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1. Introduction

The idea of Abelian p-groups has been broadly generalized by a number of scholars who are
interested in module theory. Many group notions, such as purity, projectivity, injectivity, height etc.,
have been generalized for modules. Since 1976, the concept of TAG modules and their related
features have received considerable interest among several generalizations of torsion Abelian groups
(see, e.g., [1, 2]).

The results for groups that are not true for modules in general are generalized for modules by
applying conditions on modules or underlying rings or both. We applied the condition on modules
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that every finitely generated submodule of every homomorphic image of the module be a direct sum
of uniserial modules, while the rings are associative with unity (called QTAG modules, see [3]). By
applying this condition, several interseting group results may be established for QTAG modules, which
are not true for modules in general.

The concept of transitivity for Abelian groups dates back to Kaplansky [4]. Different aspects of
transitivity have been studied by many authors, and it is a hot topic in current research on Abelian
groups; for more details one can go through [5–8] etc. Recently, in [5], the authors defined a new
class of transitivity called as H-fully transitive using the height valuation from group G, which is an
extension of Kaplansky’s [4] standard definition of fully transitive groups. Several authors generalize
these interseting topics to modules. In the recent developement for the same one can go through [9,10].
In [10], authors defined two new concepts of transitivity and named them as quotient transitivity and
cyclic submodule transitivity using a new approach which is based on isomorphism of quotients and
makes no use of height sequences. In this paper, we focus our attention to generalize the case of
subgroup transitivity to the submodule transitivity in QTAG-modules via isotype submodules. The
motivation comes from the paper [11] and we generalize many results here from the same.

2. Preliminaries

One of the co-authors’ earlier works, which are provided as quotes and suitably referenced here,
give some of the fundamental concepts that are utilized in this study and it is prerequisite to understand
the subsequence sections of this paper.

“All the rings R considered here are associative with unity, and modules M are unital QTAG-
modules. An element x ∈ M is uniform if xR is a non-zero uniform (hence uniserial) module, and
for any R-module M with a unique composition series, d(M) denotes its composition length. For a

uniform element x ∈ M, e(x) = d(xR) and HM(x) = sup
{
d
(yR

xR

)
| y ∈ M, x ∈ yR and y uniform

}
are

the exponent and height of x in M, respectively. Hk(M) denotes the submodule of M generated by the
elements of height at least k and Hk(M) is the submodule of M generated by the elements of exponents
at most k. For an ordinal σ, a submodule N of M is said to be σ-pure, if Hβ(M) ∩ N = Hβ(N) for all
β ≤ σ [12], and a submodule N of M is said to be an isotype in M, if it is σ-pure for every ordinal
σ [13]. Let M be a module. Then, the sum of all simple submodules of M is called the socle of M
and is denoted by Soc(M). If M and M′ are QTAG modules then a homomorphism f : M → M′ is an
isometry if it is 1-1, onto and HM′( f (x)) = HM(x), for all x ∈ M. A submodule N of a QTAG-module
M is a nice submodule if every nonzero coset a + N is proper with respect to N, i.e., for every nonzero
a + N there is an element b ∈ N such that HM(a + b) = HM/N(a + N).

A family N of submodules of M is called a nice system in M if

(i) 0 ∈ N ;
(ii) {Ni}i∈I is any subset of N , then ΣINi ∈ N ;

(iii) Given any N ∈ N and any countable subset X of M, there exists K ∈ N containing N ∪ X such
that K/N is countably generated [14].

Every submodule in a nice system is a nice submodule. An h-reduced QTAG module M is called
totally projective if it has a nice system.”

The notations and terminology are widely used and adhered to [15, 16].
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3. Submodule transitivity in QTAG-modules

Hasan [17] extended the concept of transitivity for groups to QTAG modules with the help of U-
sequences of their elements.

“A QTAG module M is fully transitive if for x, y ∈ M, U(x) ≤ U(y), there is an endomorphism f
of M such that f (x) = f (y) and it is transitive if for any two elements x, y ∈ M, with U(x) ≤ U(y),
there is an automorphism f of M such that f (x) = f (y). A QTAG-module M is strongly transitive if
for x, y ∈ M, U(x) = U(y), there exists an endomorphism f of M such that f (x) = y.” Transitivity
of modules have been further generalized and different notions of transitivity have been introduced by
Hasan [17].

There are examples when x, y ∈ M and there is a height-preserving isomorphism from xR to yR but

no height-preserving isomorphism from
M
xR

to
M
yR

. This motivates us to study submodule transitivity.

We start with the following:

Definition 3.1. The submodules N,K of a QTAG module M are said to be equivalent if there exists a
height-preserving automorphism f of M such that f (N) = K. These submodules are compatible if for
any x ∈ N, y ∈ K, there exists z ∈ N ∩ K such that H(x + z) ≥ H(x + y).

Remark 3.1. If two submodules N,K ⊆ M are equivalent, then N ≃ K, M/N ≃ M/K and
the isomorphisms are height preserving. For a coset x + N, we define the height of a coset as
sup{H(x + y) + 1| y ∈ N}.

To proceed further we need the following:

Definition 3.2. A QTAG module M is transitive with respect to isotype submodules if for any two

isotype submodules N,K ⊆ M, N ≃ K,
M
N
≃

M
K

with height-preserving isomorphisms.

Although we have concentrated on transitivity up to this point, it is probably fair to argue that our
key finding is the following theorem. Under plausible premises, this theorem argues that a map may
be extended in such a way that it concurrently lifts a given quotient map.

Theorem 3.1. Let M/N and M′/N′ be totally projective QTAG modules with nice submodules N, N′

of the modules M, M′ respectively, and let K, K′ be isotype submodules of M, M′ containing N, N′,
respectively. Then, each height-preserving isomorphism ϕ : N → N′ extends to an isomorphism ψ from
M onto M′ with ψ(K) = K′ if and only if the Ulm-Kaplansky invariants of K relative to N are same
as the Ulm-Kaplansky invariants of K′ relative to N′ and there is a height preserving isomorphism
ρ : M/K → M′/K′. If the above conditions are satisfied then ψ can be chosen to induce ρ.

Proof. Without losing broader implications, we suppose that M = M′. Consider a totally projective
module T and M ⊕ T . Now, M ⊕ T ≃ M′ ⊕ T , and the isomorphism between M/K and M′/K is
preserved. For all ordinals α, we may consider the decomposition S oc(Hα(K)) = S oc(Hα+1(K) ⊕ S α

and S oc(Hα(K′) = S oc(Hα+1(K′) ⊕ S ′α). Now we may put S α(N) = {x |x ∈ S α,H(x + N) > α + 1} and
S ′α(N′) = {x′ |x′ ∈ S α,H(x′+N′) > α+1}. For each α, ϕ induces an isomorphism ϕα : S α(N)→ S ′α(N′)
where H(x+N) > α+1 if and only if H(ϕα(x)+N′) > α+1. Since the Ulm-Kaplansky invariants of K
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relative to N are the same as the Ulm-Kaplansky invariants of K′ relative to N′, we have g
(

S α

S α(N)

)
=

g
(

S ′(α)
S ′α(N)

)
, and we have isomorphism σα : S α → S ′α that extends the ϕ′αs.

Consider the familyA consisting of all the triples (P,Q, f ), where P and Q are nice submodules of
M containing N and N′, respectively, satisfying the following conditions:

(i) f is a height-preserving isomorphism extending ϕ.
(ii) f (x) + K′ = P(x + K) for all x ∈ P

(iii) If y ∈ S β, x ∈ P, then, H(x + y) > β + 1 if and only if H(σα(x) + f (y)) > β + 1.

Thus, (N,N′, ϕ) ∈ A. It is sufficient to show that if P′ = P + zR is an extension of P and (P,Q, f ) ∈
A, then there exists Q′ and P′ such that (P′,Q′, f ′) ∈ A with f ′ extending f . Suppose H(z) = α + 1
and z is proper with respect to P. We then have to find z′ ∈ M such that

(i) H(z′) = α + 1;

(ii) u′ = f (u) where d
(

z′R
u′R

)
= d

( zR
uR

)
= 1;

(iii) z′ is proper with Q;
(iv) z′ + K′ = ρ(z + K), and
(v) if x ∈ S α, y ∈ P, then H(x + z + y) > α + 1 if and only if H(σα(x) + z′ + f (y)) > α + 1.

To ensure the existence of z′, we have to consider two cases.
Case (i): H(u) > α + 2 and H(z + K) > α + 1. Since ρ is height-preserving ρ(z + K) = v + K′,

where H(v) > α + 1. Then, v′ − f (u) ∈ K′ ∩ Hα+2(M), and therefore f (w) = w′, where d
( wR
w′R

)
= 1

for some w = v + t, t ∈ Hα+1(K′). We may replace v + t with v, and then we have w′ = f (u). Since
H(z + K) > α + 1, H(z + a) > α + 1 for some a ∈ K. Now H(a) = α + 1 and H(a1) > α + 2, where

d
(

aR
a1R

)
= 1. Thus, a1R = a′1R, where a′1 ∈ Hα+1(K). We have a − a′ ∈ S oc(Hα(k)), and there is some

b ∈ Hα+1(M) such that x′ = z − b ∈ S α. Let z′ = v + σα(x′), then (i), (ii) and (iii) hold this choice of
z′. Since z is proper with respect to P and b ∈ Hα+1(M), x′ is also proper with respect to Q = f (P).
Therefore, σα(x′) is also proper with respect to Q = f (P), and z′ satisfies (iii), as v ∈ Hα+1(M). Now, z
and z′ ensure that (v) holds. For x ∈ S α and c ∈ P, H(x+z+c) > α+1, if and only if H(x+x′+c) > α+1
and H(σα(x) + z′ + f (c)) > α + 1 if and only if H(σα(x + x′) + f (c)) > α + 1.

Either of the two inequalities in (v) imply that H(y) ≥ α+1 and H(z1) > α+2, where d
(
(z + y)R

z′R

)
= 1.

Therefore, (i) and (ii) hold for z+y. If the first inequality in (v) holds, then, H(z+y+k) ≥ H(σα(x)+z+
y) > α+ 1, while if the second is satisfied, then, H(z+ y+K) = H(P(z+ y)+K′) = H(z′ + f (y)+K′) ≥
H(σα(x) + z′ + f (y)) > α + 1.

Case (ii): Now we are able to handle case (ii), when H(u) = α + 2 or H(z + k) ≥ α + 1. Since ρ is
height-preserving ρ(z+K) = b+K′ for some b ∈ Hα(M). Then, b′ − f (u) ∈ K′ ∩Hα+1(M) = Hα+1(K′),
and therefore H(z + K) = H(ρ(z + K)) = H(z′ + K′) ≥ H(z′), implying that H(z′) = α + 1. Since z′ is
not proper with respect to Q, this becomes the case (i). If H(z′ + f (y)) > α+ 1 for some y ∈ P, then we
may replace z with z + y. Thus, we may assume that z′ satisfies (iii), and we only have to prove (v). If
we replace z with z + y, then again by case (i) the inequalities of (v) are satisfied.
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The immediate implication of Theorem 3.1 is as follow:

Theorem 3.2. Let N and K be isotype submodules of a totally projective QTAG module M. If N, K
have the same Ulm-Kaplansky invariants and there is a height-preserving isomorphism f from M/N
onto M/K, then there is an automorphism f̄ of M that maps N onto K. Moreover, if f : M/N → M/K
is a height-preserving isomorphism, there is an automorphism f̄ that induces f .

These results suggest two different variations of the concept of transitivity. We define U-transitivity
where the submodules N, K may not be isomorphic but they have same the Ulm-Kaplansky invariants.

Definition 3.3. A QTAG module M is U-transitive if any two isotype submodules N, K having the same
Ulm-Kaplansky invariants with M/N ≃ M/K, correspond under some automorphism of M.

For the other variation, we need the following:

Definition 3.4. Two equivalent submodules N, K of M are strongly equivalent if for any height
preserving isomorphism f̄ : M/N → M/K, there is an automorphism f of M that induces f̄ .
A QTAG module is strongly U-transitive if every pair of isotype submodules N, K are strongly
equivalent whenever they have the same Ulm-Kaplansky invariants and there exists a height-preserving
isomorphism between M/N and M/K.

The argument of the following claim demonstrates the importance of the additional strong U-
transitivity criterion that is missing from U-transitivity.

Proposition 3.1. A direct summand of a strongly U-transitive QTAG module is again strongly U-
transitive.

Proof. Suppose M is strongly U-transitive and M = N⊕K. Let N1, N2 be isotype submodules of N such
that N1, N2 have the same Ulm-Kaplansky invariants and there exists a height-preserving isomorphism
f : N/N1 → N/N2. Since N is the summand of M, it is an isotype submodule of M, and therefore
HN(x + N1) = HM(x + N1). Now, f can be extended to f̄ : M/N1 → M/N2 such that f̄ (x + N1) =
x + f (N1) when x ∈ K, and f̄ is again height preserving. Since M is strongly U-transitive, there is an
automorphism ϕ of M that induces f̄ . Thus, ϕ(N1) = N2 but ϕ(N) = N because f̄ |N1/N2 = f . Therefore,
restriction of ϕ to N is an automorphism of N that induces f , and N is strongly U-transitive.

The previous demonstration does not hold up for U-transitivity, as we previously proposed, nor
does it hold up if we utilize the notion of transitivity of isotype submodules based on Definition 3.2. In
both instances, the strong versions are required.

Theorem 3.3. Let N, N′ be nice submodules of M and M′, respectively, where M/N and M′/N′ are
totally projective. Let K and K′ be isotype submodules of M and M′, respectively, such that N and K
are compatible and N′ and K′ are compatible. Suppose fα(K,N ∩K) = fα(K′,N′ ∩K′) for all ordinals

α and ϕ :
M
K
→

M′

K′
and ρ : N → N′ are height preserving-isomorphism for which ρ(a) + K′ =

ϕ(a + K) ∀a ∈ N. Then, there exists an isomorphism ψ : M → M′ that lifts ϕ and extends ρ.

Proof. Let ϕ :
M
K
→

M′

K′
and ρ : N → N′ be height-preserving isomorphisms such that ρ(a) + K′ =

ϕ(a + K). Now, a ∈ N ∩ K if and only if ρ(a) ∈ N′ ∩ K′.

AIMS Mathematics Volume 8, Issue 4, 9303–9313.
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For each α, let
S ocHα(K) = S α ⊕ S oc(Hα+1(K)),

S ocHα(K′) = S ′α ⊕ S oc(Hα+1(K′)).

We may define
S α(N ∩ K) = {x ∈ S α |H(x + z) > α for some z ∈ N ∩ K},

and S ′α(N′ ∩ K′) = {x′ ∈ S ′α |H(x′ + z′) > α for some z′ ∈ N′ ∩ K′}.

The restriction of the isomorphism ρ : N → N′ to an isomorphism between N ∩ K and N′ ∩ K′

induces an isomorphism ϕα : S α(N ∩ K) → S ′α(N′ ∩ K′). If x ∈ S α and H(x + z) > α with z ∈ N ∩ K,

then, z1 ∈ Hα+2(K) where d
(

zR
z1R

)
= 1 because x ∈ S oc(M) and K is the isotype. If we put z′ = ρ(z),

then, H(z′) = α = H(z). Since ρ(N ∩ K) = N′ ∩ K′, z′ ∈ N′ ∩ K′ and H(z′1) = H(z1) = H(x1) ≥ α + 2.

Here, d
(
(x + z)R

x1R

)
= 1 and d

(
z′R
z′1R

)
= 1. Therefore, z′1 = u1, where u′ ∈ Hα+1(K′) and d

(
u′R
u′1R

)
= 1.

Hence, z′ − u′ ∈ S oc(Hα(K′)) and u′ − z′ = x′ + v′, where x′ ∈ S ′α and v′ ∈ S oc(Hα+1(K′)). Now,
x′ + z′ ∈ S oc(Hα(K′)). Therefore, H(x′ + z′) > α and x′ ∈ (N′ ∩ K′), and thus the mapping that maps x
onto z′ is the required isomorphism from S α(N ∩ K) to S ′α(N ∩ K).

Since the Ulm-Kaplansky invariants of K with respect to N ∩ K are the same as those of K′ with
respect to N′∩K′, the isomorphism from S α(N∩K) to S ′α(N′∩K′) can be extended to an isomorphism
ϕα : S α → S ′α. If x ∈ S α, then H(x+z) > α for z ∈ N∩K iff H(ϕα(x)+ρ(z)) > α. We must demonstrate
that every element of N satisfies this requirement. Suppose for x ∈ S α, b ∈ N and H(x + b) > α.
Since N and K are compatible and x ∈ K,H(x + a) > α for some a ∈ N ∩ K. Based on the above,
we have H(ϕα(x) + ρ(a)) > α. Again, H(z + b) > α and H(z + a) > α, therefore, H(b − a) > α

and H(ρ(b) − ρ(a)) > α. Hence, H(ϕα(x) + ρ(b)) > α. We can say that H(x + b) > α if and only if
H(ϕα(x) + ρ(b)) > α.

Suppose P and Q are nice submodules of M and M′, respectively, and f : P→ Q is an isomorphism
such that

(i) f is a height-preserving isomorphism that extends ρ : N → N′;
(ii) f (y) + K′ = ϕ(y + K) for all y ∈ P;

(iii) And for each α if x ∈ S α and y ∈ P such that H(x+y) ≥ α+1 if and only if H(ϕα(x)+ f (y) ≥ α+1.

These conditions hold good if P = N, Q = N′ and f = ρ. Now P, Q are nice submodules of
M and M′, and N, N′, respectively, and M/N, M′/N′ are totally projective. Since nice submodules
of M/N correspond to nice submodules of M and a totally projective module has a collection A of
nice submodules, which is closed with respect to the union of modules and has the property that
every countably generated submodule is contained in a countably generated module in A. Now, it is

sufficient to show that for any z ∈ M, which is proper with respect to P such that z1 ∈ P, d
(

zR
z1R

)
= 1,

the isomorphism f : P→ Q can be extended to f̄ : P + zR→ Q + yR for some y ∈ M′, which satisfies
the conditions (i), (ii) and (iii). We shall consider the two cases separately. Let H(x) = β. We shall
consider the following two cases:

(i) When H(x1),H(x + K) > β + 1, here, d
(

xR
x1R

)
= 1;

(ii) When H(x1) = H(x + K) = β + 1.

AIMS Mathematics Volume 8, Issue 4, 9303–9313.
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In both cases we have to find z′ ∈ M′ with the following properties:

(a) H(z′) = β ;

(b) z′1 = f (z1), here d
(
z′R
z′1

)
= 1;

(c) z′ is proper with respect to Q;
(d) z′ + K′ = ϕ(z + K); and
(e) If x ∈ S β,t ∈ P, then H(z + x + t) ≥ β + 1 if and only if H(ϕα(x) + z′ + f (t)) ≥ β + 1.

Then, f : P→ Q can be extended to f̄ : P+ zR→ Q+ z′R if we put f̄ (z) = z′ and f̄ satisfies (i) to (iii).
Case (i): We choose z′ ∈ M′, such that ϕ(z+K) = z′+K′. Since ϕ is height preserving, H(z′+K′) >

β + 1, and we may assume H(z′) > β. Then, by condition (ii) on f , ϕ(z1 + K) = f (z1) + K′ = z′1 + K′,

where d
(

z′R
z′1R

)
= 1 = d

(
zR
z1R

)
. Hence, f (z1) − z′1 ∈ K′ ∩ Hβ+2(M) = Hβ+2(K′). Therefore, there exists

u′ ∈ Hβ+1(K′) such that u′1 ∈ f (z1)− z′1. Now, f (z1) = z′1+u′1, and by replacing z′ with z′+u′, z′ satisfies
(b) and (d).

Since H(z + K) > β + 1, there exists u ∈ K such that H(z + u) ≥ β + 1. Therefore, H(u) = H(z) = β

and H(z1 + u1) ≥ β + 2(d
(

uR
u′1R

)
= 1) and H(z + u) ≥ β + 2, H(u1) ≥ β + 2. Now u1 = u∗1, where

d
(
u∗R
u∗1R

)
= 1, u∗ ∈ Hβ+1(K), and we have u∗−u ∈ S ocHβ(K). If u∗−u = c+d. If c ∈ S β, d ∈ S ocHβ+1(K),

then, c = u∗ − u − d = z − ((z + u) − u∗ + d) = z − w, where w ∈ Hβ+1(M). If x′ = z′ + ϕβ(c), then, x′

satisfies the conditions (a), (b) and (d). Since z is proper with respect to P and w ∈ Hβ+1(M), c = z − w
is also proper with respect to P. Now, by condition (iii) on f with α = β implies that ϕβ(c) is proper
with respect to Q, and thus z′ is also proper with respect to Q because z′ ∈ Hβ+1(M′), and (c) also holds.

To prove (e), consider c∗ ∈ S β and y ∈ P. Now, H(c∗+z+y) ≥ β+1 if and only if H(c∗+c+y) ≥ β+1,
as z = c+w. By condition (iii), H(ϕβ(c∗ + c)+ f (y)) ≥ β+ 1 if and only if H(ϕβ(c∗)+ z′ + f (y)) ≥ β+ 1
because z′ = ϕβ(c) + z′.

Case (ii): Let ϕ(z + K) = z′ + K′, and we may assume that H(z′) ≥ β. Then, by condition (ii),

f (z1) − z′1 ∈ K′ ∩ Hβ+1(M′), so there exists u′ ∈ Hβ(K′) such that f (z1) = v′, where d
(
(z′ + u′)R

v′R

)
= 1.

If y = z′ + u′, then, y satisfies (b) and (d).
Since y ∈ Hβ(M′), H(y) = β implies H(y1) = H(z1) = β+1 or H(y) ≤ H(y+K′) = H(z+K) = β+1,

where d
(

yR
y1R

)
= 1. Now, (a) holds. If y is not proper with respect to Q, then H(y + f (x)) ≥ β + 1

for some x ∈ P. Consider z∗ = z + x. Now, H(z + x) ≥ β and H(x) = H( f (x)) = H(y) = β. Since
x is proper with respect to P, H(z + x) ≤ β, i.e., H(z∗) = β and z∗ is proper with respect to P. Also,
H(z∗1) = H( f (z∗1)) = H(y1 + f (z1)) > β+ 1. Therefore, H(z∗ + K) = H(ϕ(z∗ + K)) = H(z′ + f (x)+ K′) =
H(y + f (x) + K′) > H(y + f (x)) ≥ β + 1.

If (c) does not hold for y, then by case (i), we can find an element y∗ corresponding to z∗.
Let a ∈ S β and x ∈ P. If H(a + x + z) ≥ β + 1 or H(ϕα(a) + y + f (z)) ≥ β + 1, then we consider

z∗ = x + z. Now, H(z∗) = β, H(z∗1) > β + 1, d
(
z∗R
z∗1R

)
= 1 and H(z∗ + K) > β + 1, and thus we can use

case (i), since H(a) = H(ϕβ(a)) = β, and either H(z + x) = β or H(y + f (x)) = β. In the latter case,
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H(y) = β implies H( f (x)) = H(x) ≥ β, and so H(z + x) ≥ β. Furthermore, H(x + z) ≤ H(z) = β and
H(z∗1) = H(a + z + x) + 1 = H(ϕβ(a) + y + f (x)) + 1 ≥ β + 1, Therefore, H(z∗ + K) > β + 1. Thus, we
can find y with the desired properties, and the extension is established. Based on the above discussion,
we conclude that there is an isomorphism from M to M∗ that lifts ϕ and extends ρ.

Although the following result may be called a corollary of the above theorem, we chose to call it a
lemma because it will be needed to establish two later theorems.

Lemma 3.1. Let M be a QTAG module such that M/Hα(M) is totally projective for some α. Let N,
N′ be isotype submodules of M having the same Ulm-Kaplansky invariants and a height-preserving
isomorphism from M/N to M/N′. If Hα(N) and Hα(N′) are strongly equivalent in Hα(M), then N, N′

are strongly equivalent in M.

Proof. Let ϕ : M/N → M/N be a height-preserving isomorphism. This induces an isomorphism

ϕα :
Hα(M)
Hα(N)

→
Hα(M)
Hα(N′)

, which is again height-preserving because Hα(N) = Hα(M) ∩ N and Hα(N′) =

Hα(M) ∩ N′. Now,
Hα(M)

Hα(M) ∩ N
≃

Hα(M) + N
N

,

Hα(M)
Hα(M) ∩ N′

≃
Hα(M) + N′

N′
.

Since Hα(N) and Hα(N′) are strongly equivalent in Hα(M), there is an automorphism ψα of Hα(M) that
induces ϕα. Thus, ψα maps Hα(N) onto Hα(N′). If ρ = ψα, M = M′, K = Hα(M) = K′, then, every
submodule of M is compatible with Hα(M).

Theorem 3.4. Let M be a QTAG module and α is an ordinal for which M/Hα(M) is totally projective.
If Hα(M) is strongly U-transitive, then, M is also strongly U-transitive.

Proof. Let N, N′ be two isotype submodules of M having the same Ulm-Kaplansky invariants
and a height-preserving isomorphism ϕ : M/N → M/N′. Now, Hα(N) and Hα(N′) are isotype
submodules of Hα(M) satisfying the same conditions. Thus, Hα(N) and Hα(N′) have the same Ulm-

Kaplansky invariants and there is a height-preserving isomorphism such that ϕα :
Hα(M)
Hα(N)

→
Hα(M)
Hα(N′)

.

Since Hα(M) is strongly U-transitive, the submodules Hα(N), Hα(N′) are equivalent in Hα(M). By
Lemma 3.1, M is strongly U-transitive.

Now, we prove that if M is strongly U-transitive so is Hα(M). The total projectivity of M/Hα(M)
is not required.

Theorem 3.5. If M is a strongly U-transitive QTAG module, then, Hα(M) is also strongly U-transitive
for any ordinal α.

Proof. Suppose M is a strongly U-transitive QTAG module. Let N1, N2 be isotype submodules of
Hα(M) such that N1, N2 have the same Ulm-Kaplansky invariants and there exists a height-preserving

isomorphism ϕα :
Hα(M)

N1
→

Hα(M)
N2

. Consider the submodules K1, K2 of M maximal with respect to

the property K1 ∩Hα(M) = N1, K2 ∩Hα(M) = N2. Now, Hβ(M)∩ K1 = Hβ(K1) for all β ≤ α. If β > α,
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then, Hβ(M) ∩ K1 = Hβ(K1) and K1 is isotype in M. Similarly, K2 is isotype in M. Now, α may be a
limit ordinal or not and there may be two cases.

Case (i): α = 1. Since the submodules K1 and K2 are isotype which are maximal with respect to the

property of containing N1, N2, respectively. Therefore,
S oc(K1)

S oc(H1(K1))
≃

S oc(M)
S oc(H1(M))

≃
S oc(K2)

S oc(H1(K2))
,

and thus the first Ulm-Kaplansky invariant of K1 is same as that of K2. Since H1(K1) = N1 and
H2(K2) = N2, and N1, N2 have the same Ulm-Kaplansky invariant, K1, K2 also have the same Ulm-

Kaplansky invariant. For α = 1, we have an height-preserving isomorphism ϕ1 :
H1(M)
H1(K1)

→
H1(M)
H1(K2

that gives rise to an isomorphism ψ1 : H1(M/K1)→ H1(M/K2), and we have
H1(M)
H1(K1)

=
H1(M)

H1(M) ∩ K
≃

H1(M) + K1

K1
= H1(M/K1). Similarly,

H1(M)
H1(K2)

= H1(M/K2). Since ϕ1 is height-preserving, ψ1 is also

height-preserving, and by the maximality of K1, K2 we have S oc(M/K1) = S oc(H1(M/K1)). Now, the
isomorphism ψ1 : H1(M/K1) → H1(M/K2) can be extended to an isomorphism ψ : M/K1 → M/K2,
which is again height-preserving. Since M is strongly U-transitive, there is an automorphism f of M
that induces ψ and f |H1(M) induces ϕ1, thus H1(M) is strongly U-transitive. Inductively, Hn(M) is also
strongly U-transitive for finite ordinals n.

Case (ii): When α is a limit ordinal, we have to consider K1, K2 as in case (i). For all ordinals
β < α, K1 + Hβ(M) = M. Since K1 is an isotype, βth Ulm-Kaplansky invariant of K1 is same as the
βth Ulm-Kaplansky invariant of M. Similarly, for all ordinals β < α, βth Ulm-Kaplansky invariant of
K2 is same as the βth Ulm-invariant of M. Thus, K1, K2 have same Ulm-Kaplansky invariants upto α.
Since Hα(K1) = N1, Hα(K2) = N2 and N1, N2 have same Ulm-Kaplansky invariants, K1, K2 have same
Ulm-Kaplansky invariants.

Now, consider the height-preserving isomorphism ϕ : M/K1 → M/K2. Since M/K1 and M/K2 are

h-divisible hulls of
Hα(M) + K1

K1
and

Hα(M) + K2

K2
, respectively, the isomorphism ϕ can be extended to

an isomorphism ψ : M/K1 → M/K2. Also, H(x + K1) ≥ α + 1 if and only if x + K1 ∈
Hα(M) + K1

K1

and H(x + K1) = α if x + K1 <
Hα(M) + K1

K1
. The same is true for K2. Therefore, the extension

ϕ : M/K1 → M/K2 preserves heights.
As in case (i), let f be an automorphism of M that induces ψ. The restriction of f to Hα(M) is the

required automorphism of Hα(M) that induces ϕα. Therefore, Hα(M) is strongly U-transitive.

If the submodules N, K ⊆ M are countably generated, then N ≃ K if and only if N, K have the
same Ulm-Kaplansky invariants.

Next, we investigate a wider class of modules, which are strongly transitive with respect to
countably generated isotype submodules.

Definition 3.5. A QTAG module is ℵ0-transitive if any two countably generated isotype submodules N,
K are strongly equivalent in M whenever N ≃ K and M/N ≃ M/K.

Naji [18] defined α-modules M such that for all ordinal β < α, M/Hβ(M) is totally projective.

Theorem 3.6. All α-modules are strongly ℵ0-transitive.

AIMS Mathematics Volume 8, Issue 4, 9303–9313.
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Proof. Let M be an α-module and N, K be isotype submodules with a countable length. We may
choose a countable ordinal β such that N ∩ Hβ(M) = 0, K ∩ Hβ(M) = 0. Since M is an α-module,

M
Hβ(M)

is totally projective. Therefore, if N ≃ K and M/N ≃ M/K, by Lemma 3.1, N and K are

strongly equivalent. Thus, for any ordinal α, α-modules are strongly ℵ0-transitive.

4. Conclusions

In classical notion of transitivity a key observation due to Hill and West [11], is that the transitivity
property can also be persists by the action of automorphism between two isotype subgroups of p-
groups. Taking this as motivation for the current article, we generalize this case to that of QTAG-
modules and the most interesting finding in this paper, is the conditions discussed in Theorem 3.1
and, it is found that for isotype submodules N, K of a totally projective QTAG-module M with same
Ulm-Kaplansky invariants and a height preserving isomorphism f from M/N to M/K there exists an
automorphism f ′ of M such that f ′(N) = K. This leads us to define U-transitivity and strongly U-
transitive QTAG-modules. It is found that if M is strongly U-transitive then Hα(M) is also strongly
U-transitive for any ordinal α. The proposed concept of transitivity based on submodules rather than
elements yields some interesting results and can be explored further by researchers of this field.

We end this article with the following discussion:
The concepts of (strong, weak, fully) transitivity for groups to QTAG-modules have been

generalized using U-sequences of their elements. But here in the present manuscript, we generalize
the transitivity using a new approach of submodules. We conclude this manuscript with the following
open problem:

Under what conditions isotype submodules of QTAG-module M may define the properties of being
strongly tranistive, weakly transitive and fully transitive for M?

Conflict of interest

The authors declare no conflicts of interest.

References

1. K. Benabdallah, S. Singh, On torsion Abelian groups like modules, In: Abelian group theory,
Berlin, Heidelberg: Springer, 1983, 639–653. https://doi.org/10.1007/978-3-662-21560-9 45

2. S. Singh, M. Z. Khan, TAG-modules with complement submodules H-pure, Int. J. Math. Math.
Sci., 21 (1998), 801–814. https://doi.org/10.1155/S0161171298001112

3. S. Singh, Abelian groups like modules, Acta Math. Hung., 50 (1987), 85–95.
https://doi.org/10.1007/BF01903367

4. I. Kaplansky, Infinite Abelian groups, Ann Arbor: University of Michigan Press, 1954.

5. A. R. Chekhlov, P. V. Danchev, P. W. Keef, Generalizations of fully transitive and valuated Abelian
p-groups, J. Algebra, 566 (2021), 187–204. https://doi.org/10.1016/j.jalgebra.2020.09.014

AIMS Mathematics Volume 8, Issue 4, 9303–9313.

http://dx.doi.org/https://doi.org/10.1007/978-3-662-21560-9_45
http://dx.doi.org/https://doi.org/10.1155/S0161171298001112
http://dx.doi.org/https://doi.org/10.1007/BF01903367
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2020.09.014


9313

6. A. R. Chekhlov, P. V. Danchev, P. W. Keef, Universally fully and Krylov transitive torsion-
free Abelian groups, Monatsh. Math., 198 (2022), 517–534. https://doi.org/10.1007/s00605-021-
01632-7

7. D. Carroll, B. Goldsmith, On transitive and fully transitive Abelian p-groups, Proc. R. Ir. Acad.,
96A (1996), 33–41.

8. V. M. Misyakov, Full transitivity of Abelian groups, J. Math. Sci., 154 (2008), 350–373.
https://doi.org/10.1007/s10958-008-9177-1

9. P. A. Krylov, A. A. Tuganbaev, Modules over discrete valuation rings, De Gruyter, 2018.
https://doi.org/10.1515/9783110611144

10. B. Goldsmith, K. Gong, Quotient-transitivity and cyclic submodule-transitivity for p-adic modules,
Colloq. Math., 166 (2021), 187–197. https://doi.org/10.4064/cm8348-1-2021

11. P. Hill, J. K. West, Subgroup transitivity in Abelian groups, Proc. Amer. Math. Soc., 126 (1998),
1293–1303.

12. H. A. Mehran, S. Singh, On σ-pure submodules of QTAG-modules, Arch. Math., 46 (1986),
501–510. https://doi.org/10.1007/BF01195018

13. S. Singh, Some decomposition theorems in Abelian groups and their generalizations, In: Ring
theory: Proceedings of Ohio university conference, New York: Marcel Dekker, 1976, 183–189.

14. A. Mehdi, M. Y. Abbasi, F. Mehdi, On (ω + n)-projective modules, Ganita Sandesh, 20 (2006),
27–32.

15. L. Fuchs, Infinite Abelian groups, Volume I, Academic Press, 1970.

16. L. Fuchs, Infinite Abelian groups, Volume II, Academic Press, 1973.

17. A. Hasan, Some characterizations of QTAG-modules, Ph.D. thesis, Aligarh, 2012.

18. S. A. R. K. Naji, A study of different structures in QTAG-modules, Ph.D. thesis, Aligarh, 2010.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 4, 9303–9313.

http://dx.doi.org/https://doi.org/10.1007/s00605-021-01632-7
http://dx.doi.org/https://doi.org/10.1007/s00605-021-01632-7
http://dx.doi.org/https://doi.org/10.1007/s10958-008-9177-1
http://dx.doi.org/https://doi.org/10.1515/9783110611144
http://dx.doi.org/https://doi.org/10.4064/cm8348-1-2021
http://dx.doi.org/https://doi.org/10.1007/BF01195018
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Submodule transitivity in QTAG-modules
	Conclusions

