Mathematics

,

http://www.aimspress.com/journal/Math

Research article

Double total domination number of Cartesian product of paths

Linyu $\mathbf{L i}^{1}$, Jun Yue ${ }^{2}$ and Xia Zhang ${ }^{1, *}$
${ }^{1}$ School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China
${ }^{2}$ School of Mathematics Science, Tiangong University, Tianjin 300387, China

* Correspondence: Email: xiazhang@sdnu.edu.cn.

Abstract

A vertex set S of a graph G is called a double total dominating set if every vertex in G has at least two adjacent vertices in S. The double total domination number $\gamma_{\times 2, t}(G)$ of G is the minimum cardinality over all the double total dominating sets in G. Let $G \square H$ denote the Cartesian product of graphs G and H. In this paper, the double total domination number of Cartesian product of paths is discussed. We determine the values of $\gamma_{\times 2, t}\left(P_{i} \square P_{n}\right)$ for $i=2,3$, and give lower and upper bounds of $\gamma_{\times 2, t}\left(P_{i} \square P_{n}\right)$ for $i \geq 4$.

Keywords: dominating sets; total domination; double total domination; Cartesian product; paths Mathematics Subject Classification: 05C69

1. Introduction

Throughout this article, we only deal with finite and simple graphs. For the undefined notation and terminology, one may refer to [4]. Let $G=(V(G), E(G))$ be a graph. The open neighborhood of a vertex $v \in V$ is denoted by $N_{G}(v)=\{u \in V: u v \in E(G)\}$, and the degree of v in G is denoted by $d(v)=\left|N_{G}(v)\right|$. A graph G is k-regular if every vertex has degree k in G. We use $\delta(G)$ and $\Delta(G)$ denote the minimum degree and the maximum degree among the vertices of G, respectively. For a subset $S \subseteq V(G)$, let $G[S]$ denote the subgraph induced by S. For simplicity, the induced subgraph $G[V(G) \backslash S]$ is denoted by $G-S$. For two disjoint subsets $X, Y \subset V(G)$, we use $e(X, Y)$ to denote the number of edges with one end in X and the other end in Y. The Cartesian product $G \square H$ of two graphs G and H is the graph with vertex set $V(G \square H)=V(G) \times V(H)$, and edge $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E(G \square H)$ if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$. In general, let P_{n}, C_{n} denote a path, a cycle of order n, respectively.

A total dominating set of G is a subset $S \subseteq V(G)$ such that each vertex in $V(G)$ has a neighbor in S. The total domination number $\gamma_{t}(G)$ is the cardinality of a minimum total dominating set of G. The notion of total domination in graphs was first introduced by Cockayne et al. [8]. Numerous results on
this object have been obtained over the years. Reader may refer to an excellent total domination book [12] and a survey [9]. A problem on total domination appeared as Question 3 of the 40th International Mathematical Olympiad, which is equivalent to determining the total domination number of the Cartesian product of two path graphs with same even order, i.e. $\gamma_{t}\left(P_{2 n} \square P_{2 n}\right)$. And further, several authors have studied the total domination number on product of graphs such as Cartesian, strong and lexicographic products (see $[2,6,13,14,16,19]$).

Except the classical total domination problem, there are many different ways to generalize the total dominating set. One of them is introduced by Henning and Kazemi in [10, 11]: Given an integer k, a subset $S \subseteq V(G)$ is a k-tuple total dominating set (kTDS in short) of G if every vertex $v \in V(G)$ has $|N(v) \cap S| \geq k$, this is, every vertex of G has at least k neighbors in S. The k-tuple total domination number $\gamma_{\times k, t}(G)$ is the cardinality of a minimum kTDS of G. Henning and Kazemi [10] first studied the k-tuple total domination number, and obtained some results of the k-tuple total domination number of complete multipartite graphs. They also gave a useful observation.

Observation 1.1. [10] Let G be graph of order n with $\delta(G) \geq k$. Then,
(a) $\gamma_{\times k, t}(G) \leq n$;
(b) if G is a spanning subgraph of graph H, then $\gamma_{\times k, t}(H) \leq \gamma_{\times k, t}(G)$;
(c) if v is a vertex with degree k in G and S is a $k T D S$ in G, then $N_{G}(x) \subseteq S$.

We remark that 1-tuple total domination is the well-known total domination. When $k=2$, a k-tuple total dominating set is called a double total dominating set, abbreviated to DTDS, and the 2-tuple total domination number is also called the double total domination number, denoted by $\gamma_{\times 2, t}(G)$. This parameter was studied in [1,3,5,7,15, 17, 18]. Especially, Kazemi et al. [15] determined the value of the double total domination number of Cartesian product of some complete graphs. Bermudo et al. [3] gave the following result on the double total domination number.

Theorem 1.2. [3] Let $j \geq 2, n \geq 3$ be two integers. Then,
(a) when j is odd, $\gamma_{\times 2, t}\left(P_{j} \square C_{n}\right)=\frac{(j+1) n}{2}$;
(b) when j is even, $\gamma_{\times 2, t}\left(C_{j} \square C_{n}\right)=\frac{j n}{2}$.

Naturally, we may ask the following problem: What are the values of the double total domination numbers of Cartesian products of paths? In order to answer the problem, we make a step in this paper. In the next section, we give the values of $\gamma_{\times 2, t}\left(P_{i} \square P_{n}\right)$ for $i=2,3$, and the lower and upper bounds for $\gamma_{\times 2, t}\left(P_{i} \square P_{n}\right)$ when $i \geq 4$.

2. Double total domination number of Cartesian product of paths

In this section, we simplify the notation for $V\left(P_{m} \square P_{n}\right)$. For example, when $m=4$, if $P_{4}=a b c d$, $P_{n}=v_{1} v_{2} \ldots v_{n}$, we denote simply the vertices $\left(a, v_{i}\right)$ as $a_{i},\left(b, v_{i}\right)$ as $b_{i},\left(c, v_{i}\right)$ as $c_{i},\left(d, v_{i}\right)$ as d_{i}, respectively. Moreover, set $X_{i}=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ for $1 \leq i \leq n$.

First, we give a lower bound for the double total domination number of $P_{2} \square P_{n}$.

Lemma 2.1. Let $n \geq 2$ be an integer. Then

$$
\gamma_{\times 2, t}\left(P_{2} \square P_{n}\right) \geq \begin{cases}2 n, & \text { if } n \leq 4 ; \\ (4 n+6) / 3, & \text { if } n \geq 5 \text { and } n \equiv 0(\bmod 3) ; \\ (4 n+8) / 3, & \text { if } n \geq 5 \text { and } n \equiv 1(\bmod 3) ; \\ (4 n+4) / 3, & \text { if } n \geq 5 \text { and } n \equiv 2(\bmod 3) .\end{cases}
$$

Proof. Let $P_{2}=a b, P_{n}=v_{1} v_{2} \ldots v_{n}$, and $X_{i}=\left\{a_{i}, b_{i}\right\}$ for $1 \leq i \leq n$. Denote $G=P_{2} \square P_{n}$. Pick a minimum DTDS D of G. Since $\delta(G)=2$ and $\Delta(G)=3$, then $D=D_{2} \cup D_{3}$, where $D_{i}=\{v \in D$: $|N(v) \cap D|=i\}$ for $i \in\{2,3\}$. Note that $X_{i} \subseteq D(i=1,2, n-1, n)$ by Observation 1.1 (c). Then, when $n \leq 4$, we have $|D|=|V(G)|=2 n$, as desired. Next, we consider the case that $n \geq 5$.

Let $\bar{D}=V(G) \backslash D$. First, we claim that

$$
2|\bar{D}| \leq e(D, \bar{D}) \leq(|D|-4)(\Delta-2)=|D|-4 .
$$

The first inequality holds because every vertex in \bar{D} is adjacent to at least two vertices in D, and the second one holds because $e\left(X_{1} \cup X_{n}, \bar{D}\right)=0$ and each of the remaining $|D|-4$ vertices has at most $\Delta-2$ neighbors in \bar{D}. Therefore

$$
\gamma_{\times 2, t}(G)=|D| \geq \frac{2|V(G)|+4}{3}=\frac{4 n+4}{3} .
$$

Since $\gamma_{\times 2, t}(G)$ is an integer, the result holds when $n \equiv 0(\bmod 3)$ or $n \equiv 2(\bmod 3)$.
The remaining case is $n=3 k+1$, where $k \geq 1$ is an integer. We apply induction on k. For $k=1$, $G=P_{2} \square P_{4}$. As discussed above, $\gamma_{\times 2, t}(G)=2 n=\frac{4 \times 4+8}{3}$. Suppose that the result holds for $k-1$, where $k \geq 2$. Our goal is to prove that it is also valid for k. Recall that $X_{i} \subseteq D(i=1,2, n-1, n)$. If D contains at least two vertices in $X_{3} \cup X_{n-2}$, then there are at least two vertices in $X_{2} \cup X_{n-1}$ that are not adjacent to any vertex in \bar{D}. Furthermore, there are at least six vertices in $X_{1} \cup X_{2} \cup X_{n-1} \cup X_{n}$ which are in D and not adjacent to any vertex in \bar{D}. Therefore, we have $e(D, \bar{D}) \leq(|D|-6)(\Delta-2)=|D|-6$. On the other hand, $e(D, \bar{D}) \geq 2|\bar{D}|=2(|V(G)|-|D|)$. Then $|D| \geq \frac{4 n+6}{3}=\frac{12 k+10}{3}$. So $|D| \geq \frac{12 k+12}{3}=\frac{4 n+8}{3}$ because $|D|$ is an integer. If D contains at most one vertex in $X_{3} \cup X_{n-2}$, without loss of generality, we may assume $X_{3} \cap D=\emptyset$. By definition of the double total dominating set, we know $X_{4} \subseteq D$ and then $X_{5} \subseteq D$. Note that, when $n=7, X_{5}=X_{n-2}$. This belongs to the preceding case. When $n \geq 10$, set $X=X_{1} \cup X_{2} \cup X_{3}$ and $G^{\prime}=G-X$. Let $D^{\prime}=D \backslash X=D \backslash\left(X_{1} \cup X_{2}\right)$. It is easy to see that D^{\prime} is a DTDS of G^{\prime}. By induction,

$$
\left|D^{\prime}\right| \geq \gamma_{\times 2, t}\left(G^{\prime}\right) \geq \frac{4(3(k-1)+1)+8}{3}=\frac{4(n-3)+8}{3} .
$$

Thus we have $|D|=\left|D^{\prime}\right|+4 \geq \frac{4 n+8}{3}$.
Next we determine the value of $\gamma_{\times 2, t}\left(P_{2} \square P_{n}\right)$.
Theorem 2.2. Let $n \geq 2$ be an integer. Then

$$
\gamma_{\times 2, t}\left(P_{2} \square P_{n}\right)= \begin{cases}2 n, & \text { if } n \leq 4 ; \\ (4 n+6) / 3, & \text { if } n \geq 5 \text { and } n \equiv 0(\bmod 3) ; \\ (4 n+8) / 3, & \text { if } n \geq 5 \text { and } n \equiv 1(\bmod 3) ; \\ (4 n+4) / 3, & \text { if } n \geq 5 \text { and } n \equiv 2(\bmod 3) .\end{cases}
$$

Proof. Let X_{i} be defined as earlier in the proof of Lemma 2.1, where $1 \leq i \leq n$. Let $G=P_{2} \square P_{n}$. When $n \leq 4$, it is as desired. Next we assume that $n \geq 5$.

We will show the upper bound through constructing a DTDS S of G. Let

$$
X^{\prime}=X_{1} \cup X_{2} \cup X_{n-1} \cup X_{n} .
$$

By Observation 1.1 (c), X^{\prime} is contained in every DTDS of G. When $n=3 k$, set $S=X^{\prime} \cup\left(\cup_{i=1}^{k-1} X_{3 i+1}\right) \cup$ $\left(\cup_{i=1}^{k-2} X_{3 i+2}\right)$. Then $|S|=8+2(k-1)+2(k-2)=\frac{4 n+6}{3}$. Therefore $\gamma_{\times 2, t}(G) \leq|S|=\frac{4 n+6}{3}$. When $n=3 k+1$, set $S=X^{\prime} \cup\left(\cup_{i=1}^{k-1} X_{3 i+1}\right) \cup\left(\cup_{i=1}^{k-1} X_{3 i+2}\right)$. Then,

$$
\gamma_{\times 2, t}(G) \leq|S|=8+2(k-1)+2(k-1)=\frac{4 n+8}{3} .
$$

Finally, when $n=3 k+2$, set $S=X^{\prime} \cup\left(\cup_{i=1}^{k-1} X_{3 i+1}\right) \cup\left(\cup_{i=1}^{k-1} X_{3 i+2}\right)$. Clearly,

$$
\gamma_{\times 2, t}(G) \leq|S|=8+2(k-1)+2(k-1)=\frac{4 n+4}{3} .
$$

Also, by Lemma 2.1, the proof is completed.
For $\gamma_{\times 2, t}\left(P_{3} \square P_{n}\right)$, we give a lower bound firstly. Before that, we need an observation.
Observation 2.3. Let $G=P_{m} \square P_{n}, X=\cup_{i=1}^{h} X_{i}$ and $G^{\prime}=G-X$, where h is a positive integer and $h<n$. If D is a DTDS of G, then we can obtain a "nearly" DTDS, $D \backslash X$, of G ' by confining D on G^{\prime}. (Each of $V\left(G^{\prime}\right) \backslash X_{h+1}$ has at least two neighbors in $D \backslash X$.) Extend some vertices to $D \backslash X$, and denote the resulting set by D^{\prime}. If each vertex in X_{h+1} has at least two neighbors in D^{\prime}, then D^{\prime} is a DTDS of G^{\prime}.

Lemma 2.4. Let $n \geq 2$ be an integer. Then

$$
\gamma_{\times 2, t}\left(P_{3} \square P_{n}\right) \geq \begin{cases}2 n+1, & \text { if } n \equiv 1(\bmod 2) ; \\ 2 n+2, & \text { if } n \equiv 0(\bmod 2) .\end{cases}
$$

Proof. Let $G=P_{3} \square P_{n}$ with $P_{3}=a b c$ and $P_{n}=v_{1} v_{2} \ldots v_{n}$, and D be a minimum DTDS of G. Set $X_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ for $1 \leq i \leq n$.

First, we introduce three constructions in Figure 1. (In the remaining, for the figures of the paper, a hollow dot denotes a vertex in D, a cross dot denotes a vertex not in D.) If $b_{i} \notin D(2 \leq i \leq n-1)$, then $\left\{a_{i-1}, a_{i+1}, c_{i-1}, c_{i+1}\right\} \subseteq D$ because either of a_{i} and c_{i} must have at least two neighbors in D (see construction (I)). If $\left\{a_{i}, c_{i}\right\} \cap D=\emptyset(3 \leq i \leq n-2)$, then $\left\{a_{i-2}, a_{i+2}, b_{i-1}, b_{i+1}, c_{i-2}, c_{i+2}\right\} \subseteq D$ because each of $\left\{a_{i-1}, a_{i+1}, c_{i-1}, c_{i+1}\right\}$ has at least two neighbors in D (see construction (II)). If $X_{i} \cap D=\emptyset$ ($3 \leq i \leq n-2$), then $X_{i-1} \cup X_{i+1} \cup\left\{a_{i-2}, a_{i+2}, c_{i-2}, c_{i+2}\right\} \subseteq D$ by the definition of DTDS (see construction (III)).

Figure 1. Three constructions in the proof of Lemma 2.4.

We prove the lemma by induction on n. When $n=2$, the result holds by Theorem 2.2. According to Observation 1.1(c), we have the following conclusions for $3 \leq n \leq 5$. When $n=3$, we have $\left\{b_{1}, a_{2}, c_{2}, b_{3}\right\} \subseteq D$. Focusing on vertices b_{1}, b_{3}, at least two of a_{1}, b_{2}, c_{1} and at least two of a_{3}, b_{2}, c_{3} are in D. It implies that $\gamma_{\times 2, t}\left(P_{3} \square P_{3}\right) \geq 7$. We give a DTDS with 7 vertices in Figure 2(a). When $n=4$, we have $\left\{a_{2}, a_{3}, b_{1}, b_{4}, c_{2}, c_{3}\right\} \subseteq D$ (see Figure 2(b)). On each dash curve, there are at least two vertices contained in D by the definition of DTDS. Thus, $\gamma_{\times 2, t}\left(P_{3} \square P_{4}\right) \geq 10$. When $n=5$, we know that $\left\{b_{1}, a_{2}, c_{2}, a_{4}, c_{4}, b_{5}\right\} \subseteq D$. Furthermore, on each dash curve, there are at least two vertices contained in D (see Figure 2(c)). Thus $|D| \geq 10$. If $\left\{a_{3}, c_{3}\right\} \cap D=\emptyset$, then D would contain all vertices of $\cup_{i=1,2,4,5} X_{i}$ by construction (II), which means that $|D| \geq 12$. If $\left\{a_{3}, c_{3}\right\} \cap D \neq \emptyset$, then $|D| \geq 11$. Thus $\gamma_{\times 2, t}\left(P_{3} \square P_{5}\right) \geq 11$ in either of these cases. (We give a minimum DTDS of G with 11 vertices in Figure 2(d) when $n=5$.)

When $n=6,\left\{a_{2}, a_{5}, b_{1}, b_{6}, c_{2}, c_{5}\right\} \subseteq D$, at least 2 vertices of $N_{G}\left(b_{1}\right), N_{G}\left(b_{6}\right)$ are contained in D, respectively. If $\left|\left(X_{3} \cup X_{4}\right) \cap D\right| \geq 4$, we are done. Consider the cases that $\left|\left(X_{3} \cup X_{4}\right) \cap D\right| \leq 3$. Without loss of generality, we may assume $\left|X_{3} \cap D\right| \leq 1$. If $X_{3} \cap D=\emptyset$, then $X_{1} \cup X_{2} \cup X_{4} \subseteq D$ by construction (III), so $\gamma_{\times 2, t}\left(P_{3} \square P_{6}\right) \geq 14$ (see Figure 2(e)). If $X_{3} \cap D=\left\{c_{3}\right\}$ (similarly, for $X_{3} \cap D=\left\{a_{3}\right\}$), then $\left\{a_{2}, a_{4}, c_{2}, c_{4}\right\} \subseteq D$ by construction (I). Furthermore, $\left\{a_{1}, b_{2}, b_{4}\right\} \subseteq D$ because $a_{3} \notin D$. Thus $\gamma_{\times 2, t}\left(P_{3} \square P_{6}\right) \geq 14$ (see Figure 2(f)). If $X_{3} \cap D=\left\{b_{3}\right\}$, then $\left\{a_{1}, a_{5}, b_{2}, b_{4}, c_{1}, c_{5}\right\} \subseteq D$ by construction (II) (see Figure 2(g)). If $b_{5} \notin D$, then $\left\{a_{4}, a_{6}, c_{4}, c_{6}\right\} \subseteq D$ by construction (I). If $b_{5} \in D$, noting that a_{5} $\left(c_{5}\right)$ has at least two neighbors in D, at least one of a_{4} and $a_{6}\left(c_{4}\right.$ and $\left.c_{6}\right)$ is in D. In either of these cases, $\gamma_{\times 2, t}\left(P_{3} \square P_{6}\right) \geq 14$.

Figure 2. Some cases for $3 \leq n \leq 6$ in Lemma 2.4.

Next, we only discuss the case $n \equiv 0(\bmod 2)$, and the argument of case $n \equiv 1(\bmod 2)$ is similar by replacing $2 n+2$ with $2 n+1$. Assume that the result holds for $n-2$ where $n \geq 8$. Suppose, to the contrary, $\gamma_{\times 2, t}(G)<2 n+2$. Next, we will choose a vertex subset X. Let $G^{\prime}=G-X$. Then, basing on a DTDS D of G, we obtain a DTDS D^{\prime} of G^{\prime}. Finally, we deduce contradictions according to the relation between $|D|$ and $\left|D^{\prime}\right|$ and induction on index n.

By Observation 1.1 (c), we have $\left\{a_{2}, b_{1}, c_{2}\right\} \subseteq D$. Focusing on b_{1}, it is clear that at least two of a_{1}, c_{1}, b_{2} are contained in D. This means that $\left|D \cap\left(X_{1} \cup X_{2}\right)\right| \geq 5$. If $\left|D \cap\left(X_{1} \cup X_{2}\right)\right|=6$ and $\left|D \cap\left(X_{3} \cup X_{4}\right)\right| \geq$ 4, then we can extend the missing vertices of $X_{3} \cup X_{4}$ (with at most two) to $D \backslash\left(X_{1} \cup X_{2}\right)$ and obtain a vertex set $D^{\prime}=\left(D \backslash\left(X_{1} \cup X_{2}\right)\right) \cup\left(X_{3} \cup X_{4}\right)$. Then $\left|D^{\prime}\right| \leq|D|-6+2<2 n-2$. By Observation 2.3, D^{\prime} is
a DTDS of $G^{\prime}=G-\left(X_{1} \cup X_{2}\right)$. By induction, $\left|D^{\prime}\right| \geq \gamma_{\times 2, t}\left(G^{\prime}\right) \geq 2(n-2)+2=2 n-2$, a contradiction. Similarly, if $\left|D \cap\left(X_{1} \cup X_{2}\right)\right|=5$ and $\left|D \cap\left(X_{3} \cup X_{4}\right)\right| \geq 5$, then we also can obtain a contradiction. Since either of a_{3}, c_{4} has at least two neighbors in D, we know that at least one of a_{4} and b_{3} (c_{3} and b_{4}, respectively) in D. That is to say, $\left|D \cap\left(X_{3} \cup X_{4}\right)\right| \geq 2$. Therefore, we only need discuss the following two cases to complete the proof.

Case 1. $\left|D \cap\left(X_{1} \cup X_{2}\right)\right|=6$ and $2 \leq\left|D \cap\left(X_{3} \cup X_{4}\right)\right| \leq 3$.
Case 1.1. If $\left|D \cap\left(X_{3} \cup X_{4}\right)\right|=3$, we claim that either $D^{\prime}=\left(D \backslash \cup_{i=1}^{4} X_{i}\right) \cup\left\{a_{3}, b_{3}, a_{4}, b_{4}, c_{4}\right\}$ or $D^{\prime}=\left(D \backslash \cup_{i=1}^{4} X_{i}\right) \cup\left\{b_{3}, c_{3}, a_{4}, b_{4}, c_{4}\right\}$ is a DTDS of $G^{\prime}=G-\left(X_{1} \cup X_{2}\right)$. (For otherwise, focusing on vertices a_{4}, c_{4}, there would be $\left\{a_{3}, c_{3}, b_{4}\right\} \subseteq D$ and $a_{5}, c_{5} \notin D$. Also, $\left|D \cap\left(X_{3} \cup X_{4}\right)\right|=3$ means that $b_{3} \notin D$. By construction (I), $a_{4}, c_{4} \in D$, then $\left|D \cap\left(X_{3} \cup X_{4}\right)\right| \geq 5$, a contradiction.) There is $\left|D^{\prime}\right| \geq \gamma_{\times 2, t}\left(G^{\prime}\right) \geq 2(n-2)+2=2 n-2$. On the other hand, $\left|D^{\prime}\right|=|D|-9+5<2 n-2$, a contradiction.

Case 1.2. If $\left|D \cap\left(X_{3} \cup X_{4}\right)\right|=2$, then at least one of pairs $\left\{a_{3}, a_{4}\right\},\left\{b_{3}, b_{4}\right\},\left\{c_{3}, c_{4}\right\}$ does not intersect with D. If $\left\{b_{3}, b_{4}\right\} \cap D=\emptyset$, then $\left\{a_{3}, c_{3}, a_{4}, c_{4}\right\} \subseteq D$ by construction (I), a contradiction. By symmetry, we discuss the case that $\left\{a_{3}, a_{4}\right\} \cap D=\emptyset$. Then there is $\left\{a_{2}, b_{3}, b_{4}, a_{5}\right\} \subseteq D$. The condition $\mid D \cap\left(X_{3} \cup\right.$ $\left.X_{4}\right) \mid=2$ implies that $\left\{c_{3}, c_{4}\right\} \cap D=\emptyset$ and furthermore $c_{5} \in D$. Focusing on vertices a_{5}, c_{5}, we know that $\left\{b_{5}, a_{6}, c_{6}\right\} \subseteq D$ (see Figure 3(a)). Set $X=\cup_{i=1}^{4} X_{i}$. Then $D^{\prime}=D \backslash X$ is a DTDS of $G^{\prime}=G-X$. Clearly, $\left|D^{\prime}\right|=|D|-8<2 n-6$. By induction, $\left|D^{\prime}\right| \geq \gamma_{\times 2, t}\left(G^{\prime}\right) \geq 2(n-4)+2=2 n-6$, a contradiction.

Case 2. $\left|D \cap\left(X_{1} \cup X_{2}\right)\right|=5$ and $2 \leq\left|D \cap\left(X_{3} \cup X_{4}\right)\right| \leq 4$.
Case 2.1. If $\left|D \cap\left(X_{3} \cup X_{4}\right)\right|=4$, then $D^{\prime}=\left(D \backslash \cup_{i=1}^{4} X_{i}\right) \cup\left\{a_{3}, b_{3}, a_{4}, b_{4}, c_{4}\right\}$ or $D^{\prime}=\left(D \backslash \cup_{i=1}^{4} X_{i}\right) \cup$ $\left\{b_{3}, c_{3}, a_{4}, b_{4}, c_{4}\right\}$ is a DTDS of $G^{\prime}=G-\left(X_{1} \cup X_{2}\right)$. There is $\left|D^{\prime}\right| \geq \gamma_{\times 2, t}\left(G^{\prime}\right) \geq 2(n-2)+2=2 n-2$. On the other hand, $\left|D^{\prime}\right|=|D|-9+5<2 n-2$, a contradiction.

Case 2.2. If $\left|D \cap\left(X_{3} \cup X_{4}\right)\right|=3$, we consider two subcases according to $b_{2} \in D$ or not.
(1) $b_{2} \notin D$. By construction (I), $\left\{a_{3}, c_{3}\right\} \subseteq D$. We claim that $b_{3} \in D$. (For otherwise, there would be $\left\{a_{4}, c_{4}\right\} \subseteq D$ by construction (I), then $\left|D \cap\left(X_{3} \cup X_{4}\right)\right| \geq 4$, a contradiction.) $\left|D \cap\left(X_{3} \cup X_{4}\right)\right|=3$ means that $X_{4} \cap D=\emptyset$. By construction (III), $X_{5} \cup\left\{a_{6}, c_{6}\right\} \subseteq D$ (see Figure 3(b)). Set $X=\cup_{i=1}^{4} X_{i}$. Then $D^{\prime}=D \backslash X$ is a DTDS of $G^{\prime}=G-X$. Clearly, $\left|D^{\prime}\right|=|D|-8<2 n-6$. By induction, $\left|D^{\prime}\right| \geq \gamma_{\times 2, t}\left(G^{\prime}\right) \geq 2(n-4)+2=2 n-6$, a contradiction.
(2) $b_{2} \in D$. By symmetry, we may assume that $a_{1} \notin D$. First, we establish a claim.

Claim. $\left\{a_{3}, b_{3}\right\} \subseteq D$.
Since a_{2} has at least two neighbors in D, clearly $a_{3} \in D$. Focusing on vertices a_{3}, c_{4}, we know that at least one of b_{3} and $a_{4}\left(c_{3}\right.$ and b_{4}, respectively) in $D(*)$. If $b_{3} \notin D$, then $\left\{a_{4}, c_{4}\right\} \subseteq D$ by construction (I). It implies that $\left|D \cap\left(X_{3} \cup X_{4}\right)\right| \geq 4$, a contradiction. The claim is done.

Recall that one of c_{3}, b_{4} is in D (see (*)). If $c_{3} \in D$, then $X_{4} \cap D=\emptyset$. By construction (III), $X_{5} \cup\left\{a_{6}, c_{6}\right\} \subseteq D$ (see Figure 3(c)). Similar to (1), we can deduce a contradiction. If $b_{4} \in D$, then $\left\{c_{3}, a_{4}, c_{4}\right\} \cap D=\emptyset$. By construction (II), there is $\left\{b_{5}, a_{6}, c_{6}\right\} \subseteq D$. Also, focusing on c_{4}, we know that $c_{5} \in D$. Furthermore, focusing on a_{6}, we deduce that a_{5} or b_{6} in D (see Figure 3(d)). No matter which one of a_{5}, b_{6} being in $D, D^{\prime}=D \backslash \cup_{i=1}^{4} X_{i}$ is a DTDS of $G^{\prime}=G-\cup_{i=1}^{4} X_{i}$. However, there are $\left|D^{\prime}\right|=|D|-8<2 n-6$ and $\left|D^{\prime}\right| \geq \gamma_{\times 2, t}\left(G^{\prime}\right) \geq 2(n-4)+2=2 n-6$, a contradiction.

Case 2.3. If $\left|D \cap\left(X_{3} \cup X_{4}\right)\right|=2$, then at least one of pairs $\left\{a_{3}, a_{4}\right\},\left\{b_{3}, b_{4}\right\},\left\{c_{3}, c_{4}\right\}$ does not intersect with D. Similar to the proof of Case 1.2, the unique possibility is $\left\{a_{3}, a_{4}, c_{3}, c_{4}\right\} \cap D=\emptyset$. Focusing on
the vertices a_{2}, c_{2}, there is $\left\{a_{1}, b_{2}, c_{1}\right\} \subseteq D$. This means that $\left|D \cap\left(X_{1} \cup X_{2}\right)\right|=6$, a contradiction.
In each of these cases, we deduce a contradiction. Therefore, we draw a conclusion that $\gamma_{\times 2, t}\left(P_{3} \square P_{n}\right) \geq 2 n+2$ when $n \equiv 0(\bmod 2)$. It is analogous to verify that $\gamma_{\times 2, t}\left(P_{3} \square P_{n}\right) \geq 2 n+1$ when $n \equiv 1(\bmod 2)$ by replacing $2 n+2$ with $2 n+1$ in the above proof.

Figure 3. Illustrations for Cases 1 and 2 in Lemma 2.4.
We are ready to prove our second result.
Theorem 2.5. Let $n \geq 2$ be an integer. Then

$$
\gamma_{\times 2, t}\left(P_{3} \square P_{n}\right)= \begin{cases}2 n+1, & \text { if } n \equiv 1(\bmod 2) ; \\ 2 n+2, & \text { if } n \equiv 0(\bmod 2) .\end{cases}
$$

Proof. When $n \equiv 0(\bmod 2)$, set $S=\left(\cup_{i=1}^{n}\left\{a_{i}, c_{i}\right\}\right) \cup\left\{b_{1}, b_{n}\right\}$. It is clear that S is a DTDS of graph G. Hence $\gamma_{\times 2, t}(G) \leq 2 n+2$.

When $n \equiv 3(\bmod 4)$, i.e. $n=4 k+3$ for some nonnegative integer k, set

$$
S=\left(\cup_{i=1}^{n} b_{i}\right) \bigcup\left(\cup_{i=0}^{k}\left\{a_{4 i+2}, a_{4 i+3}, c_{4 i+1}, c_{4 i+2}\right\}\right)
$$

(see Figure 4(a) for the case $n=7)$, then $|S|=n+4(k+1)=2 n+1$. When $n \equiv 1(\bmod 4)$, i.e. $n=4 k+1$ for some positive integer k, set

$$
S=\left(\cup_{i=1}^{n} b_{i} \backslash\left\{b_{4 k-1}\right\}\right) \bigcup\left(\cup_{i=0}^{k-1}\left\{a_{4 i+2}, a_{4 i+3}, c_{4 i+1}, c_{4 i+2}\right\}\right) \bigcup\left\{a_{4 k}, c_{4 k}, c_{4 k+1}\right\}
$$

(see Figure 4(b) for the case that $n=9$), then $|S|=n-1+4 k+3=2 n+1$. In these two cases, it is easy to check that S is a DTDS of G. Thus, $\gamma_{\times 2, t}(G) \leq|S|=2 n+1$ when $n \equiv 1(\bmod 2)$.

By Lemma 2.4, the proof is completed.
Let $G=P_{m} \square P_{n}$ with $P_{m}=u_{1} u_{2} \ldots u_{m}, P_{n}=v_{1} v_{2} \ldots v_{n}$, where integers $m \geq 2, n \geq 2$. For the vertex $u_{i} \in V\left(P_{m}\right)$ and $v_{j} \in V\left(P_{n}\right)$, we denote simply the vertex $\left(u_{i}, v_{j}\right)$ by $x_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$. For each
$1 \leq i \leq m$ and $1 \leq j \leq n$, we denote $X_{j}=\cup_{i=1}^{m} x_{i j}, Y_{i}=\cup_{j=1}^{n} x_{i j}$. Before moving forward, we give a useful lemma.

Figure 4. A DTDS S for $n=7, n=9$, respectively.
Lemma 2.6. Let $G=P_{m} \square P_{n}$, where integers $n \geq 4, m \geq 4$, and D be a minimum DTDS of G. Then

$$
\left|D \cap\left(X_{1} \cup X_{n} \cup Y_{1} \cup Y_{m}\right)\right| \geq m+n .
$$

Proof. For any vertex set $W \in\left\{X_{1}, X_{n}, Y_{1}, Y_{n}\right\}$, we will show at least $\frac{|W|}{2}$ vertices of W in D. W.l.o.g., we pick $W=Y_{1}=\left\{x_{11}, x_{12}, \cdots, x_{1 n}\right\}$. Set $D^{\prime}=V(G) \backslash D$. Since each vertex of $Y_{1} \backslash\left\{x_{11}, x_{1 n}\right\}$ has degree 3 and either of $x_{11}, x_{1 n}$ has degree 2, it is impossible to appear three consecutive vertices in $Y_{1} \cap D^{\prime}$. (For otherwise, the interior vertex is adjacent to at most one vertex in D, a contradiction.) Moreover, if $x \in Y_{1} \cap D$, then x has at least one neighbor in $Y_{1} \cap D$. By the above discussion and Observation 1.1 (c), we can establish the following four facts.
(F1) The length of any sequence of consecutive vertices is at most two in $Y_{1} \cap D^{\prime}$.
(F2) The length of any sequence of consecutive vertices is at least two in $Y_{1} \cap D$.
(F3) For every four consecutive vertices in Y_{1}, at least two of them in D.
(F4) $\left\{x_{12}, x_{1(n-1)}\right\} \subset D$.
Concretely, we discuss the following three cases according to $x_{11}, x_{1 n}$ in D or not.
Case 1. $\left\{x_{11}, x_{1 n}\right\} \cap D=\emptyset$. By (F2) and (F4), $\left\{x_{12}, x_{13}, x_{1(n-2)}, x_{1(n-1)}\right\} \subset D$. By virtue of (F3), we consider four subcases.
(1.1) $n \equiv 0(\bmod 4)$.

Since $\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-4}{2},\left|Y_{1} \cap D\right| \geq \frac{n-4}{2}+2=\frac{n}{2}$.
(1.2) $n \equiv 1(\bmod 4)$.

Since $\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-5}{2},\left|Y_{1} \cap D\right| \geq \frac{n-5}{2}+3=\frac{n+1}{2}$.
(1.3) $n \equiv 2(\bmod 4)$.

Since $\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{1(n-2)}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-6}{2},\left|Y_{1} \cap D\right| \geq \frac{n-6}{2}+4=\frac{n+2}{2}$.
(1.4) $n \equiv 3(\bmod 4)$.

Since $\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{14}, x_{1(n-2)}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-7}{2},\left|Y_{1} \cap D\right| \geq \frac{n-7}{2}+4=\frac{n+1}{2}$.
Case 2. $\left|\left\{x_{11}, x_{1 n}\right\} \cap D\right|=1$. We may assume that $x_{11} \notin D, x_{1 n} \in D$. By (F2) and (F4), $\left\{x_{12}, x_{13}, x_{1(n-1)}, x_{1 n}\right\} \subset D$. Then we have the following conclusions by (F3).
(1.1) $n \equiv 0(\bmod 4)$.
$\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-4}{2}$, so $\left|Y_{1} \cap D\right| \geq \frac{n-4}{2}+3=\frac{n+2}{2}$.
(1.2) $n \equiv 1(\bmod 4)$.
$\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-5}{2}$, so $\left|Y_{1} \cap D\right| \geq \frac{n-5}{2}+4=\frac{n+3}{2}$.
(1.3) $n \equiv 2(\bmod 4)$.
$\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{1(n-2)}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-6}{2}$, then $\left|Y_{1} \cap D\right| \geq \frac{n-6}{2}+4=\frac{n+2}{2}$.
(1.4) $n \equiv 3(\bmod 4)$.
$\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{14}, x_{1(n-2)}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-7}{2}$, so $\left|Y_{1} \cap D\right| \geq \frac{n-7}{2}+4=\frac{n+1}{2}$.
Case 3. $\left\{x_{11}, x_{1 n}\right\} \subset D$. By (F2) and (F4), $\left\{x_{11}, x_{12}, x_{1(n-1)}, x_{1 n}\right\} \subset D$. By (F3), the following are established.
(1.1) $n \equiv 0(\bmod 4)$.

By $\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-4}{2},\left|Y_{1} \cap D\right| \geq \frac{n-4}{2}+4=\frac{n+4}{2}$.
(1.2) $n \equiv 1(\bmod 4)$.

By $\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-5}{2},\left|Y_{1} \cap D\right| \geq \frac{n-5}{2}+4=\frac{n+3}{2}$.
(1.3) $n \equiv 2(\bmod 4)$.

By $\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{1(n-2)}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-6}{2},\left|Y_{1} \cap D\right| \geq \frac{n-6}{2}+4=\frac{n+2}{2}$.
(1.4) $n \equiv 3(\bmod 4)$.

Recall that $\left\{x_{11}, x_{12}, x_{1(n-1)}, x_{1 n}\right\} \subset D$. Furthermore, by (F1), $\left|\left\{x_{13}, x_{14}, x_{15}\right\} \cap D\right| \geq 1$. By (F3), $\left|\left(Y_{1} \backslash\left\{x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{1(n-1)}, x_{1 n}\right\}\right) \cap D\right| \geq \frac{n-7}{2}$. Thus $\left|Y_{1} \cap D\right| \geq \frac{n-7}{2}+5=\frac{n+3}{2}$.
We will complete the proof by considering all cases dependent on $x_{11}, x_{1 n}, x_{m 1}, x_{m n}$ in D or not.
(1) If $\left\{x_{11}, x_{1 n}, x_{m 1}, x_{m n}\right\} \cap D=\emptyset$, then

$$
\left|D \cap\left(X_{1} \cup X_{n} \cup Y_{1} \cup Y_{m}\right)\right| \geq 2\left(\frac{n}{2}+\frac{m}{2}\right)=m+n
$$

according to Case 1 .
(2) If $\left|\left\{x_{11}, x_{1 n}, x_{m 1}, x_{m n}\right\} \cap D\right|=1$, w.l.o.g., assuming that $x_{m 1} \in D$, then

$$
\left|D \cap\left(Y_{1} \cup Y_{m}\right)\right| \geq \min \left\{\frac{n}{2}+\frac{n+2}{2}, \frac{n+1}{2}+\frac{n+3}{2}, \frac{n+2}{2}+\frac{n+2}{2}, \frac{n+1}{2}+\frac{n+1}{2}\right\}=n+1
$$

according to Cases 1 and 2 . Similarly, $\left|D \cap\left(X_{1} \cup X_{n}\right)\right| \geq m+1$. Since $x_{m 1}$ is counted twice, we have $\left|D \cap\left(X_{1} \cup X_{n} \cup Y_{1} \cup Y_{m}\right)\right| \geq m+n+1$.
(3) If $\left|\left\{x_{11}, x_{1 n}, x_{m 1}, x_{m n}\right\} \cap D\right|=2$, then there are two possible subcases to be considered up to isomorphism. If $\left\{x_{m 1}, x_{m n}\right\} \subset D$, then

$$
\left|D \cap\left(Y_{1} \cup Y_{m}\right)\right| \geq \min \left\{\frac{n}{2}+\frac{n+4}{2}, \frac{n+1}{2}+\frac{n+3}{2}, \frac{n+2}{2}+\frac{n+2}{2}, \frac{n+1}{2}+\frac{n+3}{2}\right\}=n+2
$$

according to Cases 1 and 3 , and $\left|D \cap\left(X_{1} \cup X_{n}\right)\right| \geq m+1$ by Case 2. Noting that either of $x_{m 1}, x_{m n}$ is counted twice, $\left|D \cap\left(X_{1} \cup X_{n} \cup Y_{1} \cup Y_{m}\right)\right| \geq m+n+1$. If $\left\{x_{m 1}, x_{1 n}\right\} \subset D$, then

$$
\left|D \cap\left(Y_{1} \cup Y_{m}\right)\right| \geq n+1 \text { and }\left|D \cap\left(X_{1} \cup X_{n}\right)\right| \geq m+1
$$

according to Case 2. Since either of $x_{m 1}, x_{1 n}$ is counted twice, $\left|D \cap\left(X_{1} \cup X_{n} \cup Y_{1} \cup Y_{m}\right)\right| \geq m+n$.
(4) If $\left|\left\{x_{11}, x_{1 n}, x_{m 1}, x_{m n}\right\} \cap D\right|=3$, then we may assume that $x_{11} \notin D$ by symmetry. By Cases 2 and 3 ,

$$
\left|D \cap\left(Y_{1} \cup Y_{m}\right)\right| \geq \min \left\{\frac{n+2}{2}+\frac{n+4}{2}, \frac{n+3}{2}+\frac{n+3}{2}, \frac{n+2}{2}+\frac{n+2}{2}, \frac{n+1}{2}+\frac{n+3}{2}\right\}=n+2,
$$

and similarly $\left|D \cap\left(X_{1} \cup X_{n}\right)\right| \geq m+2$. Noting that each of $x_{1 n}, x_{m 1}, x_{m n}$ is counted twice, we have $\left|D \cap\left(X_{1} \cup X_{n} \cup Y_{1} \cup Y_{m}\right)\right| \geq m+n+1$.
(5) If $\left\{x_{11}, x_{1 n}, x_{m 1}, x_{m n}\right\} \subset D$, then

$$
\left|D \cap\left(Y_{1} \cup Y_{m}\right)\right| \geq n+2 \text { and }\left|D \cap\left(X_{1} \cup X_{n}\right)\right| \geq m+2
$$

by Case 3. Since each of $x_{11}, x_{1 n}, x_{m 1}, x_{m n}$ is counted twice, $\left|D \cap\left(X_{1} \cup X_{n} \cup Y_{1} \cup Y_{m}\right)\right| \geq m+n$.

Next, we will give bounds for $\gamma_{\times 2, t}\left(P_{m} \square P_{n}\right)$ when $m \geq 4$. When $m=4$, it is stated as the following theorem.

Theorem 2.7. Let $n \geq 2$ be an integer. Then

$$
\frac{9 n}{4}+1 \leq \gamma_{\times 2, t}\left(P_{4} \square P_{n}\right) \leq \begin{cases}\frac{12 n}{5}+2, & \text { if } n \equiv 0(\bmod 5) ; \\ \frac{12 n}{5}+\frac{18}{5}, & \text { if } n \equiv 1(\bmod 5) ; \\ \frac{12 n}{5}+\frac{16}{5}, & \text { if } n \equiv 2(\bmod 5) ; \\ \frac{12 n}{5}+\frac{14}{5}, & \text { if } n \equiv 3(\bmod 5) ; \\ \frac{12 n}{5}+\frac{12}{5}, & \text { if } n \equiv 4(\bmod 5) .\end{cases}
$$

Proof. Let $G=P_{4} \square P_{n}$ with $P_{4}=a b c d$ and $P_{n}=v_{1} v_{2} \ldots v_{n}$, where $n \geq 2$. Set $X_{i}=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ for $1 \leq i \leq n, Y_{1}=\cup_{i=1}^{n} a_{i}$ and $Y_{4}=\cup_{i=1}^{n} d_{i}$.

We firstly prove the upper bound by constructing a DTDS of G. For integer $k \geq 0$, set

$$
X=\left(\cup_{i=0}^{k-1} X_{5 i+1}\right) \bigcup\left(\cup_{i=0}^{k-1} X_{5 i+4}\right) \bigcup\left(\cup_{i=0}^{k-1}\left\{a_{5 i+2}, a_{5 i+3}, d_{5 i+2}, d_{5 i+3}\right\}\right) .
$$

Clearly, $|X|=12 k$. Next, we give a DTDS, denoted by S, of G according to the value of n.
When $n=5 k$, set $S=X \cup\left\{b_{5 k}, c_{5 k}\right\}$. Thus $|S|=12 k+2=\frac{12 n}{5}+2$. Therefore $\gamma_{\times 2, t}(G) \leq|S|=\frac{12 n}{5}+2$.
When $n=5 k+1$, set $S=X \cup X_{5 k+1} \cup\left\{a_{5 k}, d_{5 k}\right\}$. Then $\gamma_{\times 2, t}(G) \leq|S|=12 k+6=\frac{12 n+18}{5}$.
When $n=5 k+2$, set $S=X \cup X_{5 k+1} \cup X_{5 k+2}$. So $\gamma_{\times 2, t}(G) \leq|S|=12 k+8=\frac{12 n+16}{5}$.
When $n=5 k+3$, set $S=X \cup X_{5 k+1} \cup X_{5 k+3} \cup\left\{a_{5 k+2}, d_{5 k+2}\right\}$. Then $\gamma_{\times 2, t}(G) \leq|S|=12 k+10=\frac{12 n+14}{5}$.
Finally, when $n=5 k+4$, set

$$
S=X \cup X_{5 k+1} \cup X_{5 k+4} \cup\left\{a_{5 k+2}, a_{5 k+3}, d_{5 k+2}, d_{5 k+3}\right\}
$$

Hence

$$
\gamma_{\times 2, t}(G) \leq|S|=12 k+12=\frac{12 n+12}{5}
$$

Next, let D be a minimum DTDS in G and $D^{\prime}=V(G) \backslash D$. We will prove the lower bound by counting the edges between D and D^{\prime}. Set $W=X_{1} \cup X_{n} \cup Y_{1} \cup Y_{4}$. By Lemma 2.6, $|D \cap W| \geq n+4$. Note that each vertex in $D \cap W$ has at most one neighbor in D^{\prime}, and each one in $D \backslash W$ has at most two neighbors in D^{\prime}. So

$$
e\left(D, D^{\prime}\right)=e\left(D \cap W, D^{\prime}\right)+e\left(D \backslash W, D^{\prime}\right) \leq|D \cap W|+2|D \backslash W|=2|D|-|D \cap W| \leq 2|D|-(n+4)
$$

Then

$$
2(4 n-|D|)=2\left|D^{\prime}\right| \leq e\left(D, D^{\prime}\right) \leq 2|D|-(n+4)
$$

Hence we have $|D| \geq \frac{9 n}{4}+1$.

Now, we consider the bounds of $\gamma_{\times 2, t}\left(P_{m} \square P_{n}\right)$ for $m \geq 5$ and $n \geq 5$.
Theorem 2.8. For integers $m \geq 5, n \geq 5$,

$$
\frac{m n}{2}+\frac{m+n}{4} \leq \gamma_{\times 2, t}\left(P_{m} \square P_{n}\right) \leq \begin{cases}\frac{m n}{2}+\frac{m+n+2}{2}, & \text { if } n \equiv 0,2(\bmod 4) ; \\ \frac{m n}{2}+\frac{m+n+3}{2}, & \text { if } n \equiv 1(\bmod 4) ; \\ \frac{m n}{2}+\frac{m+n+1}{2}, & \text { if } n \equiv 3(\bmod 4) .\end{cases}
$$

Proof. Let $G=P_{m} \square P_{n}$ with $P_{m}=u_{1} u_{2} \ldots u_{m}, P_{n}=v_{1} v_{2} \ldots v_{n}$, where $m \geq 5, n \geq 5$. For the vertex $u_{i} \in V\left(P_{m}\right)$ and $v_{j} \in V\left(P_{n}\right)$, we denote simply the vertex $\left(u_{i}, v_{j}\right)$ by $x_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$. For each $1 \leq i \leq m$ and $1 \leq j \leq n$, we denote $X_{j}=\cup_{i=1}^{m} x_{i j}, Y_{i}=\cup_{j=1}^{n} x_{i j}$. Let D be a minimum DTDS of G, and $D^{\prime}=V(G) \backslash D$.

Let $W=X_{1} \cup X_{n} \cup Y_{1} \cup Y_{m}$. By Lemma 2.6, $|D \cap W| \geq m+n$. Counting the edges between D and D^{\prime}, we have $2(m n-|D|)=2\left|D^{\prime}\right| \leq e\left(D, D^{\prime}\right)=e\left(D \cap W, D^{\prime}\right)+e\left(D \backslash W, D^{\prime}\right) \leq|D \cap W|+2|D \backslash W|=$ $2|D|-|D \cap W| \leq 2|D|-(m+n)$. Then $\gamma_{\times 2, t}\left(P_{m} \square P_{n}\right)=|D| \geq \frac{m n}{2}+\frac{m+n}{4}$.

To prove the upper bounds, for integer $k \geq 1$, set

$$
X=\left(\cup_{i=0}^{k-1} X_{4 i+1}\right) \bigcup\left(\cup_{i=0}^{k-1} X_{4 i+3}\right) \bigcup\left(\cup_{i=0}^{k-1}\left\{x_{1(4 i+2)}, x_{m(4 i+2)}\right\}\right) .
$$

Then $|X|=2 m k+2 k$. Next, we give a DTDS of G for each of the possible cases to complete the proof.
Case 1. $n=4 k$.
Let

$$
A=\cup_{i=0}^{\left\lfloor\frac{m}{4}\right\rfloor-1}\left\{x_{(4 i+2) 4 k}, x_{(4 i+3) 4 k}\right\},
$$

set $S=X \cup A \cup\left\{x_{(m-2) 4 k}, x_{(m-1) 4 k}\right\}$. When $m \equiv 0(\bmod 4),\left\{x_{(m-2) 4 k}, x_{(m-1) 4 k}\right\} \subseteq A$, so $\mid A \cup$ $\left\{x_{(m-1) 4 k}, x_{(m-2) 4 k}\right\} \left\lvert\,=\frac{m}{2}\right.$. When $m \equiv 1(\bmod 4), x_{(m-2) 4 k} \in A$, so $\left|A \cup\left\{x_{(m-1) 4 k}, x_{(m-2) 4 k}\right\}\right|=\frac{m+1}{2}$. When $m \equiv 2(\bmod 4),\left|A \cup\left\{x_{(m-1) 4 k}, x_{(m-2) 4 k}\right\}\right|=\frac{m+2}{2}$. When $m \equiv 3(\bmod 4),\left|A \cup\left\{x_{(m-1) 4 k}, x_{(m-2) 4 k}\right\}\right|=\frac{m+1}{2}$. Hence, $\left|A \cup\left\{x_{(m-1) 4 k}, x_{(m-2) 4 k}\right\}\right| \leq \frac{m+2}{2}$. Clearly, each vertex in $V(G) \backslash X_{4 k}$ has at least two neighbors in S. For any vertex $x \in X_{4 k}, x$ has at least one neighbor in $S \cap X_{4 k}$. Noting that $X_{4 k-1} \subset S$, each vertex in $X_{4 k}$ has at least two neighbors in S. That is to say, S is a DTDS of G. Thus

$$
\gamma_{\times 2, t}(G) \leq|S| \leq 2 m k+2 k+\frac{m+2}{2}=\frac{m n}{2}+\frac{m+n+2}{2} .
$$

Case 2. $n=4 k+1$.
Set $S=X \cup X_{4 k+1} \cup\left\{x_{1(4 k)}, x_{m(4 k)}\right\}$. Then S is a DTDS of G. So $\gamma_{\times 2, t}(G) \leq|S|=2 m k+2 k+m+2=$ $\frac{m n}{2}+\frac{m+n+3}{2}$.

Case 3. $n=4 k+2$.
Let

$$
B=X_{4 k+1} \cup\left(\cup_{i=0}^{\left.\cup \frac{m}{2}\right\rfloor-1}\left\{x_{(4 i+1)(4 k+2)}, x_{(4 i+2)(4 k+2)}\right\}\right) .
$$

When $m \equiv 0(\bmod 4)$, set $S=X \cup B \cup\left\{x_{(m-1)(4 k+2)}, x_{m(4 k+2)}\right\}$. Then $|S| \leq|X|+m+\frac{m}{2}+2=|X|+\frac{3 m+4}{2}$. When $m \equiv 1(\bmod 4)$, set $S=X \cup B \cup\left\{x_{(m-1)(4 k+2)}, x_{m(4 k+2)}\right\}$. Then $|S| \leq|X|+m+\frac{m^{2}-1}{2}+2=|X|+\frac{3 m+3}{2}$. When $m \equiv 2(\bmod 4)$, set $S=X \cup B \cup\left\{x_{(m-1)(4 k+2)}, x_{m(4 k+2)}\right\}$. Then $|S| \leq|X|+m+\frac{m-2}{2}+2=|X|+\frac{3 m+2}{2}$.

When $m \equiv 3(\bmod 4)$, set $S=X \cup B \cup\left(\cup_{i=m-2}^{m}\left\{x_{i(4 k+2)}\right\}\right)$. Then $|S| \leq|X|+m+\frac{m-3}{2}+3=|X|+\frac{3 m+3}{2}$. In each of these cases, we have

$$
|S| \leq|X|+\frac{3 m+4}{2}=2 m k+2 k+\frac{3 m+4}{2}=\frac{m n}{2}+\frac{m+n+2}{2} .
$$

Next, we show that S is a DTDS of G. Clearly, for each vertex $x \in V(G) \backslash\left(X_{4 k+1} \cup X_{4 k+2}\right), x$ has at least two neighbors in S. Noting that $X_{4 k+1} \subseteq S$, each vertex in $X_{4 k+1}$ has two neighbors in $X_{4 k+1}$ except $x_{1(4 k+1)}$ and $x_{m(4 k+1)}$. Also, $x_{1(4 k+1)}\left(x_{m(4 k+1)}\right)$ has another neighbor $x_{1(4 k+2)}\left(x_{m(4 k+2)}\right)$ in S. For any vertex $x \in X_{4 k+2}, x$ has one neighbor in $X_{4 k+1}$ and at least one neighbor in $S \cap X_{4 k+2}$. Then each vertex in $X_{4 k+1} \cup X_{4 k+2}$ has at least two neighbors in S. Therefore, S is a DTDS of G. Then

$$
\gamma_{\times 2, t}(G) \leq|S|=\frac{m n}{2}+\frac{m+n+2}{2} .
$$

Case 4. $n=4 k+3$.
Set $S=X \cup X_{4 k+1} \cup X_{4 k+3} \cup\left\{x_{1(4 k+2)}, x_{m(4 k+2)}\right\}$. Clearly, S is a DTDS of G. Thus

$$
\gamma_{\times 2, t}(G) \leq|S|=2 m k+2 k+2 m+2=\frac{m n}{2}+\frac{m+n+1}{2}
$$

3. Conclusions

In the paper, the values of $\gamma_{\times 2, t}\left(P_{i} \square P_{n}\right)$ for $i=2,3$ are determined. For $\gamma_{\times 2, t}\left(P_{4} \square P_{n}\right)$, we give lower and upper bounds with a gap no more than $\frac{3}{20} n+\frac{13}{5}$ and, for $\gamma_{\times 2, t}\left(P_{m} \square P_{n}\right)$ with $m, n \geq 5$, we give lower and upper bounds with a gap at most $\frac{m+n}{4}+\frac{3}{2}$.

The lower bounds in Theorem 2.7 and Theorem 2.8 could be improved if one may analyze the adjacent structures of DTDSs of $P_{m} \square P_{n}$ more carefully according to definition of the double total domination. For example, it is easy to verify that $\gamma_{\times 2, t}\left(P_{4} \square P_{4}\right)=12$, that attains the upper bound in Theorem 2.7 for the case $n=4$. Moreover, Figure 5(a) demonstrates that the lower bound of $\gamma_{\times 2, t}\left(P_{5} \square P_{5}\right)$ could be improved to 18 . (For an arbitrary DTDS D of $P_{5} \square P_{5}$, each of the solid circle and the dash curves in Figure 5(a) covers at least two vertices of D.) In Figure 5(b), we give a DTDS to show that the value of $\gamma_{\times 2, t}\left(P_{5} \square P_{5}\right)$ is exactly 18, that is greater than the lower bound in Theorem 2.8 for the case $m=n=5$.

(a)

(b)

Figure 5. (a) Any DTDS of $P_{5} \square P_{5}$ contains at least 18 vertices. (b) A DTDS with 18 vertices.

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 12071265) and the Shandong Provincial Natural Science Foundation (No. ZR2019MA032).

Conflict of interest

The authors declare no conflicts of interest.

References

1. S. Bermudo, J. C. Hernández-Gómez, J. M. Sigarreta, Total k-dominaiton in strong product graphs, Discrete Appl. Math., 263 (2019), 51-58. https://doi.org/10.1016/J.DAM.2018.03.043
2. S. Bermudo, D. L. Jalemskaya, J. M. Sigarreta, Total 2-domination in grid graphs, Utilitas Math., 110 (2019), 151-173.
3. S. Bermudo, J. L. Sanchéz, J. M. Sigarreta, Total k-domination number in Cartesian product graphs, Period. Math. Hung., 75 (2017), 255-267. https://doi.org/10.1007/s10998-017-0191-2
4. J. A. Bondy, U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, Vol. 244, London: Springer-Verlag, 2008.
5. A. Cabrera-Martínez, F. A. Hernández-Mira, New bounds on the double total domination number of graphs, Bull. Malays. Math. Sci. Soc., 45 (2021), 443-453. https://doi.org/10.1007/s40840-021-01200-0
6. N. Campanelli, D. Kuziak, Total Roman domination in the lexicographic product of graphs, Discrete Appl. Math., 263 (2019), 88-95. https://doi.org/10.1016/J.DAM.2018.06.008
7. W. Carballosa, J. Wisby, Total k-domination in Cartesian product of complete graphs, arXiv, 2020. https://doi.org/10.48550/arXiv.2001.07850
8. E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks, 10 (1980), 211-219. https://doi.org/10.1002/net. 3230100304
9. M. A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math., 309 (2009), 32-63. https://doi.org/10.1016/j.disc.2007.12.044
10. M. A. Henning, A. P. Kazemi, k-tuple total domination in graphs, Discrete Appl. Math., 158 (2010), 1006-1011. https://doi.org/10.1016/j.dam.2010.01.009
11. M. A. Henning, A. P. Kazemi, k-tuple total domination in cross products of graphs, J. Comb. Optim., 24 (2012), 339-346. https://doi.org/10.1007/s10878-011-9389-z
12. M. A. Henning, A. Yeo, Total domination in graphs, Springer Monographs in Mathematics, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6525-6
13. F. Hu, M. Y. Sohn, X. Chen, Total and paired domination numbers of C_{m} bundles over a cycle C_{n}, J. Comb. Optim., 32 (2016), 608-625. https://doi.org/10.1007/s10878-015-9885-7
14. F. Hu, J. Xu, Total and paired domination numbers of toroidal meshes, J. Comb. Optim., 27 (2014), 369-378. https://doi.org/10.1007/s10878-012-9519-2
15. A. P. Kazemi, B. Pahlavsay, R. J. Stones, Cartesian product graphs and k-tuple total domination, Filomat, 32 (2018), 6713-6731. https://doi.org/10.2298/FIL1819713K
16. N. Li, X. Hou, On the total k-domination number of Cartesian products of graphs, J. Comb. Optim., 18 (2009), 173-178. https://doi.org/10.1007/s10878-008-9144-2
17. N. J. Rad, Upper bounds on the k-tuple domination number and k-tuple total domination number of a graph, Australas. J. Comb., 73 (2019), 280-290.
18. J. Yue, S. Zhang, Y. Zhu, S. Klavžar, Y. Shi, The annihilation number does not bound the 2-domination number from the above, Discrete Math., 343 (2019), 111707. https://doi.org/10.1016/j.disc.2019.111707
19. J. Yue, Y. Zhu, M. Wei, The annihilation number and the total domination number of a tree-like graph, Appl. Math. Comput., 380 (2020), 125240. https://doi.org/10.1016/j.amc.2020.125240
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
