Euler scheme of multi-delay Caputo–Fabrizio
fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709.
http://doi.org/10.1016/j.aml.2021.107709

66. D. Zhao, M. Luo, Representations of acting processes and memory effects: general fractional
derivative and its application to theory of heat conduction with finite wave speeds, Appl. Math.
Comput., 346 (2019), 531–544. http://doi.org/10.1016/j.amc.2018.10.037

67. A. Zappone, E. Jorswieck, Energy efficiency in wireless networks via fractional
programming theory found, Trends Commun. Inf. Theory, 11 (2014), 185–396.
http://doi.org/10.1561/0100000088

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 9535–9556.

http://dx.doi.org/http://doi.org/10.1016/j.chaos.2018.10.029
http://dx.doi.org/http://doi.org/10.1016/j.physa.2019.03.069
http://dx.doi.org/http://doi.org/10.36753/mathenot.691638
http://dx.doi.org/http://doi.org/10.1016/j.cam.2018.07.023
http://dx.doi.org/http://doi.org/10.1016/j.aej.2021.06.086
http://dx.doi.org/http://doi.org/10.1016/j.aml.2021.107709
http://dx.doi.org/http://doi.org/10.1016/j.amc.2018.10.037
http://dx.doi.org/http://doi.org/10.1561/0100000088
http://creativecommons.org/licenses/by/4.0

	Introduction
	Simpson's 1/3 rule for Caputo-Fabrizio fractional derivative
	Critically analyzing the convergence and stability of the proposed scheme
	Numerical experimentation
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5: fractional order Malthusian growth model
	Example 6: fractional order blood alcohol model
	Example 7: fractional order logistic model

	Conclusions

