
AIMS Mathematics, 8(4): 8847–8866. 

DOI: 10.3934/math.2023444 

Received: 14 September 2022 

Revised: 31 December 2022 

Accepted: 18 January 2023 

Published: 08 February 2023 

http://www.aimspress.com/journal/Math 

 

Research article 

Parabolic transport measurement of hydrodynamic forces for flow 

around circular/triangular distance dependent obstructions: Finite 

element analysis 

Khalil Ur Rehman1,2,*, Wasfi Shatanawi1,3, Kamal Abodayeh1 and Taqi A.M. Shatnawi3 

1 Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan 

University, Riyadh 11586, Saudi Arabia 
2 Department of Mathematics, Air University, PAF Complex E-9, Islamabad 44000, Pakistan 
3 Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 

13133, Jordan 

* Correspondence: Email: kurrehman@psu.edu.sa. 

Abstract: The present effort is the low Reynolds finite element hybrid meshed solution to apprehend 

the flow field properties in a convergent-divergent (CD) domain having engineering standpoints 

applications. To be more specific, we have considered the CD domain rooted with two types of 

obstructions in three various arrangements namely triangular/triangular, circular/triangular, and 

triangular/circular in CD throat. The viscous fluid is introduced from the inlet and interacts with 

installed obstacles. The moving stream in the channel is modelled mathematically in terms of the two-

dimensional time-independent equations. The finite element approach is used to disclose numerical 

solutions by means of a hybrid meshing scheme. Optimized drag and lift force values encountered by 

an obstruction are offered through line integration across the external obstruction surfaces. In 

comparison to obstruction in left vicinity, the lift force faced by the triangle obstacle on the right side 

of the CD throat is larger. Furthermore, as compared to the drag force faced by the triangular 

obstruction in the same proximity, the circular obstacle experienced greater values as a drag. The lifting 

force sensed by the triangular cylinder is larger than circular cylinders. The assessment of marine 

hydrodynamic forces and stability individualities for fully or partially submerged objects in ocean 

engineering will benefit from the results of this study. 
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Nomenclature 

x,y  Space variables 

u,v  Velocity components 

𝜌  Fluid density 

𝜈  Kinematic viscosity 

h  Height of the channel 

L  Characteristic length 

Re  Reynolds number 

𝑈  Reference velocity 

𝑢𝑚𝑎𝑥 Inflow maximum velocity 

𝐷𝐹  Drag force 

𝐷𝑐  Drag coefficient 

𝐿𝐹  Lift force 

𝐿𝑐  Lift coefficient 

1. Introduction 

The fluid flow around obstacles is a topic of great interest because of its numerous engineering 

applications. The obstacles may include the shape of rectangular, triangular, square, or circular. Such 

obstacles are used in naval, civil, and mechanical engineering like heat exchangers (chimneys), bridge piers, 

power lines, and onshore/offshore platforms to mention just a few. Therefore, fluid flow around obstacles 

like rectangular, triangular, square, and circular is considered a fundamental problem of fluid mechanics. 

The flow around obstacles admits various physics phenomena namely vortex shedding in case of time-

dependent flow, flow separation, turbulence, drag force, and lift force. To evaluate such characteristics, 

different important computational analyses were reported by researchers like Gerrard [1] examined 

fluctuating pressure on the cylinder as an obstacle for a certain range of Reynolds numbers to determine the 

lift and drag on circular cylinders. For higher Reynolds numbers, the fluctuating drag component was 

calculated and found to be orders of magnitude smaller than the lift. Kacker et al. [2] evaluated the lift forces 

that cylinders with various diameters and length-to-diameter ratios encountered towards different Reynolds 

numbers. The fluctuating drag and lift coefficients for length-to-diameter ratios were calculated by 

combining data from stations across a horizontal section of the tube that measure the changing surface 

pressure. Lift coefficients for cylinders were matched with the experimental study, with the values taken by 

surface pressure at lower Reynolds numbers. Gerrard [3] studied the flow around circular cylinders, and he 

also noted the wakes of bluff cylinders with various cross sections. The research mostly focuses on using a 

dye that has been removed from the bodies to visualize the movement of wakes. Therefore, the dye patterns 

seen were filament line demonstrations of the flow leaving the body's separating lines. Because vorticity 

diffuses much more quickly than dye at low Reynolds numbers, it has been noticed that the dye does not 

render the vorticity-bearing fluid visible. Norberg [4] studied the impacts of the Reynolds number in the 

nominal situation of a large aspect-ratio cylinder at minor to vanishing obstruction, specific elements of the 
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fluctuating lift force on a stationary circular cylinder. They came to the conclusion that the lift fluctuations 

on a finite length of the cylinder were therefore reliant on both the spanwise correlation of the lift-related 

flow and the sectional lift changes. For higher Reynolds numbers, Catalano et al. [5] studied the flow around 

a circular cylinder in the supercritical domain. For the large-eddy simulation's estimated boundary 

conditions, a straightforward wall stress model was used. The outcomes were contrasted with experimental 

data and results from stable and unsteady Reynolds-averaged Navier-Stokes solutions. Following the drag 

crisis, they accurately depict the delayed boundary layer separation and decreased drag coefficients 

corresponding with experimental results. Since then many researchers explored flow around obstacles see 

Refs. [6–11]. Zhao et al. [12] provided a three-dimensional numerical simulation of sinusoidal oscillatory 

flow around a circular cylinder at oblique and right attacks. Oblique angle calculations and Reynolds number 

calculations were performed. For single-mode flows, the spanwise correlation factor determined using the 

sectional transverse force was close to 1. In general, the correlation length of multi-mode flows is less than 

that of single-mode flows and varies on the KC number. There was discussion about both the maximum lift 

coefficient and the mode-averaged lift force disparities. Sami [13] examined the velocity field of two-

dimensional turbulent flow about a partially buried circular cylinder on a smooth plane boundary. 

Experiments were conducted in a closed-loop water channel with diameter-dependent Reynolds numbers. 

The positions of the separation points on the surface of an obstacle as well as the influence of the burial ratio 

downstream and separation upstream were examined. Yu et al. [14] developed a two-dimensional model for 

the flow through a circular patch containing a collection of vertical circular cylinders. The model's 

applicability was initially verified through test situations where experimental data could be compared with 

the calculated outcomes. The ability of the current model to accurately forecast average velocity and 

turbulence structure has been confirmed. Then, using the current model, the drag coefficient was determined 

for a variety of scenarios with various cylinder Reynolds numbers, solid volume fractions, and patch 

diameters. It was demonstrated that the drag coefficient lowers with an increase in Reynolds number but 

increases with an increase in solid volume fraction. The flow past a circular cylinder at a crucial Reynolds 

number was explored by Lehmkuhl et al. [15] It was shown that as the Reynolds number increases, the 

pressure distribution changes asymmetrically, first on one side of the cylinder and subsequently on the other 

side to complete the drag reduction. Mehdi et al. [16] investigated the fluid flow around a circular, two-

dimensional obstacle with various Reynolds numbers. A second-order implicit scheme and implicit 

pressure-based finite volume approach were employed in this simulation. Equations for Navier-Stokes and 

continuity were used to study flow. For various Reynolds numbers and varying angles of attack, the pressure, 

drag coefficients, and vortex shedding were calculated and compared with previous numerical results that 

show good agreement. Experimental research on the characteristics of flow around a modified circular 

cylinder was done by Gao et al. [17] In a wind tunnel, the experimental campaign was carried out at a high 

Reynolds number. A slit parallel to the entering airflow was added to the cylindrical test model to create a 

flow communication route between the windward and leeward stagnation regions. The findings of the 

experiment show that a slit helps to lower the drag and decrease the varying amplitude of the dynamic wind 

loads operating on the test model. The shifting trend in lift suppression and drag reduction with the expansion 

of the slit width was also covered. Bao [18] solved the Navier-Stokes equations numerically for a circular 

cylinder with a slit. At a Reynolds number, they applied the high-resolution spectral element approach. The 

results demonstrate that for attack angle, a higher slit width ratio and a lower attack angle are generally likely 

to produce a lower root-mean-square lift coefficient. For each slit width ratio, the mean drag coefficient and 

root-mean-square lift coefficient were higher than those of a typical cylinder. It was discovered that the 

vortices are stronger and more stable than a typical cylinder. 
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Motivated by the literature reported above on the significance of flow around obstacles, we offer 

a numerical evaluation of hydrodynamic forces in this article by considering regular obstructions with 

fractional distance towards an ongoing fluid in convergent-divergent channel. It is important to note 

that in this manuscript the word “fractional” refers (only) to distance measurement. We are confident 

that by following the present article one can learn the initial step towards evaluating hydrodynamic 

forces having importance in daily life like the presence of ships, energy converters by wave, offshore 

rigs, and sub-surface pipelines resulting in hydrodynamic forces such as drag and lift. The investigators 

face difficulty in evaluating such hydrodynamics forces in diverse combinations. Therefore, the 

present attempt is the numerical catalyst to study fluid stream in CD domain having 

triangular/triangular, circular/triangular, and triangular/circular obstacles. The article is carried out as: 

Section-1 is for current and past quantitative analysis on the flow around obstacles, along with various 

physical findings. The steady Navier-Stokes equations that narrate the flow around obstacles in the CD 

channel are framed in Section-2. The relation for concerned forces is given in Section-3. The numerical 

simulation directory is offered in Section-4. Section-5 offered a comparative examination of the flow. 

Section-6 includes the key findings of the present analysis of drag and lift forces faced by 

triangular/triangular, circular/triangular, and triangular/circular. One can extend the study for 

evaluation of hydrodynamic forces having ocean engineering standpoints see Refs. [19–21]. 

2. Mathematical description of CD flow 

Motivated by Schaefer et al. [22] on flow in a channel having a circular obstacle, we consider 

convergent-divergent channel of dimensions 𝛤: [0, 1.6] x [0, 0.6] with the installation of triangular 

and circular cylinders in right/right vicinity of the CD throat. The velocity of flow at every point is 

parallel to a fixed 𝑥 − 𝑦 plane as a two-dimensional flow. The geometry of the problem is offered in 

Figure 1. The boundary condition of the CD channel is as follows: 

• Upper/Lower walls: We carried no-slip condition. Mathematically such assumption is 

written as: v = 0, u = 0. 

• Inlet of channel: The viscous fluid flow is initiated with fully developed parabolic inflow 

velocity. Mathematically such assumption is written as: 𝑢 = 4𝑢𝑚𝑎𝑥. The compatibility of the 

parabolic profile instead of the linear with the no-slip assumption is debated in Refs. [23,24]. 

• Outlet of channel: The “do nothing condition” is applied at the outlet of the channel. 

Mathematically it is written as 𝑢𝑥 = 0, 𝑣𝑥 = 0. In addition, the outer surfaces of circular and 

triangular obstructions are also carried with no-slip condition. 

Figure 1. Triangular/circular obstacles with in CD domain. 

https://www.sciencedirect.com/science/article/pii/S2238785419315856#bib0250
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The interaction of a steady Newtonian continuous stream with installed obstructions in the CD 

channel can be studied by the differential equations known by the continuity equation and low 

Reynolds time-independent Navier-Stokes equations: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0,          (1) 

𝑢𝑗
𝜕𝑢𝑖
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= −

1
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For results generalization or be an abstract over a wide range of phenomena we need to obtain 

dimensionless forms. For this purpose, one can use 
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by using Eq (3) we reached at: 
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by removing the bar we get the following forms in terms of steady velocity components: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0,           (6) 
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Eqs (6) and (7) in terms of velocity components can be written as: 
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3. Hydrodynamic forces in CD channel 

The quantity of interest namely “variation in hydrodynamic forces” is appeared when we have 

installed two various obstacles in CD channel. Particularly, triangular/triangular, triangular/circular, 

and circular/triangular obstacles in the CD channel experienced lift perpendicular and drag parallel to 

the flow. All of the complicated dependencies of shape, flow conditions and angle of attack are 

modeled by using drag and lift coefficients [22–24]. Therefore, to evaluate such coefficients for each 

obstruction we used mathematical relations as follows: 

𝐿𝑐 =
2𝐿𝐹

𝜌(𝑈)2𝐿
,          (11) 
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𝐷𝑐 =
2𝐷𝐹

𝜌(𝑈)2𝐿
.          (12) 

Here, lift coefficient relation is given as Eq (11) and drag coefficient relation is offered in Eq (12). For 

simulation we considered viscosity velocity 𝜇 = 0.001, Newtonian fluid density 𝜌 = 1, 𝑈 = 0.2 as 

reference velocity, and L = 0.1 as a character length. One should note that for triangular obstacle we 

consider the side of triangular as a characteristic length while for circular obstacle we own the diameter 

of the cylinder as a characteristic length L = 0.1. The coefficients namely drag and lift are calculated 

by performing line integration around triangular/triangular, triangular/circular, and circular/triangular 

obstacles in CD channel at Re = 20. 

4. Numerical solution scheme 

The flow narrating equations namely continuity and Navier-Stokes equations are given in Eqs (1) 

and (2) respectively. We need to obtain the dimensionless form therefore we used Eq (3). Use of Eq (3) 

results in Eqs (4) and (5). Since we have considered a two-dimensional time-independent Newtonian 

flow with triangular/triangular, triangular/circular, and circular/triangular obstacles in CD throat 

therefore the component form of Eq (5) can be used. Eqs (8)–(10) are ultimate component forms in this 

direction. The use of proper primitive variables results in Eqs (8)–(10) along with key dimensionless 

Reynolds number Re. Here we seek the solution of Eqs (8)–(10) to narrate the flow field having case-

wise interaction with triangular/triangular, triangular/circular, and circular/triangular obstructions in CD 

throat. For the solution of fluid flow narrating differential equation we have numerous numerical and 

analytical methods namely adomian decomposition method (ADM), variational iterative method (VIM), 

Homotopy [25], perturbation method [26], finite difference, finite element method [27] and finite volume 

method to name a few. Each of these schemes has some restrictions that depend on convergence with 

accuracy. We used the Comsol Multiphysics application [28–30] on Windows® to implement the finite 

element technique (FEM) for solution of our flow equations. Further 𝑄2  (biquadratic element) and 

𝑃1
𝐷𝑖𝑠𝑐 (piecewise linear discontinuous element) are considered for spaces discretization of velocity and 

pressure respectively. The nine (9) and three (3) degrees of freedom (DOFs) are slotted for velocity and 

pressure respectively. The 𝑄2/𝑃1
𝐷𝑖𝑠𝑐considered as stable finite element. Newtons approach is used to 

construct the nonlinear block system as a nonlinear solver. An iteration comes to an end, when the 

following relation holds: 

|
𝜆𝑛+1−𝜆𝑛

𝜆𝑛+1
| < 10−6,         (13) 

where 𝜆 is general solution component. We used FEM along with a hybrid meshed structure to report 

acceptable solutions. For discretization of the domain, six various hybrid meshing levels are owned by 

considering triangular and rectangular elements. The involved hybrid meshing levels include Q-6, Q-5, 

Q-4, Q-3, Q-2, and Q-1 for all case-wise installation of obstacles. It is important to note that for all cases, 

the findings are grid independent at Q-6, therefore, we performed all simulations at that level Q-6. For 

triangular/triangular hitch in the channel, we discretized the computational domain with 103 boundary 

elements (BEs) and 781 domain elements (DEs). This discretization is termed as hybrid meshing level 

Q-1. The discretization improved by introducing 132 BEs and 1148 DEs and known as Q-2. The detail of 

meshing levels namely Q-3, Q-4, and Q-5 for triangular/triangular installation is accessible in Table 1. The 

last level is named Q-6 and in this level, we used 367 BEs and 8049 DEs. For triangular/triangular 

case, the simulation is performed at level Q-6 with Re = 20. In the second case, the circular/triangular 
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obstructions are carried. Q-6, Q-5, Q-4, Q-3, Q-2, and Q-1 are six level used as meshing. We 

discretized convergent-divergent channel rooted with circular/triangular obstructions by using 96 BEs 

and 708 DEs. Such discretization is known as Q-1 hybrid meshing. The improved meshing detail for 

Q-5, Q-4, Q-3, and Q-2 is offered in Table 2. The simulation is accomplished at hybrid meshing level 

Q-6 to inspect the fluid flow field around circular/triangular shaped obstructions in the CD channel. In 

the third case, we have considered triangular/circular shaped obstructions in convergent-divergent 

channel. 

To inspect the flow field we have considered six different levels Q-1,2,3,4,5 and Q-6. In the first 

level, the domain contains 97 BEs and 713 DEs. The meshing is improved for the case when we have 

triangular/circular shaped obstructions in the CD channel and detail in this regard is offered in Table 3 

as level Q-2, Q-3, Q-4, and Q-5. The simulation is performed at level Q-6. At this level, we own 343 

BEs and 7081 DEs. We considered line integration to note the hydrodynamic forces experienced by 

installed obstructions. For all three events, we have also offered DOFs and central processing unit (CPU) 

time. 

Table 1. Mesh refinement for triangular/triangular as an obstructions. 

Levels (Q) BEs DEs DOFs CPU time (s) 

1 103 781 1524 07 

2 132 1148 2199 10 

3 170 1788 3312 09 

4 235 3187 5676 10 

5 299 4933 8559 14 

6 367 8049 13503 15 

Table 2. Mesh refinement for circular/triangular as an obstructions. 

Levels (Q) BEs DEs DOFs CPU time (s) 

1 96 708 1407 12 

2 124 1048 2034 10 

3 161 1657 3099 08 

4 224 2966 5319 11 

5 278 4308 7554 10 

6 339 7035 11886 13 

Table 3. Mesh refinement for triangular/circular as an obstructions. 

Levels (Q) BEs DEs DOFs CPU time (s) 

1 97 713 1413 13 

2 125 1045 2031 13 

3 163 1649 3090 11 

4 226 2996 5367 11 

5 281 4361 7638 11 

6 343 7081 11961 13 
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5. Comparative analysis 

We have considered a convergent-divergent channel having Newtonian fluid. The fluid 

interaction with case-wise installation namely triangular/triangular, circular/triangular, and 

triangular/circular obstructions is debated numerically. The quantities of interest for each case include, 

drag coefficient, lift coefficient, pressure, and velocity. 

5.1. EVENT-I. Triangular/triangular as an obstruction in CD throat 

In this event, we considered a triangular shaped obstruction in the sides of the CD channel 

throat. The flowing fluid strikes with installed obstacles. The interaction is studied by using a 

numerical scheme. The hybrid meshing for levels namely Q-1 and Q-6 for triangular/triangular 

hitches in CD throat is given in Figure 2. For accuracy, the simulation is done at hybrid level Q-6. 

Figures 3 and 4 offer the pressure and velocity distributions around the triangular/triangular 

obstacles. Particularly, Figure 3 depicts the pressure outcomes for event-I. The pressure is noticed 

maximum towards the left of the obstacle. Down the stream the pressure variation is linear. The 

corresponding velocity distribution around the triangular obstruction is offered in Figure 4. The fluid 

hits with the first triangular obstacle and such interaction brings bifurcation and this bifurcation 

travels towards the second installed triangular obstacle. The obstructions impact on fluid reduces 

down the channel. Here line graph scheme is executed to report the flow interaction with obstruction 

at several positions of the CD channel see Figure 5. In detail, Figure 5 offers the trend of u-velocity 

of viscous fluid at inlet (x = 0.0), channel positions x = 0.6, 0.7 and 1.5. For x = 0.0, one can see that 

the parabolic graphical trend validates the supposition of parabolic entrance of fluid from an inlet. 

For the viscous fluid u-velocity at channel position x = 0.6, the impact of installed obstacle is visible 

in terms of gain in fluid velocity. For u- at channel location x = 0.7, the u-velocity at this location is 

slightly less as compared x = 0.6. The variation in u is also witnessed at channel location x =1.5. One 

can see that the impact of an installed obstructions reduces at the large frame and u-velocity declines 

significantly. The placement of triangular obstacles in the CD channel results in two forces. Such 

values are obtained at six various meshed levels namely Q-1,2,3,4,5 and 6. Table 4 reports the forces 

faced by triangular/triangular hitches. At meshing level Q-1, the lift coefficient for triangular 

obstruction in the left locality of CD throat is observed 𝐿𝑐 = 0.48980 and drag coefficient is 

noticed𝐷𝑐 = 10.002. The value of lift coefficient at meshing level Q-1 for obstacle in right of CD 

throat is recorded 𝐿𝑐 = 1.0587and 𝐷𝑐 = 4.9927. The coefficients are optimized and outcomes in 

this direction are shared in Table 4 subject to various meshing levels. The level Q-6 owns trustful 

values of coefficients. The 𝐿𝑐 = 0.24370 and 𝐷𝑐 = 9.0756 are optimized values of left obstacle. 

At level Q-6, the triangular obstruction fitted in right vicinity of CD throat own drag coefficient 

value 𝐷𝑐 = 4.3776 and lift coefficient is noticed 𝐿𝑐 = 0.90197. The drag coefficient in the left 

side of the throat is noticed higher in comparison to right vicinity. The opposite is the case subject 

to lift coefficient values. 

 



8855 

AIMS Mathematics  Volume 8, Issue 4, 8847–8866. 

Figure 2. Meshing scheme for Event-I. 

Figure 3. Pressure for triangular/triangular event. 

Figure 4. Velocity for triangular/triangular event. 
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Figure 5. Line graph study for triangular/triangular event. 

Table 4. Coefficients for triangular/triangular event. 

Levels 

(Q) 

Triangular cylinder in left vicinity Triangular cylinder in right vicinity 

Lift Drag Lift Drag 

1 0.48980 10.002 1.0587 4.9927 

2 0.31378 9.5195 0.99793 4.9642 

3 0.29644 9.3882 0.98832 4.5755 

4 0.27296 9.1636 0.94573 4.4239 

5 0.25228 9.1152 0.92602 4.4181 

6 0.24370 9.0756 0.90197 4.3776 

5.2. EVENT-II. Circular/triangular as an obstruction in CD throat 

In this event, circular/triangular shaped obstructions were considered in the left/right locality. The 

fluid arrives with a parabolic form from the left wall of the CD channel and interacts with obstacles 

mounted. The relation is analyzed using the methodology of finite element method. For 

circular/triangular hitches in the CD throat, hybrid meshing for Q-1, and Q-6 levels is given in Figure 6. 

The recognition of triangular and rectangular components supports hybrid meshing. The simulation is 

executed at hybrid stage Q-6 for accuracy. Figures 7 and 8 provide the distribution of pressure and 

velocity across the circular/triangular obstructions in the CD throats left/right vicinity. Particularly, 

Figure 7 illustrates the distribution of pressure in a domain with a circular obstruction. It is found that 

the pressure on the left face of the circular obstacle is optimum. The intensity changes in a linear way 

down the CD channel stream. The corresponding velocity distribution in CD throat around 

circular/triangular obstructions is given in Figure 8. 

Such contact brings bifurcation and this bifurcation near inlet gain momentum towards outlet. 

The influence of these obstructions on the flow of fluid decreases down the drain. The line graph 

analysis is also conducted to disclose separate locations (x = 0.0, 0.6, 0.7, and 1.5) of the CD channel 

to the flow contact with obstruction. Figure 9 in this direction is plotted. For the pattern of viscous 

fluid u-velocity at the inlet (x = 0.0) of the channel, one can see that the parabolic graphical pattern 
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validates the belief that fluid from an inlet is parabolically reached. For channel location x = 0.6, the 

influence of the obstacle is noticeable. The u-velocity at channel location x = 0.7 is given in Figure 9 

as well. At channel position x = 1.5, the difference in u-velocity is noted. We can see that the influence 

of mounted obstructions decreases at wide frames and u-velocity decreases. Six separate mesh sizes, 

namely Q-1,2,3,4,5, and Q-6, are used to achieve lift and drag coefficients. Table 5 tracks the drag and 

lift forces in CD throat encountered by circular/triangular obstructions. For circular obstruction we 

observed 𝐿𝑐 = −0.28973 at meshing stage Q-1, and the drag coefficient is found 𝐷𝑐 = 8.3858. The 

lift coefficient value at meshing level Q-1 is registered 𝐿𝑐 = 1.1978 for triangular obstruction while 

the drag coefficient is observed 𝐷𝑐 = 5.0234. 

Figure 6. Meshing scheme for Event-II. 

Figure 7. Pressure for circular/triangular event. 
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Figure 8. Velocity for circular/triangular event. 

Figure 9. Line graph study for circular/triangular event. 

Table 5 offers the values of coefficients at different levels. Meshing level Q-6 has an accurate 

values. For the circular obstruction, we have 𝐿𝑐 = −0.19437 and 𝐷𝑐 = 7.5651. The values for the 

triangular obstacle are noted at level Q-6, that is drag coefficient 𝐷𝑐 = 4.5777 and lift coefficient 

𝐿𝑐 = 0.83949. In comparison to the drag force faced by the triangular obstruction, the drag force 

faced by circular obstruction is greater in strength. The case of lift coefficient values is the reverse. 

Table 5. Coefficients for circular/triangular event. 

Levels (Q) 
Circular obstacle in left vicinity Triangular obstacle in right vicinity 

Lift Drag Lift Drag 

1 -0.28973 8.3858 1.1978 5.0234 

2 -0.27973 7.6259 0.93777 5.0978 

3 -0.26225 7.6312 0.90315 4.8201 

4 -0.25987 7.5594 0.84537 4.6973 

5 -0.23774 7.5526 0.83966 4.6079 

6 -0.19437 7.5651 0.83949 4.5777 
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5.3. EVENT-III. Triangular/circular as an obstruction in CD throat 

We used the CD channel with triangular and circular-shaped hitches in this case. In the CD region, 

the triangular-shaped obstacle is installed, while the circular hitch is positioned in the CD channel 

region. The lateral length of the circular and triangular obstruction is 0.1m. To report the fluid in the 

CD domain, we used the FEM. Figure 10 gives the geometric description of the hybrid meshing of the 

channel with triangular/circular obstructions. The fluid field analysis of the CD domain that has 

triangular and circular obstacles is performed, see Figures 11–13. In concrete words, Figure 11 

determines the pressure intensity for triangular and circular hitch. The fluid that communicates with 

the triangular barrier and the circular cylinder is found to have maximum left side strain. The pressure 

is strong in the convergence area of the CD channel. Figure 12 provides a fluid velocity distribution. 

The interaction of the fluid with the triangular obstruction allowed the fluid to rest compared to the 

triangular left side. The liquid has been bifurcated and such bifurcation moves around the CD throat 

to the circular obstacle mounted. The influence of cylinders on the fluid reduces dramatically down 

the stream. 

Figure 10. Meshing scheme for Event-III. 
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Figure 11. Pressure for triangular/circular event. 

Figure 12. Velocity for triangular/circular event. 

Figure 13. Line graph study for triangular/circular event. 

The line graph analysis is carried out at unique channel positions to evaluate the frequency of u-

velocity, see Figure 13. Parabolic profile is noted at x = 0.0. Fluid bifurcation is found at x= 0.6 and 0.7 

in convergent-convergent regions. The fluid is seen to slow down at x = 0.7 as compared to x=0.6. At x 

=1.5 the velocity shows extreme low magnitude in comparison with rest of channel positions. Table 6 

offers the lift coefficient 𝐿𝑐 = 0.51444 for the triangular cylinder at hybrid meshing Q-1 while the drag 
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coefficient is noted 𝐷𝑐 = 10.141 . The lift coefficient for circular cylinder is reached 𝐿𝑐 =

−0.42126 and 𝐷𝑐 = 4.4931 is the drag coefficient calculation. On level Q-6, the most positive 

value is indicated. The triangular cylinder drag coefficient is estimated 𝐷𝑐 = 9.1351 and the lifting 

coefficient is calculated 𝐿𝑐 = 0.26593 . The circular cylinder lifting coefficient is found 𝐿𝑐 =

−0.26189. For circular cylinder we have drag coefficient 𝐷𝑐 = 4.0898. In comparison with circular 

cylinder embedded in CD throat, the drag felt by the triangular cylinder is considerably strong. We 

made a comparison with Schäfer et al. [22] to gain confidence in our approach. We have taken into 

account the same dimensions as those mentioned in Ref. [22] for comparison. The considered 

rectangle has a length of 2.2 meters and a height of 0.41 meters. Fluid interact with circular obstacle 

positioned at (0.2, 0.2)m. At Re = 20, they observed the lift coefficient 𝐶𝐿 = 0.010618 while the 

drag coefficient 𝐶𝐷 = 5.579535. Table 7 offers the results comparison and we found an excellent 

match, which ensures the accuracy of the results at hand. The graphical comparison of lift and drag 

coefficients for present problem is offered by use of Figure 14a, b and Figure 15a, b. Such 

observations are reported for Event-I, Event-II, and Event-III. In detail, Figure 14a offers the drag 

coefficient values for obstructions in left locality for each event. We see that the drag faced by the 

triangular obstacle in Event-III is higher in magnitude. Figure 14b offers the drag coefficient values 

in the right vicinity of the throat for each event. It is seen that the drag coefficient for a triangular 

obstacle in Event-II is higher in magnitude. Figure 15a provides the comparative values of lift 

coefficient in the left vicinity of the throat for each case. One can see that at the improved meshing 

level, the lift coefficient is large in magnitude for a triangular obstacle in Event-III. Figure 15b offers 

the lift coefficient comparison for the right vicinity in each event. We observed that triangular 

obstruction possesses a higher value of lift coefficient for Event-I as compared to obstructions in 

Event-II and Event-III. 

Figure 14(a). Drag coefficient comparison on obstructions in left vicinity. 
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Figure 14(b). Drag coefficient comparison on obstructions in right vicinity. 

Figure 15(a). Lift coefficient comparison on obstructions in left vicinity. 

Figure 15(b). Lift coefficient comparison on obstructions in right vicinity. 
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Table 6. Coefficients for triangular/circular Event. 

Levels (Q) 
Triangular obstacle in left vicinity Circular obstacle in right vicinity 

Lift Drag Lift Drag 

1 0.51444 10.141 -0.42126 4.4931 

2 0.41078 9.6253 -0.32821  4.2824 

3 0.27694 9.4492 -0.31114 4.2452 

4 0.27250 9.2101 -0.31305 4.1014 

5 0.29564 9.1700 -0.27137 4.0892 

6 0.26593 9.1351 -0.26189 4.0898 

Table 7. Results comparison with Schäfer et al. [22] 

Levels (Q) Drag (Schäfer et al. [22]) 
Drag (Present 

Results) 

Lift (Schäfer et al. 

[22]) 

Lift (Present 

Results) 

1 - 6.5674 - -0.06153 

2 - 6.2789 - -0.04367 

3 - 5.9721 - -0.03013 

4 5.579535 5.5662 0.010618 0.02042 

5 5.579535 5.5713 0.010618 0.01310 

6 5.579535 5.5724 0.010618 0.01040 

6. Conclusions 

Motivated from Schäfer et al. [22], we offered optimized values of lift and drag coefficient for 

three different arrangements of obstacles in convergent-divergent channel. The alignment includes 

triangular/triangular, circular/triangular, and triangular/circular-shaped obstacles. The outcomes are 

obtained by using the finite element-based Comsol Multiphysics tool. The comparative analysis is 

itemized as follows: 

1) The lift force faced by the triangular obstacle (in the left vicinity) shows inciting values for the 

coupling of the triangular obstacle (in the right vicinity) in comparison with the coupling of the 

circular obstacle (in the right vicinity). 

2) The drag force reduces for triangular obstacle (in the left vicinity) when it gets coupled with a 

circular obstacle (in the right vicinity). 

3) Owning to the left vicinity of the convergent-divergent channel, the lift force faced by the 

triangular cylinder is greater in magnitude. 

4) The circular obstacle encountered greater drag in comparison to the drag force faced by the 

triangular impediment in the left vicinity. 

5) The idea can be expanded to look at the hydrodynamic forces for non-Newtonian fluid flows 

around natural or manmade obstructions having engineering standpoints. 
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