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1. Introduction

Difference equations were used and popularized by Isaac Newton in the last quarter of the 17th
century, but many of these techniques had previously been developed by Thomas Harriot (1561–1621)
and Henry Briggs (1561–1630). We recommend the articles in [1, 7, 19] since they discuss several
fractional-order dynamical system problems. To see more about the numerical continuation methods,
see [2, 4, 6, 9, 10, 13].

Harriot made significant advances in navigation techniques, and Briggs was the person
most responsible for the acceptance of logarithms as an aid to computation. Lewis Fry
Richardson (1881–1953) was the first person to systematically apply mathematics to weather prediction
while working in England for the Meteorological Office. As a conscientious objector during World
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War I, he wrote extensively about the economic futility of warfare, using systems of differential
equations to model rational interactions between countries. The extrapolation technique that bears
his name was the rediscovery of a technique with roots that are at least as old as Christiaan
Hugyens (1629–1695).

Thomas Simpson (1710–1761) was a self-taught mathematician who supported himself during
his early years as a weaver. His primary interest was probability theory, although in 1750 he
published a two-volume calculus book entitled “The doctrine and application of fluxions”. Roger
Cotes (1682–1716) rose from a modest background to become, in 1704, the first Plumian Professor
at Cambridge University. He made advances in numerous mathematical areas including numerical
methods for interpolation and integration. Newton is reputed to have said of Cotes . . . if he had lived
we might have known something. The Newton-Cotes formulas are generally unsuitable for use over
large integration intervals. High-degree formulas would be required, and the values of the coefficients
in these formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpolatory
polynomials that use equally-spaced nodes, a procedure that is inaccurate over large intervals because
of the oscillatory nature of high-degree polynomials. In [3], O. Axelsson and V. A. Barker examined
the Lagrange polynomials and discovered an explicit representation for them as well as the error that
occurs when approximating a function on an interval, for more see [5, 15, 22].

Interpolating tabular data typically makes use of these polynomials. Remember that in situations
like these, only the values of the polynomial at the predetermined locations are necessary; an explicit
representation of the polynomial is not necessary. Additionally, we are unable to utilize the explicit
form if the data function is unknown. Neville’s Method, a variation of the Lagrange formula, was
presented by E. H. Neville in his work in 1932. Due to the practical difficulty of applying the error
term to Lagrange interpolation, it is frequently unclear what degree of the polynomial is needed for the
application, see [17, 18, 20, 23].

The organization of this paper is arranged as follows: Section 2 aims to recall some basic facts and
definitions connected with fractional calculus. Section 3 demonstrates the main results of this work
so that it contains the derivation of the modified 5-point fractional formula. Section 4 develops the
classical Richardson extrapolation methodology to be valid for fractional calculus. Section 5 illustrates
numerical results that confirm the theoretical findings of this work, followed by the final section that
summarizes the conclusion.

2. Preliminaries

In this section, basic definitions and theorems like the Riemann-Liouville integral and derivative
and the Caputo derivative will be introduced [11, 21].

Definition 2.1. The fractional Riemann-Liouville integral of a function f(t) of order µ > 0 is initially
defined by

Jµ f (t) =
1
Γ(µ)

∫ t

0
f (τ)(t − τ)µ−1 dτ, t > 0, µ > 0. (2.1)

Some of the properties of the Riemann-Liouville integral are given below for completeness:

J0 f (t) = f (t). (2.2)
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Jµtγ =
Γ(γ + 1)tµ+γ

Γ(µ + γ + 1)
, γ ≥ −1. (2.3)

JµJβ f (t) = JβJµ f (t), µ, β ≥ 0. (2.4)
JµJβ f (t) = Jµ+β f (t), µ, β ≥ 0. (2.5)

Definition 2.2. [8] Let m be the smaller number greater than α. The Caputo fractional derivative of
order α > 0, is defined as

Dαt f (t) =

 1
Γ(n−α)

∫ t

0
(t − τ)−α+n−1 dm f (τ)

dτm dτ, m − 1 < α < m,
dm f (t)

dtm , α = m,
(2.6)

where m ∈ N, t > 0, and f (t) is a real-valued function.

Some of the characteristics of the Caputo derivative are listed below:
(1) Dα∗c = 0 where c is constant.
(2) We have

Dα∗ t
ρ =

{ Γ(ρ+1)
Γ(ρ−α+1) t

ρ−α, ρ > α − 1,
0, otherwise.

(3) Dα∗ is linear, i.e.,

Dα∗ (µ f (t) + ωk(t)) = µDα∗ ( f (t)) + ωDα∗ (k(t)),

where µ and ω are constants.
In addition, we need to recall two basic properties. If m − 1 < α ≤ m, m ∈ N, then we have

Dα∗ Jα f (t) = f (t),

JαDα∗ f (t) = f (t) −
n∑

i=1

f i(0+)
ti

i!
, t > 0.

(2.7)

Definition 2.3. [14] The fractional Riemann-Liouville derivative can be defined using the definition
of the fractional Riemann-Liouville integral. To this end, suppose that v = n − u, where 0 < v < 1 and
n is the smallest integral greater than u. Then, the Riemann-Liouville fractional derivative of f (x) of
the order u is

Du f (t) = Dn[D−v f (t)].

Definition 2.4. The linear Lagrange interpolating polynomial through (x0, y0) and (x1, y1), where

L0(x) =
x − x1

x0 − x1
and L1(x) =

x − x0

x1 − x0
,

is
P(x) = L0(x) f (x0) + L1(X) f (x1) =

x − x1

x0 − x1
f (x0) +

x − x0

x1 − x0
f (x1).

Note that
L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, L1(x1) = 1,
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which implies that
P(x0) = 1 · f (x0) + 0 · f (x1) = f (x0) = y0,

and
P(x1) = 0 · f (x0) + 1 · f (x1) = f (x1) = y1.

So, P is the unique polynomial of degree at the most one that passes through (x0, y0) and (x1, y1).

Theorem 2.1. Consider x0,x1,...,xn are n+1 distinct numbers. To define the nth Lagrange interpolating
polynomial, where the values of the function f are provided by these numbers, of degree highest n exist
with

f (xk) = p(xk),

for each k = 0, 1, ..., n. This polynomial is given by

p(x) = f (x0)Ln,0(x) + ... + f (xn)Ln,n(x) =
n∑

k=0

f (xk)Ln,k(x), (2.8)

where, for each k = 0, 1, ..., n, we have

Ln,k(x) =
(x − x0)(x − x1)...(x − x − k − 1)(x − xk+1)...(x − xn)
(xk − x0)(xk − x1)...(xk − xk−1)(xk − xk+1)...(xK − xn)

,

or

Ln,k(x) =
n∏

i=0
i,k

(x − xi)
(xk − xi)

.

We will write Ln,k(x) simply as Lk(x) when there is no confusion as to its degree.

Theorem 2.2. Suppose that the interval [a, b] contains the following distinct numbers x0, x1, · · · , xn

and f ∈ Cn+1[a, b]. Then, for each x in [a, b], there exists a number ξ(x) (generally unknown) between
x0, x1, · · · , xn and hence in (a, b), with

f (x) = P(x) +
f (n+1)(ξ(x))

(n + 1)!
(x − x0)(x − x1) · · · (x − xn),

where P(x) is the interpolating polynomial given in (2.8).

Theorem 2.3. Suppose that x0, x1, · · · , xn are (n + 1) distinct numbers in some interval I = [a, b] and
that f ∈ cn+1[a, b], then the function f (x) can be expressed as

f (x) =
n∑

k=0

f (xk)Lk(x) +
(x − x0) · · · (x − xn)

(n + 1)!
f (n+1)(ξ(x)). (2.9)

Theorem 2.4. [12] Suppose that x0, x1 and x2 are distinct points in the interval [a, b] such that
a = x0 < x1 = x0 + h < x2 = x0 + 2h = b, with h > 0, and f ∈ C3[a, b]. Then, the modified 3-point
fractional formula for approximating Dα∗ f (x) is given by

Dα∗ f (x) =
x2−α

h2Γ(3 − α)

(
f (x0) − 2 f (x1) + f (x2)

)
−

x1−α

2h2Γ(2 − α)

(
f (x0)(x1 + x2) − 2 f (x1)(x0 + x2)

+ f (x2)(x0 + x1)
)
+

f (3)(ξ)
6

( 6
Γ(4 − α)

x3−α −
2(x0 + x1 + x2)
Γ(3 − α)

x2−α +
(x0x1 + x0x2 + x1x2)

Γ(2 − α)
x1−α

)
,

(2.10)
for each x ∈ [a, b], where ξ ∈ (a, b).
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3. Modified 5-point fractional central formula

In this part, we introduce a novel numerical formula called the modified 5-point fractional central
formula to approximate the first fractional derivative in the sense of the Caputo operator.

Theorem 3.1. Suppose that x0, · · · , x4 are distinct points in the interval [a, b] such that a = x0 < x1 =

x0 + h < x2 = x0 + 2h < x3 = x0 + 3h < x4 = x0 + 4h = b with h > 0, and f ∈ C5[a, b]. Then, the
fractional derivative can be given by

Dα∗ f (x) =
[ 24
Γ(5 − α)

4∑
k=0

f (xk)
Ak

x4−α
]
−

[ 6
Γ(4 − α)

4∑
k=0

ak f (xk)
Ak

x3−α
]

+

[ 2
Γ(3 − α)

4∑
k=0

bk f (xk)
Ak

x2−α
]
−

[ 1
Γ(2 − α)

4∑
k=0

ck f (xk)
Ak

x1−α
]

+
f (5)(ξ)

5!

( 120
Γ(6 − α)

x5−α −
24a5

Γ(5 − α)
x4−α +

6b5

Γ(4 − α)
x3−α −

2c5

Γ(3 − α)
x2−α +

d5

Γ(2 − α)
x1−α

)
,

(3.1)
for each x ∈ [a, b], where ξ ∈ (a, b).

Proof. With the help of using (2.9) and assuming n = 4, we can have

f (x) =
4∑

k=0

f (xk)Lk(x) +
(x − x0)(x − x1)(x − x2)(x − x3)(x − x4)

5!
f (5)(ξ(x)). (3.2)

By simplifying the summation, we get

f (x) = f (x0)L0(x) + f (x1)L1 + f (x2)L2(x) + f (x3)L3(x) + f (x4)L4(x)

+
(x − x0)(x − x1)(x − x2)(x − x3)(x − x4)

5!
f (5)(ξ(x)).

(3.3)

By using the Eq (3.2), we have the following assertion:

f (x) = f (x0)
(x − x1)(x − x2)(x − x3)(x − x4)

(x0 − x1)(x0 − x2)(x0 − x3)(x0 − x4)

+ f (x1)
(x − x0)(x − x2)(x − x3)(x − x4)

(x1 − x0)(x1 − x2)(x1 − x3)(x1 − x4)

+ f (x2)
(x − x0)(x − x1)(x − x3)(x − x4)

(x2 − x0)(x2 − x1)(x2 − x3)(x2 − x4)

+ f (x3)
(x − x0)(x − x1)(x − x2)(x − x4)

(x3 − x0)(x3 − x1)(x3 − x2)(x3 − x4)

+ f (x4)
(x − x0)(x − x1)(x − x2)(x − x3)

(x4 − x0)(x4 − x1)(x4 − x2)(x4 − x3)

+
(x − x0)(x − x1)(x − x2)(x − x3)(x − x4)

5!
f (5)(ξ(x)).

(3.4)

By simplifying Eq (3.4), we consider the following assumptions:
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(1) The parameters of x3 are as follows:

a0 = (x1 + x2 + x3 + x4),
a1 = (x0 + x2 + x3 + x4),
a2 = (x0 + x1 + x3 + x4),
a3 = (x0 + x1 + x2 + x4),
a4 = (x0 + x1 + x2 + x3).

(2) The parameters of x2 are as follows:

b0 = (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4),
b1 = (x0x2 + x0x3 + x0x4 + x2x3 + x2x4 + x3x4),
b2 = (x0x1 + x0x3 + x0x4 + x1x3 + x1x4 + x3x4),
b3 = (x0x1 + x0x2 + x0x4 + x1x2 + x1x4 + x2x4),
b4 = (x0x1 + x0x2 + x0x3 + x1x2 + x1x3 + x2x3).

(3) The parameters of x are as follows:

c0 = (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4),
c1 = (x0x2x3 + x0x2x4 + x0x3x4 + x2x3x4),
c2 = (x0x1x3 + x0x1x4 + x0x3x4 + x1x3x4),
c3 = (x0x1x2 + x0x1x4 + x0x2x4 + x1x2x4),
c4 = (x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3).

(4) The constants are as follows:
d0 = (x1x2x3x4),
d1 = (x0x2x3x4),
d2 = (x0x1x3x4),
d3 = (x0x1x2x4),
d4 = (x0x1x2x3).

(5) The assumptions for the term of error are as follows:

a5 =(x0 + x1 + x2 + x3 + x4),
b5 =(x0x1 + x0x2 + x0x3 + x0x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4),
c5 =(x0x1x2 + x0x1x3 + x0x1x4 + x0x2x3 + x0x2x4 + x0x3x4 + x1x2x3

+ x1x2x4 + x1x3x4 + x2x3x4),
d5 =(x0x1x2x3 + x0x1x2x4 + x0x1x3x4 + x0x2x3x4 + x1x2x3x4),
k =(x0x1x2x3x4).

(6) The denominator assumptions are as follows:

A0 =x0
4 − (x1 + x2 + x3 + x4)x3

0 + (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)x2
0

− (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)x0 + (x1x2x3x4),
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A1 =x1
4 − (x0 + x2 + x3 + x4)x3

1 + (x0x2 + x0x3 + x0x4 + x2x3 + x2x4 + x3x4)x2
1

− (x0x2x3 + x0x2x4 + x0x3x4 + x2x3x4)x1 + (x0x2x3x4),
A2 =x2

4 − (x0 + x1 + x3 + x4)x3
2 + (x0x1 + x0x3 + x0x4 + x1x3 + x1x4 + x3x4)x2

2

− (x0x1x3 + x0x1x4 + x0x3x4 + x1x3x4)x2 + (x0x1x3x4),
A3 =x3

4 − (x0 + x1 + x2 + x4)x3
3 + (x0x1 + x0x2 + x0x4 + x1x2 + x1x4 + x2x4)x2

3

− (x0x1x2 + x0x1x4 + x0x2x4 + x1x2x4)x3 + (x0x1x2x4),
A4 =x4

4 − (x0 + x1 + x2 + x3)x3
4 + (x0x1 + x0x2 + x0x3 + x1x2 + x1x3 + x2x3)x2

4

− (x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3)x4 + (x0x1x2x3).

Then, we consequently get

f (x) = f (x0)
( x4 − a0x3 + b0x2 − c0x + d0

A0

)
+ f (x1)

( x4 − a1x3 + b1x2 − c1x + d1

A1

)
+ f (x2)

( x4 − a2x3 + b2x2 − c2x + d2

A2

)
+ f (x3)

( x4 − a3x3 + b3x2 − c3x + d3

A3

)
+ f (x4)

( x4 − a4x3 + b4x2 − c4x + d4

A4

)
+ f (5)(ξ(x))

( x5 − a5x4 + b5x3 − c5x2 + d5x − k
5!

)
.

(3.5)

By simplifying (3.5), we get

f (x) =
[

f (x0)
A0
+

f (x1)
A1
+

f (x2)
A2
+

f (x3)
A3
+

f (x4)
A4

]
x4

−

[
a0 f (x0)

A0
+

a1 f (x1)
A1

+
a2 f (x2)

A2
+

a3 f (x3)
A3

+
a4 f (x4)

A4

]
x3

+

[
b0 f (x0)

A0
+

b1 f (x1)
A1

+
b2 f (x2)

A2
+

b3 f (x3)
A3

+
b4 f (x4)

A4

]
x2

−

[
c0 f (x0)

A0
+

c1 f (x1)
A1

+
c2 f (x2)

A2
+

c3 f (x3)
A3

+
c4 f (x4)

A4

]
x

+

[
d0 f (x0)

A0
+

d1 f (x1)
A1

+
d2 f (x2)

A2
+

d3 f (x3)
A3

+
d4 f (x4)

A4

]
+ f (5)(ξ(x))

[ x5 − a5x4 + b5x3 − c5x2 + d5x − k
5!

]
.

(3.6)

By using the summation on (3.6), we get

f (x) =
4∑

k=0

f (xk)
Ak

x4 −

4∑
k=0

ak f (xk)
Ak

x3 +

4∑
k=0

bk f (xk)
Ak

x2 −

4∑
k=0

ck f (xk)
Ak

x

+

4∑
k=0

dk f (xk)
Ak

+ f (5)(ξ(x))
[ x5 − a5x4 + b5x3 − c5x2 + d5x − k

5!

]
.

(3.7)

AIMS Mathematics Volume 8, Issue 4, 9520–9534.



9527

By applying the Caputo derivative on (3.7), we get

Dα∗ f (x) =
4∑

k=0

f (xk)Γ(5)
AkΓ(5 − α)

x4−α −

4∑
k=0

ak f (xk)Γ(4)
AkΓ(4 − α)

x3−α +

4∑
k=0

bk f (xk)Γ(3)
AkΓ(3 − α)

x2−α −

4∑
k=0

ck f (xk)Γ(2)
AkΓ(2 − α)

x1−α

+
f (5)(ξ)

5!

[
Γ(6)
Γ(6 − α)

x5−α −
a5Γ(5)
Γ(5 − α)

x4−α +
b5Γ(4)
Γ(4 − α)

x3−α −
c5Γ(3)
Γ(3 − α)

x2−α +
d5Γ(2)
Γ(2 − α)

x1−α
]
.

(3.8)
By simplifying (3.8), we will get

Dα∗ f (x) =
[

24
Γ(5 − α)

4∑
k=0

f (xk)
Ak

x4−α
]
−

[
6

Γ(4 − α)

4∑
k=0

ak f (xk)
Ak

x3−α
]

+

[
2

Γ(3 − α)

4∑
k=0

bk f (xk)
Ak

x2−α
]
−

[
1

Γ(2 − α)

4∑
k=0

ck f (xk)
Ak

x1−α
]

+
f (5)(ξ)

5!

[
120
Γ(6 − α)

x5−α −
24a5

Γ(5 − α)
x4−α +

6b5

Γ(4 − α)
x3−α −

2c5

Γ(3 − α)
x2−α +

d5

Γ(2 − α)
x1−α

]
.

(3.9)
□

Corollary 3.1. Under the same assumptions of Theorem 3.1, we can obtain the modified 5-point
fractional central formula, which would be as

Dα∗ f (x1) =
24

Γ(5 − α)

4∑
k=0

f (xk)
Ak

x4−α
1 −

6
Γ(4 − α)

4∑
k=0

ak f (xk)
Ak

x3−α
1

+
2

Γ(3 − α)

4∑
k=0

bk f (xk)
Ak

x2−α
1 −

1
Γ(2 − α)

4∑
k=0

ck f (xk)
Ak

x1−α
1

+
f (5)(ξ)

5!

[
120
Γ(6 − α)

x5−α
1 −

24a5

Γ(5 − α)
x4−α

1 +
6b5

Γ(4 − α)
x3−α

1 −
2c5

Γ(3 − α)
x2−α

1 +
d5

Γ(2 − α)
x1−α

1

]
.

(3.10)

Corollary 3.2. From Corollary 3.1, if one lets α = 1, then we get the classical 5-point central formula
for approximating f ′(x1), i.e., we get

f ′(x1) =
1

12h
[ f (x0 − 2h) − 8 f (x0 − h) + 8 f (x0 + h) − f (x0 + 2h)] +

h4

30
f (5)(ξ). (3.11)

4. Richardson extrapolation

To obtain high-accuracy results for low-order formulas, we use Richardson’s extrapolation. For
more about the history and applications of Richardson’s extrapolation method, we recommend the
article by D. C. Joyce [16]. We recommend to comment existing higher-order Richardson extrapolation
formulae described and analyzed in [24]. This section introduces our methodology for Richardson
extrapolation depending on our fractional central form [12]. Depending on the modified central
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formula [12], for x ∈ [a, b], assume that α = 1 and, without losing generality, we have the following:

f ′(x) =
f (x + h) − f (x − h)

2h
−

h2

6
f (5)(ξ). (4.1)

Note that we denote f ′(x) as Kv, f (x+h)− f (x−h)
2h as Yv(h) and e = − f (5)(ξ)

6 . Then, we obtain the following
equation:

Kv = (Yv)(h) + eh2. (4.2)

If we substitute h
2 instead of h in the (4.2), we have the following assertion:

Kv = (Yv)
(h
2

)
+ e

(h
2

)2

.

By simplifying the previous equation and multiplying by (−4), we obtain

−4Kv = −4(Yv)
(h
2

)
− eh2. (4.3)

By subtracting (4.3) from (4.2), we get

−3Kv = (Yv)(h) − (Yv)
(
h
2

)
− 3(Yv)

(
h
2

)
,

which implies

Kv = (Yv)
(h
2

)
+

(Yv)( h
2 ) − (Yv)(h)

3
.

Suppose that Kv = F2(h), and F1(h) = (Yv)(h). Then, consequently we can obtain the following
equality:

F2(h) = F1

(h
2

)
+

F1( h
2 ) − F1(h)

3
.

If we continue in the same way, we obtain Table 1, which illustrates how we can use Richardson’s
extrapolation to build a fourth-order approximation, using four first-order approximations.

Table 1. The 4th order approximation of Richardson’s extrapolation.

O(h2) O(h4) O(h6) O(h8)
F1(h) - - -
F1(h

2 ) F2(h) - -
F1(h

4 ) F2(h
2 ) F3(h) -

F1(h
8 ) F2(h

4 ) F3( h
2 ) F4(h)

In particular, for F1, we have the following equalities:

F1(h) =
f (x + h) − f (x − h)

2h
,

F1

(
h
2

)
=

h(x + h
2 ) − f (x − h

2 )
h

,
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F1

(
h
4

)
=

f (x + h
4 ) − f (x − h

4 )
h
2

,

F1

(
h
8

)
=

f (x + h
8 ) − f (x − h

8 )
h
4

.

Similarly, for F2, we have the following equalities:

F2(h) = F1

(
h
2

)
+

F1(h
2 ) − F1(h)

3
,

F2

(
h
2

)
= F1

(
h
4

)
+

F1( h
4 ) − F1(h

2 )
3

,

F2

(
h
4

)
= F1

(
h
8

)
+

F1

(
h
8

)
− F1( h

4 )

3
.

In addition, for F3, we have the following assertion:

F3(h) = F2

(
h
2

)
+

F2(h
2 ) − F2(h)

15
,

F3

(
h
2

)
= F2

(
h
4

)
+

F2( h
4 ) − F2(h

2 )
15

.

Finally, for F4, we have

F4(h) = F3(
h
2

) +
F3(h

2 ) − F3(h)
63

.

Performing this process further results for each i = 2, 3, · · · , the O(h2i) approximation becomes

Fi(h) = Fi−1

(h
2

)
+

Fi−1(h
2 ) − Fi−1(h)
4i−1 − 1

. (4.4)

Remark 4.1. One can generalize the O(h2i) approximation for the fractional case when α is fractional
and can obtain the same result as the (4.4).

5. Numerical examples

In this section, we aim to compare the efficiency between the modified 5-point fractional central
formulas with and without the Richardson extrapolation. Tables and figures are used to present and
compare the outcomes. Note that, the application of the proposed fractal approach might be used
in modeling non-equilibrium processes. For example, modeling the linear elasticity and viscoelastic
deformation processes in biomaterials and capillary-porous materials with taking into account their
fractal structure. However, we present below some general examples of the validation aims.
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Example 5.1. Let the main function be f (x) = x3 + 4x2 − 2, and consider α = 1. Then, the Caputo
derivative is given by

f ′(x1) =
6

Γ(4 − α)
x3−α +

8
Γ(3 − α)

x2−α.

By Taking the point of evaluation x0 = 1, then f ′(1) = 11. In other words, the exact value of the
derivatives equals the Caputo derivative. Now, by taking the step initial value h = 0.2 and the order of
extrapolation N = 7, we get the results shown in Table 2.

Table 2. The numerical result using the proposed fractional central formula with Richardson
extrapolation.

h O(h2) O(h4) O(h6) O(h8) O(h10) O(h12) O(h14)
0.2000 13.9200 0 0 0 0 0 0
0.1000 12.4300 11.9333 0 0 0 0 0
0.0500 11.7075 11.4667 11.4356 0 0 0 0
0.0250 11.3519 11.2333 11.2178 11.2143 0 0 0
0.0125 11.1755 11.1167 11.1089 11.1071 11.1067 0 0
0.0063 11.0878 11.0585 11.0546 11.0538 11.0536 11.0535 0
0.0031 11.0396 11.0235 11.0212 11.0207 11.0205 11.0205 11.0205

Now we consider the fractional case when α = 0.90 and for x0 = 1. This yields

D0.90
∗ f (1) =

6
Γ(3.1)

x2.1 +
8
Γ(2.1)

x1.1 = 10.3749.

Accordingly, by using the Richardson extrapolation in view of the modified 5-point fractional central
formula, we can gain numerical results shown in Table 3.

Table 3. The numerical result using the proposed fractional central formula with Richardson
extrapolation.

h O(h2) O(h4) O(h6) O(h8) O(h10) O(h12) O(h14)
0.2000 13.3462 0 0 0 0 0 0
0.1000 11.8250 11.8248 0 0 0 0 0
0.0500 11.0912 11.0910 11.0909 0 0 0 0
0.0250 10.7315 10.7315 10.7312 10.7310 0 0 0
0.0125 10.6745 10.6745 10.6745 10.6745 10.6744 0 0
0.0063 10.4536 10.4536 10.4536 10.4536 10.4535 10.4533 0
0.0031 14.1713 14.4055 14.4055 14.4055 14.4055 14.4050 10.4010

In what follows, we plot some graphical comparisons in Figure 1 between the results generated by
using analytical and fractional central formulas.
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Figure 1. Comparison results between the analytical and fractional central formula.

Example 5.2. Let the main function be f (x) = 1
3 x

7
2 − 1

2 x
5
2 , and consider α = 1. Then, the Caputo

derivative is given by

f ′(x) =
1
3
Γ(9

2 )

Γ(9
2 − α)

x
7
2−α −

1
2
Γ(7

2 )

Γ( 7
2 − α)

x
5
2−α.

By taking the point of evaluation x0 = 1; the f ′(1) = −0.0833. In other words, the exact value of the
derivatives equal the Caputo derivative. Now, by taking the step initial value h = 0.2 and the order of
extrapolation N = 7, we get the results shown in Table 4.

Table 4. The numerical result using the proposed fractional central formula with Richardson
extrapolation.

h O(h2) O(h4) O(h6) O(h8) O(h10) O(h12) O(h14)
0.2000 0.1971 0 0 0 0 0 0
0.1000 0.0384 -0.0144 0 0 0 0 0
0.0500 -0.0269 -0.0487 -0.0510 0 0 0 0
0.0250 -0.0562 -0.0660 -0.0671 -0.0674 0 0 0
0.0125 -0.0700 -0.0747 -0.0752 -0.0754 -0.0754 0 0
0.0063 -0.0768 -0.0790 -0.0793 -0.0794 -0.0794 -0.0794 0
0.0031 -0.0798 -0.0809 -0.0810 -0.0810 -0.0810 -0.0810 -0.0810

Now, we consider the fractional case when α = 0.75, and for x0 = 1 we get

D0.75
∗ f (1) =

1
3
Γ( 9

2 )
Γ(3.75)

x2.75 −
1
2
Γ(7

2 )
Γ(2.75)

x1.75 = −0.1565.

Accordingly, by using the Richardson extrapolation in view of the modified 5-point fractional central
formula, we can gain numerical results shown in Table 5.
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Table 5. The numerical result using the proposed fractional central formula with Richardson
extrapolation.

h O(h2) O(h4) O(h6) O(h8) O(h10) O(h12) O(h14)
0.2000 0.0439 0 0 0 0 0 0
0.1000 -0.0690 -0.0688 0 0 0 0 0
0.0500 -0.1131 -0.1130 -0.1126 0 0 0 0
0.0250 -0.1317 -0.1317 -0.1317 -0.1316 0 0 0
0.0125 -0.1562 -0.1562 -0.1562 -0.1562 -0.1561 0 0
0.0063 -0.1562 -0.1562 -0.1562 -0.1562 -0.1562 -0.1562 0
0.0031 -0.1564 -0.1563 -0.1563 -0.1563 -0.1563 -0.1563 -0.1564

In what follows, we plot some graphical comparisons in Figure 2 between the results generated by
using analytical and fractional central formulas.
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Figure 2. Comparison results between the analytical and fractional central formula.

6. Conclusions

The modified 5-point fractional formula has been introduced in this work by generalizing
the classical central formula. Additionally, we have developed a new Richardson extrapolation
methodology to obtain more accuracy for the proposed fractional formula in an approximation of the
first derivative in the sense of the Caputo derivative. From several numerical results, we can confirm
the validity of our proposed fractional formula in approximating the Caputo derivative Dα∗ f , where
0 ≤ α ≤ 1.
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